New print_address for disassemblers, merge a29k and i960 disassemblers

This commit is contained in:
Jim Kingdon 1993-04-02 00:18:47 +00:00
parent 3245e377e4
commit 720b3aed42
9 changed files with 214 additions and 1955 deletions

View File

@ -31,7 +31,6 @@ NEWS
README
TODO
alloca.c
am29k-pinsn.c
ar.1
ar.c
arlex.l
@ -47,7 +46,6 @@ config
copy.c
filemode.c
gmalloc.c
i960-pinsn.c
is-ranlib.c
is-strip.c
maybe-ranlib.c

View File

@ -1,814 +0,0 @@
/* Disassemble i80960 instructions.
Copyright (C) 1990, 1991 Free Software Foundation, Inc.
This file is part of BFD, the Binary File Diddler.
BFD is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
BFD is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with BFD; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
#include "bfd.h"
#include "sysdep.h"
#include "bucomm.h"
static char *reg_names[] = {
/* 0 */ "pfp", "sp", "rip", "r3", "r4", "r5", "r6", "r7",
/* 8 */ "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
/* 16 */ "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
/* 24 */ "g8", "g9", "g10", "g11", "g12", "g13", "g14", "fp",
/* 32 */ "pc", "ac", "ip", "tc", "fp0", "fp1", "fp2", "fp3"
};
static FILE *stream; /* Output goes here */
static void print_addr();
static void ctrl();
static void cobr();
static void reg();
static int mem();
static void ea();
static void dstop();
static void regop();
static void invalid();
static int pinsn();
static void put_abs();
/* Print the i960 instruction at address 'memaddr' in debugged memory,
* on stream 's'. Returns length of the instruction, in bytes.
*/
int
print_insn_i960( memaddr, buffer, s )
bfd_vma memaddr;
uint8e_type *buffer;
FILE *s;
{
unsigned int word1, word2;
stream = s;
word1 =buffer [0] |( buffer[1]<< 8) | (buffer[2] << 16) | ( buffer[3] <<24);
word2 =buffer [4] |( buffer[5]<< 8) | (buffer[6] << 16) | ( buffer[7] <<24);
return pinsn( memaddr, word1, word2 );
}
#define IN_GDB
/*****************************************************************************
* All code below this point should be identical with that of
* the disassembler in gdmp960.
*****************************************************************************/
struct tabent {
char *name;
char numops;
};
static int
pinsn( memaddr, word1, word2 )
unsigned long memaddr;
unsigned long word1, word2;
{
int instr_len;
instr_len = 4;
put_abs( word1, word2 );
/* Divide instruction set into classes based on high 4 bits of opcode*/
switch ( (word1 >> 28) & 0xf ){
case 0x0:
case 0x1:
ctrl( memaddr, word1, word2 );
break;
case 0x2:
case 0x3:
cobr( memaddr, word1, word2 );
break;
case 0x5:
case 0x6:
case 0x7:
reg( word1 );
break;
case 0x8:
case 0x9:
case 0xa:
case 0xb:
case 0xc:
instr_len = mem( memaddr, word1, word2, 0 );
break;
default:
/* invalid instruction, print as data word */
invalid( word1 );
break;
}
return instr_len;
}
/****************************************/
/* CTRL format */
/****************************************/
static void
ctrl( memaddr, word1, word2 )
unsigned long memaddr;
unsigned long word1, word2;
{
int i;
static struct tabent ctrl_tab[] = {
NULL, 0, /* 0x00 */
NULL, 0, /* 0x01 */
NULL, 0, /* 0x02 */
NULL, 0, /* 0x03 */
NULL, 0, /* 0x04 */
NULL, 0, /* 0x05 */
NULL, 0, /* 0x06 */
NULL, 0, /* 0x07 */
"b", 1, /* 0x08 */
"call", 1, /* 0x09 */
"ret", 0, /* 0x0a */
"bal", 1, /* 0x0b */
NULL, 0, /* 0x0c */
NULL, 0, /* 0x0d */
NULL, 0, /* 0x0e */
NULL, 0, /* 0x0f */
"bno", 1, /* 0x10 */
"bg", 1, /* 0x11 */
"be", 1, /* 0x12 */
"bge", 1, /* 0x13 */
"bl", 1, /* 0x14 */
"bne", 1, /* 0x15 */
"ble", 1, /* 0x16 */
"bo", 1, /* 0x17 */
"faultno", 0, /* 0x18 */
"faultg", 0, /* 0x19 */
"faulte", 0, /* 0x1a */
"faultge", 0, /* 0x1b */
"faultl", 0, /* 0x1c */
"faultne", 0, /* 0x1d */
"faultle", 0, /* 0x1e */
"faulto", 0, /* 0x1f */
};
i = (word1 >> 24) & 0xff;
if ( (ctrl_tab[i].name == NULL) || ((word1 & 1) != 0) ){
invalid( word1 );
return;
}
fputs( ctrl_tab[i].name, stream );
if ( word1 & 2 ){ /* Predicts branch not taken */
fputs( ".f", stream );
}
if ( ctrl_tab[i].numops == 1 ){
/* EXTRACT DISPLACEMENT AND CONVERT TO ADDRESS */
word1 &= 0x00ffffff;
if ( word1 & 0x00800000 ){ /* Sign bit is set */
word1 |= (-1 & ~0xffffff); /* Sign extend */
}
putc( '\t', stream );
print_addr( word1 + memaddr );
}
}
/****************************************/
/* COBR format */
/****************************************/
static void
cobr( memaddr, word1, word2 )
unsigned long memaddr;
unsigned long word1, word2;
{
int src1;
int src2;
int i;
static struct tabent cobr_tab[] = {
"testno", 1, /* 0x20 */
"testg", 1, /* 0x21 */
"teste", 1, /* 0x22 */
"testge", 1, /* 0x23 */
"testl", 1, /* 0x24 */
"testne", 1, /* 0x25 */
"testle", 1, /* 0x26 */
"testo", 1, /* 0x27 */
NULL, 0, /* 0x28 */
NULL, 0, /* 0x29 */
NULL, 0, /* 0x2a */
NULL, 0, /* 0x2b */
NULL, 0, /* 0x2c */
NULL, 0, /* 0x2d */
NULL, 0, /* 0x2e */
NULL, 0, /* 0x2f */
"bbc", 3, /* 0x30 */
"cmpobg", 3, /* 0x31 */
"cmpobe", 3, /* 0x32 */
"cmpobge", 3, /* 0x33 */
"cmpobl", 3, /* 0x34 */
"cmpobne", 3, /* 0x35 */
"cmpoble", 3, /* 0x36 */
"bbs", 3, /* 0x37 */
"cmpibno", 3, /* 0x38 */
"cmpibg", 3, /* 0x39 */
"cmpibe", 3, /* 0x3a */
"cmpibge", 3, /* 0x3b */
"cmpibl", 3, /* 0x3c */
"cmpibne", 3, /* 0x3d */
"cmpible", 3, /* 0x3e */
"cmpibo", 3, /* 0x3f */
};
i = ((word1 >> 24) & 0xff) - 0x20;
if ( cobr_tab[i].name == NULL ){
invalid( word1 );
return;
}
fputs( cobr_tab[i].name, stream );
if ( word1 & 2 ){ /* Predicts branch not taken */
fputs( ".f", stream );
}
putc( '\t', stream );
src1 = (word1 >> 19) & 0x1f;
src2 = (word1 >> 14) & 0x1f;
if ( word1 & 0x02000 ){ /* M1 is 1 */
fprintf( stream, "%d", src1 );
} else { /* M1 is 0 */
fputs( reg_names[src1], stream );
}
if ( cobr_tab[i].numops > 1 ){
if ( word1 & 1 ){ /* S2 is 1 */
fprintf( stream, ",sf%d,", src2 );
} else { /* S1 is 0 */
fprintf( stream, ",%s,", reg_names[src2] );
}
/* Extract displacement and convert to address
*/
word1 &= 0x00001ffc;
if ( word1 & 0x00001000 ){ /* Negative displacement */
word1 |= (-1 & ~0x1fff); /* Sign extend */
}
print_addr( memaddr + word1 );
}
}
/****************************************/
/* MEM format */
/****************************************/
static int /* returns instruction length: 4 or 8 */
mem( memaddr, word1, word2, noprint )
unsigned long memaddr;
unsigned long word1, word2;
int noprint; /* If TRUE, return instruction length, but
* don't output any text.
*/
{
int i, j;
int len;
int mode;
int offset;
char *reg1, *reg2, *reg3;
/* This lookup table is too sparse to make it worth typing in, but not
* so large as to make a sparse array necessary. We allocate the
* table at runtime, initialize all entries to empty, and copy the
* real ones in from an initialization table.
*
* NOTE: In this table, the meaning of 'numops' is:
* 1: single operand
* 2: 2 operands, load instruction
* -2: 2 operands, store instruction
*/
static struct tabent *mem_tab = NULL;
/* Opcodes of 0x8X, 9X, aX, bX, and cX must be in the table. */
#define MEM_MIN 0x80
#define MEM_MAX 0xcf
#define MEM_SIZ ((MEM_MAX-MEM_MIN+1) * sizeof(struct tabent))
static struct { int opcode; char *name; char numops; } mem_init[] = {
0x80, "ldob", 2,
0x82, "stob", -2,
0x84, "bx", 1,
0x85, "balx", 2,
0x86, "callx", 1,
0x88, "ldos", 2,
0x8a, "stos", -2,
0x8c, "lda", 2,
0x90, "ld", 2,
0x92, "st", -2,
0x98, "ldl", 2,
0x9a, "stl", -2,
0xa0, "ldt", 2,
0xa2, "stt", -2,
0xb0, "ldq", 2,
0xb2, "stq", -2,
0xc0, "ldib", 2,
0xc2, "stib", -2,
0xc8, "ldis", 2,
0xca, "stis", -2,
0, NULL, 0
};
if ( mem_tab == NULL ){
mem_tab = (struct tabent *) xmalloc( MEM_SIZ );
memset( (void *) mem_tab, 0, MEM_SIZ );
for ( i = 0; mem_init[i].opcode != 0; i++ ){
j = mem_init[i].opcode - MEM_MIN;
mem_tab[j].name = mem_init[i].name;
mem_tab[j].numops = mem_init[i].numops;
}
}
i = ((word1 >> 24) & 0xff) - MEM_MIN;
mode = (word1 >> 10) & 0xf;
if ( (mem_tab[i].name != NULL) /* Valid instruction */
&& ((mode == 5) || (mode >=12)) ){ /* With 32-bit displacement */
len = 8;
} else {
len = 4;
}
if ( noprint ){
return len;
}
if ( (mem_tab[i].name == NULL) || (mode == 6) ){
invalid( word1 );
return len;
}
fprintf( stream, "%s\t", mem_tab[i].name );
reg1 = reg_names[ (word1 >> 19) & 0x1f ]; /* MEMB only */
reg2 = reg_names[ (word1 >> 14) & 0x1f ];
reg3 = reg_names[ word1 & 0x1f ]; /* MEMB only */
offset = word1 & 0xfff; /* MEMA only */
switch ( mem_tab[i].numops ){
case 2: /* LOAD INSTRUCTION */
if ( mode & 4 ){ /* MEMB FORMAT */
ea( memaddr, mode, reg2, reg3, word1, word2 );
fprintf( stream, ",%s", reg1 );
} else { /* MEMA FORMAT */
fprintf( stream, "0x%x", (unsigned) offset );
if (mode & 8) {
fprintf( stream, "(%s)", reg2 );
}
fprintf( stream, ",%s", reg1 );
}
break;
case -2: /* STORE INSTRUCTION */
if ( mode & 4 ){ /* MEMB FORMAT */
fprintf( stream, "%s,", reg1 );
ea( memaddr, mode, reg2, reg3, word1, word2 );
} else { /* MEMA FORMAT */
fprintf( stream, "%s,0x%x", reg1, (unsigned) offset );
if (mode & 8) {
fprintf( stream, "(%s)", reg2 );
}
}
break;
case 1: /* BX/CALLX INSTRUCTION */
if ( mode & 4 ){ /* MEMB FORMAT */
ea( memaddr, mode, reg2, reg3, word1, word2 );
} else { /* MEMA FORMAT */
fprintf( stream, "0x%x", (unsigned) offset );
if (mode & 8) {
fprintf( stream, "(%s)", reg2 );
}
}
break;
}
return len;
}
/****************************************/
/* REG format */
/****************************************/
static void
reg( word1 )
unsigned long word1;
{
int i, j;
int opcode;
int fp;
int m1, m2, m3;
int s1, s2;
int src, src2, dst;
char *mnemp;
/* This lookup table is too sparse to make it worth typing in, but not
* so large as to make a sparse array necessary. We allocate the
* table at runtime, initialize all entries to empty, and copy the
* real ones in from an initialization table.
*
* NOTE: In this table, the meaning of 'numops' is:
* 1: single operand, which is NOT a destination.
* -1: single operand, which IS a destination.
* 2: 2 operands, the 2nd of which is NOT a destination.
* -2: 2 operands, the 2nd of which IS a destination.
* 3: 3 operands
*
* If an opcode mnemonic begins with "F", it is a floating-point
* opcode (the "F" is not printed).
*/
static struct tabent *reg_tab = NULL;
static struct { int opcode; char *name; char numops; } reg_init[] = {
#define REG_MIN 0x580
0x580, "notbit", 3,
0x581, "and", 3,
0x582, "andnot", 3,
0x583, "setbit", 3,
0x584, "notand", 3,
0x586, "xor", 3,
0x587, "or", 3,
0x588, "nor", 3,
0x589, "xnor", 3,
0x58a, "not", -2,
0x58b, "ornot", 3,
0x58c, "clrbit", 3,
0x58d, "notor", 3,
0x58e, "nand", 3,
0x58f, "alterbit", 3,
0x590, "addo", 3,
0x591, "addi", 3,
0x592, "subo", 3,
0x593, "subi", 3,
0x598, "shro", 3,
0x59a, "shrdi", 3,
0x59b, "shri", 3,
0x59c, "shlo", 3,
0x59d, "rotate", 3,
0x59e, "shli", 3,
0x5a0, "cmpo", 2,
0x5a1, "cmpi", 2,
0x5a2, "concmpo", 2,
0x5a3, "concmpi", 2,
0x5a4, "cmpinco", 3,
0x5a5, "cmpinci", 3,
0x5a6, "cmpdeco", 3,
0x5a7, "cmpdeci", 3,
0x5ac, "scanbyte", 2,
0x5ae, "chkbit", 2,
0x5b0, "addc", 3,
0x5b2, "subc", 3,
0x5cc, "mov", -2,
0x5d8, "eshro", 3,
0x5dc, "movl", -2,
0x5ec, "movt", -2,
0x5fc, "movq", -2,
0x600, "synmov", 2,
0x601, "synmovl", 2,
0x602, "synmovq", 2,
0x603, "cmpstr", 3,
0x604, "movqstr", 3,
0x605, "movstr", 3,
0x610, "atmod", 3,
0x612, "atadd", 3,
0x613, "inspacc", -2,
0x614, "ldphy", -2,
0x615, "synld", -2,
0x617, "fill", 3,
0x630, "sdma", 3,
0x631, "udma", 0,
0x640, "spanbit", -2,
0x641, "scanbit", -2,
0x642, "daddc", 3,
0x643, "dsubc", 3,
0x644, "dmovt", -2,
0x645, "modac", 3,
0x646, "condrec", -2,
0x650, "modify", 3,
0x651, "extract", 3,
0x654, "modtc", 3,
0x655, "modpc", 3,
0x656, "receive", -2,
0x659, "sysctl", 3,
0x660, "calls", 1,
0x662, "send", 3,
0x663, "sendserv", 1,
0x664, "resumprcs", 1,
0x665, "schedprcs", 1,
0x666, "saveprcs", 0,
0x668, "condwait", 1,
0x669, "wait", 1,
0x66a, "signal", 1,
0x66b, "mark", 0,
0x66c, "fmark", 0,
0x66d, "flushreg", 0,
0x66f, "syncf", 0,
0x670, "emul", 3,
0x671, "ediv", 3,
0x673, "ldtime", -1,
0x674, "Fcvtir", -2,
0x675, "Fcvtilr", -2,
0x676, "Fscalerl", 3,
0x677, "Fscaler", 3,
0x680, "Fatanr", 3,
0x681, "Flogepr", 3,
0x682, "Flogr", 3,
0x683, "Fremr", 3,
0x684, "Fcmpor", 2,
0x685, "Fcmpr", 2,
0x688, "Fsqrtr", -2,
0x689, "Fexpr", -2,
0x68a, "Flogbnr", -2,
0x68b, "Froundr", -2,
0x68c, "Fsinr", -2,
0x68d, "Fcosr", -2,
0x68e, "Ftanr", -2,
0x68f, "Fclassr", 1,
0x690, "Fatanrl", 3,
0x691, "Flogeprl", 3,
0x692, "Flogrl", 3,
0x693, "Fremrl", 3,
0x694, "Fcmporl", 2,
0x695, "Fcmprl", 2,
0x698, "Fsqrtrl", -2,
0x699, "Fexprl", -2,
0x69a, "Flogbnrl", -2,
0x69b, "Froundrl", -2,
0x69c, "Fsinrl", -2,
0x69d, "Fcosrl", -2,
0x69e, "Ftanrl", -2,
0x69f, "Fclassrl", 1,
0x6c0, "Fcvtri", -2,
0x6c1, "Fcvtril", -2,
0x6c2, "Fcvtzri", -2,
0x6c3, "Fcvtzril", -2,
0x6c9, "Fmovr", -2,
0x6d9, "Fmovrl", -2,
0x6e1, "Fmovre", -2,
0x6e2, "Fcpysre", 3,
0x6e3, "Fcpyrsre", 3,
0x701, "mulo", 3,
0x708, "remo", 3,
0x70b, "divo", 3,
0x741, "muli", 3,
0x748, "remi", 3,
0x749, "modi", 3,
0x74b, "divi", 3,
0x78b, "Fdivr", 3,
0x78c, "Fmulr", 3,
0x78d, "Fsubr", 3,
0x78f, "Faddr", 3,
0x79b, "Fdivrl", 3,
0x79c, "Fmulrl", 3,
0x79d, "Fsubrl", 3,
0x79f, "Faddrl", 3,
#define REG_MAX 0x79f
#define REG_SIZ ((REG_MAX-REG_MIN+1) * sizeof(struct tabent))
0, NULL, 0
};
if ( reg_tab == NULL ){
reg_tab = (struct tabent *) xmalloc( REG_SIZ );
memset( (void *) reg_tab, 0, REG_SIZ );
for ( i = 0; reg_init[i].opcode != 0; i++ ){
j = reg_init[i].opcode - REG_MIN;
reg_tab[j].name = reg_init[i].name;
reg_tab[j].numops = reg_init[i].numops;
}
}
opcode = ((word1 >> 20) & 0xff0) | ((word1 >> 7) & 0xf);
i = opcode - REG_MIN;
if ( (opcode<REG_MIN) || (opcode>REG_MAX) || (reg_tab[i].name==NULL) ){
invalid( word1 );
return;
}
mnemp = reg_tab[i].name;
if ( *mnemp == 'F' ){
fp = 1;
mnemp++;
} else {
fp = 0;
}
fputs( mnemp, stream );
s1 = (word1 >> 5) & 1;
s2 = (word1 >> 6) & 1;
m1 = (word1 >> 11) & 1;
m2 = (word1 >> 12) & 1;
m3 = (word1 >> 13) & 1;
src = word1 & 0x1f;
src2 = (word1 >> 14) & 0x1f;
dst = (word1 >> 19) & 0x1f;
if ( reg_tab[i].numops != 0 ){
putc( '\t', stream );
switch ( reg_tab[i].numops ){
case 1:
regop( m1, s1, src, fp );
break;
case -1:
dstop( m3, dst, fp );
break;
case 2:
regop( m1, s1, src, fp );
putc( ',', stream );
regop( m2, s2, src2, fp );
break;
case -2:
regop( m1, s1, src, fp );
putc( ',', stream );
dstop( m3, dst, fp );
break;
case 3:
regop( m1, s1, src, fp );
putc( ',', stream );
regop( m2, s2, src2, fp );
putc( ',', stream );
dstop( m3, dst, fp );
break;
}
}
}
/*
* Print out effective address for memb instructions.
*/
static void
ea( memaddr, mode, reg2, reg3, word1, word2 )
unsigned long memaddr;
int mode;
char *reg2, *reg3;
int word1;
unsigned int word2;
{
int scale;
static int scale_tab[] = { 1, 2, 4, 8, 16 };
scale = (word1 >> 7) & 0x07;
if ( (scale > 4) || ((word1 >> 5) & 0x03 != 0) ){
invalid( word1 );
return;
}
scale = scale_tab[scale];
switch (mode) {
case 4: /* (reg) */
fprintf( stream, "(%s)", reg2 );
break;
case 5: /* displ+8(ip) */
print_addr( word2+8+memaddr );
break;
case 7: /* (reg)[index*scale] */
if (scale == 1) {
fprintf( stream, "(%s)[%s]", reg2, reg3 );
} else {
fprintf( stream, "(%s)[%s*%d]",reg2,reg3,scale);
}
break;
case 12: /* displacement */
print_addr( word2 );
break;
case 13: /* displ(reg) */
print_addr( word2 );
fprintf( stream, "(%s)", reg2 );
break;
case 14: /* displ[index*scale] */
print_addr( word2 );
if (scale == 1) {
fprintf( stream, "[%s]", reg3 );
} else {
fprintf( stream, "[%s*%d]", reg3, scale );
}
break;
case 15: /* displ(reg)[index*scale] */
print_addr( word2 );
if (scale == 1) {
fprintf( stream, "(%s)[%s]", reg2, reg3 );
} else {
fprintf( stream, "(%s)[%s*%d]",reg2,reg3,scale );
}
break;
default:
invalid( word1 );
return;
}
}
/************************************************/
/* Register Instruction Operand */
/************************************************/
static void
regop( mode, spec, reg, fp )
int mode, spec, reg, fp;
{
if ( fp ){ /* FLOATING POINT INSTRUCTION */
if ( mode == 1 ){ /* FP operand */
switch ( reg ){
case 0: fputs( "fp0", stream ); break;
case 1: fputs( "fp1", stream ); break;
case 2: fputs( "fp2", stream ); break;
case 3: fputs( "fp3", stream ); break;
case 16: fputs( "0f0.0", stream ); break;
case 22: fputs( "0f1.0", stream ); break;
default: putc( '?', stream ); break;
}
} else { /* Non-FP register */
fputs( reg_names[reg], stream );
}
} else { /* NOT FLOATING POINT */
if ( mode == 1 ){ /* Literal */
fprintf( stream, "%d", reg );
} else { /* Register */
if ( spec == 0 ){
fputs( reg_names[reg], stream );
} else {
fprintf( stream, "sf%d", reg );
}
}
}
}
/************************************************/
/* Register Instruction Destination Operand */
/************************************************/
static void
dstop( mode, reg, fp )
int mode, reg, fp;
{
/* 'dst' operand can't be a literal. On non-FP instructions, register
* mode is assumed and "m3" acts as if were "s3"; on FP-instructions,
* sf registers are not allowed so m3 acts normally.
*/
if ( fp ){
regop( mode, 0, reg, fp );
} else {
regop( 0, mode, reg, fp );
}
}
static void
invalid( word1 )
int word1;
{
fprintf( stream, ".word\t0x%08x", (unsigned) word1 );
}
static void
print_addr(a)
int a;
{
fprintf( stream, "0x%x", (unsigned) a );
}
static void
put_abs( word1, word2 )
unsigned long word1, word2;
{
#ifdef IN_GDB
return;
#else
int len;
switch ( (word1 >> 28) & 0xf ){
case 0x8:
case 0x9:
case 0xa:
case 0xb:
case 0xc:
/* MEM format instruction */
len = mem( 0, word1, word2, 1 );
break;
default:
len = 4;
break;
}
if ( len == 8 ){
fprintf( stream, "%08x %08x\t", word1, word2 );
} else {
fprintf( stream, "%08x \t", word1 );
}
;
#endif
}

View File

@ -1,5 +1,9 @@
Thu Apr 1 09:01:38 1993 Jim Kingdon (kingdon@cygnus.com)
* i960-pinsn.c, a29k-pinsn.c: Much abridged, just use libopcodes.a.
* core.c (dis_asm_print_address): New function.
* core.c (dis_asm_read_memory): Reinstate 4th arg. The prototype
has been fixed.

View File

@ -1,5 +1,5 @@
/* Instruction printing code for the AMD 29000
Copyright (C) 1990 Free Software Foundation, Inc.
Copyright (C) 1993 Free Software Foundation, Inc.
Contributed by Cygnus Support. Written by Jim Kingdon.
This file is part of GDB.
@ -19,282 +19,23 @@ along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
#include "defs.h"
#include "target.h"
#include "opcode/a29k.h"
#include "dis-asm.h"
/* Print a symbolic representation of a general-purpose
register number NUM on STREAM.
NUM is a number as found in the instruction, not as found in
debugging symbols; it must be in the range 0-255. */
static void
print_general (num, stream)
int num;
FILE *stream;
{
if (num < 128)
fprintf_filtered (stream, "gr%d", num);
else
fprintf_filtered (stream, "lr%d", num - 128);
}
/* Print the m68k instruction at address MEMADDR in debugged memory,
on STREAM. Returns length of the instruction, in bytes. */
/* Like print_general but a special-purpose register.
The mnemonics used by the AMD assembler are not quite the same
as the ones in the User's Manual. We use the ones that the
assembler uses. */
static void
print_special (num, stream)
int num;
FILE *stream;
{
/* Register names of registers 0-SPEC0_NUM-1. */
static char *spec0_names[] = {
"vab", "ops", "cps", "cfg", "cha", "chd", "chc", "rbp", "tmc", "tmr",
"pc0", "pc1", "pc2", "mmu", "lru"
};
#define SPEC0_NUM ((sizeof spec0_names) / (sizeof spec0_names[0]))
/* Register names of registers 128-128+SPEC128_NUM-1. */
static char *spec128_names[] = {
"ipc", "ipa", "ipb", "q", "alu", "bp", "fc", "cr"
};
#define SPEC128_NUM ((sizeof spec128_names) / (sizeof spec128_names[0]))
/* Register names of registers 160-160+SPEC160_NUM-1. */
static char *spec160_names[] = {
"fpe", "inte", "fps", "sr163", "exop"
};
#define SPEC160_NUM ((sizeof spec160_names) / (sizeof spec160_names[0]))
if (num < SPEC0_NUM)
fprintf_filtered (stream, spec0_names[num]);
else if (num >= 128 && num < 128 + SPEC128_NUM)
fprintf_filtered (stream, spec128_names[num-128]);
else if (num >= 160 && num < 160 + SPEC160_NUM)
fprintf_filtered (stream, spec160_names[num-160]);
else
fprintf_filtered (stream, "sr%d", num);
}
/* Is an instruction with OPCODE a delayed branch? */
static int
is_delayed_branch (opcode)
int opcode;
{
return (opcode == 0xa8 || opcode == 0xa9 || opcode == 0xa0 || opcode == 0xa1
|| opcode == 0xa4 || opcode == 0xa5
|| opcode == 0xb4 || opcode == 0xb5
|| opcode == 0xc4 || opcode == 0xc0
|| opcode == 0xac || opcode == 0xad
|| opcode == 0xcc);
}
/* Now find the four bytes of INSN and put them in *INSN{0,8,16,24}.
Note that the amd can be set up as either
big or little-endian (the tm file says which) and we can't assume
the host machine is the same. */
static void
find_bytes (insn, insn0, insn8, insn16, insn24)
char *insn;
unsigned char *insn0;
unsigned char *insn8;
unsigned char *insn16;
unsigned char *insn24;
{
#if TARGET_BYTE_ORDER == BIG_ENDIAN
*insn24 = insn[0];
*insn16 = insn[1];
*insn8 = insn[2];
*insn0 = insn[3];
#else /* Little-endian. */
*insn24 = insn[3];
*insn16 = insn[2];
*insn8 = insn[1];
*insn0 = insn[0];
#endif /* Little-endian. */
}
/* Print one instruction from MEMADDR on STREAM.
Return the size of the instruction (always 4 on a29k). */
int
print_insn (memaddr, stream)
CORE_ADDR memaddr;
FILE *stream;
{
/* The raw instruction. */
char insn[4];
disassemble_info info;
/* The four bytes of the instruction. */
unsigned char insn24, insn16, insn8, insn0;
GDB_INIT_DISASSEMBLE_INFO(info, stream);
struct a29k_opcode const * opcode;
read_memory (memaddr, &insn[0], 4);
find_bytes (insn, &insn0, &insn8, &insn16, &insn24);
/* Handle the nop (aseq 0x40,gr1,gr1) specially */
if ((insn24==0x70) && (insn16==0x40) && (insn8==0x01) && (insn0==0x01)) {
fprintf_filtered (stream,"nop");
return 4;
}
/* The opcode is always in insn24. */
for (opcode = &a29k_opcodes[0];
opcode < &a29k_opcodes[num_opcodes];
++opcode)
{
if ((insn24<<24) == opcode->opcode)
{
char *s;
fprintf_filtered (stream, "%s ", opcode->name);
for (s = opcode->args; *s != '\0'; ++s)
{
switch (*s)
{
case 'a':
print_general (insn8, stream);
break;
case 'b':
print_general (insn0, stream);
break;
case 'c':
print_general (insn16, stream);
break;
case 'i':
fprintf_filtered (stream, "%d", insn0);
break;
case 'x':
fprintf_filtered (stream, "%d", (insn16 << 8) + insn0);
break;
case 'h':
fprintf_filtered (stream, "0x%x",
(insn16 << 24) + (insn0 << 16));
break;
case 'X':
fprintf_filtered (stream, "%d",
((insn16 << 8) + insn0) | 0xffff0000);
break;
case 'P':
/* This output looks just like absolute addressing, but
maybe that's OK (it's what the GDB m68k and EBMON
a29k disassemblers do). */
/* All the shifting is to sign-extend it. p*/
print_address
(memaddr +
(((int)((insn16 << 10) + (insn0 << 2)) << 14) >> 14),
stream);
break;
case 'A':
print_address ((insn16 << 10) + (insn0 << 2), stream);
break;
case 'e':
fprintf_filtered (stream, "%d", insn16 >> 7);
break;
case 'n':
fprintf_filtered (stream, "0x%x", insn16 & 0x7f);
break;
case 'v':
fprintf_filtered (stream, "0x%x", insn16);
break;
case 's':
print_special (insn8, stream);
break;
case 'u':
fprintf_filtered (stream, "%d", insn0 >> 7);
break;
case 'r':
fprintf_filtered (stream, "%d", (insn0 >> 4) & 7);
break;
case 'd':
fprintf_filtered (stream, "%d", (insn0 >> 2) & 3);
break;
case 'f':
fprintf_filtered (stream, "%d", insn0 & 3);
break;
case 'F':
fprintf_filtered (stream, "%d", (insn16 >> 2) & 15);
break;
case 'C':
fprintf_filtered (stream, "%d", insn16 & 3);
break;
default:
fprintf_filtered (stream, "%c", *s);
}
}
/* Now we look for a const,consth pair of instructions,
in which case we try to print the symbolic address. */
if (insn24 == 2) /* consth */
{
int errcode;
char prev_insn[4];
unsigned char prev_insn0, prev_insn8, prev_insn16, prev_insn24;
errcode = target_read_memory (memaddr - 4,
&prev_insn[0],
4);
if (errcode == 0)
{
/* If it is a delayed branch, we need to look at the
instruction before the delayed brach to handle
things like
const _foo
call _printf
consth _foo
*/
find_bytes (prev_insn, &prev_insn0, &prev_insn8,
&prev_insn16, &prev_insn24);
if (is_delayed_branch (prev_insn24))
{
errcode = target_read_memory
(memaddr - 8, &prev_insn[0], 4);
find_bytes (prev_insn, &prev_insn0, &prev_insn8,
&prev_insn16, &prev_insn24);
}
}
/* If there was a problem reading memory, then assume
the previous instruction was not const. */
if (errcode == 0)
{
/* Is it const to the same register? */
if (prev_insn24 == 3
&& prev_insn8 == insn8)
{
fprintf_filtered (stream, "\t; ");
print_address (((insn16 << 24) + (insn0 << 16)
+ (prev_insn16 << 8) + (prev_insn0)),
stream);
}
}
}
return 4;
}
}
fprintf_filtered (stream, ".word 0x%8x",
(insn24 << 24) + (insn16 << 16) + (insn8 << 8) + insn0);
return 4;
#if TARGET_BYTE_ORDER == BIG_ENDIAN
return print_insn_big_a29k (memaddr, &info);
#else
return print_insn_little_a29k (memaddr, &info);
#endif
}

View File

@ -161,9 +161,7 @@ read_memory (memaddr, myaddr, len)
memory_error (status, memaddr);
}
/* Like target_read_memory, but slightly different parameters.
FIXME: not according to it's prototype. 930331 krp. */
/* Like target_read_memory, but slightly different parameters. */
int
dis_asm_read_memory (memaddr, myaddr, len, info)
@ -185,6 +183,15 @@ dis_asm_memory_error (status, memaddr, info)
memory_error (status, memaddr);
}
/* Like print_address with slightly different parameters. */
void
dis_asm_print_address (addr, info)
bfd_vma addr;
struct disassemble_info *info;
{
print_address (addr, info->stream);
}
/* Same as target_write_memory, but report an error if can't write. */
void
write_memory (memaddr, myaddr, len)

View File

@ -18,300 +18,21 @@ along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
#include "defs.h"
#include "frame.h"
#include "inferior.h"
#include "dis-asm.h"
static FILE *stream; /* Output goes here */
static void print_addr();
static void ctrl();
static void cobr();
static void reg();
static int mem();
static void ea();
static void dstop();
static void regop();
static void invalid();
static int pinsn();
static void put_abs();
/* Print the instruction at address MEMADDR in debugged memory,
on STREAM. Returns length of the instruction, in bytes. */
/* Print the i960 instruction at address 'memaddr' in debugged memory,
on stream 's'. Returns length of the instruction, in bytes. */
int
print_insn( memaddr, s )
CORE_ADDR memaddr;
FILE *s;
{
unsigned int word1, word2;
stream = s;
word1 = read_memory_integer( memaddr, 4 );
word2 = read_memory_integer( memaddr+4, 4 );
return pinsn( memaddr, word1, word2 );
}
/* Read the i960 instruction at 'memaddr' and return the address of
the next instruction after that, or 0 if 'memaddr' is not the
address of a valid instruction. The first word of the instruction
is stored at 'pword1', and the second word, if any, is stored at
'pword2'. */
CORE_ADDR
next_insn (memaddr, pword1, pword2)
unsigned long *pword1, *pword2;
print_insn (memaddr, stream)
CORE_ADDR memaddr;
FILE *stream;
{
int len;
unsigned long buf[2];
disassemble_info info;
/* Read the two (potential) words of the instruction at once,
to eliminate the overhead of two calls to read_memory ().
TODO: read more instructions at once and cache them. */
GDB_INIT_DISASSEMBLE_INFO(info, stream);
read_memory (memaddr, buf, sizeof (buf));
*pword1 = buf[0];
SWAP_TARGET_AND_HOST (pword1, sizeof (long));
*pword2 = buf[1];
SWAP_TARGET_AND_HOST (pword2, sizeof (long));
/* Divide instruction set into classes based on high 4 bits of opcode*/
switch ((*pword1 >> 28) & 0xf)
{
case 0x0:
case 0x1: /* ctrl */
case 0x2:
case 0x3: /* cobr */
case 0x5:
case 0x6:
case 0x7: /* reg */
len = 4;
break;
case 0x8:
case 0x9:
case 0xa:
case 0xb:
case 0xc:
len = mem (memaddr, *pword1, *pword2, 1);
break;
default: /* invalid instruction */
len = 0;
break;
}
if (len)
return memaddr + len;
else
return 0;
}
#define IN_GDB
/*****************************************************************************
* All code below this point should be identical with that of
* the disassembler in gdmp960.
*****************************************************************************/
struct tabent {
char *name;
char numops;
};
static int
pinsn( memaddr, word1, word2 )
unsigned long memaddr;
unsigned long word1, word2;
{
int instr_len;
instr_len = 4;
put_abs( word1, word2 );
/* Divide instruction set into classes based on high 4 bits of opcode*/
switch ( (word1 >> 28) & 0xf ){
case 0x0:
case 0x1:
ctrl( memaddr, word1, word2 );
break;
case 0x2:
case 0x3:
cobr( memaddr, word1, word2 );
break;
case 0x5:
case 0x6:
case 0x7:
reg( word1 );
break;
case 0x8:
case 0x9:
case 0xa:
case 0xb:
case 0xc:
instr_len = mem( memaddr, word1, word2, 0 );
break;
default:
/* invalid instruction, print as data word */
invalid( word1 );
break;
}
return instr_len;
}
/****************************************/
/* CTRL format */
/****************************************/
static void
ctrl( memaddr, word1, word2 )
unsigned long memaddr;
unsigned long word1, word2;
{
int i;
static struct tabent ctrl_tab[] = {
NULL, 0, /* 0x00 */
NULL, 0, /* 0x01 */
NULL, 0, /* 0x02 */
NULL, 0, /* 0x03 */
NULL, 0, /* 0x04 */
NULL, 0, /* 0x05 */
NULL, 0, /* 0x06 */
NULL, 0, /* 0x07 */
"b", 1, /* 0x08 */
"call", 1, /* 0x09 */
"ret", 0, /* 0x0a */
"bal", 1, /* 0x0b */
NULL, 0, /* 0x0c */
NULL, 0, /* 0x0d */
NULL, 0, /* 0x0e */
NULL, 0, /* 0x0f */
"bno", 1, /* 0x10 */
"bg", 1, /* 0x11 */
"be", 1, /* 0x12 */
"bge", 1, /* 0x13 */
"bl", 1, /* 0x14 */
"bne", 1, /* 0x15 */
"ble", 1, /* 0x16 */
"bo", 1, /* 0x17 */
"faultno", 0, /* 0x18 */
"faultg", 0, /* 0x19 */
"faulte", 0, /* 0x1a */
"faultge", 0, /* 0x1b */
"faultl", 0, /* 0x1c */
"faultne", 0, /* 0x1d */
"faultle", 0, /* 0x1e */
"faulto", 0, /* 0x1f */
};
i = (word1 >> 24) & 0xff;
if ( (ctrl_tab[i].name == NULL) || ((word1 & 1) != 0) ){
invalid( word1 );
return;
}
fputs_filtered( ctrl_tab[i].name, stream );
if ( word1 & 2 ){ /* Predicts branch not taken */
fputs_filtered ( ".f", stream );
}
if ( ctrl_tab[i].numops == 1 ){
/* EXTRACT DISPLACEMENT AND CONVERT TO ADDRESS */
word1 &= 0x00ffffff;
if ( word1 & 0x00800000 ){ /* Sign bit is set */
word1 |= (-1 & ~0xffffff); /* Sign extend */
}
fputs_filtered ( "\t", stream );
print_addr( word1 + memaddr );
}
}
/****************************************/
/* COBR format */
/****************************************/
static void
cobr( memaddr, word1, word2 )
unsigned long memaddr;
unsigned long word1, word2;
{
int src1;
int src2;
int i;
static struct tabent cobr_tab[] = {
"testno", 1, /* 0x20 */
"testg", 1, /* 0x21 */
"teste", 1, /* 0x22 */
"testge", 1, /* 0x23 */
"testl", 1, /* 0x24 */
"testne", 1, /* 0x25 */
"testle", 1, /* 0x26 */
"testo", 1, /* 0x27 */
NULL, 0, /* 0x28 */
NULL, 0, /* 0x29 */
NULL, 0, /* 0x2a */
NULL, 0, /* 0x2b */
NULL, 0, /* 0x2c */
NULL, 0, /* 0x2d */
NULL, 0, /* 0x2e */
NULL, 0, /* 0x2f */
"bbc", 3, /* 0x30 */
"cmpobg", 3, /* 0x31 */
"cmpobe", 3, /* 0x32 */
"cmpobge", 3, /* 0x33 */
"cmpobl", 3, /* 0x34 */
"cmpobne", 3, /* 0x35 */
"cmpoble", 3, /* 0x36 */
"bbs", 3, /* 0x37 */
"cmpibno", 3, /* 0x38 */
"cmpibg", 3, /* 0x39 */
"cmpibe", 3, /* 0x3a */
"cmpibge", 3, /* 0x3b */
"cmpibl", 3, /* 0x3c */
"cmpibne", 3, /* 0x3d */
"cmpible", 3, /* 0x3e */
"cmpibo", 3, /* 0x3f */
};
i = ((word1 >> 24) & 0xff) - 0x20;
if ( cobr_tab[i].name == NULL ){
invalid( word1 );
return;
}
fputs( cobr_tab[i].name, stream );
if ( word1 & 2 ){ /* Predicts branch not taken */
fputs_filtered ( ".f", stream );
}
fputs_filtered ( "\t", stream );
src1 = (word1 >> 19) & 0x1f;
src2 = (word1 >> 14) & 0x1f;
if ( word1 & 0x02000 ){ /* M1 is 1 */
fprintf_filtered ( stream, "%d", src1 );
} else { /* M1 is 0 */
fputs_filtered ( reg_names[src1], stream );
}
if ( cobr_tab[i].numops > 1 ){
if ( word1 & 1 ){ /* S2 is 1 */
fprintf_filtered ( stream, ",sf%d,", src2 );
} else { /* S1 is 0 */
fprintf_filtered ( stream, ",%s,", reg_names[src2] );
}
/* Extract displacement and convert to address
*/
word1 &= 0x00001ffc;
if ( word1 & 0x00001000 ){ /* Negative displacement */
word1 |= (-1 & ~0x1fff); /* Sign extend */
}
print_addr( memaddr + word1 );
}
return print_insn_i960 (memaddr, &info);
}
/****************************************/
@ -393,469 +114,64 @@ mem( memaddr, word1, word2, noprint )
if ( noprint ){
return len;
}
if ( (mem_tab[i].name == NULL) || (mode == 6) ){
invalid( word1 );
return len;
}
fprintf_filtered ( stream, "%s\t", mem_tab[i].name );
reg1 = reg_names[ (word1 >> 19) & 0x1f ]; /* MEMB only */
reg2 = reg_names[ (word1 >> 14) & 0x1f ];
reg3 = reg_names[ word1 & 0x1f ]; /* MEMB only */
offset = word1 & 0xfff; /* MEMA only */
switch ( mem_tab[i].numops ){
case 2: /* LOAD INSTRUCTION */
if ( mode & 4 ){ /* MEMB FORMAT */
ea( memaddr, mode, reg2, reg3, word1, word2 );
fprintf_filtered ( stream, ",%s", reg1 );
} else { /* MEMA FORMAT */
fprintf( stream, "0x%x", offset );
if (mode & 8) {
fprintf_filtered ( stream, "(%s)", reg2 );
}
fprintf_filtered ( stream, ",%s", reg1 );
}
break;
case -2: /* STORE INSTRUCTION */
if ( mode & 4 ){ /* MEMB FORMAT */
fprintf_filtered ( stream, "%s,", reg1 );
ea( memaddr, mode, reg2, reg3, word1, word2 );
} else { /* MEMA FORMAT */
fprintf_filtered ( stream, "%s,0x%x", reg1, offset );
if (mode & 8) {
fprintf_filtered ( stream, "(%s)", reg2 );
}
}
break;
case 1: /* BX/CALLX INSTRUCTION */
if ( mode & 4 ){ /* MEMB FORMAT */
ea( memaddr, mode, reg2, reg3, word1, word2 );
} else { /* MEMA FORMAT */
fprintf_filtered ( stream, "0x%x", offset );
if (mode & 8) {
fprintf_filtered( stream, "(%s)", reg2 );
}
}
break;
}
return len;
abort ();
}
/****************************************/
/* REG format */
/****************************************/
static void
reg( word1 )
unsigned long word1;
/* Read the i960 instruction at 'memaddr' and return the address of
the next instruction after that, or 0 if 'memaddr' is not the
address of a valid instruction. The first word of the instruction
is stored at 'pword1', and the second word, if any, is stored at
'pword2'. */
CORE_ADDR
next_insn (memaddr, pword1, pword2)
unsigned long *pword1, *pword2;
CORE_ADDR memaddr;
{
int i, j;
int opcode;
int fp;
int m1, m2, m3;
int s1, s2;
int src, src2, dst;
char *mnemp;
int len;
unsigned long buf[2];
/* This lookup table is too sparse to make it worth typing in, but not
* so large as to make a sparse array necessary. We allocate the
* table at runtime, initialize all entries to empty, and copy the
* real ones in from an initialization table.
*
* NOTE: In this table, the meaning of 'numops' is:
* 1: single operand, which is NOT a destination.
* -1: single operand, which IS a destination.
* 2: 2 operands, the 2nd of which is NOT a destination.
* -2: 2 operands, the 2nd of which IS a destination.
* 3: 3 operands
*
* If an opcode mnemonic begins with "F", it is a floating-point
* opcode (the "F" is not printed).
*/
/* Read the two (potential) words of the instruction at once,
to eliminate the overhead of two calls to read_memory ().
TODO: read more instructions at once and cache them. */
static struct tabent *reg_tab = NULL;
static struct { int opcode; char *name; char numops; } reg_init[] = {
#define REG_MIN 0x580
0x580, "notbit", 3,
0x581, "and", 3,
0x582, "andnot", 3,
0x583, "setbit", 3,
0x584, "notand", 3,
0x586, "xor", 3,
0x587, "or", 3,
0x588, "nor", 3,
0x589, "xnor", 3,
0x58a, "not", -2,
0x58b, "ornot", 3,
0x58c, "clrbit", 3,
0x58d, "notor", 3,
0x58e, "nand", 3,
0x58f, "alterbit", 3,
0x590, "addo", 3,
0x591, "addi", 3,
0x592, "subo", 3,
0x593, "subi", 3,
0x598, "shro", 3,
0x59a, "shrdi", 3,
0x59b, "shri", 3,
0x59c, "shlo", 3,
0x59d, "rotate", 3,
0x59e, "shli", 3,
0x5a0, "cmpo", 2,
0x5a1, "cmpi", 2,
0x5a2, "concmpo", 2,
0x5a3, "concmpi", 2,
0x5a4, "cmpinco", 3,
0x5a5, "cmpinci", 3,
0x5a6, "cmpdeco", 3,
0x5a7, "cmpdeci", 3,
0x5ac, "scanbyte", 2,
0x5ae, "chkbit", 2,
0x5b0, "addc", 3,
0x5b2, "subc", 3,
0x5cc, "mov", -2,
0x5d8, "eshro", 3,
0x5dc, "movl", -2,
0x5ec, "movt", -2,
0x5fc, "movq", -2,
0x600, "synmov", 2,
0x601, "synmovl", 2,
0x602, "synmovq", 2,
0x603, "cmpstr", 3,
0x604, "movqstr", 3,
0x605, "movstr", 3,
0x610, "atmod", 3,
0x612, "atadd", 3,
0x613, "inspacc", -2,
0x614, "ldphy", -2,
0x615, "synld", -2,
0x617, "fill", 3,
0x630, "sdma", 3,
0x631, "udma", 0,
0x640, "spanbit", -2,
0x641, "scanbit", -2,
0x642, "daddc", 3,
0x643, "dsubc", 3,
0x644, "dmovt", -2,
0x645, "modac", 3,
0x646, "condrec", -2,
0x650, "modify", 3,
0x651, "extract", 3,
0x654, "modtc", 3,
0x655, "modpc", 3,
0x656, "receive", -2,
0x659, "sysctl", 3,
0x660, "calls", 1,
0x662, "send", 3,
0x663, "sendserv", 1,
0x664, "resumprcs", 1,
0x665, "schedprcs", 1,
0x666, "saveprcs", 0,
0x668, "condwait", 1,
0x669, "wait", 1,
0x66a, "signal", 1,
0x66b, "mark", 0,
0x66c, "fmark", 0,
0x66d, "flushreg", 0,
0x66f, "syncf", 0,
0x670, "emul", 3,
0x671, "ediv", 3,
0x673, "ldtime", -1,
0x674, "Fcvtir", -2,
0x675, "Fcvtilr", -2,
0x676, "Fscalerl", 3,
0x677, "Fscaler", 3,
0x680, "Fatanr", 3,
0x681, "Flogepr", 3,
0x682, "Flogr", 3,
0x683, "Fremr", 3,
0x684, "Fcmpor", 2,
0x685, "Fcmpr", 2,
0x688, "Fsqrtr", -2,
0x689, "Fexpr", -2,
0x68a, "Flogbnr", -2,
0x68b, "Froundr", -2,
0x68c, "Fsinr", -2,
0x68d, "Fcosr", -2,
0x68e, "Ftanr", -2,
0x68f, "Fclassr", 1,
0x690, "Fatanrl", 3,
0x691, "Flogeprl", 3,
0x692, "Flogrl", 3,
0x693, "Fremrl", 3,
0x694, "Fcmporl", 2,
0x695, "Fcmprl", 2,
0x698, "Fsqrtrl", -2,
0x699, "Fexprl", -2,
0x69a, "Flogbnrl", -2,
0x69b, "Froundrl", -2,
0x69c, "Fsinrl", -2,
0x69d, "Fcosrl", -2,
0x69e, "Ftanrl", -2,
0x69f, "Fclassrl", 1,
0x6c0, "Fcvtri", -2,
0x6c1, "Fcvtril", -2,
0x6c2, "Fcvtzri", -2,
0x6c3, "Fcvtzril", -2,
0x6c9, "Fmovr", -2,
0x6d9, "Fmovrl", -2,
0x6e1, "Fmovre", -2,
0x6e2, "Fcpysre", 3,
0x6e3, "Fcpyrsre", 3,
0x701, "mulo", 3,
0x708, "remo", 3,
0x70b, "divo", 3,
0x741, "muli", 3,
0x748, "remi", 3,
0x749, "modi", 3,
0x74b, "divi", 3,
0x78b, "Fdivr", 3,
0x78c, "Fmulr", 3,
0x78d, "Fsubr", 3,
0x78f, "Faddr", 3,
0x79b, "Fdivrl", 3,
0x79c, "Fmulrl", 3,
0x79d, "Fsubrl", 3,
0x79f, "Faddrl", 3,
#define REG_MAX 0x79f
#define REG_SIZ ((REG_MAX-REG_MIN+1) * sizeof(struct tabent))
0, NULL, 0
};
read_memory (memaddr, buf, sizeof (buf));
*pword1 = buf[0];
SWAP_TARGET_AND_HOST (pword1, sizeof (long));
*pword2 = buf[1];
SWAP_TARGET_AND_HOST (pword2, sizeof (long));
if ( reg_tab == NULL ){
reg_tab = (struct tabent *) xmalloc( REG_SIZ );
bzero( reg_tab, REG_SIZ );
for ( i = 0; reg_init[i].opcode != 0; i++ ){
j = reg_init[i].opcode - REG_MIN;
reg_tab[j].name = reg_init[i].name;
reg_tab[j].numops = reg_init[i].numops;
}
}
/* Divide instruction set into classes based on high 4 bits of opcode*/
opcode = ((word1 >> 20) & 0xff0) | ((word1 >> 7) & 0xf);
i = opcode - REG_MIN;
switch ((*pword1 >> 28) & 0xf)
{
case 0x0:
case 0x1: /* ctrl */
if ( (opcode<REG_MIN) || (opcode>REG_MAX) || (reg_tab[i].name==NULL) ){
invalid( word1 );
return;
}
case 0x2:
case 0x3: /* cobr */
mnemp = reg_tab[i].name;
if ( *mnemp == 'F' ){
fp = 1;
mnemp++;
} else {
fp = 0;
}
case 0x5:
case 0x6:
case 0x7: /* reg */
len = 4;
break;
fputs_filtered( mnemp, stream );
case 0x8:
case 0x9:
case 0xa:
case 0xb:
case 0xc:
len = mem (memaddr, *pword1, *pword2, 1);
break;
s1 = (word1 >> 5) & 1;
s2 = (word1 >> 6) & 1;
m1 = (word1 >> 11) & 1;
m2 = (word1 >> 12) & 1;
m3 = (word1 >> 13) & 1;
src = word1 & 0x1f;
src2 = (word1 >> 14) & 0x1f;
dst = (word1 >> 19) & 0x1f;
default: /* invalid instruction */
len = 0;
break;
}
if ( reg_tab[i].numops != 0 ){
fputs_filtered( "\t", stream );
switch ( reg_tab[i].numops ){
case 1:
regop( m1, s1, src, fp );
break;
case -1:
dstop( m3, dst, fp );
break;
case 2:
regop( m1, s1, src, fp );
fputs_filtered( ",", stream );
regop( m2, s2, src2, fp );
break;
case -2:
regop( m1, s1, src, fp );
fputs_filtered( ",", stream );
dstop( m3, dst, fp );
break;
case 3:
regop( m1, s1, src, fp );
fputs_filtered( ",", stream );
regop( m2, s2, src2, fp );
fputs_filtered( ",", stream );
dstop( m3, dst, fp );
break;
}
}
}
/*
* Print out effective address for memb instructions.
*/
static void
ea( memaddr, mode, reg2, reg3, word1, word2 )
unsigned long memaddr;
int mode;
char *reg2, *reg3;
unsigned int word2;
{
int scale;
static int scale_tab[] = { 1, 2, 4, 8, 16 };
scale = (word1 >> 7) & 0x07;
if ( (scale > 4) || ((word1 >> 5) & 0x03 != 0) ){
invalid( word1 );
return;
}
scale = scale_tab[scale];
switch (mode) {
case 4: /* (reg) */
fprintf_filtered( stream, "(%s)", reg2 );
break;
case 5: /* displ+8(ip) */
print_addr( word2+8+memaddr );
break;
case 7: /* (reg)[index*scale] */
if (scale == 1) {
fprintf_filtered( stream, "(%s)[%s]", reg2, reg3 );
} else {
fprintf_filtered( stream, "(%s)[%s*%d]",reg2,reg3,scale);
}
break;
case 12: /* displacement */
print_addr( word2 );
break;
case 13: /* displ(reg) */
print_addr( word2 );
fprintf_filtered( stream, "(%s)", reg2 );
break;
case 14: /* displ[index*scale] */
print_addr( word2 );
if (scale == 1) {
fprintf_filtered( stream, "[%s]", reg3 );
} else {
fprintf_filtered( stream, "[%s*%d]", reg3, scale );
}
break;
case 15: /* displ(reg)[index*scale] */
print_addr( word2 );
if (scale == 1) {
fprintf_filtered( stream, "(%s)[%s]", reg2, reg3 );
} else {
fprintf_filtered( stream, "(%s)[%s*%d]",reg2,reg3,scale );
}
break;
default:
invalid( word1 );
return;
}
}
/************************************************/
/* Register Instruction Operand */
/************************************************/
static void
regop( mode, spec, reg, fp )
int mode, spec, reg, fp;
{
if ( fp ){ /* FLOATING POINT INSTRUCTION */
if ( mode == 1 ){ /* FP operand */
switch ( reg ){
case 0: fputs_filtered( "fp0", stream ); break;
case 1: fputs_filtered( "fp1", stream ); break;
case 2: fputs_filtered( "fp2", stream ); break;
case 3: fputs_filtered( "fp3", stream ); break;
case 16: fputs_filtered( "0f0.0", stream ); break;
case 22: fputs_filtered( "0f1.0", stream ); break;
default: fputs_filtered( "?", stream ); break;
}
} else { /* Non-FP register */
fputs_filtered( reg_names[reg], stream );
}
} else { /* NOT FLOATING POINT */
if ( mode == 1 ){ /* Literal */
fprintf_filtered( stream, "%d", reg );
} else { /* Register */
if ( spec == 0 ){
fputs_filtered( reg_names[reg], stream );
} else {
fprintf_filtered( stream, "sf%d", reg );
}
}
}
}
/************************************************/
/* Register Instruction Destination Operand */
/************************************************/
static void
dstop( mode, reg, fp )
int mode, reg, fp;
{
/* 'dst' operand can't be a literal. On non-FP instructions, register
* mode is assumed and "m3" acts as if were "s3"; on FP-instructions,
* sf registers are not allowed so m3 acts normally.
*/
if ( fp ){
regop( mode, 0, reg, fp );
} else {
regop( 0, mode, reg, fp );
}
}
static void
invalid( word1 )
int word1;
{
fprintf_filtered( stream, ".word\t0x%08x", word1 );
}
static void
print_addr(a)
{
print_address (a, stream);
}
static void
put_abs( word1, word2 )
unsigned long word1, word2;
{
#ifdef IN_GDB
return;
#else
int len;
switch ( (word1 >> 28) & 0xf ){
case 0x8:
case 0x9:
case 0xa:
case 0xb:
case 0xc:
/* MEM format instruction */
len = mem( 0, word1, word2, 1 );
break;
default:
len = 4;
break;
}
if ( len == 8 ){
fprintf_filtered( stream, "%08x %08x\t", word1, word2 );
} else {
fprintf_filtered( stream, "%08x \t", word1 );
}
;
#endif
if (len)
return memaddr + len;
else
return 0;
}

View File

@ -24,11 +24,13 @@ Do-first:
Things-to-keep:
ChangeLog
Makefile.in
a29k-dis.c
configure.in
dis-buf.c
h8500-dis.c
h8500-opc.h
i386-dis.c
i960-dis.c
m68881-ext.c
m68k-dis.c
mips-dis.c

View File

@ -1,3 +1,15 @@
Thu Apr 1 11:20:43 1993 Jim Kingdon (kingdon@cygnus.com)
* sparc-dis.c: Use fprintf_func a few places where I forgot,
and double percent signs a few places.
* a29k-dis.c, i960-dis.c: New, merged from gdb and binutils.
* i386-dis.c, m68k-dis.c, mips-dis.c, sparc-dis.c:
Use info->print_address_func not print_address.
* dis-buf.c (generic_print_address): New function.
Wed Mar 31 10:07:04 1993 Jim Kingdon (kingdon@lioth.cygnus.com)
* Makefile.in: Add sparc-dis.c.

View File

@ -6,8 +6,8 @@ This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 1, or (at your option)
any later version.
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
@ -15,40 +15,25 @@ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
#include <stdio.h>
#ifdef GDB
# include "defs.h"
# include "target.h"
# include "opcode/a29k.h"
#else
# include "bfd.h"
# include "sysdep.h"
# include "objdump.h"
# include "opcode/a29k.h"
# define am29k_opcodes a29k_opcodes
# define am29k_opcode a29k_opcode
# define NUM_OPCODES num_opcodes
# define fprintf_filtered fprintf
#endif
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
#include "dis-asm.h"
#include "opcode/a29k.h"
/* Print a symbolic representation of a general-purpose
register number NUM on STREAM.
NUM is a number as found in the instruction, not as found in
debugging symbols; it must be in the range 0-255. */
static void
print_general (num, stream)
print_general (num, info)
int num;
FILE *stream;
struct disassemble_info *info;
{
if (num < 128)
fprintf_filtered (stream, "gr%d", num);
(*info->fprintf_func) (info->stream, "gr%d", num);
else
fprintf_filtered (stream, "lr%d", num - 128);
(*info->fprintf_func) (info->stream, "lr%d", num - 128);
}
/* Like print_general but a special-purpose register.
@ -57,9 +42,9 @@ print_general (num, stream)
as the ones in the User's Manual. We use the ones that the
assembler uses. */
static void
print_special (num, stream)
print_special (num, info)
int num;
FILE *stream;
struct disassemble_info *info;
{
/* Register names of registers 0-SPEC0_NUM-1. */
static char *spec0_names[] = {
@ -81,13 +66,13 @@ print_special (num, stream)
#define SPEC160_NUM ((sizeof spec160_names) / (sizeof spec160_names[0]))
if (num < SPEC0_NUM)
fprintf_filtered (stream, spec0_names[num]);
(*info->fprintf_func) (info->stream, spec0_names[num]);
else if (num >= 128 && num < 128 + SPEC128_NUM)
fprintf_filtered (stream, spec128_names[num-128]);
(*info->fprintf_func) (info->stream, spec128_names[num-128]);
else if (num >= 160 && num < 160 + SPEC160_NUM)
fprintf_filtered (stream, spec160_names[num-160]);
(*info->fprintf_func) (info->stream, spec160_names[num-160]);
else
fprintf_filtered (stream, "sr%d", num);
(*info->fprintf_func) (info->stream, "sr%d", num);
}
/* Is an instruction with OPCODE a delayed branch? */
@ -103,177 +88,177 @@ is_delayed_branch (opcode)
|| opcode == 0xcc);
}
/* Now find the four bytes of INSN and put them in *INSN{0,8,16,24}.
Note that the amd can be set up as either
big or little-endian (the tm file says which) and we can't assume
the host machine is the same. */
/* Now find the four bytes of INSN and put them in *INSN{0,8,16,24}. */
static void
find_bytes (insn, insn0, insn8, insn16, insn24)
find_bytes_big (insn, insn0, insn8, insn16, insn24)
char *insn;
unsigned char *insn0;
unsigned char *insn8;
unsigned char *insn16;
unsigned char *insn24;
{
#if TARGET_BYTE_ORDER == BIG_ENDIAN
*insn24 = insn[0];
*insn16 = insn[1];
*insn8 = insn[2];
*insn0 = insn[3];
#else /* Little-endian. */
}
static void
find_bytes_little (insn, insn0, insn8, insn16, insn24)
char *insn;
unsigned char *insn0;
unsigned char *insn8;
unsigned char *insn16;
unsigned char *insn24;
{
*insn24 = insn[3];
*insn16 = insn[2];
*insn8 = insn[1];
*insn0 = insn[0];
#endif /* Little-endian. */
}
typedef (*find_byte_func_type)
PARAMS ((char *, unsigned char *, unsigned char *,
unsigned char *, unsigned char *));
/* Print one instruction from MEMADDR on STREAM.
Return the size of the instruction (always 4 on am29k). */
#ifdef GDB
print_insn (memaddr, stream)
CORE_ADDR memaddr;
FILE *stream;
#else
int
print_insn_a29k (memaddr, buffer, stream)
Return the size of the instruction (always 4 on a29k). */
static int
print_insn (memaddr, info)
bfd_vma memaddr;
uint8e_type *buffer;
FILE *stream;
#endif
struct disassemble_info *info;
{
/* The raw instruction. */
char insn[4];
/* The four bytes of the instruction. */
unsigned char insn24, insn16, insn8, insn0;
unsigned long value;
CONST struct am29k_opcode *opcode;
#ifdef GDB
read_memory (memaddr, &insn[0], 4);
#else
insn[0] = ((char*)buffer)[0];
insn[1] = ((char*)buffer)[1];
insn[2] = ((char*)buffer)[2];
insn[3] = ((char*)buffer)[3];
#endif
find_byte_func_type find_byte_func = (find_byte_func_type)info->private_data;
find_bytes (insn, &insn0, &insn8, &insn16, &insn24);
struct a29k_opcode const * opcode;
{
int status =
(*info->read_memory_func) (memaddr, (char *) &insn[0], 4, info);
if (status != 0)
{
(*info->memory_error_func) (status, memaddr, info);
return -1;
}
}
(*find_byte_func) (insn, &insn0, &insn8, &insn16, &insn24);
value = (insn24 << 24) + (insn16 << 16) + (insn8 << 8) + insn0;
/* Handle the nop (aseq 0x40,gr1,gr1) specially */
if ((insn24==0x70) && (insn16==0x40) && (insn8==0x01) && (insn0==0x01)) {
fprintf_filtered (stream,"nop");
(*info->fprintf_func) (info->stream,"nop");
return 4;
}
/* The opcode is always in insn24. */
for (opcode = &am29k_opcodes[0];
opcode < &am29k_opcodes[NUM_OPCODES];
for (opcode = &a29k_opcodes[0];
opcode < &a29k_opcodes[num_opcodes];
++opcode)
{
#ifdef GDB
if (insn24 == opcode->opcode)
#else
if (insn24 == (opcode->opcode >> 24))
#endif
if ((insn24<<24) == opcode->opcode)
{
char *s;
fprintf_filtered (stream, "%s ", opcode->name);
(*info->fprintf_func) (info->stream, "%s ", opcode->name);
for (s = opcode->args; *s != '\0'; ++s)
{
switch (*s)
{
case 'a':
print_general (insn8, stream);
print_general (insn8, info);
break;
case 'b':
print_general (insn0, stream);
print_general (insn0, info);
break;
case 'c':
print_general (insn16, stream);
print_general (insn16, info);
break;
case 'i':
fprintf_filtered (stream, "%d", insn0);
(*info->fprintf_func) (info->stream, "%d", insn0);
break;
case 'x':
fprintf_filtered (stream, "%d", (insn16 << 8) + insn0);
(*info->fprintf_func) (info->stream, "%d", (insn16 << 8) + insn0);
break;
case 'h':
fprintf_filtered (stream, "0x%x",
/* This used to be %x for binutils. */
(*info->fprintf_func) (info->stream, "0x%x",
(insn16 << 24) + (insn0 << 16));
break;
case 'X':
fprintf_filtered (stream, "%d",
(*info->fprintf_func) (info->stream, "%d",
((insn16 << 8) + insn0) | 0xffff0000);
break;
case 'P':
/* This output looks just like absolute addressing, but
maybe that's OK (it's what the GDB 68k and EBMON
29k disassemblers do). */
maybe that's OK (it's what the GDB m68k and EBMON
a29k disassemblers do). */
/* All the shifting is to sign-extend it. p*/
print_address
(*info->print_address_func)
(memaddr +
(((int)((insn16 << 10) + (insn0 << 2)) << 14) >> 14),
stream);
info);
break;
case 'A':
print_address ((insn16 << 10) + (insn0 << 2), stream);
(*info->print_address_func)
((insn16 << 10) + (insn0 << 2), info);
break;
case 'e':
fprintf_filtered (stream, "%d", insn16 >> 7);
(*info->fprintf_func) (info->stream, "%d", insn16 >> 7);
break;
case 'n':
fprintf_filtered (stream, "0x%x", insn16 & 0x7f);
(*info->fprintf_func) (info->stream, "0x%x", insn16 & 0x7f);
break;
case 'v':
fprintf_filtered (stream, "%x", insn16);
(*info->fprintf_func) (info->stream, "0x%x", insn16);
break;
case 's':
print_special (insn8, stream);
print_special (insn8, info);
break;
case 'u':
fprintf_filtered (stream, "%d", insn0 >> 7);
(*info->fprintf_func) (info->stream, "%d", insn0 >> 7);
break;
case 'r':
fprintf_filtered (stream, "%d", (insn0 >> 4) & 7);
(*info->fprintf_func) (info->stream, "%d", (insn0 >> 4) & 7);
break;
case 'd':
fprintf_filtered (stream, "%d", (insn0 >> 2) & 3);
(*info->fprintf_func) (info->stream, "%d", (insn0 >> 2) & 3);
break;
case 'f':
fprintf_filtered (stream, "%d", insn0 & 3);
(*info->fprintf_func) (info->stream, "%d", insn0 & 3);
break;
case 'F':
fprintf_filtered (stream, "%d", (value >> 18) & 0xf);
(*info->fprintf_func) (info->stream, "%d", (insn16 >> 2) & 15);
break;
case 'C':
fprintf_filtered (stream, "%d", (value >> 16) & 3);
(*info->fprintf_func) (info->stream, "%d", insn16 & 3);
break;
default:
fprintf_filtered (stream, "%c", *s);
(*info->fprintf_func) (info->stream, "%c", *s);
}
}
@ -285,17 +270,10 @@ print_insn_a29k (memaddr, buffer, stream)
char prev_insn[4];
unsigned char prev_insn0, prev_insn8, prev_insn16, prev_insn24;
#ifdef GDB
errcode = target_read_memory (memaddr - 4,
&prev_insn[0],
4);
#else
prev_insn[0] = ((char*)buffer)[0-4];
prev_insn[1] = ((char*)buffer)[1-4];
prev_insn[2] = ((char*)buffer)[2-4];
prev_insn[3] = ((char*)buffer)[3-4];
errcode = 0;
#endif
errcode = (*info->read_memory_func) (memaddr - 4,
&prev_insn[0],
4,
info);
if (errcode == 0)
{
/* If it is a delayed branch, we need to look at the
@ -306,22 +284,14 @@ print_insn_a29k (memaddr, buffer, stream)
call _printf
consth _foo
*/
find_bytes (prev_insn, &prev_insn0, &prev_insn8,
&prev_insn16, &prev_insn24);
(*find_byte_func) (prev_insn, &prev_insn0, &prev_insn8,
&prev_insn16, &prev_insn24);
if (is_delayed_branch (prev_insn24))
{
#ifdef GDB
errcode = target_read_memory
(memaddr - 8, &prev_insn[0], 4);
#else
prev_insn[0] = ((char*)buffer)[0-8];
prev_insn[1] = ((char*)buffer)[1-8];
prev_insn[2] = ((char*)buffer)[2-8];
prev_insn[3] = ((char*)buffer)[3-8];
errcode = 0;
#endif
find_bytes (prev_insn, &prev_insn0, &prev_insn8,
&prev_insn16, &prev_insn24);
errcode = (*info->read_memory_func)
(memaddr - 8, &prev_insn[0], 4, info);
(*find_byte_func) (prev_insn, &prev_insn0, &prev_insn8,
&prev_insn16, &prev_insn24);
}
}
@ -333,10 +303,11 @@ print_insn_a29k (memaddr, buffer, stream)
if (prev_insn24 == 3
&& prev_insn8 == insn8)
{
fprintf_filtered (stream, "\t; ");
print_address (((insn16 << 24) + (insn0 << 16)
+ (prev_insn16 << 8) + (prev_insn0)),
stream);
(*info->fprintf_func) (info->stream, "\t; ");
(*info->print_address_func)
(((insn16 << 24) + (insn0 << 16)
+ (prev_insn16 << 8) + (prev_insn0)),
info);
}
}
}
@ -344,7 +315,29 @@ print_insn_a29k (memaddr, buffer, stream)
return 4;
}
}
fprintf_filtered (stream, ".word %8x",
(insn24 << 24) + (insn16 << 16) + (insn8 << 8) + insn0);
/* This used to be %8x for binutils. */
(*info->fprintf_func)
(info->stream, ".word 0x%8x",
(insn24 << 24) + (insn16 << 16) + (insn8 << 8) + insn0);
return 4;
}
/* Disassemble an big-endian a29k instruction. */
int
print_insn_big_a29k (memaddr, info)
bfd_vma memaddr;
struct disassemble_info *info;
{
info->private_data = (PTR) find_bytes_big;
return print_insn (memaddr, info);
}
/* Disassemble a little-endian a29k instruction. */
int
print_insn_little_a29k (memaddr, info)
bfd_vma memaddr;
struct disassemble_info *info;
{
info->private_data = (PTR) find_bytes_little;
return print_insn (memaddr, info);
}