2000-07-07 Michael Snyder <msnyder@cleaver.cygnus.com>
* findvar.c (_initialize_findvar, build_findvar, write_fp, read_fp, generic_target_write_fp, generic_target_read_fp, write_sp, read_sp, generic_target_write_sp, generic_target_read_sp, write_pc, read_pc, generic_target_write_pc, generic_target_read_pc, write_pc_pid, read_pc_pid, supply_register, write_register_pid, write_register, read_register_pid, read_register, write_register_bytes, read_register_bytes, write_register_gen, read_register_gen, registers_fetched, registers_changed, find_saved_register, read_relative_register_raw_bytes, default_get_saved_register, read_relative_register_raw_bytes_for_frame, get_saved_register): Move from this file into new file regcache.c. (register_valid, registers_pid, registers): Ditto. * regcache.c: New file to hold the register cache. (register_cached): New function to read register_valid array. * value.h (register_cached): Declare. * defs.h (default_get_saved_register): Delete decl of static function. * Makefile.in: Add regcache module.
This commit is contained in:
parent
62c848e1d0
commit
32178cabe9
@ -1,3 +1,23 @@
|
||||
2000-07-07 Michael Snyder <msnyder@cleaver.cygnus.com>
|
||||
|
||||
* findvar.c (_initialize_findvar, build_findvar, write_fp, read_fp,
|
||||
generic_target_write_fp, generic_target_read_fp, write_sp, read_sp,
|
||||
generic_target_write_sp, generic_target_read_sp, write_pc, read_pc,
|
||||
generic_target_write_pc, generic_target_read_pc, write_pc_pid,
|
||||
read_pc_pid, supply_register, write_register_pid, write_register,
|
||||
read_register_pid, read_register, write_register_bytes,
|
||||
read_register_bytes, write_register_gen, read_register_gen,
|
||||
registers_fetched, registers_changed, find_saved_register,
|
||||
read_relative_register_raw_bytes, default_get_saved_register,
|
||||
read_relative_register_raw_bytes_for_frame, get_saved_register):
|
||||
Move from this file into new file regcache.c.
|
||||
(register_valid, registers_pid, registers): Ditto.
|
||||
* regcache.c: New file to hold the register cache.
|
||||
(register_cached): New function to read register_valid array.
|
||||
* value.h (register_cached): Declare.
|
||||
* defs.h (default_get_saved_register): Delete decl of static function.
|
||||
* Makefile.in: Add regcache module.
|
||||
|
||||
Mon Jul 10 15:02:35 2000 Andrew Cagney <cagney@b1.cygnus.com>
|
||||
|
||||
From 2000-07-05 Pierre Muller <muller@ics.u-strasbg.fr>:
|
||||
|
@ -1,5 +1,5 @@
|
||||
# Copyright 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
|
||||
# 1998, 1999, 2000 Free Software Foundation, Inc.
|
||||
# Copyright 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000
|
||||
# Free Software Foundation, Inc.
|
||||
|
||||
# This file is part of GDB.
|
||||
|
||||
@ -342,7 +342,7 @@ RUNTESTFLAGS=
|
||||
# part of libiberty) a POSIX interface. But at least for now the
|
||||
# host-dependent makefile fragment might need to use something else
|
||||
# besides ser-unix.o
|
||||
SER_HARDWIRE = @SER_HARDWIRE@
|
||||
SER_HARDWIRE = ser-unix.o ser-pipe.o
|
||||
|
||||
# The `remote' debugging target is supported for most architectures,
|
||||
# but not all (e.g. 960)
|
||||
@ -368,7 +368,6 @@ ANNOTATE_OBS = annotate.o
|
||||
FLAGS_TO_PASS = \
|
||||
"prefix=$(prefix)" \
|
||||
"exec_prefix=$(exec_prefix)" \
|
||||
"infodir=$(infodir)" \
|
||||
"against=$(against)" \
|
||||
"AR=$(AR)" \
|
||||
"AR_FLAGS=$(AR_FLAGS)" \
|
||||
@ -481,7 +480,7 @@ SFILES = ax-general.c ax-gdb.c bcache.c blockframe.c breakpoint.c \
|
||||
demangle.c dwarfread.c dwarf2read.c elfread.c environ.c eval.c \
|
||||
event-loop.c event-top.c \
|
||||
expprint.c f-exp.y f-lang.c f-typeprint.c f-valprint.c \
|
||||
findvar.c gdbarch.c arch-utils.c gdbtypes.c \
|
||||
findvar.c regcache.c gdbarch.c arch-utils.c gdbtypes.c \
|
||||
inf-loop.c infcmd.c inflow.c infrun.c language.c \
|
||||
kod.c kod-cisco.c \
|
||||
ui-out.c cli-out.c \
|
||||
@ -615,10 +614,10 @@ TAGFILES_NO_SRCDIR = $(SFILES) $(HFILES_NO_SRCDIR) $(ALLDEPFILES) \
|
||||
$(POSSLIBS)
|
||||
TAGFILES_WITH_SRCDIR = $(HFILES_WITH_SRCDIR)
|
||||
|
||||
COMMON_OBS = version.o blockframe.o breakpoint.o findvar.o stack.o thread.o \
|
||||
COMMON_OBS = version.o blockframe.o breakpoint.o findvar.o regcache.o \
|
||||
source.o values.o eval.o valops.o valarith.o valprint.o printcmd.o \
|
||||
symtab.o symfile.o symmisc.o infcmd.o infrun.o command.o \
|
||||
expprint.o environ.o \
|
||||
expprint.o environ.o stack.o thread.o \
|
||||
event-loop.o event-top.o inf-loop.o \
|
||||
gdbarch.o arch-utils.o gdbtypes.o copying.o $(DEPFILES) \
|
||||
mem-break.o target.o parse.o language.o $(YYOBJ) buildsym.o \
|
||||
@ -1276,6 +1275,8 @@ expprint.o: expprint.c $(defs_h) $(expression_h) $(gdbtypes_h) \
|
||||
findvar.o: findvar.c $(defs_h) $(gdbcore_h) $(inferior_h) target.h \
|
||||
gdb_string.h
|
||||
|
||||
regcache.o: regcache.c $(defs_h) $(inferior_h) target.h
|
||||
|
||||
fork-child.o: fork-child.c gdb_wait.h $(defs_h) $(gdbcore_h) \
|
||||
$(inferior_h) target.h terminal.h gdbthread.h gdb_string.h
|
||||
|
||||
|
@ -587,11 +587,6 @@ enum lval_type
|
||||
|
||||
struct frame_info;
|
||||
|
||||
void default_get_saved_register (char *raw_buffer, int *optimized,
|
||||
CORE_ADDR * addrp,
|
||||
struct frame_info *frame, int regnum,
|
||||
enum lval_type *lval);
|
||||
|
||||
/* From readline (but not in any readline .h files). */
|
||||
|
||||
extern char *tilde_expand (char *);
|
||||
|
815
gdb/findvar.c
815
gdb/findvar.c
@ -37,18 +37,6 @@
|
||||
|
||||
const struct floatformat floatformat_unknown;
|
||||
|
||||
/* Registers we shouldn't try to store. */
|
||||
#if !defined (CANNOT_STORE_REGISTER)
|
||||
#define CANNOT_STORE_REGISTER(regno) 0
|
||||
#endif
|
||||
|
||||
void write_register_gen (int, char *);
|
||||
|
||||
static int
|
||||
read_relative_register_raw_bytes_for_frame (int regnum,
|
||||
char *myaddr,
|
||||
struct frame_info *frame);
|
||||
|
||||
/* Basic byte-swapping routines. GDB has needed these for a long time...
|
||||
All extract a target-format integer at ADDR which is LEN bytes long. */
|
||||
|
||||
@ -391,200 +379,6 @@ store_floating (void *addr, int len, DOUBLEST val)
|
||||
error ("Can't deal with a floating point number of %d bytes.", len);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* Return the address in which frame FRAME's value of register REGNUM
|
||||
has been saved in memory. Or return zero if it has not been saved.
|
||||
If REGNUM specifies the SP, the value we return is actually
|
||||
the SP value, not an address where it was saved. */
|
||||
|
||||
CORE_ADDR
|
||||
find_saved_register (frame, regnum)
|
||||
struct frame_info *frame;
|
||||
int regnum;
|
||||
{
|
||||
register struct frame_info *frame1 = NULL;
|
||||
register CORE_ADDR addr = 0;
|
||||
|
||||
if (frame == NULL) /* No regs saved if want current frame */
|
||||
return 0;
|
||||
|
||||
#ifdef HAVE_REGISTER_WINDOWS
|
||||
/* We assume that a register in a register window will only be saved
|
||||
in one place (since the name changes and/or disappears as you go
|
||||
towards inner frames), so we only call get_frame_saved_regs on
|
||||
the current frame. This is directly in contradiction to the
|
||||
usage below, which assumes that registers used in a frame must be
|
||||
saved in a lower (more interior) frame. This change is a result
|
||||
of working on a register window machine; get_frame_saved_regs
|
||||
always returns the registers saved within a frame, within the
|
||||
context (register namespace) of that frame. */
|
||||
|
||||
/* However, note that we don't want this to return anything if
|
||||
nothing is saved (if there's a frame inside of this one). Also,
|
||||
callers to this routine asking for the stack pointer want the
|
||||
stack pointer saved for *this* frame; this is returned from the
|
||||
next frame. */
|
||||
|
||||
if (REGISTER_IN_WINDOW_P (regnum))
|
||||
{
|
||||
frame1 = get_next_frame (frame);
|
||||
if (!frame1)
|
||||
return 0; /* Registers of this frame are active. */
|
||||
|
||||
/* Get the SP from the next frame in; it will be this
|
||||
current frame. */
|
||||
if (regnum != SP_REGNUM)
|
||||
frame1 = frame;
|
||||
|
||||
FRAME_INIT_SAVED_REGS (frame1);
|
||||
return frame1->saved_regs[regnum]; /* ... which might be zero */
|
||||
}
|
||||
#endif /* HAVE_REGISTER_WINDOWS */
|
||||
|
||||
/* Note that this next routine assumes that registers used in
|
||||
frame x will be saved only in the frame that x calls and
|
||||
frames interior to it. This is not true on the sparc, but the
|
||||
above macro takes care of it, so we should be all right. */
|
||||
while (1)
|
||||
{
|
||||
QUIT;
|
||||
frame1 = get_prev_frame (frame1);
|
||||
if (frame1 == 0 || frame1 == frame)
|
||||
break;
|
||||
FRAME_INIT_SAVED_REGS (frame1);
|
||||
if (frame1->saved_regs[regnum])
|
||||
addr = frame1->saved_regs[regnum];
|
||||
}
|
||||
|
||||
return addr;
|
||||
}
|
||||
|
||||
/* Find register number REGNUM relative to FRAME and put its (raw,
|
||||
target format) contents in *RAW_BUFFER. Set *OPTIMIZED if the
|
||||
variable was optimized out (and thus can't be fetched). Set *LVAL
|
||||
to lval_memory, lval_register, or not_lval, depending on whether
|
||||
the value was fetched from memory, from a register, or in a strange
|
||||
and non-modifiable way (e.g. a frame pointer which was calculated
|
||||
rather than fetched). Set *ADDRP to the address, either in memory
|
||||
on as a REGISTER_BYTE offset into the registers array.
|
||||
|
||||
Note that this implementation never sets *LVAL to not_lval. But
|
||||
it can be replaced by defining GET_SAVED_REGISTER and supplying
|
||||
your own.
|
||||
|
||||
The argument RAW_BUFFER must point to aligned memory. */
|
||||
|
||||
void
|
||||
default_get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
|
||||
char *raw_buffer;
|
||||
int *optimized;
|
||||
CORE_ADDR *addrp;
|
||||
struct frame_info *frame;
|
||||
int regnum;
|
||||
enum lval_type *lval;
|
||||
{
|
||||
CORE_ADDR addr;
|
||||
|
||||
if (!target_has_registers)
|
||||
error ("No registers.");
|
||||
|
||||
/* Normal systems don't optimize out things with register numbers. */
|
||||
if (optimized != NULL)
|
||||
*optimized = 0;
|
||||
addr = find_saved_register (frame, regnum);
|
||||
if (addr != 0)
|
||||
{
|
||||
if (lval != NULL)
|
||||
*lval = lval_memory;
|
||||
if (regnum == SP_REGNUM)
|
||||
{
|
||||
if (raw_buffer != NULL)
|
||||
{
|
||||
/* Put it back in target format. */
|
||||
store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
|
||||
(LONGEST) addr);
|
||||
}
|
||||
if (addrp != NULL)
|
||||
*addrp = 0;
|
||||
return;
|
||||
}
|
||||
if (raw_buffer != NULL)
|
||||
read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum));
|
||||
}
|
||||
else
|
||||
{
|
||||
if (lval != NULL)
|
||||
*lval = lval_register;
|
||||
addr = REGISTER_BYTE (regnum);
|
||||
if (raw_buffer != NULL)
|
||||
read_register_gen (regnum, raw_buffer);
|
||||
}
|
||||
if (addrp != NULL)
|
||||
*addrp = addr;
|
||||
}
|
||||
|
||||
#if !defined (GET_SAVED_REGISTER)
|
||||
#define GET_SAVED_REGISTER(raw_buffer, optimized, addrp, frame, regnum, lval) \
|
||||
default_get_saved_register(raw_buffer, optimized, addrp, frame, regnum, lval)
|
||||
#endif
|
||||
void
|
||||
get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
|
||||
char *raw_buffer;
|
||||
int *optimized;
|
||||
CORE_ADDR *addrp;
|
||||
struct frame_info *frame;
|
||||
int regnum;
|
||||
enum lval_type *lval;
|
||||
{
|
||||
GET_SAVED_REGISTER (raw_buffer, optimized, addrp, frame, regnum, lval);
|
||||
}
|
||||
|
||||
/* Copy the bytes of register REGNUM, relative to the input stack frame,
|
||||
into our memory at MYADDR, in target byte order.
|
||||
The number of bytes copied is REGISTER_RAW_SIZE (REGNUM).
|
||||
|
||||
Returns 1 if could not be read, 0 if could. */
|
||||
|
||||
static int
|
||||
read_relative_register_raw_bytes_for_frame (regnum, myaddr, frame)
|
||||
int regnum;
|
||||
char *myaddr;
|
||||
struct frame_info *frame;
|
||||
{
|
||||
int optim;
|
||||
if (regnum == FP_REGNUM && frame)
|
||||
{
|
||||
/* Put it back in target format. */
|
||||
store_address (myaddr, REGISTER_RAW_SIZE (FP_REGNUM),
|
||||
(LONGEST) FRAME_FP (frame));
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
get_saved_register (myaddr, &optim, (CORE_ADDR *) NULL, frame,
|
||||
regnum, (enum lval_type *) NULL);
|
||||
|
||||
if (register_valid[regnum] < 0)
|
||||
return 1; /* register value not available */
|
||||
|
||||
return optim;
|
||||
}
|
||||
|
||||
/* Copy the bytes of register REGNUM, relative to the current stack frame,
|
||||
into our memory at MYADDR, in target byte order.
|
||||
The number of bytes copied is REGISTER_RAW_SIZE (REGNUM).
|
||||
|
||||
Returns 1 if could not be read, 0 if could. */
|
||||
|
||||
int
|
||||
read_relative_register_raw_bytes (regnum, myaddr)
|
||||
int regnum;
|
||||
char *myaddr;
|
||||
{
|
||||
return read_relative_register_raw_bytes_for_frame (regnum, myaddr,
|
||||
selected_frame);
|
||||
}
|
||||
|
||||
/* Return a `value' with the contents of register REGNUM
|
||||
in its virtual format, with the type specified by
|
||||
@ -606,7 +400,7 @@ value_of_register (regnum)
|
||||
get_saved_register (raw_buffer, &optim, &addr,
|
||||
selected_frame, regnum, &lval);
|
||||
|
||||
if (register_valid[regnum] < 0)
|
||||
if (register_cached (regnum) < 0)
|
||||
return NULL; /* register value not available */
|
||||
|
||||
reg_val = allocate_value (REGISTER_VIRTUAL_TYPE (regnum));
|
||||
@ -633,579 +427,6 @@ value_of_register (regnum)
|
||||
VALUE_OPTIMIZED_OUT (reg_val) = optim;
|
||||
return reg_val;
|
||||
}
|
||||
|
||||
/* Low level examining and depositing of registers.
|
||||
|
||||
The caller is responsible for making
|
||||
sure that the inferior is stopped before calling the fetching routines,
|
||||
or it will get garbage. (a change from GDB version 3, in which
|
||||
the caller got the value from the last stop). */
|
||||
|
||||
/* Contents and state of the registers (in target byte order). */
|
||||
|
||||
char *registers;
|
||||
|
||||
/* VALID_REGISTER is non-zero if it has been fetched, -1 if the
|
||||
register value was not available. */
|
||||
|
||||
signed char *register_valid;
|
||||
|
||||
/* The thread/process associated with the current set of registers. For now,
|
||||
-1 is special, and means `no current process'. */
|
||||
int registers_pid = -1;
|
||||
|
||||
/* Indicate that registers may have changed, so invalidate the cache. */
|
||||
|
||||
void
|
||||
registers_changed ()
|
||||
{
|
||||
int i;
|
||||
int numregs = ARCH_NUM_REGS;
|
||||
|
||||
registers_pid = -1;
|
||||
|
||||
/* Force cleanup of any alloca areas if using C alloca instead of
|
||||
a builtin alloca. This particular call is used to clean up
|
||||
areas allocated by low level target code which may build up
|
||||
during lengthy interactions between gdb and the target before
|
||||
gdb gives control to the user (ie watchpoints). */
|
||||
alloca (0);
|
||||
|
||||
for (i = 0; i < numregs; i++)
|
||||
register_valid[i] = 0;
|
||||
|
||||
if (registers_changed_hook)
|
||||
registers_changed_hook ();
|
||||
}
|
||||
|
||||
/* Indicate that all registers have been fetched, so mark them all valid. */
|
||||
void
|
||||
registers_fetched ()
|
||||
{
|
||||
int i;
|
||||
int numregs = ARCH_NUM_REGS;
|
||||
for (i = 0; i < numregs; i++)
|
||||
register_valid[i] = 1;
|
||||
}
|
||||
|
||||
/* read_register_bytes and write_register_bytes are generally a *BAD*
|
||||
idea. They are inefficient because they need to check for partial
|
||||
updates, which can only be done by scanning through all of the
|
||||
registers and seeing if the bytes that are being read/written fall
|
||||
inside of an invalid register. [The main reason this is necessary
|
||||
is that register sizes can vary, so a simple index won't suffice.]
|
||||
It is far better to call read_register_gen and write_register_gen
|
||||
if you want to get at the raw register contents, as it only takes a
|
||||
regno as an argument, and therefore can't do a partial register
|
||||
update.
|
||||
|
||||
Prior to the recent fixes to check for partial updates, both read
|
||||
and write_register_bytes always checked to see if any registers
|
||||
were stale, and then called target_fetch_registers (-1) to update
|
||||
the whole set. This caused really slowed things down for remote
|
||||
targets. */
|
||||
|
||||
/* Copy INLEN bytes of consecutive data from registers
|
||||
starting with the INREGBYTE'th byte of register data
|
||||
into memory at MYADDR. */
|
||||
|
||||
void
|
||||
read_register_bytes (inregbyte, myaddr, inlen)
|
||||
int inregbyte;
|
||||
char *myaddr;
|
||||
int inlen;
|
||||
{
|
||||
int inregend = inregbyte + inlen;
|
||||
int regno;
|
||||
|
||||
if (registers_pid != inferior_pid)
|
||||
{
|
||||
registers_changed ();
|
||||
registers_pid = inferior_pid;
|
||||
}
|
||||
|
||||
/* See if we are trying to read bytes from out-of-date registers. If so,
|
||||
update just those registers. */
|
||||
|
||||
for (regno = 0; regno < NUM_REGS; regno++)
|
||||
{
|
||||
int regstart, regend;
|
||||
|
||||
if (register_valid[regno])
|
||||
continue;
|
||||
|
||||
if (REGISTER_NAME (regno) == NULL || *REGISTER_NAME (regno) == '\0')
|
||||
continue;
|
||||
|
||||
regstart = REGISTER_BYTE (regno);
|
||||
regend = regstart + REGISTER_RAW_SIZE (regno);
|
||||
|
||||
if (regend <= inregbyte || inregend <= regstart)
|
||||
/* The range the user wants to read doesn't overlap with regno. */
|
||||
continue;
|
||||
|
||||
/* We've found an invalid register where at least one byte will be read.
|
||||
Update it from the target. */
|
||||
target_fetch_registers (regno);
|
||||
|
||||
if (!register_valid[regno])
|
||||
error ("read_register_bytes: Couldn't update register %d.", regno);
|
||||
}
|
||||
|
||||
if (myaddr != NULL)
|
||||
memcpy (myaddr, ®isters[inregbyte], inlen);
|
||||
}
|
||||
|
||||
/* Read register REGNO into memory at MYADDR, which must be large enough
|
||||
for REGISTER_RAW_BYTES (REGNO). Target byte-order.
|
||||
If the register is known to be the size of a CORE_ADDR or smaller,
|
||||
read_register can be used instead. */
|
||||
void
|
||||
read_register_gen (regno, myaddr)
|
||||
int regno;
|
||||
char *myaddr;
|
||||
{
|
||||
if (registers_pid != inferior_pid)
|
||||
{
|
||||
registers_changed ();
|
||||
registers_pid = inferior_pid;
|
||||
}
|
||||
|
||||
if (!register_valid[regno])
|
||||
target_fetch_registers (regno);
|
||||
memcpy (myaddr, ®isters[REGISTER_BYTE (regno)],
|
||||
REGISTER_RAW_SIZE (regno));
|
||||
}
|
||||
|
||||
/* Write register REGNO at MYADDR to the target. MYADDR points at
|
||||
REGISTER_RAW_BYTES(REGNO), which must be in target byte-order. */
|
||||
|
||||
void
|
||||
write_register_gen (regno, myaddr)
|
||||
int regno;
|
||||
char *myaddr;
|
||||
{
|
||||
int size;
|
||||
|
||||
/* On the sparc, writing %g0 is a no-op, so we don't even want to change
|
||||
the registers array if something writes to this register. */
|
||||
if (CANNOT_STORE_REGISTER (regno))
|
||||
return;
|
||||
|
||||
if (registers_pid != inferior_pid)
|
||||
{
|
||||
registers_changed ();
|
||||
registers_pid = inferior_pid;
|
||||
}
|
||||
|
||||
size = REGISTER_RAW_SIZE (regno);
|
||||
|
||||
/* If we have a valid copy of the register, and new value == old value,
|
||||
then don't bother doing the actual store. */
|
||||
|
||||
if (register_valid[regno]
|
||||
&& memcmp (®isters[REGISTER_BYTE (regno)], myaddr, size) == 0)
|
||||
return;
|
||||
|
||||
target_prepare_to_store ();
|
||||
|
||||
memcpy (®isters[REGISTER_BYTE (regno)], myaddr, size);
|
||||
|
||||
register_valid[regno] = 1;
|
||||
|
||||
target_store_registers (regno);
|
||||
}
|
||||
|
||||
/* Copy INLEN bytes of consecutive data from memory at MYADDR
|
||||
into registers starting with the MYREGSTART'th byte of register data. */
|
||||
|
||||
void
|
||||
write_register_bytes (myregstart, myaddr, inlen)
|
||||
int myregstart;
|
||||
char *myaddr;
|
||||
int inlen;
|
||||
{
|
||||
int myregend = myregstart + inlen;
|
||||
int regno;
|
||||
|
||||
target_prepare_to_store ();
|
||||
|
||||
/* Scan through the registers updating any that are covered by the range
|
||||
myregstart<=>myregend using write_register_gen, which does nice things
|
||||
like handling threads, and avoiding updates when the new and old contents
|
||||
are the same. */
|
||||
|
||||
for (regno = 0; regno < NUM_REGS; regno++)
|
||||
{
|
||||
int regstart, regend;
|
||||
|
||||
regstart = REGISTER_BYTE (regno);
|
||||
regend = regstart + REGISTER_RAW_SIZE (regno);
|
||||
|
||||
/* Is this register completely outside the range the user is writing? */
|
||||
if (myregend <= regstart || regend <= myregstart)
|
||||
/* do nothing */ ;
|
||||
|
||||
/* Is this register completely within the range the user is writing? */
|
||||
else if (myregstart <= regstart && regend <= myregend)
|
||||
write_register_gen (regno, myaddr + (regstart - myregstart));
|
||||
|
||||
/* The register partially overlaps the range being written. */
|
||||
else
|
||||
{
|
||||
char regbuf[MAX_REGISTER_RAW_SIZE];
|
||||
/* What's the overlap between this register's bytes and
|
||||
those the caller wants to write? */
|
||||
int overlapstart = max (regstart, myregstart);
|
||||
int overlapend = min (regend, myregend);
|
||||
|
||||
/* We may be doing a partial update of an invalid register.
|
||||
Update it from the target before scribbling on it. */
|
||||
read_register_gen (regno, regbuf);
|
||||
|
||||
memcpy (registers + overlapstart,
|
||||
myaddr + (overlapstart - myregstart),
|
||||
overlapend - overlapstart);
|
||||
|
||||
target_store_registers (regno);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* Return the raw contents of register REGNO, regarding it as an integer. */
|
||||
/* This probably should be returning LONGEST rather than CORE_ADDR. */
|
||||
|
||||
CORE_ADDR
|
||||
read_register (regno)
|
||||
int regno;
|
||||
{
|
||||
if (registers_pid != inferior_pid)
|
||||
{
|
||||
registers_changed ();
|
||||
registers_pid = inferior_pid;
|
||||
}
|
||||
|
||||
if (!register_valid[regno])
|
||||
target_fetch_registers (regno);
|
||||
|
||||
return ((CORE_ADDR)
|
||||
extract_unsigned_integer (®isters[REGISTER_BYTE (regno)],
|
||||
REGISTER_RAW_SIZE (regno)));
|
||||
}
|
||||
|
||||
CORE_ADDR
|
||||
read_register_pid (regno, pid)
|
||||
int regno, pid;
|
||||
{
|
||||
int save_pid;
|
||||
CORE_ADDR retval;
|
||||
|
||||
if (pid == inferior_pid)
|
||||
return read_register (regno);
|
||||
|
||||
save_pid = inferior_pid;
|
||||
|
||||
inferior_pid = pid;
|
||||
|
||||
retval = read_register (regno);
|
||||
|
||||
inferior_pid = save_pid;
|
||||
|
||||
return retval;
|
||||
}
|
||||
|
||||
/* Store VALUE, into the raw contents of register number REGNO.
|
||||
This should probably write a LONGEST rather than a CORE_ADDR */
|
||||
|
||||
void
|
||||
write_register (regno, val)
|
||||
int regno;
|
||||
LONGEST val;
|
||||
{
|
||||
PTR buf;
|
||||
int size;
|
||||
|
||||
/* On the sparc, writing %g0 is a no-op, so we don't even want to change
|
||||
the registers array if something writes to this register. */
|
||||
if (CANNOT_STORE_REGISTER (regno))
|
||||
return;
|
||||
|
||||
if (registers_pid != inferior_pid)
|
||||
{
|
||||
registers_changed ();
|
||||
registers_pid = inferior_pid;
|
||||
}
|
||||
|
||||
size = REGISTER_RAW_SIZE (regno);
|
||||
buf = alloca (size);
|
||||
store_signed_integer (buf, size, (LONGEST) val);
|
||||
|
||||
/* If we have a valid copy of the register, and new value == old value,
|
||||
then don't bother doing the actual store. */
|
||||
|
||||
if (register_valid[regno]
|
||||
&& memcmp (®isters[REGISTER_BYTE (regno)], buf, size) == 0)
|
||||
return;
|
||||
|
||||
target_prepare_to_store ();
|
||||
|
||||
memcpy (®isters[REGISTER_BYTE (regno)], buf, size);
|
||||
|
||||
register_valid[regno] = 1;
|
||||
|
||||
target_store_registers (regno);
|
||||
}
|
||||
|
||||
void
|
||||
write_register_pid (regno, val, pid)
|
||||
int regno;
|
||||
CORE_ADDR val;
|
||||
int pid;
|
||||
{
|
||||
int save_pid;
|
||||
|
||||
if (pid == inferior_pid)
|
||||
{
|
||||
write_register (regno, val);
|
||||
return;
|
||||
}
|
||||
|
||||
save_pid = inferior_pid;
|
||||
|
||||
inferior_pid = pid;
|
||||
|
||||
write_register (regno, val);
|
||||
|
||||
inferior_pid = save_pid;
|
||||
}
|
||||
|
||||
/* Record that register REGNO contains VAL.
|
||||
This is used when the value is obtained from the inferior or core dump,
|
||||
so there is no need to store the value there.
|
||||
|
||||
If VAL is a NULL pointer, then it's probably an unsupported register. We
|
||||
just set it's value to all zeros. We might want to record this fact, and
|
||||
report it to the users of read_register and friends.
|
||||
*/
|
||||
|
||||
void
|
||||
supply_register (regno, val)
|
||||
int regno;
|
||||
char *val;
|
||||
{
|
||||
#if 1
|
||||
if (registers_pid != inferior_pid)
|
||||
{
|
||||
registers_changed ();
|
||||
registers_pid = inferior_pid;
|
||||
}
|
||||
#endif
|
||||
|
||||
register_valid[regno] = 1;
|
||||
if (val)
|
||||
memcpy (®isters[REGISTER_BYTE (regno)], val, REGISTER_RAW_SIZE (regno));
|
||||
else
|
||||
memset (®isters[REGISTER_BYTE (regno)], '\000', REGISTER_RAW_SIZE (regno));
|
||||
|
||||
/* On some architectures, e.g. HPPA, there are a few stray bits in some
|
||||
registers, that the rest of the code would like to ignore. */
|
||||
#ifdef CLEAN_UP_REGISTER_VALUE
|
||||
CLEAN_UP_REGISTER_VALUE (regno, ®isters[REGISTER_BYTE (regno)]);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
/* This routine is getting awfully cluttered with #if's. It's probably
|
||||
time to turn this into READ_PC and define it in the tm.h file.
|
||||
Ditto for write_pc.
|
||||
|
||||
1999-06-08: The following were re-written so that it assumes the
|
||||
existance of a TARGET_READ_PC et.al. macro. A default generic
|
||||
version of that macro is made available where needed.
|
||||
|
||||
Since the ``TARGET_READ_PC'' et.al. macro is going to be controlled
|
||||
by the multi-arch framework, it will eventually be possible to
|
||||
eliminate the intermediate read_pc_pid(). The client would call
|
||||
TARGET_READ_PC directly. (cagney). */
|
||||
|
||||
#ifndef TARGET_READ_PC
|
||||
#define TARGET_READ_PC generic_target_read_pc
|
||||
#endif
|
||||
|
||||
CORE_ADDR
|
||||
generic_target_read_pc (int pid)
|
||||
{
|
||||
#ifdef PC_REGNUM
|
||||
if (PC_REGNUM >= 0)
|
||||
{
|
||||
CORE_ADDR pc_val = ADDR_BITS_REMOVE ((CORE_ADDR) read_register_pid (PC_REGNUM, pid));
|
||||
return pc_val;
|
||||
}
|
||||
#endif
|
||||
internal_error ("generic_target_read_pc");
|
||||
return 0;
|
||||
}
|
||||
|
||||
CORE_ADDR
|
||||
read_pc_pid (pid)
|
||||
int pid;
|
||||
{
|
||||
int saved_inferior_pid;
|
||||
CORE_ADDR pc_val;
|
||||
|
||||
/* In case pid != inferior_pid. */
|
||||
saved_inferior_pid = inferior_pid;
|
||||
inferior_pid = pid;
|
||||
|
||||
pc_val = TARGET_READ_PC (pid);
|
||||
|
||||
inferior_pid = saved_inferior_pid;
|
||||
return pc_val;
|
||||
}
|
||||
|
||||
CORE_ADDR
|
||||
read_pc ()
|
||||
{
|
||||
return read_pc_pid (inferior_pid);
|
||||
}
|
||||
|
||||
#ifndef TARGET_WRITE_PC
|
||||
#define TARGET_WRITE_PC generic_target_write_pc
|
||||
#endif
|
||||
|
||||
void
|
||||
generic_target_write_pc (pc, pid)
|
||||
CORE_ADDR pc;
|
||||
int pid;
|
||||
{
|
||||
#ifdef PC_REGNUM
|
||||
if (PC_REGNUM >= 0)
|
||||
write_register_pid (PC_REGNUM, pc, pid);
|
||||
if (NPC_REGNUM >= 0)
|
||||
write_register_pid (NPC_REGNUM, pc + 4, pid);
|
||||
if (NNPC_REGNUM >= 0)
|
||||
write_register_pid (NNPC_REGNUM, pc + 8, pid);
|
||||
#else
|
||||
internal_error ("generic_target_write_pc");
|
||||
#endif
|
||||
}
|
||||
|
||||
void
|
||||
write_pc_pid (pc, pid)
|
||||
CORE_ADDR pc;
|
||||
int pid;
|
||||
{
|
||||
int saved_inferior_pid;
|
||||
|
||||
/* In case pid != inferior_pid. */
|
||||
saved_inferior_pid = inferior_pid;
|
||||
inferior_pid = pid;
|
||||
|
||||
TARGET_WRITE_PC (pc, pid);
|
||||
|
||||
inferior_pid = saved_inferior_pid;
|
||||
}
|
||||
|
||||
void
|
||||
write_pc (pc)
|
||||
CORE_ADDR pc;
|
||||
{
|
||||
write_pc_pid (pc, inferior_pid);
|
||||
}
|
||||
|
||||
/* Cope with strage ways of getting to the stack and frame pointers */
|
||||
|
||||
#ifndef TARGET_READ_SP
|
||||
#define TARGET_READ_SP generic_target_read_sp
|
||||
#endif
|
||||
|
||||
CORE_ADDR
|
||||
generic_target_read_sp ()
|
||||
{
|
||||
#ifdef SP_REGNUM
|
||||
if (SP_REGNUM >= 0)
|
||||
return read_register (SP_REGNUM);
|
||||
#endif
|
||||
internal_error ("generic_target_read_sp");
|
||||
}
|
||||
|
||||
CORE_ADDR
|
||||
read_sp ()
|
||||
{
|
||||
return TARGET_READ_SP ();
|
||||
}
|
||||
|
||||
#ifndef TARGET_WRITE_SP
|
||||
#define TARGET_WRITE_SP generic_target_write_sp
|
||||
#endif
|
||||
|
||||
void
|
||||
generic_target_write_sp (val)
|
||||
CORE_ADDR val;
|
||||
{
|
||||
#ifdef SP_REGNUM
|
||||
if (SP_REGNUM >= 0)
|
||||
{
|
||||
write_register (SP_REGNUM, val);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
internal_error ("generic_target_write_sp");
|
||||
}
|
||||
|
||||
void
|
||||
write_sp (val)
|
||||
CORE_ADDR val;
|
||||
{
|
||||
TARGET_WRITE_SP (val);
|
||||
}
|
||||
|
||||
#ifndef TARGET_READ_FP
|
||||
#define TARGET_READ_FP generic_target_read_fp
|
||||
#endif
|
||||
|
||||
CORE_ADDR
|
||||
generic_target_read_fp ()
|
||||
{
|
||||
#ifdef FP_REGNUM
|
||||
if (FP_REGNUM >= 0)
|
||||
return read_register (FP_REGNUM);
|
||||
#endif
|
||||
internal_error ("generic_target_read_fp");
|
||||
}
|
||||
|
||||
CORE_ADDR
|
||||
read_fp ()
|
||||
{
|
||||
return TARGET_READ_FP ();
|
||||
}
|
||||
|
||||
#ifndef TARGET_WRITE_FP
|
||||
#define TARGET_WRITE_FP generic_target_write_fp
|
||||
#endif
|
||||
|
||||
void
|
||||
generic_target_write_fp (val)
|
||||
CORE_ADDR val;
|
||||
{
|
||||
#ifdef FP_REGNUM
|
||||
if (FP_REGNUM >= 0)
|
||||
{
|
||||
write_register (FP_REGNUM, val);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
internal_error ("generic_target_write_fp");
|
||||
}
|
||||
|
||||
void
|
||||
write_fp (val)
|
||||
CORE_ADDR val;
|
||||
{
|
||||
TARGET_WRITE_FP (val);
|
||||
}
|
||||
|
||||
|
||||
/* Given a pointer of type TYPE in target form in BUF, return the
|
||||
address it represents. */
|
||||
@ -1578,7 +799,7 @@ value_from_register (type, regnum, frame)
|
||||
page_regnum,
|
||||
&lval);
|
||||
|
||||
if (register_valid[page_regnum] == -1)
|
||||
if (register_cached (page_regnum) == -1)
|
||||
return NULL; /* register value not available */
|
||||
|
||||
if (lval == lval_register)
|
||||
@ -1595,7 +816,7 @@ value_from_register (type, regnum, frame)
|
||||
regnum,
|
||||
&lval);
|
||||
|
||||
if (register_valid[regnum] == -1)
|
||||
if (register_cached (regnum) == -1)
|
||||
return NULL; /* register value not available */
|
||||
|
||||
if (lval == lval_register)
|
||||
@ -1621,7 +842,7 @@ value_from_register (type, regnum, frame)
|
||||
local_regnum,
|
||||
&lval);
|
||||
|
||||
if (register_valid[local_regnum] == -1)
|
||||
if (register_cached (local_regnum) == -1)
|
||||
return NULL; /* register value not available */
|
||||
|
||||
if (regnum == local_regnum)
|
||||
@ -1686,7 +907,7 @@ value_from_register (type, regnum, frame)
|
||||
|
||||
get_saved_register (raw_buffer, &optim, &addr, frame, regnum, &lval);
|
||||
|
||||
if (register_valid[regnum] == -1)
|
||||
if (register_cached (regnum) == -1)
|
||||
return NULL; /* register value not available */
|
||||
|
||||
VALUE_OPTIMIZED_OUT (v) = optim;
|
||||
@ -1782,29 +1003,3 @@ locate_var_value (var, frame)
|
||||
}
|
||||
return 0; /* For lint -- never reached */
|
||||
}
|
||||
|
||||
|
||||
static void build_findvar (void);
|
||||
static void
|
||||
build_findvar ()
|
||||
{
|
||||
/* We allocate some extra slop since we do a lot of memcpy's around
|
||||
`registers', and failing-soft is better than failing hard. */
|
||||
int sizeof_registers = REGISTER_BYTES + /* SLOP */ 256;
|
||||
int sizeof_register_valid = NUM_REGS * sizeof (*register_valid);
|
||||
registers = xmalloc (sizeof_registers);
|
||||
memset (registers, 0, sizeof_registers);
|
||||
register_valid = xmalloc (sizeof_register_valid);
|
||||
memset (register_valid, 0, sizeof_register_valid);
|
||||
}
|
||||
|
||||
void _initialize_findvar (void);
|
||||
void
|
||||
_initialize_findvar ()
|
||||
{
|
||||
build_findvar ();
|
||||
|
||||
register_gdbarch_swap (®isters, sizeof (registers), NULL);
|
||||
register_gdbarch_swap (®ister_valid, sizeof (register_valid), NULL);
|
||||
register_gdbarch_swap (NULL, 0, build_findvar);
|
||||
}
|
||||
|
840
gdb/regcache.c
840
gdb/regcache.c
@ -0,0 +1,840 @@
|
||||
/* Cache and manage the values of registers for GDB, the GNU debugger.
|
||||
Copyright 1986, 87, 89, 91, 94, 95, 96, 1998, 2000
|
||||
Free Software Foundation, Inc.
|
||||
|
||||
This file is part of GDB.
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program; if not, write to the Free Software
|
||||
Foundation, Inc., 59 Temple Place - Suite 330,
|
||||
Boston, MA 02111-1307, USA. */
|
||||
|
||||
#include "defs.h"
|
||||
#include "frame.h"
|
||||
#include "inferior.h"
|
||||
#include "target.h"
|
||||
#include "gdbarch.h"
|
||||
|
||||
/*
|
||||
* DATA STRUCTURE
|
||||
*
|
||||
* Here is the actual register cache.
|
||||
*/
|
||||
|
||||
/* NOTE: this is a write-back cache. There is no "dirty" bit for
|
||||
recording if the register values have been changed (eg. by the
|
||||
user). Therefore all registers must be written back to the
|
||||
target when appropriate. */
|
||||
|
||||
/* REGISTERS contains the cached register values (in target byte order). */
|
||||
|
||||
char *registers;
|
||||
|
||||
/* REGISTER_VALID is 0 if the register needs to be fetched,
|
||||
1 if it has been fetched, and
|
||||
-1 if the register value was not available.
|
||||
"Not available" means don't try to fetch it again. */
|
||||
|
||||
signed char *register_valid;
|
||||
|
||||
/* The thread/process associated with the current set of registers.
|
||||
For now, -1 is special, and means `no current process'. */
|
||||
|
||||
static int registers_pid = -1;
|
||||
|
||||
/*
|
||||
* FUNCTIONS:
|
||||
*/
|
||||
|
||||
/* REGISTER_CACHED()
|
||||
|
||||
Returns 0 if the value is not in the cache (needs fetch).
|
||||
>0 if the value is in the cache.
|
||||
<0 if the value is permanently unavailable (don't ask again). */
|
||||
|
||||
int
|
||||
register_cached (int regnum)
|
||||
{
|
||||
return register_valid[regnum];
|
||||
}
|
||||
|
||||
/* FIND_SAVED_REGISTER ()
|
||||
|
||||
Return the address in which frame FRAME's value of register REGNUM
|
||||
has been saved in memory. Or return zero if it has not been saved.
|
||||
If REGNUM specifies the SP, the value we return is actually
|
||||
the SP value, not an address where it was saved. */
|
||||
|
||||
CORE_ADDR
|
||||
find_saved_register (struct frame_info *frame, int regnum)
|
||||
{
|
||||
register struct frame_info *frame1 = NULL;
|
||||
register CORE_ADDR addr = 0;
|
||||
|
||||
if (frame == NULL) /* No regs saved if want current frame */
|
||||
return 0;
|
||||
|
||||
#ifdef HAVE_REGISTER_WINDOWS
|
||||
/* We assume that a register in a register window will only be saved
|
||||
in one place (since the name changes and/or disappears as you go
|
||||
towards inner frames), so we only call get_frame_saved_regs on
|
||||
the current frame. This is directly in contradiction to the
|
||||
usage below, which assumes that registers used in a frame must be
|
||||
saved in a lower (more interior) frame. This change is a result
|
||||
of working on a register window machine; get_frame_saved_regs
|
||||
always returns the registers saved within a frame, within the
|
||||
context (register namespace) of that frame. */
|
||||
|
||||
/* However, note that we don't want this to return anything if
|
||||
nothing is saved (if there's a frame inside of this one). Also,
|
||||
callers to this routine asking for the stack pointer want the
|
||||
stack pointer saved for *this* frame; this is returned from the
|
||||
next frame. */
|
||||
|
||||
if (REGISTER_IN_WINDOW_P (regnum))
|
||||
{
|
||||
frame1 = get_next_frame (frame);
|
||||
if (!frame1)
|
||||
return 0; /* Registers of this frame are active. */
|
||||
|
||||
/* Get the SP from the next frame in; it will be this
|
||||
current frame. */
|
||||
if (regnum != SP_REGNUM)
|
||||
frame1 = frame;
|
||||
|
||||
FRAME_INIT_SAVED_REGS (frame1);
|
||||
return frame1->saved_regs[regnum]; /* ... which might be zero */
|
||||
}
|
||||
#endif /* HAVE_REGISTER_WINDOWS */
|
||||
|
||||
/* Note that this next routine assumes that registers used in
|
||||
frame x will be saved only in the frame that x calls and
|
||||
frames interior to it. This is not true on the sparc, but the
|
||||
above macro takes care of it, so we should be all right. */
|
||||
while (1)
|
||||
{
|
||||
QUIT;
|
||||
frame1 = get_prev_frame (frame1);
|
||||
if (frame1 == 0 || frame1 == frame)
|
||||
break;
|
||||
FRAME_INIT_SAVED_REGS (frame1);
|
||||
if (frame1->saved_regs[regnum])
|
||||
addr = frame1->saved_regs[regnum];
|
||||
}
|
||||
|
||||
return addr;
|
||||
}
|
||||
|
||||
/* DEFAULT_GET_SAVED_REGISTER ()
|
||||
|
||||
Find register number REGNUM relative to FRAME and put its (raw,
|
||||
target format) contents in *RAW_BUFFER. Set *OPTIMIZED if the
|
||||
variable was optimized out (and thus can't be fetched). Set *LVAL
|
||||
to lval_memory, lval_register, or not_lval, depending on whether
|
||||
the value was fetched from memory, from a register, or in a strange
|
||||
and non-modifiable way (e.g. a frame pointer which was calculated
|
||||
rather than fetched). Set *ADDRP to the address, either in memory
|
||||
on as a REGISTER_BYTE offset into the registers array.
|
||||
|
||||
Note that this implementation never sets *LVAL to not_lval. But
|
||||
it can be replaced by defining GET_SAVED_REGISTER and supplying
|
||||
your own.
|
||||
|
||||
The argument RAW_BUFFER must point to aligned memory. */
|
||||
|
||||
static void
|
||||
default_get_saved_register (char *raw_buffer,
|
||||
int *optimized,
|
||||
CORE_ADDR *addrp,
|
||||
struct frame_info *frame,
|
||||
int regnum,
|
||||
enum lval_type *lval)
|
||||
{
|
||||
CORE_ADDR addr;
|
||||
|
||||
if (!target_has_registers)
|
||||
error ("No registers.");
|
||||
|
||||
/* Normal systems don't optimize out things with register numbers. */
|
||||
if (optimized != NULL)
|
||||
*optimized = 0;
|
||||
addr = find_saved_register (frame, regnum);
|
||||
if (addr != 0)
|
||||
{
|
||||
if (lval != NULL)
|
||||
*lval = lval_memory;
|
||||
if (regnum == SP_REGNUM)
|
||||
{
|
||||
if (raw_buffer != NULL)
|
||||
{
|
||||
/* Put it back in target format. */
|
||||
store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
|
||||
(LONGEST) addr);
|
||||
}
|
||||
if (addrp != NULL)
|
||||
*addrp = 0;
|
||||
return;
|
||||
}
|
||||
if (raw_buffer != NULL)
|
||||
target_read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum));
|
||||
}
|
||||
else
|
||||
{
|
||||
if (lval != NULL)
|
||||
*lval = lval_register;
|
||||
addr = REGISTER_BYTE (regnum);
|
||||
if (raw_buffer != NULL)
|
||||
read_register_gen (regnum, raw_buffer);
|
||||
}
|
||||
if (addrp != NULL)
|
||||
*addrp = addr;
|
||||
}
|
||||
|
||||
#if !defined (GET_SAVED_REGISTER)
|
||||
#define GET_SAVED_REGISTER(raw_buffer, optimized, addrp, frame, regnum, lval) \
|
||||
default_get_saved_register(raw_buffer, optimized, addrp, frame, regnum, lval)
|
||||
#endif
|
||||
|
||||
void
|
||||
get_saved_register (char *raw_buffer,
|
||||
int *optimized,
|
||||
CORE_ADDR *addrp,
|
||||
struct frame_info *frame,
|
||||
int regnum,
|
||||
enum lval_type *lval)
|
||||
{
|
||||
GET_SAVED_REGISTER (raw_buffer, optimized, addrp, frame, regnum, lval);
|
||||
}
|
||||
|
||||
/* READ_RELATIVE_REGISTER_RAW_BYTES_FOR_FRAME
|
||||
|
||||
Copy the bytes of register REGNUM, relative to the input stack frame,
|
||||
into our memory at MYADDR, in target byte order.
|
||||
The number of bytes copied is REGISTER_RAW_SIZE (REGNUM).
|
||||
|
||||
Returns 1 if could not be read, 0 if could. */
|
||||
|
||||
/* FIXME: This function increases the confusion between FP_REGNUM
|
||||
and the virtual/pseudo-frame pointer. */
|
||||
|
||||
static int
|
||||
read_relative_register_raw_bytes_for_frame (int regnum,
|
||||
char *myaddr,
|
||||
struct frame_info *frame)
|
||||
{
|
||||
int optim;
|
||||
if (regnum == FP_REGNUM && frame)
|
||||
{
|
||||
/* Put it back in target format. */
|
||||
store_address (myaddr, REGISTER_RAW_SIZE (FP_REGNUM),
|
||||
(LONGEST) FRAME_FP (frame));
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
get_saved_register (myaddr, &optim, (CORE_ADDR *) NULL, frame,
|
||||
regnum, (enum lval_type *) NULL);
|
||||
|
||||
if (register_valid[regnum] < 0)
|
||||
return 1; /* register value not available */
|
||||
|
||||
return optim;
|
||||
}
|
||||
|
||||
/* READ_RELATIVE_REGISTER_RAW_BYTES
|
||||
|
||||
Copy the bytes of register REGNUM, relative to the current stack
|
||||
frame, into our memory at MYADDR, in target byte order.
|
||||
The number of bytes copied is REGISTER_RAW_SIZE (REGNUM).
|
||||
|
||||
Returns 1 if could not be read, 0 if could. */
|
||||
|
||||
int
|
||||
read_relative_register_raw_bytes (int regnum, char *myaddr)
|
||||
{
|
||||
return read_relative_register_raw_bytes_for_frame (regnum, myaddr,
|
||||
selected_frame);
|
||||
}
|
||||
|
||||
|
||||
/* Low level examining and depositing of registers.
|
||||
|
||||
The caller is responsible for making sure that the inferior is
|
||||
stopped before calling the fetching routines, or it will get
|
||||
garbage. (a change from GDB version 3, in which the caller got the
|
||||
value from the last stop). */
|
||||
|
||||
/* REGISTERS_CHANGED ()
|
||||
|
||||
Indicate that registers may have changed, so invalidate the cache. */
|
||||
|
||||
void
|
||||
registers_changed (void)
|
||||
{
|
||||
int i;
|
||||
int numregs = ARCH_NUM_REGS;
|
||||
|
||||
registers_pid = -1;
|
||||
|
||||
/* Force cleanup of any alloca areas if using C alloca instead of
|
||||
a builtin alloca. This particular call is used to clean up
|
||||
areas allocated by low level target code which may build up
|
||||
during lengthy interactions between gdb and the target before
|
||||
gdb gives control to the user (ie watchpoints). */
|
||||
alloca (0);
|
||||
|
||||
for (i = 0; i < numregs; i++)
|
||||
register_valid[i] = 0;
|
||||
|
||||
if (registers_changed_hook)
|
||||
registers_changed_hook ();
|
||||
}
|
||||
|
||||
/* REGISTERS_FETCHED ()
|
||||
|
||||
Indicate that all registers have been fetched, so mark them all valid. */
|
||||
|
||||
|
||||
void
|
||||
registers_fetched (void)
|
||||
{
|
||||
int i;
|
||||
int numregs = ARCH_NUM_REGS;
|
||||
|
||||
for (i = 0; i < numregs; i++)
|
||||
register_valid[i] = 1;
|
||||
}
|
||||
|
||||
/* read_register_bytes and write_register_bytes are generally a *BAD*
|
||||
idea. They are inefficient because they need to check for partial
|
||||
updates, which can only be done by scanning through all of the
|
||||
registers and seeing if the bytes that are being read/written fall
|
||||
inside of an invalid register. [The main reason this is necessary
|
||||
is that register sizes can vary, so a simple index won't suffice.]
|
||||
It is far better to call read_register_gen and write_register_gen
|
||||
if you want to get at the raw register contents, as it only takes a
|
||||
regno as an argument, and therefore can't do a partial register
|
||||
update.
|
||||
|
||||
Prior to the recent fixes to check for partial updates, both read
|
||||
and write_register_bytes always checked to see if any registers
|
||||
were stale, and then called target_fetch_registers (-1) to update
|
||||
the whole set. This caused really slowed things down for remote
|
||||
targets. */
|
||||
|
||||
/* Copy INLEN bytes of consecutive data from registers
|
||||
starting with the INREGBYTE'th byte of register data
|
||||
into memory at MYADDR. */
|
||||
|
||||
void
|
||||
read_register_bytes (int inregbyte, char *myaddr, int inlen)
|
||||
{
|
||||
int inregend = inregbyte + inlen;
|
||||
int regno;
|
||||
|
||||
if (registers_pid != inferior_pid)
|
||||
{
|
||||
registers_changed ();
|
||||
registers_pid = inferior_pid;
|
||||
}
|
||||
|
||||
/* See if we are trying to read bytes from out-of-date registers. If so,
|
||||
update just those registers. */
|
||||
|
||||
for (regno = 0; regno < NUM_REGS; regno++)
|
||||
{
|
||||
int regstart, regend;
|
||||
|
||||
if (register_valid[regno])
|
||||
continue;
|
||||
|
||||
if (REGISTER_NAME (regno) == NULL || *REGISTER_NAME (regno) == '\0')
|
||||
continue;
|
||||
|
||||
regstart = REGISTER_BYTE (regno);
|
||||
regend = regstart + REGISTER_RAW_SIZE (regno);
|
||||
|
||||
if (regend <= inregbyte || inregend <= regstart)
|
||||
/* The range the user wants to read doesn't overlap with regno. */
|
||||
continue;
|
||||
|
||||
/* We've found an invalid register where at least one byte will be read.
|
||||
Update it from the target. */
|
||||
target_fetch_registers (regno);
|
||||
|
||||
if (!register_valid[regno])
|
||||
error ("read_register_bytes: Couldn't update register %d.", regno);
|
||||
}
|
||||
|
||||
if (myaddr != NULL)
|
||||
memcpy (myaddr, ®isters[inregbyte], inlen);
|
||||
}
|
||||
|
||||
/* Read register REGNO into memory at MYADDR, which must be large
|
||||
enough for REGISTER_RAW_BYTES (REGNO). Target byte-order. If the
|
||||
register is known to be the size of a CORE_ADDR or smaller,
|
||||
read_register can be used instead. */
|
||||
|
||||
void
|
||||
read_register_gen (int regno, char *myaddr)
|
||||
{
|
||||
if (registers_pid != inferior_pid)
|
||||
{
|
||||
registers_changed ();
|
||||
registers_pid = inferior_pid;
|
||||
}
|
||||
|
||||
if (!register_valid[regno])
|
||||
target_fetch_registers (regno);
|
||||
memcpy (myaddr, ®isters[REGISTER_BYTE (regno)],
|
||||
REGISTER_RAW_SIZE (regno));
|
||||
}
|
||||
|
||||
/* Write register REGNO at MYADDR to the target. MYADDR points at
|
||||
REGISTER_RAW_BYTES(REGNO), which must be in target byte-order. */
|
||||
|
||||
/* Registers we shouldn't try to store. */
|
||||
#if !defined (CANNOT_STORE_REGISTER)
|
||||
#define CANNOT_STORE_REGISTER(regno) 0
|
||||
#endif
|
||||
|
||||
void
|
||||
write_register_gen (int regno, char *myaddr)
|
||||
{
|
||||
int size;
|
||||
|
||||
/* On the sparc, writing %g0 is a no-op, so we don't even want to
|
||||
change the registers array if something writes to this register. */
|
||||
if (CANNOT_STORE_REGISTER (regno))
|
||||
return;
|
||||
|
||||
if (registers_pid != inferior_pid)
|
||||
{
|
||||
registers_changed ();
|
||||
registers_pid = inferior_pid;
|
||||
}
|
||||
|
||||
size = REGISTER_RAW_SIZE (regno);
|
||||
|
||||
/* If we have a valid copy of the register, and new value == old value,
|
||||
then don't bother doing the actual store. */
|
||||
|
||||
if (register_valid[regno]
|
||||
&& memcmp (®isters[REGISTER_BYTE (regno)], myaddr, size) == 0)
|
||||
return;
|
||||
|
||||
target_prepare_to_store ();
|
||||
|
||||
memcpy (®isters[REGISTER_BYTE (regno)], myaddr, size);
|
||||
|
||||
register_valid[regno] = 1;
|
||||
|
||||
target_store_registers (regno);
|
||||
}
|
||||
|
||||
/* Copy INLEN bytes of consecutive data from memory at MYADDR
|
||||
into registers starting with the MYREGSTART'th byte of register data. */
|
||||
|
||||
void
|
||||
write_register_bytes (int myregstart, char *myaddr, int inlen)
|
||||
{
|
||||
int myregend = myregstart + inlen;
|
||||
int regno;
|
||||
|
||||
target_prepare_to_store ();
|
||||
|
||||
/* Scan through the registers updating any that are covered by the
|
||||
range myregstart<=>myregend using write_register_gen, which does
|
||||
nice things like handling threads, and avoiding updates when the
|
||||
new and old contents are the same. */
|
||||
|
||||
for (regno = 0; regno < NUM_REGS; regno++)
|
||||
{
|
||||
int regstart, regend;
|
||||
|
||||
regstart = REGISTER_BYTE (regno);
|
||||
regend = regstart + REGISTER_RAW_SIZE (regno);
|
||||
|
||||
/* Is this register completely outside the range the user is writing? */
|
||||
if (myregend <= regstart || regend <= myregstart)
|
||||
/* do nothing */ ;
|
||||
|
||||
/* Is this register completely within the range the user is writing? */
|
||||
else if (myregstart <= regstart && regend <= myregend)
|
||||
write_register_gen (regno, myaddr + (regstart - myregstart));
|
||||
|
||||
/* The register partially overlaps the range being written. */
|
||||
else
|
||||
{
|
||||
char regbuf[MAX_REGISTER_RAW_SIZE];
|
||||
/* What's the overlap between this register's bytes and
|
||||
those the caller wants to write? */
|
||||
int overlapstart = max (regstart, myregstart);
|
||||
int overlapend = min (regend, myregend);
|
||||
|
||||
/* We may be doing a partial update of an invalid register.
|
||||
Update it from the target before scribbling on it. */
|
||||
read_register_gen (regno, regbuf);
|
||||
|
||||
memcpy (registers + overlapstart,
|
||||
myaddr + (overlapstart - myregstart),
|
||||
overlapend - overlapstart);
|
||||
|
||||
target_store_registers (regno);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* Return the raw contents of register REGNO, regarding it as an
|
||||
integer. This probably should be returning LONGEST rather than
|
||||
CORE_ADDR. */
|
||||
|
||||
CORE_ADDR
|
||||
read_register (int regno)
|
||||
{
|
||||
if (registers_pid != inferior_pid)
|
||||
{
|
||||
registers_changed ();
|
||||
registers_pid = inferior_pid;
|
||||
}
|
||||
|
||||
if (!register_valid[regno])
|
||||
target_fetch_registers (regno);
|
||||
|
||||
return ((CORE_ADDR)
|
||||
extract_unsigned_integer (®isters[REGISTER_BYTE (regno)],
|
||||
REGISTER_RAW_SIZE (regno)));
|
||||
}
|
||||
|
||||
CORE_ADDR
|
||||
read_register_pid (int regno, int pid)
|
||||
{
|
||||
int save_pid;
|
||||
CORE_ADDR retval;
|
||||
|
||||
if (pid == inferior_pid)
|
||||
return read_register (regno);
|
||||
|
||||
save_pid = inferior_pid;
|
||||
|
||||
inferior_pid = pid;
|
||||
|
||||
retval = read_register (regno);
|
||||
|
||||
inferior_pid = save_pid;
|
||||
|
||||
return retval;
|
||||
}
|
||||
|
||||
/* Store VALUE, into the raw contents of register number REGNO. */
|
||||
|
||||
void
|
||||
write_register (int regno, LONGEST val)
|
||||
{
|
||||
PTR buf;
|
||||
int size;
|
||||
|
||||
/* On the sparc, writing %g0 is a no-op, so we don't even want to
|
||||
change the registers array if something writes to this register. */
|
||||
if (CANNOT_STORE_REGISTER (regno))
|
||||
return;
|
||||
|
||||
if (registers_pid != inferior_pid)
|
||||
{
|
||||
registers_changed ();
|
||||
registers_pid = inferior_pid;
|
||||
}
|
||||
|
||||
size = REGISTER_RAW_SIZE (regno);
|
||||
buf = alloca (size);
|
||||
store_signed_integer (buf, size, (LONGEST) val);
|
||||
|
||||
/* If we have a valid copy of the register, and new value == old value,
|
||||
then don't bother doing the actual store. */
|
||||
|
||||
if (register_valid[regno]
|
||||
&& memcmp (®isters[REGISTER_BYTE (regno)], buf, size) == 0)
|
||||
return;
|
||||
|
||||
target_prepare_to_store ();
|
||||
|
||||
memcpy (®isters[REGISTER_BYTE (regno)], buf, size);
|
||||
|
||||
register_valid[regno] = 1;
|
||||
|
||||
target_store_registers (regno);
|
||||
}
|
||||
|
||||
void
|
||||
write_register_pid (int regno, CORE_ADDR val, int pid)
|
||||
{
|
||||
int save_pid;
|
||||
|
||||
if (pid == inferior_pid)
|
||||
{
|
||||
write_register (regno, val);
|
||||
return;
|
||||
}
|
||||
|
||||
save_pid = inferior_pid;
|
||||
|
||||
inferior_pid = pid;
|
||||
|
||||
write_register (regno, val);
|
||||
|
||||
inferior_pid = save_pid;
|
||||
}
|
||||
|
||||
/* SUPPLY_REGISTER()
|
||||
|
||||
Record that register REGNO contains VAL. This is used when the
|
||||
value is obtained from the inferior or core dump, so there is no
|
||||
need to store the value there.
|
||||
|
||||
If VAL is a NULL pointer, then it's probably an unsupported register.
|
||||
We just set it's value to all zeros. We might want to record this
|
||||
fact, and report it to the users of read_register and friends. */
|
||||
|
||||
void
|
||||
supply_register (int regno, char *val)
|
||||
{
|
||||
#if 1
|
||||
if (registers_pid != inferior_pid)
|
||||
{
|
||||
registers_changed ();
|
||||
registers_pid = inferior_pid;
|
||||
}
|
||||
#endif
|
||||
|
||||
register_valid[regno] = 1;
|
||||
if (val)
|
||||
memcpy (®isters[REGISTER_BYTE (regno)], val,
|
||||
REGISTER_RAW_SIZE (regno));
|
||||
else
|
||||
memset (®isters[REGISTER_BYTE (regno)], '\000',
|
||||
REGISTER_RAW_SIZE (regno));
|
||||
|
||||
/* On some architectures, e.g. HPPA, there are a few stray bits in
|
||||
some registers, that the rest of the code would like to ignore. */
|
||||
|
||||
#ifdef CLEAN_UP_REGISTER_VALUE
|
||||
CLEAN_UP_REGISTER_VALUE (regno, ®isters[REGISTER_BYTE (regno)]);
|
||||
#endif
|
||||
}
|
||||
|
||||
/* read_pc, write_pc, read_sp, write_sp, read_fp, write_fp, etc.
|
||||
Special handling for registers PC, SP, and FP. */
|
||||
|
||||
/* This routine is getting awfully cluttered with #if's. It's probably
|
||||
time to turn this into READ_PC and define it in the tm.h file.
|
||||
Ditto for write_pc.
|
||||
|
||||
1999-06-08: The following were re-written so that it assumes the
|
||||
existance of a TARGET_READ_PC et.al. macro. A default generic
|
||||
version of that macro is made available where needed.
|
||||
|
||||
Since the ``TARGET_READ_PC'' et.al. macro is going to be controlled
|
||||
by the multi-arch framework, it will eventually be possible to
|
||||
eliminate the intermediate read_pc_pid(). The client would call
|
||||
TARGET_READ_PC directly. (cagney). */
|
||||
|
||||
#ifndef TARGET_READ_PC
|
||||
#define TARGET_READ_PC generic_target_read_pc
|
||||
#endif
|
||||
|
||||
CORE_ADDR
|
||||
generic_target_read_pc (int pid)
|
||||
{
|
||||
#ifdef PC_REGNUM
|
||||
if (PC_REGNUM >= 0)
|
||||
{
|
||||
CORE_ADDR pc_val = ADDR_BITS_REMOVE ((CORE_ADDR) read_register_pid (PC_REGNUM, pid));
|
||||
return pc_val;
|
||||
}
|
||||
#endif
|
||||
internal_error ("generic_target_read_pc");
|
||||
return 0;
|
||||
}
|
||||
|
||||
CORE_ADDR
|
||||
read_pc_pid (int pid)
|
||||
{
|
||||
int saved_inferior_pid;
|
||||
CORE_ADDR pc_val;
|
||||
|
||||
/* In case pid != inferior_pid. */
|
||||
saved_inferior_pid = inferior_pid;
|
||||
inferior_pid = pid;
|
||||
|
||||
pc_val = TARGET_READ_PC (pid);
|
||||
|
||||
inferior_pid = saved_inferior_pid;
|
||||
return pc_val;
|
||||
}
|
||||
|
||||
CORE_ADDR
|
||||
read_pc (void)
|
||||
{
|
||||
return read_pc_pid (inferior_pid);
|
||||
}
|
||||
|
||||
#ifndef TARGET_WRITE_PC
|
||||
#define TARGET_WRITE_PC generic_target_write_pc
|
||||
#endif
|
||||
|
||||
void
|
||||
generic_target_write_pc (CORE_ADDR pc, int pid)
|
||||
{
|
||||
#ifdef PC_REGNUM
|
||||
if (PC_REGNUM >= 0)
|
||||
write_register_pid (PC_REGNUM, pc, pid);
|
||||
if (NPC_REGNUM >= 0)
|
||||
write_register_pid (NPC_REGNUM, pc + 4, pid);
|
||||
if (NNPC_REGNUM >= 0)
|
||||
write_register_pid (NNPC_REGNUM, pc + 8, pid);
|
||||
#else
|
||||
internal_error ("generic_target_write_pc");
|
||||
#endif
|
||||
}
|
||||
|
||||
void
|
||||
write_pc_pid (CORE_ADDR pc, int pid)
|
||||
{
|
||||
int saved_inferior_pid;
|
||||
|
||||
/* In case pid != inferior_pid. */
|
||||
saved_inferior_pid = inferior_pid;
|
||||
inferior_pid = pid;
|
||||
|
||||
TARGET_WRITE_PC (pc, pid);
|
||||
|
||||
inferior_pid = saved_inferior_pid;
|
||||
}
|
||||
|
||||
void
|
||||
write_pc (CORE_ADDR pc)
|
||||
{
|
||||
write_pc_pid (pc, inferior_pid);
|
||||
}
|
||||
|
||||
/* Cope with strage ways of getting to the stack and frame pointers */
|
||||
|
||||
#ifndef TARGET_READ_SP
|
||||
#define TARGET_READ_SP generic_target_read_sp
|
||||
#endif
|
||||
|
||||
CORE_ADDR
|
||||
generic_target_read_sp (void)
|
||||
{
|
||||
#ifdef SP_REGNUM
|
||||
if (SP_REGNUM >= 0)
|
||||
return read_register (SP_REGNUM);
|
||||
#endif
|
||||
internal_error ("generic_target_read_sp");
|
||||
}
|
||||
|
||||
CORE_ADDR
|
||||
read_sp (void)
|
||||
{
|
||||
return TARGET_READ_SP ();
|
||||
}
|
||||
|
||||
#ifndef TARGET_WRITE_SP
|
||||
#define TARGET_WRITE_SP generic_target_write_sp
|
||||
#endif
|
||||
|
||||
void
|
||||
generic_target_write_sp (CORE_ADDR val)
|
||||
{
|
||||
#ifdef SP_REGNUM
|
||||
if (SP_REGNUM >= 0)
|
||||
{
|
||||
write_register (SP_REGNUM, val);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
internal_error ("generic_target_write_sp");
|
||||
}
|
||||
|
||||
void
|
||||
write_sp (CORE_ADDR val)
|
||||
{
|
||||
TARGET_WRITE_SP (val);
|
||||
}
|
||||
|
||||
#ifndef TARGET_READ_FP
|
||||
#define TARGET_READ_FP generic_target_read_fp
|
||||
#endif
|
||||
|
||||
CORE_ADDR
|
||||
generic_target_read_fp (void)
|
||||
{
|
||||
#ifdef FP_REGNUM
|
||||
if (FP_REGNUM >= 0)
|
||||
return read_register (FP_REGNUM);
|
||||
#endif
|
||||
internal_error ("generic_target_read_fp");
|
||||
}
|
||||
|
||||
CORE_ADDR
|
||||
read_fp (void)
|
||||
{
|
||||
return TARGET_READ_FP ();
|
||||
}
|
||||
|
||||
#ifndef TARGET_WRITE_FP
|
||||
#define TARGET_WRITE_FP generic_target_write_fp
|
||||
#endif
|
||||
|
||||
void
|
||||
generic_target_write_fp (CORE_ADDR val)
|
||||
{
|
||||
#ifdef FP_REGNUM
|
||||
if (FP_REGNUM >= 0)
|
||||
{
|
||||
write_register (FP_REGNUM, val);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
internal_error ("generic_target_write_fp");
|
||||
}
|
||||
|
||||
void
|
||||
write_fp (CORE_ADDR val)
|
||||
{
|
||||
TARGET_WRITE_FP (val);
|
||||
}
|
||||
|
||||
static void
|
||||
build_regcache (void)
|
||||
{
|
||||
/* We allocate some extra slop since we do a lot of memcpy's around
|
||||
`registers', and failing-soft is better than failing hard. */
|
||||
int sizeof_registers = REGISTER_BYTES + /* SLOP */ 256;
|
||||
int sizeof_register_valid = NUM_REGS * sizeof (*register_valid);
|
||||
registers = xmalloc (sizeof_registers);
|
||||
memset (registers, 0, sizeof_registers);
|
||||
register_valid = xmalloc (sizeof_register_valid);
|
||||
memset (register_valid, 0, sizeof_register_valid);
|
||||
}
|
||||
|
||||
void
|
||||
_initialize_regcache (void)
|
||||
{
|
||||
build_regcache ();
|
||||
|
||||
register_gdbarch_swap (®isters, sizeof (registers), NULL);
|
||||
register_gdbarch_swap (®ister_valid, sizeof (register_valid), NULL);
|
||||
register_gdbarch_swap (NULL, 0, build_regcache);
|
||||
}
|
@ -471,6 +471,8 @@ extern void write_register_pid (int regno, CORE_ADDR val, int pid);
|
||||
|
||||
extern void supply_register (int regno, char *val);
|
||||
|
||||
extern int register_cached (int regno);
|
||||
|
||||
extern void get_saved_register (char *raw_buffer, int *optimized,
|
||||
CORE_ADDR * addrp,
|
||||
struct frame_info *frame,
|
||||
|
Loading…
Reference in New Issue
Block a user