2003-09-12 Andrew Cagney <cagney@redhat.com>

* ppc-sysv-tdep.c (align_up, align_down): Replace "round2" macro.
	(ppc_sysv_abi_push_dummy_call): Rewrite, use a two pass loop.
This commit is contained in:
Andrew Cagney 2003-09-12 18:55:24 +00:00
parent 627b3ba2d3
commit 68856ea378
2 changed files with 242 additions and 255 deletions

View File

@ -1,3 +1,8 @@
2003-09-12 Andrew Cagney <cagney@redhat.com>
* ppc-sysv-tdep.c (align_up, align_down): Replace "round2" macro.
(ppc_sysv_abi_push_dummy_call): Rewrite, use a two pass loop.
2003-09-12 Andrew Cagney <cagney@redhat.com>
* objfiles.h (struct entry_info): Deprecate "entry_file_lowpc" and

View File

@ -29,11 +29,20 @@
#include "ppc-tdep.h"
/* round2 rounds x up to the nearest multiple of s assuming that s is a
power of 2 */
/* Ensure that X is aligned to an S byte boundary (assuming that S is
a power of 2) rounding up/down where necessary. */
#undef round2
#define round2(x,s) ((((long) (x) - 1) & ~(long)((s)-1)) + (s))
static ULONGEST
align_up (ULONGEST x, int s)
{
return (x + s - 1) & -s;
}
static ULONGEST
align_down (ULONGEST x, int s)
{
return (x & -s);
}
/* Pass the arguments in either registers, or in the stack. Using the
ppc sysv ABI, the first eight words of the argument list (that might
@ -52,298 +61,271 @@ ppc_sysv_abi_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
int nargs, struct value **args, CORE_ADDR sp,
int struct_return, CORE_ADDR struct_addr)
{
int argno;
/* Next available general register for non-float, non-vector arguments. */
int greg;
/* Next available floating point register for float arguments. */
int freg;
/* Next available vector register for vector arguments. */
int vreg;
int argstkspace;
int structstkspace;
int argoffset;
int structoffset;
struct type *type;
int len;
char old_sp_buf[4];
CORE_ADDR saved_sp;
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
const CORE_ADDR saved_sp = read_sp ();
int argspace = 0; /* 0 is an initial wrong guess. */
int write_pass;
greg = 3;
freg = 1;
vreg = 2;
argstkspace = 0;
structstkspace = 0;
/* Go through the argument list twice.
/* If the function is returning a `struct', then the first word
(which will be passed in r3) is used for struct return address.
In that case we should advance one word and start from r4
register to copy parameters. */
if (struct_return)
Pass 1: Figure out how much new stack space is required for
arguments and pushed values. Unlike the PowerOpen ABI, the SysV
ABI doesn't reserve any extra space for parameters which are put
in registers, but does always push structures and then pass their
address.
Pass 2: Replay the same computation but this time also write the
values out to the target. */
for (write_pass = 0; write_pass < 2; write_pass++)
{
regcache_raw_write_signed (regcache, tdep->ppc_gp0_regnum + greg,
struct_addr);
greg++;
}
int argno;
/* Next available floating point register for float and double
arguments. */
int freg = 1;
/* Next available general register for non-float, non-vector
arguments. */
int greg = 3;
/* Next available vector register for vector arguments. */
int vreg = 2;
/* Arguments start above the "LR save word" and "Back chain". */
int argoffset = 2 * tdep->wordsize;
/* Structures start after the arguments. */
int structoffset = argoffset + argspace;
/* Figure out how much new stack space is required for arguments
which don't fit in registers. Unlike the PowerOpen ABI, the
SysV ABI doesn't reserve any extra space for parameters which
are put in registers. */
for (argno = 0; argno < nargs; argno++)
{
struct value *arg = args[argno];
type = check_typedef (VALUE_TYPE (arg));
len = TYPE_LENGTH (type);
/* If the function is returning a `struct', then the first word
(which will be passed in r3) is used for struct return
address. In that case we should advance one word and start
from r4 register to copy parameters. */
if (struct_return)
{
if (write_pass)
regcache_cooked_write_signed (regcache,
tdep->ppc_gp0_regnum + greg,
struct_addr);
greg++;
}
if (TYPE_CODE (type) == TYPE_CODE_FLT
&& ppc_floating_point_unit_p (current_gdbarch))
for (argno = 0; argno < nargs; argno++)
{
if (freg <= 8)
freg++;
else
struct value *arg = args[argno];
struct type *type = check_typedef (VALUE_TYPE (arg));
int len = TYPE_LENGTH (type);
char *val = VALUE_CONTENTS (arg);
if (TYPE_CODE (type) == TYPE_CODE_FLT
&& ppc_floating_point_unit_p (current_gdbarch)
&& len <= 8)
{
/* SysV ABI converts floats to doubles when placed in
memory and requires 8 byte alignment */
if (argstkspace & 0x4)
argstkspace += 4;
argstkspace += 8;
}
}
else if (len == 8
&& (TYPE_CODE (type) == TYPE_CODE_INT /* long long */
|| (!ppc_floating_point_unit_p (current_gdbarch)
&& TYPE_CODE (type) == TYPE_CODE_FLT))) /* double */
{
if (greg > 9)
{
greg = 11;
if (argstkspace & 0x4)
argstkspace += 4;
argstkspace += 8;
}
else
{
if ((greg & 1) == 0)
greg++;
greg += 2;
}
}
else if (!TYPE_VECTOR (type))
{
if (len > 4
|| TYPE_CODE (type) == TYPE_CODE_STRUCT
|| TYPE_CODE (type) == TYPE_CODE_UNION)
{
/* Rounding to the nearest multiple of 8 may not be necessary,
but it is safe. Particularly since we don't know the
field types of the structure */
structstkspace += round2 (len, 8);
}
if (greg <= 10)
greg++;
else
argstkspace += 4;
}
else
{
if (len == 16
&& TYPE_CODE (type) == TYPE_CODE_ARRAY
&& TYPE_VECTOR (type))
{
if (vreg <= 13)
vreg++;
/* Floating point value converted to "double" then
passed in an FP register, when the registers run out,
8 byte aligned stack is used. */
if (freg <= 8)
{
if (write_pass)
{
/* Always store the floating point value using
the register's floating-point format. */
char regval[MAX_REGISTER_SIZE];
struct type *regtype
= register_type (gdbarch, FP0_REGNUM + freg);
convert_typed_floating (val, type, regval, regtype);
regcache_cooked_write (regcache, FP0_REGNUM + freg,
regval);
}
freg++;
}
else
{
/* Vector arguments must be aligned to 16 bytes on
the stack. */
argstkspace += round2 (argstkspace, 16);
argstkspace += 16;
/* SysV ABI converts floats to doubles before
writing them to an 8 byte aligned stack location. */
argoffset = align_up (argoffset, 8);
if (write_pass)
{
char memval[8];
struct type *memtype;
switch (TARGET_BYTE_ORDER)
{
case BFD_ENDIAN_BIG:
memtype = builtin_type_ieee_double_big;
break;
case BFD_ENDIAN_LITTLE:
memtype = builtin_type_ieee_double_little;
break;
default:
internal_error (__FILE__, __LINE__, "bad switch");
}
convert_typed_floating (val, type, memval, memtype);
write_memory (sp + argoffset, val, len);
}
argoffset += 8;
}
}
else if (len == 8
&& TYPE_CODE (type) == TYPE_CODE_ARRAY
&& TYPE_VECTOR (type))
{
if (greg <= 10)
greg++;
else
{
/* Vector arguments must be aligned to 8 bytes on
the stack. */
argstkspace += round2 (argstkspace, 8);
argstkspace += 8;
}
}
}
}
/* Get current SP location */
saved_sp = read_sp ();
sp -= argstkspace + structstkspace;
/* Allocate space for backchain and callee's saved lr */
sp -= 8;
/* Make sure that we maintain 16 byte alignment */
sp &= ~0x0f;
/* Update %sp before proceeding any further. */
regcache_raw_write_signed (regcache, SP_REGNUM, sp);
/* write the backchain */
store_unsigned_integer (old_sp_buf, 4, saved_sp);
write_memory (sp, old_sp_buf, 4);
argoffset = 8;
structoffset = argoffset + argstkspace;
freg = 1;
greg = 3;
vreg = 2;
/* Fill in r3 with the return structure, if any */
if (struct_return)
{
write_register (tdep->ppc_gp0_regnum + greg, struct_addr);
greg++;
}
/* Now fill in the registers and stack... */
for (argno = 0; argno < nargs; argno++)
{
struct value *arg = args[argno];
char *val = VALUE_CONTENTS (arg);
type = check_typedef (VALUE_TYPE (arg));
len = TYPE_LENGTH (type);
if (TYPE_CODE (type) == TYPE_CODE_FLT
&& ppc_floating_point_unit_p (current_gdbarch))
{
if (freg <= 8)
else if (len == 8
&& (TYPE_CODE (type) == TYPE_CODE_INT /* long long */
|| (!ppc_floating_point_unit_p (current_gdbarch)
&& TYPE_CODE (type) == TYPE_CODE_FLT))) /* double */
{
ULONGEST regval;
if (len > 8)
printf_unfiltered (
"Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
regval = extract_unsigned_integer (val, len);
write_register (FP0_REGNUM + freg, regval);
freg++;
/* "long long" or "double" passed in an odd/even
register pair with the low addressed word in the odd
register and the high addressed word in the even
register, or when the registers run out an 8 byte
aligned stack location. */
if (greg > 9)
{
/* Just in case GREG was 10. */
greg = 11;
argoffset = align_up (argoffset, 8);
if (write_pass)
write_memory (sp + argoffset, val, len);
argoffset += 8;
}
else if (tdep->wordsize == 8)
{
if (write_pass)
regcache_cooked_write (regcache,
tdep->ppc_gp0_regnum + greg,
val);
greg += 1;
}
else
{
/* Must start on an odd register - r3/r4 etc. */
if ((greg & 1) == 0)
greg++;
if (write_pass)
{
regcache_cooked_write (regcache,
tdep->ppc_gp0_regnum + greg + 0,
val + 0);
regcache_cooked_write (regcache,
tdep->ppc_gp0_regnum + greg + 1,
val + 4);
}
greg += 2;
}
}
else
else if (len == 16
&& TYPE_CODE (type) == TYPE_CODE_ARRAY
&& TYPE_VECTOR (type)
&& tdep->ppc_vr0_regnum >= 0)
{
/* SysV ABI converts floats to doubles when placed in
memory and requires 8 byte alignment */
/* FIXME: Convert floats to doubles */
if (argoffset & 0x4)
argoffset += 4;
write_memory (sp + argoffset, val, len);
argoffset += 8;
}
}
else if (len == 8
&& (TYPE_CODE (type) == TYPE_CODE_INT /* long long */
|| (!ppc_floating_point_unit_p (current_gdbarch)
&& TYPE_CODE (type) == TYPE_CODE_FLT))) /* double */
{
if (greg > 9)
{
greg = 11;
if (argoffset & 0x4)
argoffset += 4;
write_memory (sp + argoffset, val, len);
argoffset += 8;
}
else
{
ULONGEST regval;
if ((greg & 1) == 0)
greg++;
regval = extract_unsigned_integer (val, 4);
write_register (tdep->ppc_gp0_regnum + greg, regval);
regval = extract_unsigned_integer (val + 4, 4);
write_register (tdep->ppc_gp0_regnum + greg + 1, regval);
greg += 2;
}
}
else if (!TYPE_VECTOR (type))
{
char val_buf[4];
if (len > 4
|| TYPE_CODE (type) == TYPE_CODE_STRUCT
|| TYPE_CODE (type) == TYPE_CODE_UNION)
{
write_memory (sp + structoffset, val, len);
store_unsigned_integer (val_buf, 4, sp + structoffset);
structoffset += round2 (len, 8);
}
else
{
memset (val_buf, 0, 4);
memcpy (val_buf, val, len);
}
if (greg <= 10)
{
ULONGEST regval = extract_unsigned_integer (val_buf, 4);
write_register (tdep->ppc_gp0_regnum + greg, regval);
greg++;
}
else
{
write_memory (sp + argoffset, val_buf, 4);
argoffset += 4;
}
}
else
{
if (len == 16
&& TYPE_CODE (type) == TYPE_CODE_ARRAY
&& TYPE_VECTOR (type))
{
char *v_val_buf = alloca (16);
memset (v_val_buf, 0, 16);
memcpy (v_val_buf, val, len);
/* Vector parameter passed in an Altivec register, or
when that runs out, 16 byte aligned stack location. */
if (vreg <= 13)
{
regcache_cooked_write (current_regcache,
tdep->ppc_vr0_regnum + vreg,
v_val_buf);
if (write_pass)
regcache_cooked_write (current_regcache,
tdep->ppc_vr0_regnum + vreg,
val);
vreg++;
}
else
{
write_memory (sp + argoffset, v_val_buf, 16);
argoffset = align_up (argoffset, 16);
if (write_pass)
write_memory (sp + argoffset, val, 16);
argoffset += 16;
}
}
else if (len == 8
&& TYPE_CODE (type) == TYPE_CODE_ARRAY
&& TYPE_VECTOR (type))
&& TYPE_VECTOR (type)
&& tdep->ppc_ev0_regnum >= 0)
{
char *v_val_buf = alloca (8);
memset (v_val_buf, 0, 8);
memcpy (v_val_buf, val, len);
/* Vector parameter passed in an e500 register, or when
that runs out, 8 byte aligned stack location. Note
that since e500 vector and general purpose registers
both map onto the same underlying register set, a
"greg" and not a "vreg" is consumed here. A cooked
write stores the value in the correct locations
within the raw register cache. */
if (greg <= 10)
{
regcache_cooked_write (current_regcache,
tdep->ppc_ev0_regnum + greg,
v_val_buf);
if (write_pass)
regcache_cooked_write (current_regcache,
tdep->ppc_ev0_regnum + greg,
val);
greg++;
}
else
{
write_memory (sp + argoffset, v_val_buf, 8);
argoffset = align_up (argoffset, 8);
if (write_pass)
write_memory (sp + argoffset, val, 8);
argoffset += 8;
}
}
}
else
{
/* Reduce the parameter down to something that fits in a
"word". */
char word[MAX_REGISTER_SIZE];
memset (word, 0, MAX_REGISTER_SIZE);
if (len > tdep->wordsize
|| TYPE_CODE (type) == TYPE_CODE_STRUCT
|| TYPE_CODE (type) == TYPE_CODE_UNION)
{
/* Structs and large values are put on an 8 byte
aligned stack ... */
structoffset = align_up (structoffset, 8);
if (write_pass)
write_memory (sp + structoffset, val, len);
/* ... and then a "word" pointing to that address is
passed as the parameter. */
store_unsigned_integer (word, tdep->wordsize,
sp + structoffset);
structoffset += len;
}
else if (TYPE_CODE (type) == TYPE_CODE_INT)
/* Sign or zero extend the "int" into a "word". */
store_unsigned_integer (word, tdep->wordsize,
unpack_long (type, val));
else
/* Always goes in the low address. */
memcpy (word, val, len);
/* Store that "word" in a register, or on the stack.
The words have "4" byte alignment. */
if (greg <= 10)
{
if (write_pass)
regcache_cooked_write (regcache,
tdep->ppc_gp0_regnum + greg,
word);
greg++;
}
else
{
argoffset = align_up (argoffset, tdep->wordsize);
if (write_pass)
write_memory (sp + argoffset, word, tdep->wordsize);
argoffset += tdep->wordsize;
}
}
}
/* Compute the actual stack space requirements. */
if (!write_pass)
{
/* Remember the amount of space needed by the arguments. */
argspace = argoffset;
/* Allocate space for both the arguments and the structures. */
sp -= (argoffset + structoffset);
/* Ensure that the stack is still 16 byte aligned. */
sp = align_down (sp, 16);
}
}
/* Update %sp. */
regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
/* Write the backchain (it occupies WORDSIZED bytes). */
write_memory_signed_integer (sp, tdep->wordsize, saved_sp);
/* Point the inferior function call's return address at the dummy's
breakpoint. */
regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
regcache_cooked_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
target_store_registers (-1);
return sp;
}