* v850-tdep.c: Cleanup lots of things. Add many comments.

* testsuite/gdb.base/nodebug.exp:  Whack out -g options by hand so
	that cflags can contains -gstabs, and work correctly for other tests.
This commit is contained in:
Stu Grossman 1996-10-21 21:45:55 +00:00
parent dece5fa0c3
commit 23da411ac8
2 changed files with 198 additions and 147 deletions

View File

@ -1,3 +1,9 @@
Mon Oct 21 14:40:50 1996 Stu Grossman (grossman@critters.cygnus.com)
* v850-tdep.c: Cleanup lots of things. Add many comments.
* testsuite/gdb.base/nodebug.exp: Whack out -g options by hand so
that cflags can contains -gstabs, and work correctly for other tests.
Mon Oct 21 14:01:38 1996 Michael Snyder <msnyder@cleaver.cygnus.com>
* top.c: Add new commands "set annotate" and "show annotate".

View File

@ -26,61 +26,85 @@ Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#include "bfd.h"
#include "gdb_string.h"
#include "gdbcore.h"
#include "symfile.h"
/* Dummy frame. This saves the processor state just prior to setting up the
inferior function call. On most targets, the registers are saved on the
target stack, but that really slows down function calls. */
struct dummy_frame
{
struct dummy_frame *next;
CORE_ADDR fp;
CORE_ADDR sp;
CORE_ADDR rp;
CORE_ADDR pc;
char regs[REGISTER_BYTES];
};
static struct dummy_frame *dummy_frame_stack = NULL;
/* This function actually figures out the frame address for a given pc and
sp. This is tricky on the v850 because we only use an explicit frame
pointer when using alloca(). The only reliable way to get this info is to
examine the prologue.
*/
void
v850_init_extra_frame_info (fi)
struct frame_info *fi;
static CORE_ADDR read_register_dummy PARAMS ((int regno));
/* Info gleaned from scanning a function's prologue. */
struct prologue_info
{
struct symtab_and_line sal;
CORE_ADDR func_addr, prologue_end, current_pc;
int reg;
int frameoffset;
int framereg;
int frameoffset;
int start_function;
struct frame_saved_regs *fsr;
};
if (fi->next)
fi->pc = FRAME_SAVED_PC (fi->next);
static CORE_ADDR scan_prologue PARAMS ((CORE_ADDR pc, struct prologue_info *fs));
/* Scan the prologue of the function that contains PC, and record what we find
in PI. PI->fsr must be zeroed by the called. Returns the pc after the
prologue. Note that the addresses saved in pi->fsr are actually just frame
relative (negative offsets from the frame pointer). This is because we
don't know the actual value of the frame pointer yet. In some
circumstances, the frame pointer can't be determined till after we have
scanned the prologue. */
static CORE_ADDR
scan_prologue (pc, pi)
CORE_ADDR pc;
struct prologue_info *pi;
{
CORE_ADDR func_addr, prologue_end, current_pc;
int fp_used;
/* First, figure out the bounds of the prologue so that we can limit the
search to something reasonable. */
if (find_pc_partial_function (fi->pc, NULL, &func_addr, NULL))
if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
{
struct symtab_and_line sal;
sal = find_pc_line (func_addr, 0);
if (func_addr == entry_point_address ())
pi->start_function = 1;
else
pi->start_function = 0;
if (sal.line == 0)
prologue_end = fi->pc;
prologue_end = pc;
else
prologue_end = sal.end;
}
else
prologue_end = func_addr + 100; /* We're in the boondocks */
{ /* We're in the boondocks */
func_addr = pc - 100;
prologue_end = pc;
}
prologue_end = min (prologue_end, fi->pc);
prologue_end = min (prologue_end, pc);
/* Now, search the prologue looking for instructions that setup fp, save
rp, adjust sp and such. */
rp, adjust sp and such. We also record the frame offset of any saved
registers. */
framereg = SP_REGNUM;
frameoffset = 0;
memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs);
pi->frameoffset = 0;
pi->framereg = SP_REGNUM;
fp_used = 0;
for (current_pc = func_addr; current_pc < prologue_end; current_pc += 2)
{
@ -89,44 +113,125 @@ v850_init_extra_frame_info (fi)
insn = read_memory_unsigned_integer (current_pc, 2);
if ((insn & 0xffe0) == ((SP_REGNUM << 11) | 0x0240)) /* add <imm>,sp */
frameoffset = ((insn & 0x1f) ^ 0x10) - 0x10;
pi->frameoffset = ((insn & 0x1f) ^ 0x10) - 0x10;
else if (insn == ((SP_REGNUM << 11) | 0x0600 | SP_REGNUM)) /* addi <imm>,sp,sp */
frameoffset = read_memory_integer (current_pc + 2, 2);
else if (insn == ((FP_REGNUM << 11) | 0x0000 | 12)) /* mov r12,r2 */
framereg = FP_REGNUM; /* Setting up fp */
else if ((insn & 0x07ff) == (0x0760 | SP_REGNUM)) /* st.w <reg>,<offset>[sp] */
pi->frameoffset = read_memory_integer (current_pc + 2, 2);
else if (insn == ((FP_REGNUM << 11) | 0x0000 | 12)) /* mov r12,fp */
{
reg = (insn >> 11) & 0x1f; /* Extract <reg> */
insn = read_memory_integer (current_pc + 2, 2) & ~1;
fi->fsr.regs[reg] = insn + frameoffset;
fp_used = 1;
pi->framereg = FP_REGNUM;
}
else if ((insn & 0x07ff) == (0x0760 | FP_REGNUM)) /* st.w <reg>,<offset>[fp] */
{
reg = (insn >> 11) & 0x1f; /* Extract <reg> */
else if ((insn & 0x07ff) == (0x0760 | SP_REGNUM) /* st.w <reg>,<offset>[sp] */
|| (fp_used
&& (insn & 0x07ff) == (0x0760 | FP_REGNUM))) /* st.w <reg>,<offset>[fp] */
if (pi->fsr)
{
int framereg;
int reg;
int offset;
insn = read_memory_integer (current_pc + 2, 2) & ~1;
framereg = insn & 0x1f;
reg = (insn >> 11) & 0x1f; /* Extract <reg> */
fi->fsr.regs[reg] = insn;
}
offset = read_memory_integer (current_pc + 2, 2) & ~1;
if (framereg == SP_REGNUM) /* Using SP? */
offset += pi->frameoffset; /* Yes, correct for frame size */
pi->fsr->regs[reg] = offset;
}
if ((insn & 0x0780) >= 0x0600) /* Four byte instruction? */
current_pc += 2;
}
return current_pc;
}
/* Setup the frame frame pointer, pc, and frame addresses for saved registers.
Most of the work is done in scan_prologue().
Note that when we are called for the last frame (currently active frame),
that fi->pc and fi->frame will already be setup. However, fi->frame will
be valid only if this routine uses FP. For previous frames, fi-frame will
always be correct (since that is derived from v850_frame_chain ()).
We can be called with the PC in the call dummy under two circumstances.
First, during normal backtracing, second, while figuring out the frame
pointer just prior to calling the target function (see run_stack_dummy).
*/
void
v850_init_extra_frame_info (fi)
struct frame_info *fi;
{
struct prologue_info pi;
int reg;
if (fi->next)
fi->pc = FRAME_SAVED_PC (fi->next);
memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs);
/* The call dummy doesn't save any registers on the stack, so we can return
now. */
if (PC_IN_CALL_DUMMY (fi->pc, NULL, NULL))
fi->frame = dummy_frame_stack->sp;
else if (!fi->next && framereg == SP_REGNUM)
fi->frame = read_register (framereg) - frameoffset;
{
/* We need to setup fi->frame here because run_stack_dummy gets it wrong
by assuming it's always FP. */
fi->frame = read_register_dummy (SP_REGNUM);
return;
}
pi.fsr = &fi->fsr;
scan_prologue (fi->pc, &pi);
if (!fi->next && pi.framereg == SP_REGNUM)
fi->frame = read_register (pi.framereg) - pi.frameoffset;
for (reg = 0; reg < NUM_REGS; reg++)
if (fi->fsr.regs[reg] != 0)
fi->fsr.regs[reg] += fi->frame;
}
/* Find the caller of this frame. We do this by seeing if RP_REGNUM is saved
in the stack anywhere, otherwise we get it from the registers. */
/* Figure out the frame prior to FI. Unfortunately, this involves scanning the
prologue of the caller, which will also be done shortly by
v850_init_extra_frame_info. For the dummy frame, we just return the stack
pointer that was in use at the time the function call was made. */
CORE_ADDR
v850_frame_chain (fi)
struct frame_info *fi;
{
CORE_ADDR callers_pc;
struct prologue_info pi;
/* First, find out who called us */
callers_pc = FRAME_SAVED_PC (fi);
if (PC_IN_CALL_DUMMY (callers_pc, NULL, NULL))
return read_register_dummy (SP_REGNUM); /* XXX Won't work if multiple dummy frames on stack! */
pi.fsr = NULL;
scan_prologue (callers_pc, &pi);
if (pi.start_function)
return 0; /* Don't chain beyond the start function */
if (pi.framereg == FP_REGNUM)
return v850_find_callers_reg (fi, pi.framereg);
return fi->frame - pi.frameoffset;
}
/* Find REGNUM on the stack. Otherwise, it's in an active register. One thing
we might want to do here is to check REGNUM against the clobber mask, and
somehow flag it as invalid if it isn't saved on the stack somewhere. This
would provide a graceful failure mode when trying to get the value of
caller-saves registers for an inner frame. */
CORE_ADDR
v850_find_callers_reg (fi, regnum)
@ -134,93 +239,21 @@ v850_find_callers_reg (fi, regnum)
int regnum;
{
/* XXX - Won't work if multiple dummy frames are active */
/* When the caller requests RP from the dummy frame, we return PC because
that's where the previous routine appears to have done a call from. */
if (PC_IN_CALL_DUMMY (fi->pc, NULL, NULL))
switch (regnum)
{
case SP_REGNUM:
return dummy_frame_stack->sp;
break;
case FP_REGNUM:
return dummy_frame_stack->fp;
break;
case RP_REGNUM:
return dummy_frame_stack->pc;
break;
case PC_REGNUM:
return dummy_frame_stack->pc;
break;
}
if (regnum == RP_REGNUM)
regnum = PC_REGNUM;
for (; fi; fi = fi->next)
if (fi->fsr.regs[regnum] != 0)
if (PC_IN_CALL_DUMMY (fi->pc, NULL, NULL))
return read_register_dummy (regnum);
else if (fi->fsr.regs[regnum] != 0)
return read_memory_integer (fi->fsr.regs[regnum], 4);
return read_register (regnum);
}
CORE_ADDR
v850_frame_chain (fi)
struct frame_info *fi;
{
CORE_ADDR callers_pc, callers_sp;
CORE_ADDR func_addr, prologue_end, current_pc;
int frameoffset;
/* First, find out who called us */
callers_pc = FRAME_SAVED_PC (fi);
if (PC_IN_CALL_DUMMY (callers_pc, NULL, NULL))
return dummy_frame_stack->sp; /* XXX Won't work if multiple dummy frames on stack! */
/* Next, figure out where his prologue is. */
if (find_pc_partial_function (callers_pc, NULL, &func_addr, NULL))
{
struct symtab_and_line sal;
/* Stop when the caller is the entry point function */
if (func_addr == entry_point_address ())
return 0;
sal = find_pc_line (func_addr, 0);
if (sal.line == 0)
prologue_end = callers_pc;
else
prologue_end = sal.end;
}
else
prologue_end = func_addr + 100; /* We're in the boondocks */
prologue_end = min (prologue_end, callers_pc);
/* Now, figure out the frame location of the caller by examining his prologue.
We're looking for either a load of the frame pointer register, or a stack
adjustment. */
frameoffset = 0;
for (current_pc = func_addr; current_pc < prologue_end; current_pc += 2)
{
int insn;
insn = read_memory_unsigned_integer (current_pc, 2);
if ((insn & 0xffe0) == ((SP_REGNUM << 11) | 0x0240)) /* add <imm>,sp */
frameoffset = ((insn & 0x1f) ^ 0x10) - 0x10;
else if (insn == ((SP_REGNUM << 11) | 0x0600 | SP_REGNUM)) /* addi <imm>,sp,sp */
frameoffset = read_memory_integer (current_pc + 2, 2);
else if (insn == ((FP_REGNUM << 11) | 0x0000 | 12)) /* mov r12,r2 */
return v850_find_callers_reg (fi, FP_REGNUM); /* It's using a frame pointer reg */
if ((insn & 0x0780) >= 0x0600) /* Four byte instruction? */
current_pc += 2;
}
return fi->frame - frameoffset;
}
CORE_ADDR
v850_skip_prologue (pc)
CORE_ADDR pc;
@ -248,7 +281,12 @@ v850_skip_prologue (pc)
return pc;
}
/* All we do here is record SP and FP on the call dummy stack */
/* Save all the registers on the dummy frame stack. Most ports save the
registers on the target stack. This results in lots of unnecessary memory
references, which are slow when debugging via a serial line. Instead, we
save all the registers internally, and never write them to the stack. The
registers get restored when the called function returns to the entry point,
where a breakpoint is laying in wait. */
void
v850_push_dummy_frame ()
@ -257,14 +295,22 @@ v850_push_dummy_frame ()
dummy_frame = xmalloc (sizeof (struct dummy_frame));
dummy_frame->fp = read_register (FP_REGNUM);
dummy_frame->sp = read_register (SP_REGNUM);
dummy_frame->rp = read_register (RP_REGNUM);
dummy_frame->pc = read_register (PC_REGNUM);
read_register_bytes (0, dummy_frame->regs, REGISTER_BYTES);
dummy_frame->next = dummy_frame_stack;
dummy_frame_stack = dummy_frame;
}
/* Read registers from the topmost dummy frame. */
CORE_ADDR
read_register_dummy (regno)
int regno;
{
return extract_address (&dummy_frame_stack->regs[REGISTER_BYTE (regno)],
REGISTER_RAW_SIZE(regno));
}
int
v850_pc_in_call_dummy (pc)
CORE_ADDR pc;
@ -274,6 +320,9 @@ v850_pc_in_call_dummy (pc)
&& pc <= CALL_DUMMY_ADDRESS () + DECR_PC_AFTER_BREAK;
}
/* This routine gets called when either the user uses the `return' command, or
the call dummy breakpoint gets hit. */
struct frame_info *
v850_pop_frame (frame)
struct frame_info *frame;
@ -290,32 +339,28 @@ v850_pop_frame (frame)
dummy_frame_stack = dummy_frame->next;
write_register (FP_REGNUM, dummy_frame->fp);
write_register (SP_REGNUM, dummy_frame->sp);
write_register (RP_REGNUM, dummy_frame->rp);
write_register (PC_REGNUM, dummy_frame->pc);
write_register_bytes (0, dummy_frame->regs, REGISTER_BYTES);
free (dummy_frame);
}
else
{
write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
flush_cached_frames ();
for (regnum = 0; regnum < NUM_REGS; regnum++)
if (frame->fsr.regs[regnum] != 0)
write_register (regnum,
read_memory_integer (frame->fsr.regs[regnum], 4));
return NULL;
write_register (SP_REGNUM, FRAME_FP (frame));
}
write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
for (regnum = 0; regnum < NUM_REGS; regnum++)
if (frame->fsr.regs[regnum] != 0)
write_register (regnum, read_memory_integer (frame->fsr.regs[regnum], 4));
write_register (SP_REGNUM, FRAME_FP (frame));
flush_cached_frames ();
return NULL;
}
/* Put arguments in the right places, and setup return address register (RP) to
point at a convenient place to put a breakpoint. First four args go in
/* Setup arguments and RP for a call to the target. First four args go in
R6->R9, subsequent args go into sp + 16 -> sp + ... Structs are passed by
reference. 64 bit quantities (doubles and long longs) may be split between
the regs and the stack. When calling a function that returns a struct, a