* interp.c (sim_open): Create second 1mb memory region at 0x40000000.

(sim_open): Create a device tree.
(sim-hw.h): Include.
(do_interrupt): Delete, needs to use dv-mn103cpu.c
* dv-mn103int.c, dv-mn103cpu.c: New files.
This commit is contained in:
Andrew Cagney 1998-03-25 04:15:38 +00:00
parent 8388c9a564
commit 6100784a60
7 changed files with 1433 additions and 197 deletions

View File

@ -28,6 +28,8 @@ Makefile.in
config.in
configure
configure.in
dv-mn103cpu.c
dv-mn103int.c
mn10300_sim.h
gencode.c
interp.c

View File

@ -1,3 +1,13 @@
Wed Mar 25 15:08:49 1998 Andrew Cagney <cagney@b1.cygnus.com>
* interp.c (sim_open): Create second 1mb memory region at
0x40000000.
(sim_open): Create a device tree.
(sim-hw.h): Include.
(do_interrupt): Delete, needs to use dv-mn103cpu.c
* dv-mn103int.c, dv-mn103cpu.c: New files.
Wed Mar 25 08:47:38 1998 Andrew Cagney <cagney@b1.cygnus.com>
* mn10300_sim.h (EXTRACT_PSW_LM, INSERT_PSW_LM, PSW_IE, PSW_LM):

132
sim/mn10300/configure vendored
View File

@ -114,6 +114,8 @@ ac_help="$ac_help
--enable-sim-reserved-bits Specify whether to check reserved bits in instruction."
ac_help="$ac_help
--enable-sim-bitsize=N Specify target bitsize (32 or 64)."
ac_help="$ac_help
--enable-sim-hardware=LIST Specify the hardware to be included in the build."
ac_help="$ac_help
--enable-sim-common Enable common simulator"
@ -626,7 +628,7 @@ fi
echo $ac_n "checking how to run the C preprocessor""... $ac_c" 1>&6
echo "configure:630: checking how to run the C preprocessor" >&5
echo "configure:632: checking how to run the C preprocessor" >&5
# On Suns, sometimes $CPP names a directory.
if test -n "$CPP" && test -d "$CPP"; then
CPP=
@ -641,13 +643,13 @@ else
# On the NeXT, cc -E runs the code through the compiler's parser,
# not just through cpp.
cat > conftest.$ac_ext <<EOF
#line 645 "configure"
#line 647 "configure"
#include "confdefs.h"
#include <assert.h>
Syntax Error
EOF
ac_try="$ac_cpp conftest.$ac_ext >/dev/null 2>conftest.out"
{ (eval echo configure:651: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; }
{ (eval echo configure:653: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; }
ac_err=`grep -v '^ *+' conftest.out`
if test -z "$ac_err"; then
:
@ -658,13 +660,13 @@ else
rm -rf conftest*
CPP="${CC-cc} -E -traditional-cpp"
cat > conftest.$ac_ext <<EOF
#line 662 "configure"
#line 664 "configure"
#include "confdefs.h"
#include <assert.h>
Syntax Error
EOF
ac_try="$ac_cpp conftest.$ac_ext >/dev/null 2>conftest.out"
{ (eval echo configure:668: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; }
{ (eval echo configure:670: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; }
ac_err=`grep -v '^ *+' conftest.out`
if test -z "$ac_err"; then
:
@ -737,7 +739,7 @@ else { echo "configure: error: can not run $ac_config_sub" 1>&2; exit 1; }
fi
echo $ac_n "checking host system type""... $ac_c" 1>&6
echo "configure:741: checking host system type" >&5
echo "configure:743: checking host system type" >&5
host_alias=$host
case "$host_alias" in
@ -758,7 +760,7 @@ host_os=`echo $host | sed 's/^\([^-]*\)-\([^-]*\)-\(.*\)$/\3/'`
echo "$ac_t""$host" 1>&6
echo $ac_n "checking target system type""... $ac_c" 1>&6
echo "configure:762: checking target system type" >&5
echo "configure:764: checking target system type" >&5
target_alias=$target
case "$target_alias" in
@ -776,7 +778,7 @@ target_os=`echo $target | sed 's/^\([^-]*\)-\([^-]*\)-\(.*\)$/\3/'`
echo "$ac_t""$target" 1>&6
echo $ac_n "checking build system type""... $ac_c" 1>&6
echo "configure:780: checking build system type" >&5
echo "configure:782: checking build system type" >&5
build_alias=$build
case "$build_alias" in
@ -820,7 +822,7 @@ test "$program_transform_name" = "" && program_transform_name="s,x,x,"
# Extract the first word of "gcc", so it can be a program name with args.
set dummy gcc; ac_word=$2
echo $ac_n "checking for $ac_word""... $ac_c" 1>&6
echo "configure:824: checking for $ac_word" >&5
echo "configure:826: checking for $ac_word" >&5
if eval "test \"`echo '$''{'ac_cv_prog_CC'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
@ -849,7 +851,7 @@ if test -z "$CC"; then
# Extract the first word of "cc", so it can be a program name with args.
set dummy cc; ac_word=$2
echo $ac_n "checking for $ac_word""... $ac_c" 1>&6
echo "configure:853: checking for $ac_word" >&5
echo "configure:855: checking for $ac_word" >&5
if eval "test \"`echo '$''{'ac_cv_prog_CC'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
@ -897,7 +899,7 @@ fi
fi
echo $ac_n "checking whether the C compiler ($CC $CFLAGS $LDFLAGS) works""... $ac_c" 1>&6
echo "configure:901: checking whether the C compiler ($CC $CFLAGS $LDFLAGS) works" >&5
echo "configure:903: checking whether the C compiler ($CC $CFLAGS $LDFLAGS) works" >&5
ac_ext=c
# CFLAGS is not in ac_cpp because -g, -O, etc. are not valid cpp options.
@ -907,11 +909,11 @@ ac_link='${CC-cc} -o conftest $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS
cross_compiling=$ac_cv_prog_cc_cross
cat > conftest.$ac_ext <<EOF
#line 911 "configure"
#line 913 "configure"
#include "confdefs.h"
main(){return(0);}
EOF
if { (eval echo configure:915: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest; then
if { (eval echo configure:917: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest; then
ac_cv_prog_cc_works=yes
# If we can't run a trivial program, we are probably using a cross compiler.
if (./conftest; exit) 2>/dev/null; then
@ -931,12 +933,12 @@ if test $ac_cv_prog_cc_works = no; then
{ echo "configure: error: installation or configuration problem: C compiler cannot create executables." 1>&2; exit 1; }
fi
echo $ac_n "checking whether the C compiler ($CC $CFLAGS $LDFLAGS) is a cross-compiler""... $ac_c" 1>&6
echo "configure:935: checking whether the C compiler ($CC $CFLAGS $LDFLAGS) is a cross-compiler" >&5
echo "configure:937: checking whether the C compiler ($CC $CFLAGS $LDFLAGS) is a cross-compiler" >&5
echo "$ac_t""$ac_cv_prog_cc_cross" 1>&6
cross_compiling=$ac_cv_prog_cc_cross
echo $ac_n "checking whether we are using GNU C""... $ac_c" 1>&6
echo "configure:940: checking whether we are using GNU C" >&5
echo "configure:942: checking whether we are using GNU C" >&5
if eval "test \"`echo '$''{'ac_cv_prog_gcc'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
@ -945,7 +947,7 @@ else
yes;
#endif
EOF
if { ac_try='${CC-cc} -E conftest.c'; { (eval echo configure:949: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; }; } | egrep yes >/dev/null 2>&1; then
if { ac_try='${CC-cc} -E conftest.c'; { (eval echo configure:951: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; }; } | egrep yes >/dev/null 2>&1; then
ac_cv_prog_gcc=yes
else
ac_cv_prog_gcc=no
@ -960,7 +962,7 @@ if test $ac_cv_prog_gcc = yes; then
ac_save_CFLAGS="$CFLAGS"
CFLAGS=
echo $ac_n "checking whether ${CC-cc} accepts -g""... $ac_c" 1>&6
echo "configure:964: checking whether ${CC-cc} accepts -g" >&5
echo "configure:966: checking whether ${CC-cc} accepts -g" >&5
if eval "test \"`echo '$''{'ac_cv_prog_cc_g'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
@ -999,7 +1001,7 @@ fi
# SVR4 /usr/ucb/install, which tries to use the nonexistent group "staff"
# ./install, which can be erroneously created by make from ./install.sh.
echo $ac_n "checking for a BSD compatible install""... $ac_c" 1>&6
echo "configure:1003: checking for a BSD compatible install" >&5
echo "configure:1005: checking for a BSD compatible install" >&5
if test -z "$INSTALL"; then
if eval "test \"`echo '$''{'ac_cv_path_install'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
@ -1065,7 +1067,7 @@ AR=${AR-ar}
# Extract the first word of "ranlib", so it can be a program name with args.
set dummy ranlib; ac_word=$2
echo $ac_n "checking for $ac_word""... $ac_c" 1>&6
echo "configure:1069: checking for $ac_word" >&5
echo "configure:1071: checking for $ac_word" >&5
if eval "test \"`echo '$''{'ac_cv_prog_RANLIB'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
@ -1099,17 +1101,17 @@ for ac_hdr in stdlib.h string.h strings.h unistd.h time.h
do
ac_safe=`echo "$ac_hdr" | sed 'y%./+-%__p_%'`
echo $ac_n "checking for $ac_hdr""... $ac_c" 1>&6
echo "configure:1103: checking for $ac_hdr" >&5
echo "configure:1105: checking for $ac_hdr" >&5
if eval "test \"`echo '$''{'ac_cv_header_$ac_safe'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
cat > conftest.$ac_ext <<EOF
#line 1108 "configure"
#line 1110 "configure"
#include "confdefs.h"
#include <$ac_hdr>
EOF
ac_try="$ac_cpp conftest.$ac_ext >/dev/null 2>conftest.out"
{ (eval echo configure:1113: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; }
{ (eval echo configure:1115: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; }
ac_err=`grep -v '^ *+' conftest.out`
if test -z "$ac_err"; then
rm -rf conftest*
@ -1139,17 +1141,17 @@ for ac_hdr in sys/time.h sys/resource.h
do
ac_safe=`echo "$ac_hdr" | sed 'y%./+-%__p_%'`
echo $ac_n "checking for $ac_hdr""... $ac_c" 1>&6
echo "configure:1143: checking for $ac_hdr" >&5
echo "configure:1145: checking for $ac_hdr" >&5
if eval "test \"`echo '$''{'ac_cv_header_$ac_safe'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
cat > conftest.$ac_ext <<EOF
#line 1148 "configure"
#line 1150 "configure"
#include "confdefs.h"
#include <$ac_hdr>
EOF
ac_try="$ac_cpp conftest.$ac_ext >/dev/null 2>conftest.out"
{ (eval echo configure:1153: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; }
{ (eval echo configure:1155: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; }
ac_err=`grep -v '^ *+' conftest.out`
if test -z "$ac_err"; then
rm -rf conftest*
@ -1179,17 +1181,17 @@ for ac_hdr in fcntl.h
do
ac_safe=`echo "$ac_hdr" | sed 'y%./+-%__p_%'`
echo $ac_n "checking for $ac_hdr""... $ac_c" 1>&6
echo "configure:1183: checking for $ac_hdr" >&5
echo "configure:1185: checking for $ac_hdr" >&5
if eval "test \"`echo '$''{'ac_cv_header_$ac_safe'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
cat > conftest.$ac_ext <<EOF
#line 1188 "configure"
#line 1190 "configure"
#include "confdefs.h"
#include <$ac_hdr>
EOF
ac_try="$ac_cpp conftest.$ac_ext >/dev/null 2>conftest.out"
{ (eval echo configure:1193: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; }
{ (eval echo configure:1195: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; }
ac_err=`grep -v '^ *+' conftest.out`
if test -z "$ac_err"; then
rm -rf conftest*
@ -1218,12 +1220,12 @@ done
for ac_func in getrusage time sigaction
do
echo $ac_n "checking for $ac_func""... $ac_c" 1>&6
echo "configure:1222: checking for $ac_func" >&5
echo "configure:1224: checking for $ac_func" >&5
if eval "test \"`echo '$''{'ac_cv_func_$ac_func'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
cat > conftest.$ac_ext <<EOF
#line 1227 "configure"
#line 1229 "configure"
#include "confdefs.h"
/* System header to define __stub macros and hopefully few prototypes,
which can conflict with char $ac_func(); below. */
@ -1246,7 +1248,7 @@ $ac_func();
; return 0; }
EOF
if { (eval echo configure:1250: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest; then
if { (eval echo configure:1252: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest; then
rm -rf conftest*
eval "ac_cv_func_$ac_func=yes"
else
@ -1419,12 +1421,12 @@ fi
echo $ac_n "checking return type of signal handlers""... $ac_c" 1>&6
echo "configure:1423: checking return type of signal handlers" >&5
echo "configure:1425: checking return type of signal handlers" >&5
if eval "test \"`echo '$''{'ac_cv_type_signal'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
cat > conftest.$ac_ext <<EOF
#line 1428 "configure"
#line 1430 "configure"
#include "confdefs.h"
#include <sys/types.h>
#include <signal.h>
@ -1441,7 +1443,7 @@ int main() {
int i;
; return 0; }
EOF
if { (eval echo configure:1445: \"$ac_compile\") 1>&5; (eval $ac_compile) 2>&5; }; then
if { (eval echo configure:1447: \"$ac_compile\") 1>&5; (eval $ac_compile) 2>&5; }; then
rm -rf conftest*
ac_cv_type_signal=void
else
@ -1591,14 +1593,14 @@ else
if test "x$cross_compiling" = "xno"; then
echo $ac_n "checking whether byte ordering is bigendian""... $ac_c" 1>&6
echo "configure:1595: checking whether byte ordering is bigendian" >&5
echo "configure:1597: checking whether byte ordering is bigendian" >&5
if eval "test \"`echo '$''{'ac_cv_c_bigendian'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
ac_cv_c_bigendian=unknown
# See if sys/param.h defines the BYTE_ORDER macro.
cat > conftest.$ac_ext <<EOF
#line 1602 "configure"
#line 1604 "configure"
#include "confdefs.h"
#include <sys/types.h>
#include <sys/param.h>
@ -1609,11 +1611,11 @@ int main() {
#endif
; return 0; }
EOF
if { (eval echo configure:1613: \"$ac_compile\") 1>&5; (eval $ac_compile) 2>&5; }; then
if { (eval echo configure:1615: \"$ac_compile\") 1>&5; (eval $ac_compile) 2>&5; }; then
rm -rf conftest*
# It does; now see whether it defined to BIG_ENDIAN or not.
cat > conftest.$ac_ext <<EOF
#line 1617 "configure"
#line 1619 "configure"
#include "confdefs.h"
#include <sys/types.h>
#include <sys/param.h>
@ -1624,7 +1626,7 @@ int main() {
#endif
; return 0; }
EOF
if { (eval echo configure:1628: \"$ac_compile\") 1>&5; (eval $ac_compile) 2>&5; }; then
if { (eval echo configure:1630: \"$ac_compile\") 1>&5; (eval $ac_compile) 2>&5; }; then
rm -rf conftest*
ac_cv_c_bigendian=yes
else
@ -1644,7 +1646,7 @@ if test "$cross_compiling" = yes; then
{ echo "configure: error: can not run test program while cross compiling" 1>&2; exit 1; }
else
cat > conftest.$ac_ext <<EOF
#line 1648 "configure"
#line 1650 "configure"
#include "confdefs.h"
main () {
/* Are we little or big endian? From Harbison&Steele. */
@ -1657,7 +1659,7 @@ main () {
exit (u.c[sizeof (long) - 1] == 1);
}
EOF
if { (eval echo configure:1661: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest && (./conftest; exit) 2>/dev/null
if { (eval echo configure:1663: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest && (./conftest; exit) 2>/dev/null
then
ac_cv_c_bigendian=no
else
@ -1784,15 +1786,51 @@ fi
fi
sim_hardware="-DWITH_HW=1"
sim_hw_obj="hw-device.o hw-ports.o hw-properties.o hw-base.o hw-tree.o"
hardware="core pal glue mn103cpu mn103int"
# Check whether --enable-sim-hardware or --disable-sim-hardware was given.
if test "${enable_sim_hardware+set}" = set; then
enableval="$enable_sim_hardware"
case "${enableval}" in
yes) ;;
no) hardware=""; sim_hardware="-DWITH_HW=0"; sim_hw_obj="";;
,*) hardware="${hardware} `echo ${enableval} | sed -e 's/,/ /'`";;
*,) hardware="`echo ${enableval} | sed -e 's/,/ /'` ${hardware}";;
*) hardware="`echo ${enableval} | sed -e 's/,/ /'`"'';;
esac
sim_hw=""
for i in x $hardware ; do
case " $f " in
x) ;;
*" $i "*) ;;
*) sim_hw="$sim_hw $i" ;;
esac
done
sim_hw_obj="$sim_hw_obj `echo $sim_hw | sed -e 's/\([^ ]*\)/dv-\1.o/g'`"
if test x"$silent" != x"yes" && test x"$hardware" != x""; then
echo "Setting hardware to $sim_hardware, $sim_hw, $sim_hw_obj"
fi
else
sim_hw="$hardware"
sim_hw_obj="$sim_hw_obj `echo $sim_hw | sed -e 's/\([^ ]*\)/dv-\1.o/g'`"
if test x"$silent" != x"yes"; then
echo "Setting hardware to $sim_hardware, $sim_hw, $sim_hw_obj"
fi
fi
for ac_func in time chmod utime fork execve execv chown
do
echo $ac_n "checking for $ac_func""... $ac_c" 1>&6
echo "configure:1791: checking for $ac_func" >&5
echo "configure:1829: checking for $ac_func" >&5
if eval "test \"`echo '$''{'ac_cv_func_$ac_func'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
cat > conftest.$ac_ext <<EOF
#line 1796 "configure"
#line 1834 "configure"
#include "confdefs.h"
/* System header to define __stub macros and hopefully few prototypes,
which can conflict with char $ac_func(); below. */
@ -1815,7 +1853,7 @@ $ac_func();
; return 0; }
EOF
if { (eval echo configure:1819: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest; then
if { (eval echo configure:1857: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest; then
rm -rf conftest*
eval "ac_cv_func_$ac_func=yes"
else
@ -1843,17 +1881,17 @@ for ac_hdr in unistd.h stdlib.h string.h strings.h utime.h time.h
do
ac_safe=`echo "$ac_hdr" | sed 'y%./+-%__p_%'`
echo $ac_n "checking for $ac_hdr""... $ac_c" 1>&6
echo "configure:1847: checking for $ac_hdr" >&5
echo "configure:1885: checking for $ac_hdr" >&5
if eval "test \"`echo '$''{'ac_cv_header_$ac_safe'+set}'`\" = set"; then
echo $ac_n "(cached) $ac_c" 1>&6
else
cat > conftest.$ac_ext <<EOF
#line 1852 "configure"
#line 1890 "configure"
#include "confdefs.h"
#include <$ac_hdr>
EOF
ac_try="$ac_cpp conftest.$ac_ext >/dev/null 2>conftest.out"
{ (eval echo configure:1857: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; }
{ (eval echo configure:1895: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; }
ac_err=`grep -v '^ *+' conftest.out`
if test -z "$ac_err"; then
rm -rf conftest*

View File

@ -12,6 +12,7 @@ SIM_AC_OPTION_HOSTENDIAN
SIM_AC_OPTION_WARNINGS
SIM_AC_OPTION_RESERVED_BITS
SIM_AC_OPTION_BITSIZE(32,31)
SIM_AC_OPTION_HARDWARE(,mn103cpu mn103int)
AC_CHECK_FUNCS(time chmod utime fork execve execv chown)
AC_CHECK_HEADERS(unistd.h stdlib.h string.h strings.h utime.h time.h)

431
sim/mn10300/dv-mn103cpu.c Normal file
View File

@ -0,0 +1,431 @@
/* This file is part of the program GDB, the GU debugger.
Copyright (C) 1998 Free Software Foundation, Inc.
Contributed by Cygnus Solutions.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include "sim-main.h"
#include "hw-base.h"
/* DEVICE
mn103cpu - mn10300 cpu virtual device
DESCRIPTION
Implements the external mn10300 functionality. This includes the
delivery of of interrupts generated from other devices and the
handling of device specific registers.
PROPERTIES
reg = <address> <size>
Specify the address of the mn10300's control register block. This
block contains the Interrupt Vector Registers.
The reg property value `0x20000000 0x42' locates the register block
at the address specified in the mn10300 user guide.
PORTS
reset (input)
Currently ignored.
nmi (input)
Deliver a non-maskable interrupt to the processor.
level (input)
Maskable interrupt level port port. The interrupt controller
notifies the processor of any change in the level of pending
requested interrupts via this port.
ack (output)
Output signal indicating that the processor is delivering a level
interrupt. The value passed with the event specfies the level of
the interrupt being delivered.
BUGS
When delivering an interrupt, this code assumes that there is only
one processor (number 0).
This code does not attempt to be efficient at handling pending
interrupts. It simply schedules the interrupt delivery handler
every instruction cycle until all pending interrupts go away. An
alternative implementation might modify instructions that change
the PSW and have them check to see if the change makes an interrupt
delivery possible.
*/
/* The interrupt vectors */
enum { NR_VECTORS = 7, };
/* The interrupt controller register address blocks */
struct mn103cpu_block {
unsigned_word base;
unsigned_word bound;
};
struct mn103cpu {
struct mn103cpu_block block;
hw_event *pending_handler;
int pending_level;
int pending_nmi;
int pending_reset;
/* the visible registers */
unsigned16 interrupt_vector[NR_VECTORS];
unsigned16 internal_memory_control;
unsigned16 cpu_mode;
};
/* input port ID's */
enum {
RESET_PORT,
NMI_PORT,
LEVEL_PORT,
};
/* input port ID's */
enum {
ACK_PORT,
};
static const struct hw_port_descriptor mn103cpu_ports[] = {
/* interrupt inputs */
{ "reset", RESET_PORT, 0, input_port, },
{ "nmi", NMI_PORT, 0, input_port, },
{ "level", LEVEL_PORT, 0, input_port, },
/* interrupt ack (latch) output from cpu */
{ "ack", ACK_PORT, 0, output_port, },
{ NULL, },
};
/* Finish off the partially created hw device. Attach our local
callbacks. Wire up our port names etc */
static hw_io_read_buffer_callback mn103cpu_io_read_buffer;
static hw_io_write_buffer_callback mn103cpu_io_write_buffer;
static hw_port_event_callback mn103cpu_port_event;
static void
attach_mn103cpu_regs (struct hw *me,
struct mn103cpu *controller)
{
unsigned_word attach_address;
int attach_space;
unsigned attach_size;
reg_property_spec reg;
if (hw_find_property (me, "reg") == NULL)
hw_abort (me, "Missing \"reg\" property");
if (!hw_find_reg_array_property (me, "reg", 0, &reg))
hw_abort (me, "\"reg\" property must contain three addr/size entries");
hw_unit_address_to_attach_address (hw_parent (me),
&reg.address,
&attach_space,
&attach_address,
me);
controller->block.base = attach_address;
hw_unit_size_to_attach_size (hw_parent (me),
&reg.size,
&attach_size, me);
controller->block.bound = attach_address + (attach_size - 1);
if ((controller->block.base & 3) != 0)
hw_abort (me, "cpu register block must be 4 byte aligned");
hw_attach_address (hw_parent (me),
0,
attach_space, attach_address, attach_size,
me);
}
static void
mn103cpu_finish (struct hw *me)
{
struct mn103cpu *controller;
controller = HW_ZALLOC (me, struct mn103cpu);
set_hw_data (me, controller);
set_hw_io_read_buffer (me, mn103cpu_io_read_buffer);
set_hw_io_write_buffer (me, mn103cpu_io_write_buffer);
set_hw_ports (me, mn103cpu_ports);
set_hw_port_event (me, mn103cpu_port_event);
/* Attach ourself to our parent bus */
attach_mn103cpu_regs (me, controller);
/* Initialize the read-only registers */
controller->pending_level = 7; /* FIXME */
/* ... */
}
/* An event arrives on an interrupt port */
static void
deliver_mn103cpu_interrupt (struct hw *me,
void *data)
{
struct mn103cpu *controller = hw_data (me);
SIM_DESC simulator = hw_system (me);
sim_cpu *cpu = STATE_CPU (simulator, 0);
if (controller->pending_reset)
{
controller->pending_reset = 0;
/* need to clear all registers et.al! */
HW_TRACE ((me, "Reset!"));
hw_abort (me, "Reset!");
}
else if (controller->pending_nmi)
{
controller->pending_nmi = 0;
store_half (SP - 4, CIA_GET (cpu));
store_half (SP - 8, PSW);
PSW &= ~PSW_IE;
SP = SP - 8;
CIA_SET (cpu, 0x40000008);
HW_TRACE ((me, "nmi pc=0x%08lx psw=0x%04x sp=0x%08lx",
(long) CIA_GET (cpu), (unsigned) PSW, (long) SP));
}
else if ((controller->pending_level < EXTRACT_PSW_LM)
&& (PSW & PSW_IE))
{
/* Don't clear pending level. Request continues to be pending
until the interrupt controller clears/changes it */
store_half (SP - 4, CIA_GET (cpu));
store_half (SP - 8, PSW);
PSW &= ~PSW_IE;
PSW &= ~PSW_LM;
PSW |= INSERT_PSW_LM (controller->pending_level);
SP = SP - 8;
CIA_SET (cpu, 0x40000000 + controller->interrupt_vector[controller->pending_level]);
HW_TRACE ((me, "port-out ack %d", controller->pending_level));
hw_port_event (me, ACK_PORT, controller->pending_level, NULL, NULL_CIA);
HW_TRACE ((me, "int level=%d pc=0x%08lx psw=0x%04x sp=0x%08lx",
controller->pending_level,
(long) CIA_GET (cpu), (unsigned) PSW, (long) SP));
}
/* As long as there is the potential need to deliver an interrupt we
keep rescheduling this routine. */
if (controller->pending_level < 7) /* FIXME */
{
if (controller->pending_handler != NULL)
controller->pending_handler =
hw_event_queue_schedule (me, 1, deliver_mn103cpu_interrupt, NULL);
}
}
static void
mn103cpu_port_event (struct hw *me,
int my_port,
struct hw *source,
int source_port,
int level,
sim_cpu *processor,
sim_cia cia)
{
struct mn103cpu *controller = hw_data (me);
/* Schedule our event handler *now* */
if (controller->pending_handler == NULL)
controller->pending_handler =
hw_event_queue_schedule (me, 0, deliver_mn103cpu_interrupt, NULL);
switch (my_port)
{
case RESET_PORT:
controller->pending_reset = 1;
HW_TRACE ((me, "port-in reset"));
break;
case NMI_PORT:
controller->pending_nmi = 1;
HW_TRACE ((me, "port-in nmi"));
break;
case LEVEL_PORT:
controller->pending_level = level;
HW_TRACE ((me, "port-in level=%d", level));
break;
default:
hw_abort (me, "bad switch");
break;
}
}
/* Read/write to a CPU register */
enum mn103cpu_regs {
INVALID_REG,
IVR0_REG,
IVR1_REG,
IVR2_REG,
IVR3_REG,
IVR4_REG,
IVR5_REG,
IVR6_REG,
IMCR_REG,
CPUM_REG,
};
static enum mn103cpu_regs
decode_mn103cpu_addr (struct hw *me,
struct mn103cpu *controller,
unsigned_word base)
{
switch (base - controller->block.base)
{
case 0x000: return IVR0_REG;
case 0x004: return IVR1_REG;
case 0x008: return IVR2_REG;
case 0x00c: return IVR3_REG;
case 0x010: return IVR4_REG;
case 0x014: return IVR5_REG;
case 0x018: return IVR6_REG;
case 0x020: return IMCR_REG;
case 0x040: return CPUM_REG;
default: return INVALID_REG;
}
}
static unsigned
mn103cpu_io_read_buffer (struct hw *me,
void *dest,
int space,
unsigned_word base,
unsigned nr_bytes,
sim_cpu *processor,
sim_cia cia)
{
struct mn103cpu *controller = hw_data (me);
unsigned16 val = 0;
enum mn103cpu_regs reg = decode_mn103cpu_addr (me, controller, base);
switch (reg)
{
case IVR0_REG:
case IVR1_REG:
case IVR2_REG:
case IVR3_REG:
case IVR4_REG:
case IVR5_REG:
case IVR6_REG:
val = controller->interrupt_vector[reg - IVR0_REG];
break;
case IMCR_REG:
val = controller->internal_memory_control;
break;
case CPUM_REG:
val = controller->cpu_mode;
break;
default:
/* just ignore the read */
break;
}
if (nr_bytes == 2)
*(unsigned16*) dest = H2LE_2 (val);
return nr_bytes;
}
static unsigned
mn103cpu_io_write_buffer (struct hw *me,
const void *source,
int space,
unsigned_word base,
unsigned nr_bytes,
sim_cpu *cpu,
sim_cia cia)
{
struct mn103cpu *controller = hw_data (me);
unsigned16 val;
enum mn103cpu_regs reg;
if (nr_bytes != 2)
hw_abort (me, "must be two byte write");
reg = decode_mn103cpu_addr (me, controller, base);
val = LE2H_2 (* (unsigned16 *) source);
switch (reg)
{
case IVR0_REG:
case IVR1_REG:
case IVR2_REG:
case IVR3_REG:
case IVR4_REG:
case IVR5_REG:
case IVR6_REG:
controller->interrupt_vector[reg - IVR0_REG] = val;
HW_TRACE ((me, "ivr%d = 0x%04lx", reg - IVR0_REG, (long) val));
break;
default:
/* just ignore the write */
break;
}
return nr_bytes;
}
const struct hw_device_descriptor dv_mn103cpu_descriptor[] = {
{ "mn103cpu", mn103cpu_finish, },
{ NULL },
};

785
sim/mn10300/dv-mn103int.c Normal file
View File

@ -0,0 +1,785 @@
/* This file is part of the program GDB, the GU debugger.
Copyright (C) 1998 Free Software Foundation, Inc.
Contributed by Cygnus Solutions.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include "sim-main.h"
#include "hw-base.h"
/* DEVICE
mn103int - mn10300 interrupt controller
DESCRIPTION
Implements the mn10300 interrupt controller described in the
mn10300 user guide.
PROPERTIES
reg = <icr-adr> <icr-siz> <iagr-adr> <iadr-siz> <extmd-adr> <extmd-siz>
Specify the address of the ICR (total of 25 registers), IAGR and
EXTMD registers (within the parent bus).
The reg property value `0x34000100 0x68 0x34000200 0x8 0x3400280
0x8' locates the interrupt controller at the addresses specified in
the mn10300 interrupt controller user guide.
PORTS
nmi (output)
Non-maskable interrupt output port. An event on this output ports
indicates a NMI request from the interrupt controller. The value
attached to the event should be ignored.
level (output)
Maskable interrupt level output port. An event on this output port
indicates a maskable interrupt request at the specified level. The
event value defines the level being requested.
The interrupt controller will generate an event on this port
whenever there is a change to the internal state of the interrupt
controller.
ack (input)
Signal from processor indicating that a maskable interrupt has been
accepted and the interrupt controller should latch the IAGR with
value of the current highest priority interrupting group.
The event value is the interrupt level being accepted by the
processor. It should be consistent with the most recent LEVEL sent
to the processor from the interrupt controller.
int[0..100] (input)
Level or edge triggered interrupt input port. Each of the 25
groups (0..24) can have up to 4 (0..3) interrupt inputs. The
interpretation of a port event/value is determined by the
configuration of the corresponding interrupt group.
For convenience, numerous aliases to these interrupt inputs are
provided.
BUGS
For edge triggered interrupts, the interrupt controller does not
differentiate between POSITIVE (rising) and NEGATIVE (falling)
edges. Instead any input port event is considered to be an
interrupt trigger.
For level sensative interrupts, the interrupt controller ignores
active HIGH/LOW settings and instead always interprets a nonzero
port value as an interupt assertion and a zero port value as a
negation.
*/
/* The interrupt groups - numbered according to mn10300 convention */
enum mn103int_trigger {
ACTIVE_LOW,
ACTIVE_HIGH,
POSITIVE_EDGE,
NEGATIVE_EDGE,
};
enum mn103int_type {
NMI_GROUP,
INT_GROUP,
};
struct mn103int_group {
int level;
unsigned enable;
unsigned request;
unsigned input;
enum mn103int_trigger trigger;
enum mn103int_type type;
};
enum {
FIRST_NMI_GROUP = 0,
LAST_NMI_GROUP = 1,
FIRST_INT_GROUP = 2,
LAST_INT_GROUP = 24,
NR_GROUPS,
};
enum {
LOWEST_LEVEL = 7,
};
/* The interrupt controller register address blocks */
struct mn103int_block {
unsigned_word base;
unsigned_word bound;
};
enum { ICR_BLOCK, IAGR_BLOCK, EXTMD_BLOCK, NR_BLOCKS };
struct mn103int {
struct mn103int_block block[NR_BLOCKS];
struct mn103int_group group[NR_GROUPS];
unsigned interrupt_accepted_group;
};
/* output port ID's */
enum {
NMI_PORT,
LEVEL_PORT,
};
/* input port ID's */
enum {
G0_PORT = 0,
G1_PORT = 4,
G2_PORT = 8,
G3_PORT = 12,
G4_PORT = 16,
G5_PORT = 20,
G6_PORT = 24,
G7_PORT = 28,
G8_PORT = 32,
G9_PORT = 36,
G10_PORT = 40,
G11_PORT = 44,
G12_PORT = 48,
G13_PORT = 52,
G14_PORT = 56,
G15_PORT = 60,
G16_PORT = 64,
G17_PORT = 68,
G18_PORT = 72,
G19_PORT = 76,
G20_PORT = 80,
G21_PORT = 84,
G22_PORT = 88,
G23_PORT = 92,
G24_PORT = 96,
NR_G_PORTS = 100,
ACK_PORT,
};
static const struct hw_port_descriptor mn103int_ports[] = {
/* interrupt outputs */
{ "nmi", NMI_PORT, 0, output_port, },
{ "level", LEVEL_PORT, 0, output_port, },
/* interrupt ack (latch) input from cpu */
{ "ack", ACK_PORT, 0, input_port, },
/* interrupt inputs (as names) */
{ "nmirq", G0_PORT + 0, 0, input_port, },
{ "watchdog", G0_PORT + 1, 0, input_port, },
{ "syserr", G0_PORT + 2, 0, input_port, },
{ "timer-0-underflow", G2_PORT + 0, 0, input_port, },
{ "timer-1-underflow", G2_PORT + 1, 0, input_port, },
{ "timer-2-underflow", G2_PORT + 2, 0, input_port, },
{ "timer-3-underflow", G2_PORT + 3, 0, input_port, },
{ "timer-4-underflow", G3_PORT + 0, 0, input_port, },
{ "timer-5-underflow", G3_PORT + 1, 0, input_port, },
{ "timer-6-underflow", G3_PORT + 2, 0, input_port, },
{ "timer-7-underflow", G3_PORT + 3, 0, input_port, },
{ "timer-8-underflow", G4_PORT + 0, 0, input_port, },
{ "timer-8-compare-a", G4_PORT + 1, 0, input_port, },
{ "timer-8-compare-b", G4_PORT + 2, 0, input_port, },
{ "timer-9-underflow", G5_PORT + 0, 0, input_port, },
{ "timer-9-compare-a", G5_PORT + 1, 0, input_port, },
{ "timer-9-compare-b", G5_PORT + 2, 0, input_port, },
{ "timer-10-underflow", G6_PORT + 0, 0, input_port, },
{ "timer-10-compare-a", G6_PORT + 1, 0, input_port, },
{ "timer-10-compare-b", G6_PORT + 2, 0, input_port, },
{ "timer-10-compare-c", G6_PORT + 3, 0, input_port, },
{ "timer-11-underflow", G7_PORT + 0, 0, input_port, },
{ "timer-11-compare-a", G7_PORT + 1, 0, input_port, },
{ "timer-11-compare-b", G7_PORT + 2, 0, input_port, },
{ "timer-11-compare-c", G7_PORT + 3, 0, input_port, },
{ "timer-12-underflow", G8_PORT + 0, 0, input_port, },
{ "timer-12-compare-a", G8_PORT + 1, 0, input_port, },
{ "timer-12-compare-b", G8_PORT + 2, 0, input_port, },
{ "timer-12-compare-c", G8_PORT + 3, 0, input_port, },
{ "timer-11-compare-d", G9_PORT + 0, 0, input_port, },
{ "timer-12-compare-d", G9_PORT + 1, 0, input_port, },
{ "dma-0-end", G10_PORT, 0, input_port, },
{ "dma-1-end", G11_PORT, 0, input_port, },
{ "dma-2-end", G12_PORT, 0, input_port, },
{ "dma-3-end", G13_PORT, 0, input_port, },
{ "serial-0-recieve", G14_PORT + 0, 0, input_port, },
{ "serial-0-transmit", G14_PORT + 1, 0, input_port, },
{ "serial-1-recieve", G15_PORT + 0, 0, input_port, },
{ "serial-1-transmit", G15_PORT + 1, 0, input_port, },
{ "irq-0", G16_PORT, 0, input_port, },
{ "irq-1", G17_PORT, 0, input_port, },
{ "irq-2", G18_PORT, 0, input_port, },
{ "irq-3", G19_PORT, 0, input_port, },
{ "irq-4", G20_PORT, 0, input_port, },
{ "irq-5", G21_PORT, 0, input_port, },
{ "irq-6", G22_PORT, 0, input_port, },
{ "irq-7", G23_PORT, 0, input_port, },
{ "ad-end", G24_PORT, 0, input_port, },
/* interrupt inputs (as generic numbers) */
{ "int", 0, NR_G_PORTS, input_port, },
{ NULL, },
};
/* Macros for extracting/restoring the various register bits */
#define EXTRACT_ID(X) (LSEXTRACTED8 ((X), 3, 0))
#define INSERT_ID(X) (LSINSERTED8 ((X), 3, 0))
#define EXTRACT_IR(X) (LSEXTRACTED8 ((X), 7, 4))
#define INSERT_IR(X) (LSINSERTED8 ((X), 7, 4))
#define EXTRACT_IE(X) (LSEXTRACTED8 ((X), 3, 0))
#define INSERT_IE(X) (LSINSERTED8 ((X), 3, 0))
#define EXTRACT_LV(X) (LSEXTRACTED8 ((X), 6, 4))
#define INSERT_LV(X) (LSINSERTED8 ((X), 6, 4))
/* Finish off the partially created hw device. Attach our local
callbacks. Wire up our port names etc */
static hw_io_read_buffer_callback mn103int_io_read_buffer;
static hw_io_write_buffer_callback mn103int_io_write_buffer;
static hw_port_event_callback mn103int_port_event;
static void
attach_mn103int_regs (struct hw *me,
struct mn103int *controller)
{
int i;
if (hw_find_property (me, "reg") == NULL)
hw_abort (me, "Missing \"reg\" property");
for (i = 0; i < NR_BLOCKS; i++)
{
unsigned_word attach_address;
int attach_space;
unsigned attach_size;
reg_property_spec reg;
if (!hw_find_reg_array_property (me, "reg", i, &reg))
hw_abort (me, "\"reg\" property must contain three addr/size entries");
hw_unit_address_to_attach_address (hw_parent (me),
&reg.address,
&attach_space,
&attach_address,
me);
controller->block[i].base = attach_address;
hw_unit_size_to_attach_size (hw_parent (me),
&reg.size,
&attach_size, me);
controller->block[i].bound = attach_address + (attach_size - 1);
hw_attach_address (hw_parent (me),
0,
attach_space, attach_address, attach_size,
me);
}
}
static void
mn103int_finish (struct hw *me)
{
int gid;
struct mn103int *controller;
controller = HW_ZALLOC (me, struct mn103int);
set_hw_data (me, controller);
set_hw_io_read_buffer (me, mn103int_io_read_buffer);
set_hw_io_write_buffer (me, mn103int_io_write_buffer);
set_hw_ports (me, mn103int_ports);
set_hw_port_event (me, mn103int_port_event);
/* Attach ourself to our parent bus */
attach_mn103int_regs (me, controller);
/* Initialize all the groups according to their default configuration */
for (gid = 0; gid < NR_GROUPS; gid++)
{
struct mn103int_group *group = &controller->group[gid];
group->enable = 0xf;
group->trigger = NEGATIVE_EDGE;
if (FIRST_NMI_GROUP <= gid && gid <= LAST_NMI_GROUP)
{
group->type = NMI_GROUP;
}
else if (FIRST_INT_GROUP <= gid && gid <= LAST_INT_GROUP)
{
group->type = INT_GROUP;
}
else
hw_abort (me, "internal error - unknown group id");
}
}
/* Perform the nasty work of figuring out which of the interrupt
groups should have its interrupt delivered. */
static int
find_highest_interrupt_group (struct hw *me,
struct mn103int *controller)
{
int gid;
int selected;
/* FIRST_NMI_GROUP (group zero) is used as a special default value
when searching for an interrupt group */
selected = FIRST_NMI_GROUP;
controller->group[FIRST_NMI_GROUP].level = 7;
for (gid = FIRST_INT_GROUP; gid <= LAST_INT_GROUP; gid++)
{
struct mn103int_group *group = &controller->group[gid];
if ((group->request & group->enable) != 0)
{
if (group->level > controller->group[selected].level)
{
selected = gid;
}
}
}
return selected;
}
/* Notify the processor of an interrupt level update */
static void
push_interrupt_level (struct hw *me,
struct mn103int *controller)
{
int selected = find_highest_interrupt_group (me, controller);
int level = controller->group[selected].level;
HW_TRACE ((me, "port-out - selected=%d level=%d", selected, level));
hw_port_event (me, LEVEL_PORT, level, NULL, NULL_CIA);
}
/* An event arrives on an interrupt port */
static void
mn103int_port_event (struct hw *me,
int my_port,
struct hw *source,
int source_port,
int level,
sim_cpu *processor,
sim_cia cia)
{
struct mn103int *controller = hw_data (me);
switch (my_port)
{
case ACK_PORT:
{
int selected = find_highest_interrupt_group (me, controller);
if (controller->group[selected].level != level)
hw_abort (me, "botched level synchronisation");
controller->interrupt_accepted_group = selected;
HW_TRACE ((me, "port-event port=ack level=%d - selected=%d",
level, selected));
break;
}
default:
{
int gid;
int iid;
struct mn103int_group *group;
unsigned interrupt;
if (my_port > NR_G_PORTS)
hw_abort (me, "Event on unknown port %d", my_port);
/* map the port onto an interrupt group */
gid = (my_port % NR_G_PORTS) / 4;
group = &controller->group[gid];
iid = (my_port % 4);
interrupt = 1 << iid;
/* update our cached input */
if (level)
group->input |= interrupt;
else
group->input &= ~interrupt;
/* update the request bits */
switch (group->trigger)
{
case ACTIVE_LOW:
case ACTIVE_HIGH:
if (level)
group->request |= interrupt;
break;
case NEGATIVE_EDGE:
case POSITIVE_EDGE:
group->request |= interrupt;
}
/* force a corresponding output */
switch (group->type)
{
case NMI_GROUP:
{
/* for NMI's the event is the trigger */
HW_TRACE ((me, "port-in port=%d group=%d interrupt=%d - NMI",
my_port, gid, iid));
if ((group->request & group->enable) != 0)
{
HW_TRACE ((me, "port-out NMI"));
hw_port_event (me, NMI_PORT, 0, NULL, NULL_CIA);
}
break;
}
case INT_GROUP:
{
/* if an interrupt is now pending */
HW_TRACE ((me, "port-in port=%d group=%d interrupt=%d - INT",
my_port, gid, iid));
push_interrupt_level (me, controller);
break;
}
}
break;
}
}
}
/* Read/write to to an ICR (group control register) */
static unsigned8
read_icr (struct hw *me,
struct mn103int *controller,
struct mn103int_group *group,
unsigned_word offset)
{
unsigned8 val = 0;
switch (group->type)
{
case NMI_GROUP:
switch (offset)
{
case 0:
val = INSERT_ID (group->request);
HW_TRACE ((me, "read-icr 0x%02x", val));
break;
}
break;
case INT_GROUP:
switch (offset)
{
case 0:
val = (INSERT_IR (group->request)
| INSERT_ID (group->request & group->enable));
HW_TRACE ((me, "read-icr 0:0x%02x", val));
break;
case 1:
val = (INSERT_LV (group->level)
| INSERT_IE (group->enable));
HW_TRACE ((me, "read-icr 1:0x%02x", val));
break;
}
}
return val;
}
static void
write_icr (struct hw *me,
struct mn103int *controller,
struct mn103int_group *group,
unsigned_word offset,
unsigned8 val)
{
switch (group->type)
{
case NMI_GROUP:
switch (offset)
{
case 0:
HW_TRACE ((me, "write-icr 0x%02x", val));
group->request &= ~EXTRACT_ID (val);
break;
default:
break;
}
break;
case INT_GROUP:
switch (offset)
{
case 0: /* request/detect */
/* Clear any ID bits and then set them according to IR */
HW_TRACE ((me, "write-icr 0:0x%02x", val));
group->request &= EXTRACT_ID (val);
group->request |= EXTRACT_IR (val) & EXTRACT_ID (val);
break;
case 1: /* level/enable */
HW_TRACE ((me, "write-icr 1:0x%02x", val));
group->level = EXTRACT_LV (val);
group->enable = EXTRACT_IE (val);
break;
default:
/* ignore */
break;
}
push_interrupt_level (me, controller);
break;
}
}
/* Read the IAGR (Interrupt accepted group register) */
static unsigned8
read_iagr (struct hw *me,
struct mn103int *controller,
unsigned_word offset)
{
unsigned8 val;
switch (offset)
{
case 0:
{
val = (controller->interrupt_accepted_group << 2);
if (!(controller->group[val].request
& controller->group[val].enable))
/* oops, lost the request */
val = 0;
break;
}
default:
val = 0;
}
return val;
}
/* Reads/writes to the EXTMD (external interrupt trigger configuration
register) */
static struct mn103int_group *
external_group (struct mn103int *controller,
unsigned_word offset)
{
switch (offset)
{
case 0:
return &controller->group[16];
case 1:
return &controller->group[20];
default:
return NULL;
}
}
static unsigned8
read_extmd (struct hw *me,
struct mn103int *controller,
unsigned_word offset)
{
int gid;
unsigned8 val = 0;
struct mn103int_group *group = external_group (controller, offset);
if (group != NULL)
{
for (gid = 0; gid < 4; gid++)
{
val |= (group[gid].trigger << (gid * 2));
}
}
return val;
}
static void
write_extmd (struct hw *me,
struct mn103int *controller,
unsigned_word offset,
unsigned8 val)
{
int gid;
struct mn103int_group *group = external_group (controller, offset);
if (group != NULL)
{
for (gid = 0; gid < 4; gid++)
{
group[gid].trigger = (val >> (gid * 2)) & 0x3;
/* MAYBE: interrupts already pending? */
}
}
}
/* generic read/write */
static int
decode_addr (struct hw *me,
struct mn103int *controller,
unsigned_word addr)
{
int i;
for (i = 0; i < NR_BLOCKS; i++)
{
if (addr >= controller->block[i].base
&& addr <= controller->block[i].bound)
return i;
}
hw_abort (me, "bad address");
return -1;
}
static struct mn103int_group *
decode_group (struct hw *me,
struct mn103int *controller,
unsigned_word addr)
{
unsigned_word offset = (addr - controller->block[ICR_BLOCK].base);
int gid = (offset / 8) % NR_GROUPS;
return &controller->group[gid];
}
static unsigned
mn103int_io_read_buffer (struct hw *me,
void *dest,
int space,
unsigned_word base,
unsigned nr_bytes,
sim_cpu *processor,
sim_cia cia)
{
struct mn103int *controller = hw_data (me);
unsigned8 *buf = dest;
unsigned byte;
for (byte = 0; byte < nr_bytes; byte++)
{
unsigned_word address = base + byte;
switch (decode_addr (me, controller, address))
{
case ICR_BLOCK:
buf[byte] = read_icr (me, controller,
decode_group (me, controller, address),
address);
break;
case IAGR_BLOCK:
buf[byte] = read_iagr (me, controller, address);
break;
case EXTMD_BLOCK:
buf[byte] = read_extmd (me, controller, address);
break;
default:
hw_abort (me, "bad switch");
}
}
return nr_bytes;
}
static unsigned
mn103int_io_write_buffer (struct hw *me,
const void *source,
int space,
unsigned_word base,
unsigned nr_bytes,
sim_cpu *cpu,
sim_cia cia)
{
struct mn103int *controller = hw_data (me);
const unsigned8 *buf = source;
unsigned byte;
for (byte = 0; byte < nr_bytes; byte++)
{
unsigned_word address = base + byte;
switch (decode_addr (me, controller, address))
{
case ICR_BLOCK:
write_icr (me, controller,
decode_group (me, controller, address),
address, buf[byte]);
break;
case IAGR_BLOCK:
/* not allowed */
break;
case EXTMD_BLOCK:
write_extmd (me, controller, address, buf[byte]);
break;
default:
hw_abort (me, "bad switch");
}
}
return nr_bytes;
}
const struct hw_device_descriptor dv_mn103int_descriptor[] = {
{ "mn103int", mn103int_finish, },
{ NULL },
};

View File

@ -3,6 +3,7 @@
#if WITH_COMMON
#include "sim-main.h"
#include "sim-options.h"
#include "sim-hw.h"
#else
#include "mn10300_sim.h"
#endif
@ -892,151 +893,6 @@ sim_load (sd, prog, abfd, from_tty)
/* For compatibility */
SIM_DESC simulator;
/* mn10300 interrupt model */
enum interrupt_type
{
int_reset,
int_nmi,
int_intov1,
int_intp10,
int_intp11,
int_intp12,
int_intp13,
int_intcm4,
num_int_types
};
char *interrupt_names[] = {
"reset",
"nmi",
"intov1",
"intp10",
"intp11",
"intp12",
"intp13",
"intcm4",
NULL
};
static void
do_interrupt (sd, data)
SIM_DESC sd;
void *data;
{
#if 0
char **interrupt_name = (char**)data;
enum interrupt_type inttype;
inttype = (interrupt_name - STATE_WATCHPOINTS (sd)->interrupt_names);
/* For a hardware reset, drop everything and jump to the start
address */
if (inttype == int_reset)
{
PC = 0;
PSW = 0x20;
ECR = 0;
sim_engine_restart (sd, NULL, NULL, NULL_CIA);
}
/* Deliver an NMI when allowed */
if (inttype == int_nmi)
{
if (PSW & PSW_NP)
{
/* We're already working on an NMI, so this one must wait
around until the previous one is done. The processor
ignores subsequent NMIs, so we don't need to count them.
Just keep re-scheduling a single NMI until it manages to
be delivered */
if (STATE_CPU (sd, 0)->pending_nmi != NULL)
sim_events_deschedule (sd, STATE_CPU (sd, 0)->pending_nmi);
STATE_CPU (sd, 0)->pending_nmi =
sim_events_schedule (sd, 1, do_interrupt, data);
return;
}
else
{
/* NMI can be delivered. Do not deschedule pending_nmi as
that, if still in the event queue, is a second NMI that
needs to be delivered later. */
FEPC = PC;
FEPSW = PSW;
/* Set the FECC part of the ECR. */
ECR &= 0x0000ffff;
ECR |= 0x10;
PSW |= PSW_NP;
PSW &= ~PSW_EP;
PSW |= PSW_ID;
PC = 0x10;
sim_engine_restart (sd, NULL, NULL, NULL_CIA);
}
}
/* deliver maskable interrupt when allowed */
if (inttype > int_nmi && inttype < num_int_types)
{
if ((PSW & PSW_NP) || (PSW & PSW_ID))
{
/* Can't deliver this interrupt, reschedule it for later */
sim_events_schedule (sd, 1, do_interrupt, data);
return;
}
else
{
/* save context */
EIPC = PC;
EIPSW = PSW;
/* Disable further interrupts. */
PSW |= PSW_ID;
/* Indicate that we're doing interrupt not exception processing. */
PSW &= ~PSW_EP;
/* Clear the EICC part of the ECR, will set below. */
ECR &= 0xffff0000;
switch (inttype)
{
case int_intov1:
PC = 0x80;
ECR |= 0x80;
break;
case int_intp10:
PC = 0x90;
ECR |= 0x90;
break;
case int_intp11:
PC = 0xa0;
ECR |= 0xa0;
break;
case int_intp12:
PC = 0xb0;
ECR |= 0xb0;
break;
case int_intp13:
PC = 0xc0;
ECR |= 0xc0;
break;
case int_intcm4:
PC = 0xd0;
ECR |= 0xd0;
break;
default:
/* Should never be possible. */
sim_engine_abort (sd, NULL, NULL_CIA,
"do_interrupt - internal error - bad switch");
break;
}
}
sim_engine_restart (sd, NULL, NULL, NULL_CIA);
}
/* some other interrupt? */
sim_engine_abort (sd, NULL, NULL_CIA,
"do_interrupt - internal error - interrupt %d unknown",
inttype);
#endif /* 0 */
}
/* These default values correspond to expected usage for the chip. */
SIM_DESC
@ -1047,6 +903,7 @@ sim_open (kind, cb, abfd, argv)
char **argv;
{
SIM_DESC sd = sim_state_alloc (kind, cb);
struct hw *hw;
mn10300_callback = cb;
SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
@ -1054,19 +911,20 @@ sim_open (kind, cb, abfd, argv)
/* for compatibility */
simulator = sd;
/* FIXME: should be better way of setting up interrupts */
/* FIXME: should be better way of setting up interrupts. For
moment, only support watchpoints causing a breakpoint (gdb
halt). */
STATE_WATCHPOINTS (sd)->pc = &(PC);
STATE_WATCHPOINTS (sd)->sizeof_pc = sizeof (PC);
STATE_WATCHPOINTS (sd)->interrupt_handler = do_interrupt;
STATE_WATCHPOINTS (sd)->interrupt_names = interrupt_names;
STATE_WATCHPOINTS (sd)->interrupt_handler = NULL;
STATE_WATCHPOINTS (sd)->interrupt_names = NULL;
if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
return 0;
/* Allocate core managed memory */
/* "Mirror" the ROM addresses below 1MB. */
sim_do_command (sd, "memory region 0,0x100000");
sim_do_command (sd, "memory region 0x40000000,0x100000");
/* getopt will print the error message so we just have to exit if this fails.
FIXME: Hmmm... in the case of gdb we need getopt to call
@ -1079,6 +937,117 @@ sim_open (kind, cb, abfd, argv)
return 0;
}
hw = hw_tree_create (sd, "core");
hw_tree_parse (hw, "/");
if (STATE_VERBOSE_P (sd))
hw_tree_parse (hw, "/trace? true");
/* interrupt controller */
hw_tree_parse (hw, "/mn103int@0x34000100");
if (STATE_VERBOSE_P (sd))
hw_tree_parse (hw, "/mn103int/trace? true");
hw_tree_parse (hw, "/mn103int/reg 0x34000100 0x68 0x34000200 0x8 0x3400280 0x8");
/* NMI input's */
hw_tree_parse (hw, "/glue@0x30000000");
if (STATE_VERBOSE_P (sd))
hw_tree_parse (hw, "/glue@0x30000000/trace? true");
hw_tree_parse (hw, "/glue@0x30000000/reg 0x30000000 16");
hw_tree_parse (hw, "/glue@0x30000000 > int1 nmirq /mn103int");
hw_tree_parse (hw, "/glue@0x30000000 > int2 watchdog /mn103int");
hw_tree_parse (hw, "/glue@0x30000000 > int3 syserr /mn103int");
/* NMI output */
hw_tree_parse (hw, "/mn103int > nmi int0 /glue@0x30000000");
/* ACK input */
hw_tree_parse (hw, "/glue@0x30002000");
if (STATE_VERBOSE_P (sd))
hw_tree_parse (hw, "/glue@0x30002000/trace? true");
hw_tree_parse (hw, "/glue@0x30002000/reg 0x30002000 4");
hw_tree_parse (hw, "/glue@0x30002000 > int ack /mn103int");
/* LEVEL output */
hw_tree_parse (hw, "/glue@0x30004000");
if (STATE_VERBOSE_P (sd))
hw_tree_parse (hw, "/glue@0x30004000/trace? true");
hw_tree_parse (hw, "/glue@0x30004000/reg 0x30004000 4");
hw_tree_parse (hw, "/mn103int > level int /glue@0x30004000");
/* A bunch of interrupt inputs */
hw_tree_parse (hw, "/glue@0x30006000");
if (STATE_VERBOSE_P (sd))
hw_tree_parse (hw, "/glue@0x30006000/trace? true");
hw_tree_parse (hw, "/glue@0x30006000/reg 0x30006000 16");
hw_tree_parse (hw, "/glue@0x30006000 > int0 irq-0 /mn103int");
hw_tree_parse (hw, "/glue@0x30006000 > int1 irq-1 /mn103int");
hw_tree_parse (hw, "/glue@0x30006000 > int2 irq-2 /mn103int");
hw_tree_parse (hw, "/glue@0x30006000 > int3 irq-3 /mn103int");
/* processor interrupt device */
/* the device */
hw_tree_parse (hw, "/mn103cpu@0x20000000");
if (STATE_VERBOSE_P (sd))
hw_tree_parse (hw, "/mn103cpu@0x20000000/trace? true");
hw_tree_parse (hw, "/mn103cpu@0x20000000/reg 0x20000000 0x42");
/* DEBUG: ACK output wired upto a glue device */
hw_tree_parse (hw, "/glue@0x20002000");
if (STATE_VERBOSE_P (sd))
hw_tree_parse (hw, "/glue@0x20002000/trace? true");
hw_tree_parse (hw, "/glue@0x20002000/reg 0x20002000 4");
hw_tree_parse (hw, "/mn103cpu > ack int0 /glue@0x20002000");
/* DEBUG: RESET/NMI/LEVEL wired up to a glue device */
hw_tree_parse (hw, "/glue@0x20004000");
if (STATE_VERBOSE_P (sd))
hw_tree_parse (hw, "/glue@0x20004000/trace? true");
hw_tree_parse (hw, "/glue@0x20004000/reg 0x20004000 12");
hw_tree_parse (hw, "/glue@0x20004000 > int0 reset /mn103cpu");
hw_tree_parse (hw, "/glue@0x20004000 > int1 nmi /mn103cpu");
hw_tree_parse (hw, "/glue@0x20004000 > int2 level /mn103cpu");
/* The processor wired up to the real interrupt controller */
hw_tree_parse (hw, "/mn103cpu > ack ack /mn103int");
hw_tree_parse (hw, "/mn103int > level level /mn103cpu");
hw_tree_parse (hw, "/mn103int > nmi nmi /mn103cpu");
/* PAL */
/* the device */
hw_tree_parse (hw, "/pal@0x31000000");
if (STATE_VERBOSE_P (sd))
hw_tree_parse (hw, "/pal@0x31000000/trace? true");
hw_tree_parse (hw, "/pal@0x31000000/reg 0x31000000 64");
/* DEBUG: PAL wired up to a glue device */
hw_tree_parse (hw, "/glue@0x31002000");
if (STATE_VERBOSE_P (sd))
hw_tree_parse (hw, "/glue@0x31002000/trace? true");
hw_tree_parse (hw, "/glue@0x31002000/reg 0x31002000 16");
hw_tree_parse (hw, "/pal@0x31000000 > countdown int0 /glue@0x31002000");
hw_tree_parse (hw, "/pal@0x31000000 > timer int1 /glue@0x31002000");
hw_tree_parse (hw, "/pal@0x31000000 > int int2 /glue@0x31002000");
hw_tree_parse (hw, "/glue@0x31002000 > int0 int3 /glue@0x31002000");
hw_tree_parse (hw, "/glue@0x31002000 > int1 int3 /glue@0x31002000");
hw_tree_parse (hw, "/glue@0x31002000 > int2 int3 /glue@0x31002000");
/* The PAL wired up to the real interrupt controller */
hw_tree_parse (hw, "/pal@0x31000000 > countdown irq-0 /mn103int");
hw_tree_parse (hw, "/pal@0x31000000 > timer irq-1 /mn103int");
hw_tree_parse (hw, "/pal@0x31000000 > int irq-2 /mn103int");
hw_tree_finish (hw);
if (STATE_VERBOSE_P (sd))
hw_tree_print (hw);
/* check for/establish the a reference program image */
if (sim_analyze_program (sd,
(STATE_PROG_ARGV (sd) != NULL