Wed Jul 13 18:01:58 1994 Ken Raeburn (raeburn@cujo.cygnus.com)

* ns32k-dis.c: Deleted all code in "#ifdef GDB".
	(invalid_float): Enabled general version, doesn't require running
	on ns32k host.

Sun Jul 10 00:27:47 1994  Ian Dall  (dall@hfrd.dsto.gov.au)

	* opcodes/ns32k-dis.c: Semi-new file.  Had apparently been dropped
	from distribution. A ns32k-dis.c from a previous distribution has
	been brought up to date and supports the new interface.

	* disaaemble.c: define ARCH_ns32k and add case bfd_arch_ns32k.

	* configure.in: add bfd_ns32k_arch target support.

	* Makefile.in: add ns32k-dis.o to ALL_MACHINES.
	Add ns32k-dis.c to CFILES. Add dependencies for ns32k-dis.o.
This commit is contained in:
Ken Raeburn 1994-07-13 22:05:52 +00:00
parent 903f5bc3a0
commit 69bb683c6d
2 changed files with 870 additions and 0 deletions

View File

@ -1,3 +1,27 @@
Wed Jul 13 18:01:58 1994 Ken Raeburn (raeburn@cujo.cygnus.com)
* ns32k-dis.c: Deleted all code in "#ifdef GDB".
(invalid_float): Enabled general version, doesn't require running
on ns32k host.
Sun Jul 10 00:27:47 1994 Ian Dall (dall@hfrd.dsto.gov.au)
* opcodes/ns32k-dis.c: Semi-new file. Had apparently been dropped
from distribution. A ns32k-dis.c from a previous distribution has
been brought up to date and supports the new interface.
* disaaemble.c: define ARCH_ns32k and add case bfd_arch_ns32k.
* configure.in: add bfd_ns32k_arch target support.
* Makefile.in: add ns32k-dis.o to ALL_MACHINES.
Add ns32k-dis.c to CFILES. Add dependencies for ns32k-dis.o.
Wed Jun 29 22:10:37 1994 Steve Chamberlain (sac@cygnus.com)
* h8300-dis.c (bfd_h8_disassemble): Get 16bit branch
disassembly right.
Tue Jun 28 13:22:06 1994 Stan Shebs (shebs@andros.cygnus.com)
* h8300-dis.c, mips-dis.c: Don't use true and false.

846
opcodes/ns32k-dis.c Normal file
View File

@ -0,0 +1,846 @@
/* Print National Semiconductor 32000 instructions.
Copyright 1986, 1988, 1991, 1992, 1994 Free Software Foundation, Inc.
This file is part of opcodes library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
#include "bfd.h"
#include "sysdep.h"
#include "dis-asm.h"
#if !defined(const) && !defined(__STDC__)
#define const
#endif
#include "opcode/ns32k.h"
static disassemble_info *dis_info;
/*
* Hacks to get it to compile <= READ THESE AS FIXES NEEDED
*/
#define CORE_ADDR unsigned long
#define INVALID_FLOAT(val, size) invalid_float(val, size)
static long read_memory_integer(addr, nr)
unsigned char *addr;
int nr;
{
long val;
int i;
for (val = 0, i = nr - 1; i >= 0; i--) {
val = (val << 8);
val |= (0xff & *(addr + i));
}
return val;
}
/* 32000 instructions are never longer than this. */
#define MAXLEN 62
#include <setjmp.h>
struct private
{
/* Points to first byte not fetched. */
bfd_byte *max_fetched;
bfd_byte the_buffer[MAXLEN];
bfd_vma insn_start;
jmp_buf bailout;
};
/* Make sure that bytes from INFO->PRIVATE_DATA->BUFFER (inclusive)
to ADDR (exclusive) are valid. Returns 1 for success, longjmps
on error. */
#define FETCH_DATA(info, addr) \
((addr) <= ((struct private *)(info->private_data))->max_fetched \
? 1 : fetch_data ((info), (addr)))
static int
fetch_data (info, addr)
struct disassemble_info *info;
bfd_byte *addr;
{
int status;
struct private *priv = (struct private *)info->private_data;
bfd_vma start = priv->insn_start + (priv->max_fetched - priv->the_buffer);
status = (*info->read_memory_func) (start,
priv->max_fetched,
addr - priv->max_fetched,
info);
if (status != 0)
{
(*info->memory_error_func) (status, start, info);
longjmp (priv->bailout, 1);
}
else
priv->max_fetched = addr;
return 1;
}
/* Number of elements in the opcode table. */
#define NOPCODES (sizeof ns32k_opcodes / sizeof ns32k_opcodes[0])
#define NEXT_IS_ADDR '|'
struct option {
char *pattern; /* the option itself */
unsigned long value; /* binary value of the option */
unsigned long match; /* these bits must match */
};
static struct option opt_u[]= /* restore, exit */
{
{ "r0", 0x80, 0x80 },
{ "r1", 0x40, 0x40 },
{ "r2", 0x20, 0x20 },
{ "r3", 0x10, 0x10 },
{ "r4", 0x08, 0x08 },
{ "r5", 0x04, 0x04 },
{ "r6", 0x02, 0x02 },
{ "r7", 0x01, 0x01 },
{ 0 , 0x00, 0x00 }
};
static struct option opt_U[]= /* save, enter */
{
{ "r0", 0x01, 0x01 },
{ "r1", 0x02, 0x02 },
{ "r2", 0x04, 0x04 },
{ "r3", 0x08, 0x08 },
{ "r4", 0x10, 0x10 },
{ "r5", 0x20, 0x20 },
{ "r6", 0x40, 0x40 },
{ "r7", 0x80, 0x80 },
{ 0 , 0x00, 0x00 }
};
static struct option opt_O[]= /* setcfg */
{
{ "c", 0x8, 0x8 },
{ "m", 0x4, 0x4 },
{ "f", 0x2, 0x2 },
{ "i", 0x1, 0x1 },
{ 0 , 0x0, 0x0 }
};
static struct option opt_C[]= /* cinv */
{
{ "a", 0x4, 0x4 },
{ "i", 0x2, 0x2 },
{ "d", 0x1, 0x1 },
{ 0 , 0x0, 0x0 }
};
static struct option opt_S[]= /* string inst */
{
{ "b", 0x1, 0x1 },
{ "u", 0x6, 0x6 },
{ "w", 0x2, 0x2 },
{ 0 , 0x0, 0x0 }
};
static struct option list_P532[]= /* lpr spr */
{
{ "us", 0x0, 0xf },
{ "dcr", 0x1, 0xf },
{ "bpc", 0x2, 0xf },
{ "dsr", 0x3, 0xf },
{ "car", 0x4, 0xf },
{ "fp", 0x8, 0xf },
{ "sp", 0x9, 0xf },
{ "sb", 0xa, 0xf },
{ "usp", 0xb, 0xf },
{ "cfg", 0xc, 0xf },
{ "psr", 0xd, 0xf },
{ "intbase", 0xe, 0xf },
{ "mod", 0xf, 0xf },
{ 0 , 0x00, 0xf }
};
static struct option list_M532[]= /* lmr smr */
{
{ "mcr", 0x9, 0xf },
{ "msr", 0xa, 0xf },
{ "tear", 0xb, 0xf },
{ "ptb0", 0xc, 0xf },
{ "ptb1", 0xd, 0xf },
{ "ivar0", 0xe, 0xf },
{ "ivar1", 0xf, 0xf },
{ 0 , 0x0, 0xf }
};
static struct option list_P032[]= /* lpr spr */
{
{ "upsr", 0x0, 0xf },
{ "fp", 0x8, 0xf },
{ "sp", 0x9, 0xf },
{ "sb", 0xa, 0xf },
{ "psr", 0xb, 0xf },
{ "intbase", 0xe, 0xf },
{ "mod", 0xf, 0xf },
{ 0 , 0x0, 0xf }
};
static struct option list_M032[]= /* lmr smr */
{
{ "bpr0", 0x0, 0xf },
{ "bpr1", 0x1, 0xf },
{ "pf0", 0x4, 0xf },
{ "pf1", 0x5, 0xf },
{ "sc", 0x8, 0xf },
{ "msr", 0xa, 0xf },
{ "bcnt", 0xb, 0xf },
{ "ptb0", 0xc, 0xf },
{ "ptb1", 0xd, 0xf },
{ "eia", 0xf, 0xf },
{ 0 , 0x0, 0xf }
};
/*
* figure out which options are present
*/
static void
optlist(options, optionP, result)
int options;
struct option *optionP;
char *result;
{
if (options == 0) {
sprintf(result, "[]");
return;
}
sprintf(result, "[");
for (; (options != 0) && optionP->pattern; optionP++) {
if ((options & optionP->match) == optionP->value) {
/* we found a match, update result and options */
strcat(result, optionP->pattern);
options &= ~optionP->value;
if (options != 0) /* more options to come */
strcat(result, ",");
}
}
if (options != 0)
strcat(result, "undefined");
strcat(result, "]");
}
static list_search(reg_value, optionP, result)
int reg_value;
struct option *optionP;
char *result;
{
for (; optionP->pattern; optionP++) {
if ((reg_value & optionP->match) == optionP->value) {
sprintf(result, "%s", optionP->pattern);
return;
}
}
sprintf(result, "undefined");
}
/*
* extract "count" bits starting "offset" bits
* into buffer
*/
static int
bit_extract (buffer, offset, count)
bfd_byte *buffer;
int offset;
int count;
{
int result;
int mask;
int bit;
buffer += offset >> 3;
offset &= 7;
bit = 1;
result = 0;
while (count--)
{
FETCH_DATA(dis_info, buffer + 1);
if ((*buffer & (1 << offset)))
result |= bit;
if (++offset == 8)
{
offset = 0;
buffer++;
}
bit <<= 1;
}
return result;
}
static void
bit_copy (buffer, offset, count, to)
char *buffer;
int offset;
int count;
char *to;
{
for(; count > 8; count -= 8, to++, offset += 8)
*to = bit_extract (buffer, offset, 8);
*to = bit_extract (buffer, offset, count);
}
static sign_extend (value, bits)
int value, bits;
{
value = value & ((1 << bits) - 1);
return (value & (1 << (bits-1))
? value | (~((1 << bits) - 1))
: value);
}
static flip_bytes (ptr, count)
char *ptr;
int count;
{
char tmp;
while (count > 0)
{
tmp = ptr[0];
ptr[0] = ptr[count-1];
ptr[count-1] = tmp;
ptr++;
count -= 2;
}
}
/* Given a character C, does it represent a general addressing mode? */
#define Is_gen(c) \
((c) == 'F' || (c) == 'L' || (c) == 'B' \
|| (c) == 'W' || (c) == 'D' || (c) == 'A' || (c) == 'I' || (c) == 'Z')
/* Adressing modes. */
#define Adrmod_index_byte 0x1c
#define Adrmod_index_word 0x1d
#define Adrmod_index_doubleword 0x1e
#define Adrmod_index_quadword 0x1f
/* Is MODE an indexed addressing mode? */
#define Adrmod_is_index(mode) \
(mode == Adrmod_index_byte \
|| mode == Adrmod_index_word \
|| mode == Adrmod_index_doubleword \
|| mode == Adrmod_index_quadword)
/* Print the 32000 instruction at address MEMADDR in debugged memory,
on STREAM. Returns length of the instruction, in bytes. */
int
print_insn_ns32k (memaddr, info)
bfd_vma memaddr;
disassemble_info *info;
{
register int i;
register unsigned char *p;
register char *d;
unsigned short first_word;
int gen, disp;
int ioffset; /* bits into instruction */
int aoffset; /* bits into arguments */
char arg_bufs[MAX_ARGS+1][ARG_LEN];
int argnum;
int maxarg;
struct private priv;
bfd_byte *buffer = priv.the_buffer;
dis_info = info;
info->private_data = (PTR) &priv;
priv.max_fetched = priv.the_buffer;
priv.insn_start = memaddr;
if (setjmp (priv.bailout) != 0)
/* Error return. */
return -1;
/* Look for 8bit opcodes first. Other wise, fetching two bytes could take
* us over the end of accessible data unnecessarilly
*/
FETCH_DATA(info, buffer + 1);
for (i = 0; i < NOPCODES; i++)
if (ns32k_opcodes[i].opcode_id_size <= 8
&& ((buffer[0] & ((1 << ns32k_opcodes[i].opcode_id_size) - 1))
== ns32k_opcodes[i].opcode_seed))
break;
if (i == NOPCODES) {
/* Maybe it is 9 to 16 bits big */
FETCH_DATA(info, buffer + 2);
first_word = read_memory_integer(buffer, 2);
for (i = 0; i < NOPCODES; i++)
if ((first_word & ((1 << ns32k_opcodes[i].opcode_id_size) - 1))
== ns32k_opcodes[i].opcode_seed)
break;
/* Handle undefined instructions. */
if (i == NOPCODES)
{
(*dis_info->fprintf_func)(dis_info->stream, "0%o", buffer[0]);
return 1;
}
}
(*dis_info->fprintf_func)(dis_info->stream, "%s", ns32k_opcodes[i].name);
ioffset = ns32k_opcodes[i].opcode_size;
aoffset = ns32k_opcodes[i].opcode_size;
d = ns32k_opcodes[i].operands;
if (*d)
{
/* Offset in bits of the first thing beyond each index byte.
Element 0 is for operand A and element 1 is for operand B.
The rest are irrelevant, but we put them here so we don't
index outside the array. */
int index_offset[MAX_ARGS];
/* 0 for operand A, 1 for operand B, greater for other args. */
int whicharg = 0;
(*dis_info->fprintf_func)(dis_info->stream, "\t");
maxarg = 0;
/* First we have to find and keep track of the index bytes,
if we are using scaled indexed addressing mode, since the index
bytes occur right after the basic instruction, not as part
of the addressing extension. */
if (Is_gen(d[1]))
{
int addr_mode = bit_extract (buffer, ioffset - 5, 5);
if (Adrmod_is_index (addr_mode))
{
aoffset += 8;
index_offset[0] = aoffset;
}
}
if (d[2] && Is_gen(d[3]))
{
int addr_mode = bit_extract (buffer, ioffset - 10, 5);
if (Adrmod_is_index (addr_mode))
{
aoffset += 8;
index_offset[1] = aoffset;
}
}
while (*d)
{
argnum = *d - '1';
d++;
if (argnum > maxarg && argnum < MAX_ARGS)
maxarg = argnum;
ioffset = print_insn_arg (*d, ioffset, &aoffset, buffer,
memaddr, arg_bufs[argnum],
index_offset[whicharg]);
d++;
whicharg++;
}
for (argnum = 0; argnum <= maxarg; argnum++)
{
CORE_ADDR addr;
char *ch;
for (ch = arg_bufs[argnum]; *ch;)
{
if (*ch == NEXT_IS_ADDR)
{
++ch;
addr = atoi (ch);
(*dis_info->print_address_func) (addr, dis_info);
while (*ch && *ch != NEXT_IS_ADDR)
++ch;
if (*ch)
++ch;
}
else
(*dis_info->fprintf_func)(dis_info->stream, "%c", *ch++);
}
if (argnum < maxarg)
(*dis_info->fprintf_func)(dis_info->stream, ", ");
}
}
return aoffset / 8;
}
/* Print an instruction operand of category given by d. IOFFSET is
the bit position below which small (<1 byte) parts of the operand can
be found (usually in the basic instruction, but for indexed
addressing it can be in the index byte). AOFFSETP is a pointer to the
bit position of the addressing extension. BUFFER contains the
instruction. ADDR is where BUFFER was read from. Put the disassembled
version of the operand in RESULT. INDEX_OFFSET is the bit position
of the index byte (it contains garbage if this operand is not a
general operand using scaled indexed addressing mode). */
print_insn_arg (d, ioffset, aoffsetp, buffer, addr, result, index_offset)
char d;
int ioffset, *aoffsetp;
char *buffer;
CORE_ADDR addr;
char *result;
int index_offset;
{
int addr_mode;
float Fvalue;
double Lvalue;
int Ivalue;
int disp1, disp2;
int index;
int size;
switch (d)
{
case 'f':
/* a "gen" operand but 5 bits from the end of instruction */
ioffset -= 5;
case 'Z':
case 'F':
case 'L':
case 'I':
case 'B':
case 'W':
case 'D':
case 'A':
addr_mode = bit_extract (buffer, ioffset-5, 5);
ioffset -= 5;
switch (addr_mode)
{
case 0x0: case 0x1: case 0x2: case 0x3:
case 0x4: case 0x5: case 0x6: case 0x7:
/* register mode R0 -- R7 */
switch (d)
{
case 'F':
case 'L':
case 'Z':
sprintf (result, "f%d", addr_mode);
break;
default:
sprintf (result, "r%d", addr_mode);
}
break;
case 0x8: case 0x9: case 0xa: case 0xb:
case 0xc: case 0xd: case 0xe: case 0xf:
/* Register relative disp(R0 -- R7) */
disp1 = get_displacement (buffer, aoffsetp);
sprintf (result, "%d(r%d)", disp1, addr_mode & 7);
break;
case 0x10:
case 0x11:
case 0x12:
/* Memory relative disp2(disp1(FP, SP, SB)) */
disp1 = get_displacement (buffer, aoffsetp);
disp2 = get_displacement (buffer, aoffsetp);
sprintf (result, "%d(%d(%s))", disp2, disp1,
addr_mode==0x10?"fp":addr_mode==0x11?"sp":"sb");
break;
case 0x13:
/* reserved */
sprintf (result, "reserved");
break;
case 0x14:
/* Immediate */
switch (d)
{
case 'I': case 'Z': case 'A':
/* I and Z are output operands and can`t be immediate
* A is an address and we can`t have the address of
* an immediate either. We don't know how much to increase
* aoffsetp by since whatever generated this is broken
* anyway!
*/
sprintf (result, "$<undefined>");
break;
case 'B':
Ivalue = bit_extract (buffer, *aoffsetp, 8);
Ivalue = sign_extend (Ivalue, 8);
*aoffsetp += 8;
sprintf (result, "$%d", Ivalue);
break;
case 'W':
Ivalue = bit_extract (buffer, *aoffsetp, 16);
flip_bytes (&Ivalue, 2);
*aoffsetp += 16;
Ivalue = sign_extend (Ivalue, 16);
sprintf (result, "$%d", Ivalue);
break;
case 'D':
Ivalue = bit_extract (buffer, *aoffsetp, 32);
flip_bytes (&Ivalue, 4);
*aoffsetp += 32;
sprintf (result, "$%d", Ivalue);
break;
case 'F':
bit_copy (buffer, *aoffsetp, 32, (char *) &Fvalue);
flip_bytes (&Fvalue, 4);
*aoffsetp += 32;
if (INVALID_FLOAT (&Fvalue, 4))
sprintf (result, "<<invalid float 0x%.8x>>", *(int *) &Fvalue);
else /* assume host has ieee float */
sprintf (result, "$%g", Fvalue);
break;
case 'L':
bit_copy (buffer, *aoffsetp, 64, (char *) &Lvalue);
flip_bytes (&Lvalue, 8);
*aoffsetp += 64;
if (INVALID_FLOAT (&Lvalue, 8))
sprintf (result, "<<invalid long 0x%.8x%.8x>>",
*(((int *) &Lvalue) + 1), *(int *) &Lvalue);
else /* assume host has ieee float */
sprintf (result, "$%g", Lvalue);
break;
}
break;
case 0x15:
/* Absolute @disp */
disp1 = get_displacement (buffer, aoffsetp);
sprintf (result, "@|%d|", disp1);
break;
case 0x16:
/* External EXT(disp1) + disp2 (Mod table stuff) */
disp1 = get_displacement (buffer, aoffsetp);
disp2 = get_displacement (buffer, aoffsetp);
sprintf (result, "EXT(%d) + %d", disp1, disp2);
break;
case 0x17:
/* Top of stack tos */
sprintf (result, "tos");
break;
case 0x18:
/* Memory space disp(FP) */
disp1 = get_displacement (buffer, aoffsetp);
sprintf (result, "%d(fp)", disp1);
break;
case 0x19:
/* Memory space disp(SP) */
disp1 = get_displacement (buffer, aoffsetp);
sprintf (result, "%d(sp)", disp1);
break;
case 0x1a:
/* Memory space disp(SB) */
disp1 = get_displacement (buffer, aoffsetp);
sprintf (result, "%d(sb)", disp1);
break;
case 0x1b:
/* Memory space disp(PC) */
disp1 = get_displacement (buffer, aoffsetp);
sprintf (result, "|%d|", addr + disp1);
break;
case 0x1c:
case 0x1d:
case 0x1e:
case 0x1f:
/* Scaled index basemode[R0 -- R7:B,W,D,Q] */
index = bit_extract (buffer, index_offset - 8, 3);
print_insn_arg (d, index_offset, aoffsetp, buffer, addr,
result, 0);
{
static char *ind[] = {"b", "w", "d", "q"};
char *off;
off = result + strlen (result);
sprintf (off, "[r%d:%s]", index,
ind[addr_mode & 3]);
}
break;
}
break;
case 'H':
case 'q':
Ivalue = bit_extract (buffer, ioffset-4, 4);
Ivalue = sign_extend (Ivalue, 4);
sprintf (result, "%d", Ivalue);
ioffset -= 4;
break;
case 'r':
Ivalue = bit_extract (buffer, ioffset-3, 3);
sprintf (result, "r%d", Ivalue&7);
ioffset -= 3;
break;
case 'd':
sprintf (result, "%d", get_displacement (buffer, aoffsetp));
break;
case 'b':
Ivalue = get_displacement (buffer, aoffsetp);
/*
* Warning!! HACK ALERT!
* Operand type 'b' is only used by the cmp{b,w,d} and
* movm{b,w,d} instructions; we need to know whether
* it's a `b' or `w' or `d' instruction; and for both
* cmpm and movm it's stored at the same place so we
* just grab two bits of the opcode and look at it...
*
*/
size = bit_extract(buffer, ioffset-6, 2);
if (size == 0) /* 00 => b */
size = 1;
else if (size == 1) /* 01 => w */
size = 2;
else
size = 4; /* 11 => d */
sprintf (result, "%d", (Ivalue / size) + 1);
break;
case 'p':
sprintf (result, "%c%d%c", NEXT_IS_ADDR,
addr + get_displacement (buffer, aoffsetp),
NEXT_IS_ADDR);
break;
case 'i':
Ivalue = bit_extract (buffer, *aoffsetp, 8);
*aoffsetp += 8;
sprintf (result, "0x%x", Ivalue);
break;
case 'u':
Ivalue = bit_extract (buffer, *aoffsetp, 8);
optlist(Ivalue, opt_u, result);
*aoffsetp += 8;
break;
case 'U':
Ivalue = bit_extract(buffer, *aoffsetp, 8);
optlist(Ivalue, opt_U, result);
*aoffsetp += 8;
break;
case 'O':
Ivalue = bit_extract(buffer, ioffset-9, 9);
optlist(Ivalue, opt_O, result);
ioffset -= 9;
break;
case 'C':
Ivalue = bit_extract(buffer, ioffset-4, 4);
optlist(Ivalue, opt_C, result);
ioffset -= 4;
break;
case 'S':
Ivalue = bit_extract(buffer, ioffset - 8, 8);
optlist(Ivalue, opt_S, result);
ioffset -= 8;
break;
case 'M':
Ivalue = bit_extract(buffer, ioffset-4, 4);
list_search(Ivalue, 0 ? list_M032 : list_M532, result);
ioffset -= 4;
break;
case 'P':
Ivalue = bit_extract(buffer, ioffset-4, 4);
list_search(Ivalue, 0 ? list_P032 : list_P532, result);
ioffset -= 4;
break;
case 'g':
Ivalue = bit_extract(buffer, *aoffsetp, 3);
sprintf(result, "%d", Ivalue);
*aoffsetp += 3;
break;
case 'G':
Ivalue = bit_extract(buffer, *aoffsetp, 5);
sprintf(result, "%d", Ivalue + 1);
*aoffsetp += 5;
break;
}
return ioffset;
}
get_displacement (buffer, aoffsetp)
char *buffer;
int *aoffsetp;
{
int Ivalue;
short Ivalue2;
Ivalue = bit_extract (buffer, *aoffsetp, 8);
switch (Ivalue & 0xc0)
{
case 0x00:
case 0x40:
Ivalue = sign_extend (Ivalue, 7);
*aoffsetp += 8;
break;
case 0x80:
Ivalue2 = bit_extract (buffer, *aoffsetp, 16);
flip_bytes (&Ivalue2, 2);
Ivalue = sign_extend (Ivalue2, 14);
*aoffsetp += 16;
break;
case 0xc0:
Ivalue = bit_extract (buffer, *aoffsetp, 32);
flip_bytes (&Ivalue, 4);
Ivalue = sign_extend (Ivalue, 30);
*aoffsetp += 32;
break;
}
return Ivalue;
}
#if 1 /* a version that should work on ns32k f's&d's on any machine */
int invalid_float(p, len)
register union { double d; float f; } *p;
register int len;
{
register val;
if ( len == sizeof (float) )
val = (bit_extract(&p.f, 23, 8)/*exponent*/ == 0xff
|| (bit_extract(&p, 23, 8)/*exponent*/ == 0 &&
bit_extract(&p, 0, 23)/*mantisa*/ != 0));
else if ( len == sizeof (double) )
val = (bit_extract(&p.d, 52, 11)/*exponent*/ == 0x7ff
|| (bit_extract(&p, 52, 11)/*exponent*/ == 0
&& (bit_extract(&p, 0, 32)/*low mantisa*/ != 0
|| bit_extract(&p, 32, 20)/*high mantisa*/ != 0)));
else
val = 1;
return (val);
}
#else
/* assumes the bytes have been swapped to local order */
typedef union { double d;
float f;
struct { unsigned m:23, e:8, :1;} sf;
struct { unsigned lm; unsigned m:20, e:11, :1;} sd;
} float_type_u;
int invalid_float(p, len)
register float_type_u *p;
register int len;
{
register int val;
if ( len == sizeof (float) )
val = (p->sf.e == 0xff
|| (p->sf.e == 0 && p->sf.m != 0));
else if ( len == sizeof (double) )
val = (p->sd.e == 0x7ff
|| (p->sd.e == 0 && (p->sd.m != 0 || p->sd.lm != 0)));
else
val = 1;
return (val);
}
#endif