* defs.h (make_cleanup): Change PTR to void * when inside PARAMS.

Some of the following is in #ifdef CALL_DUMMY_BREAKPOINT_OFFSET.
	* breakpoint.h (enum bptype): Add bp_call_dummy.
	(struct bpstat_what): Add call_dummy field.
	* infrun.c (wait_for_inferior): Deal with it.
	* breakpoint.c (bpstat_what): Deal with call dummy breakpoint.
	* infcmd.c (run_stack_dummy): Set the call dummy breakpoint.
	* config/sparc/tm-sparc.h: Define CALL_DUMMY_BREAKPOINT_OFFSET.
This commit is contained in:
Jim Kingdon 1993-09-18 19:15:36 +00:00
parent fa79d853b8
commit 84d598611e
7 changed files with 259 additions and 152 deletions

View File

@ -1,4 +1,14 @@
Fri Sep 17 10:10:05 1993 Jim Kingdon (kingdon@rtl.cygnus.com)
Sat Sep 18 10:13:18 1993 Jim Kingdon (kingdon@poseidon.cygnus.com)
* defs.h (make_cleanup): Change PTR to void * when inside PARAMS.
Some of the following is in #ifdef CALL_DUMMY_BREAKPOINT_OFFSET.
* breakpoint.h (enum bptype): Add bp_call_dummy.
(struct bpstat_what): Add call_dummy field.
* infrun.c (wait_for_inferior): Deal with it.
* breakpoint.c (bpstat_what): Deal with call dummy breakpoint.
* infcmd.c (run_stack_dummy): Set the call dummy breakpoint.
* config/sparc/tm-sparc.h: Define CALL_DUMMY_BREAKPOINT_OFFSET.
* remote-sim.h: New file.
* remote-sim.c: Add remote debug feature. Rename stuff to distinguish

View File

@ -1221,6 +1221,12 @@ bpstat_what (bs)
#define err BPSTAT_WHAT_STOP_NOISY
/* Given an old action and a class, come up with a new action. */
/* One interesting property of this table is that wp_silent is the same
as bp_silent and wp_noisy is the same as bp_noisy. That is because
after stopping, the check for whether to step over a breakpoint
(BPSTAT_WHAT_SINGLE type stuff) is handled in proceed() without
reference to how we stopped. We retain separate wp_silent and bp_silent
codes in case we want to change that someday. */
static const enum bpstat_what_main_action
table[(int)class_last][(int)BPSTAT_WHAT_LAST] =
{
@ -1245,7 +1251,7 @@ bpstat_what (bs)
#undef clrlrs
#undef err
enum bpstat_what_main_action current_action = BPSTAT_WHAT_KEEP_CHECKING;
int found_step_resume = 0;
struct bpstat_what retval;
for (; bs != NULL; bs = bs->next)
{
@ -1297,7 +1303,7 @@ bpstat_what (bs)
if (bs->stop)
{
#endif
found_step_resume = 1;
retval.step_resume = 1;
/* We don't handle this via the main_action. */
bs_class = no_effect;
#if 0
@ -1307,15 +1313,16 @@ bpstat_what (bs)
bs_class = bp_nostop;
#endif
break;
case bp_call_dummy:
/* Make sure the action is stop (silent or noisy), so infrun.c
pops the dummy frame. */
bs_class = bp_silent;
retval.call_dummy = 1;
}
current_action = table[(int)bs_class][(int)current_action];
}
{
struct bpstat_what retval;
retval.main_action = current_action;
retval.step_resume = found_step_resume;
return retval;
}
retval.main_action = current_action;
return retval;
}
/* Nonzero if we should step constantly (e.g. watchpoints on machines
@ -1347,7 +1354,7 @@ breakpoint_1 (bnum, allflag)
CORE_ADDR last_addr = (CORE_ADDR)-1;
int found_a_breakpoint = 0;
static char *bptypes[] = {"breakpoint", "until", "finish", "watchpoint",
"longjmp", "longjmp resume"};
"longjmp", "longjmp resume", "step resume"};
static char *bpdisps[] = {"del", "dis", "keep"};
static char bpenables[] = "ny";
char wrap_indent[80];
@ -1379,11 +1386,13 @@ breakpoint_1 (bnum, allflag)
case bp_watchpoint:
print_expression (b->exp, stdout);
break;
case bp_breakpoint:
case bp_until:
case bp_finish:
case bp_longjmp:
case bp_longjmp_resume:
case bp_step_resume:
if (addressprint)
printf_filtered ("%s ", local_hex_string_custom(b->address, "08"));
@ -1403,8 +1412,6 @@ breakpoint_1 (bnum, allflag)
}
else
print_address_symbolic (b->address, stdout, demangle, " ");
/* intentional fall-through */
case bp_step_resume: /* do nothing. */
break;
}

View File

@ -29,141 +29,16 @@ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
#define BREAKPOINT_MAX 16
/* The follow stuff is an abstract data type "bpstat" ("breakpoint status").
This provides the ability to determine whether we have stopped at a
breakpoint, and what we should do about it. */
typedef struct bpstat *bpstat;
/* Interface: */
/* Clear a bpstat so that it says we are not at any breakpoint.
Also free any storage that is part of a bpstat. */
extern void bpstat_clear PARAMS ((bpstat *));
/* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
is part of the bpstat is copied as well. */
extern bpstat bpstat_copy PARAMS ((bpstat));
/* Get a bpstat associated with having just stopped at address *PC
and frame address FRAME_ADDRESS. Update *PC to point at the
breakpoint (if we hit a breakpoint). */
/* FIXME: prototypes uses equivalence between FRAME_ADDR and CORE_ADDR */
extern bpstat bpstat_stop_status PARAMS ((CORE_ADDR *, CORE_ADDR));
/* Return values from bpstat_what. */
enum bpstat_what {
/* Perform various other tests; that is, this bpstat does not
say to perform any action (e.g. failed watchpoint and nothing
else). */
BPSTAT_WHAT_KEEP_CHECKING,
/* Rather than distinguish between noisy and silent stops here, it
might be cleaner to have bpstat_print make that decision (also
taking into account stop_print_frame and source_only). But the
implications are a bit scary (interaction with auto-displays, etc.),
so I won't try it. */
/* Stop silently. */
BPSTAT_WHAT_STOP_SILENT,
/* Stop and print. */
BPSTAT_WHAT_STOP_NOISY,
/* Remove breakpoints, single step once, then put them back in and
go back to what we were doing. */
BPSTAT_WHAT_SINGLE,
/* Set longjmp_resume breakpoint, remove all other breakpoints,
and continue. The "remove all other breakpoints" part is required
if we are also stepping over another breakpoint as well as doing
the longjmp handling. */
BPSTAT_WHAT_SET_LONGJMP_RESUME,
/* Clear longjmp_resume breakpoint, then handle as
BPSTAT_WHAT_KEEP_CHECKING. */
BPSTAT_WHAT_CLEAR_LONGJMP_RESUME,
/* Clear longjmp_resume breakpoint, then handle as BPSTAT_WHAT_SINGLE. */
BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE,
/* This is just used to keep track of how many enums there are. */
BPSTAT_WHAT_LAST
};
/* Tell what to do about this bpstat. */
enum bpstat_what bpstat_what PARAMS ((bpstat));
/* Find the bpstat associated with a breakpoint. NULL otherwise. */
bpstat bpstat_find_breakpoint PARAMS ((bpstat, struct breakpoint *));
/* Nonzero if a signal that we got in wait() was due to circumstances
explained by the BS. */
/* Currently that is true if we have hit a breakpoint, or if there is
a watchpoint enabled. */
#define bpstat_explains_signal(bs) ((bs) != NULL)
/* Nonzero if we should step constantly (e.g. watchpoints on machines
without hardware support). This isn't related to a specific bpstat,
just to things like whether watchpoints are set. */
extern int bpstat_should_step PARAMS ((void));
/* Print a message indicating what happened. Returns nonzero to
say that only the source line should be printed after this (zero
return means print the frame as well as the source line). */
extern int bpstat_print PARAMS ((bpstat));
/* Return the breakpoint number of the first breakpoint we are stopped
at. *BSP upon return is a bpstat which points to the remaining
breakpoints stopped at (but which is not guaranteed to be good for
anything but further calls to bpstat_num).
Return 0 if passed a bpstat which does not indicate any breakpoints. */
extern int bpstat_num PARAMS ((bpstat *));
/* Perform actions associated with having stopped at *BSP. */
extern void bpstat_do_actions PARAMS ((bpstat *));
/* Modify BS so that the actions will not be performed. */
extern void bpstat_clear_actions PARAMS ((bpstat));
/* Implementation: */
struct bpstat
{
/* Linked list because there can be two breakpoints at the
same place, and a bpstat reflects the fact that both have been hit. */
bpstat next;
/* Breakpoint that we are at. */
struct breakpoint *breakpoint_at;
/* Commands left to be done. */
struct command_line *commands;
/* Old value associated with a watchpoint. */
value old_val;
/* Nonzero if this breakpoint tells us to print the frame. */
char print;
/* Nonzero if this breakpoint tells us to stop. */
char stop;
/* Function called by bpstat_print to print stuff associated with
this element of the bpstat chain. Returns 0 or 1 just like
bpstat_print, or -1 if it can't deal with it. */
int (*print_it) PARAMS((bpstat bs));
};
/* Type of breakpoint. */
/* FIXME In the future, we should fold all other breakpoint-like things into
here. This includes:
1) single-step (for machines where we have to simulate single stepping),
2) step-resume (for 'next'ing over subroutine calls),
3) call-dummy (the breakpoint at the end of a subroutine stub that gdb
uses to call functions in the target).
* call-dummy (the breakpoint at the end of a subroutine stub that gdb
uses to call functions in the target) (definately).
I definately agree with (2) and (3); I'm not as sure about (1)
(it is a low-level thing, perhaps the best thing is that it looks
as much as possible like a single-step to wait_for_inferior)
-kingdon, 8 Apr 93.
*/
* single-step (for machines where we have to simulate single stepping)
(probably, though perhaps it is better for it to look as much as
possible like a single-step to wait_for_inferior). */
enum bptype {
bp_breakpoint, /* Normal breakpoint */
@ -171,7 +46,14 @@ enum bptype {
bp_finish, /* used by finish command */
bp_watchpoint, /* Watchpoint */
bp_longjmp, /* secret breakpoint to find longjmp() */
bp_longjmp_resume /* secret breakpoint to escape longjmp() */
bp_longjmp_resume, /* secret breakpoint to escape longjmp() */
/* Used by wait_for_inferior for stepping over subroutine calls, for
stepping over signal handlers, and for skipping prologues. */
bp_step_resume,
/* The breakpoint at the end of a call dummy. */
bp_call_dummy
};
/* States of enablement of breakpoint. */
@ -205,14 +87,20 @@ struct breakpoint
enum bpdisp disposition;
/* Number assigned to distinguish breakpoints. */
int number;
/* Address to break at, or NULL if not a breakpoint. */
CORE_ADDR address;
/* Line number of this address. Redundant. Only matters if address
is non-NULL. */
/* Line number of this address. Only matters if address is
non-NULL. */
int line_number;
/* Symtab of file of this address. Redundant. Only matters if address
is non-NULL. */
struct symtab *symtab;
/* Source file name of this address. Only matters if address is
non-NULL. */
char *source_file;
/* Non-zero means a silent breakpoint (don't print frame info
if we stop here). */
unsigned char silent;
@ -256,6 +144,148 @@ struct breakpoint
value val;
};
/* The following stuff is an abstract data type "bpstat" ("breakpoint status").
This provides the ability to determine whether we have stopped at a
breakpoint, and what we should do about it. */
typedef struct bpstat *bpstat;
/* Interface: */
/* Clear a bpstat so that it says we are not at any breakpoint.
Also free any storage that is part of a bpstat. */
extern void bpstat_clear PARAMS ((bpstat *));
/* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
is part of the bpstat is copied as well. */
extern bpstat bpstat_copy PARAMS ((bpstat));
/* Get a bpstat associated with having just stopped at address *PC
and frame address FRAME_ADDRESS. Update *PC to point at the
breakpoint (if we hit a breakpoint). */
/* FIXME: prototypes uses equivalence between FRAME_ADDR and CORE_ADDR */
extern bpstat bpstat_stop_status PARAMS ((CORE_ADDR *, CORE_ADDR));
/* This bpstat_what stuff tells wait_for_inferior what to do with a
breakpoint (a challenging task). */
enum bpstat_what_main_action {
/* Perform various other tests; that is, this bpstat does not
say to perform any action (e.g. failed watchpoint and nothing
else). */
BPSTAT_WHAT_KEEP_CHECKING,
/* Rather than distinguish between noisy and silent stops here, it
might be cleaner to have bpstat_print make that decision (also
taking into account stop_print_frame and source_only). But the
implications are a bit scary (interaction with auto-displays, etc.),
so I won't try it. */
/* Stop silently. */
BPSTAT_WHAT_STOP_SILENT,
/* Stop and print. */
BPSTAT_WHAT_STOP_NOISY,
/* Remove breakpoints, single step once, then put them back in and
go back to what we were doing. It's possible that this should be
removed from the main_action and put into a separate field, to more
cleanly handle BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE. */
BPSTAT_WHAT_SINGLE,
/* Set longjmp_resume breakpoint, remove all other breakpoints,
and continue. The "remove all other breakpoints" part is required
if we are also stepping over another breakpoint as well as doing
the longjmp handling. */
BPSTAT_WHAT_SET_LONGJMP_RESUME,
/* Clear longjmp_resume breakpoint, then handle as
BPSTAT_WHAT_KEEP_CHECKING. */
BPSTAT_WHAT_CLEAR_LONGJMP_RESUME,
/* Clear longjmp_resume breakpoint, then handle as BPSTAT_WHAT_SINGLE. */
BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE,
/* This is just used to keep track of how many enums there are. */
BPSTAT_WHAT_LAST
};
struct bpstat_what {
enum bpstat_what_main_action main_action : 4;
/* Did we hit the step resume breakpoint? This is separate from the
main_action to allow for it to be combined with any of the main
actions. */
unsigned int step_resume : 1;
/* Did we hit a call dummy breakpoint? This only goes with a main_action
of BPSTAT_WHAT_STOP_SILENT or BPSTAT_WHAT_STOP_NOISY (the concept of
continuing from a call dummy without popping the frame is not a
useful one). */
unsigned int call_dummy : 1;
};
/* Tell what to do about this bpstat. */
struct bpstat_what bpstat_what PARAMS ((bpstat));
/* Find the bpstat associated with a breakpoint. NULL otherwise. */
bpstat bpstat_find_breakpoint PARAMS ((bpstat, struct breakpoint *));
/* Nonzero if a signal that we got in wait() was due to circumstances
explained by the BS. */
/* Currently that is true if we have hit a breakpoint, or if there is
a watchpoint enabled. */
#define bpstat_explains_signal(bs) ((bs) != NULL)
/* Nonzero if we should step constantly (e.g. watchpoints on machines
without hardware support). This isn't related to a specific bpstat,
just to things like whether watchpoints are set. */
extern int bpstat_should_step PARAMS ((void));
/* Print a message indicating what happened. Returns nonzero to
say that only the source line should be printed after this (zero
return means print the frame as well as the source line). */
extern int bpstat_print PARAMS ((bpstat));
/* Return the breakpoint number of the first breakpoint we are stopped
at. *BSP upon return is a bpstat which points to the remaining
breakpoints stopped at (but which is not guaranteed to be good for
anything but further calls to bpstat_num).
Return 0 if passed a bpstat which does not indicate any breakpoints. */
extern int bpstat_num PARAMS ((bpstat *));
/* Perform actions associated with having stopped at *BSP. Actually, we just
use this for breakpoint commands. Perhaps other actions will go here
later, but this is executed at a late time (from the command loop). */
extern void bpstat_do_actions PARAMS ((bpstat *));
/* Modify BS so that the actions will not be performed. */
extern void bpstat_clear_actions PARAMS ((bpstat));
/* Implementation: */
struct bpstat
{
/* Linked list because there can be two breakpoints at the
same place, and a bpstat reflects the fact that both have been hit. */
bpstat next;
/* Breakpoint that we are at. */
struct breakpoint *breakpoint_at;
/* Commands left to be done. */
struct command_line *commands;
/* Old value associated with a watchpoint. */
value old_val;
/* Nonzero if this breakpoint tells us to print the frame. */
char print;
/* Nonzero if this breakpoint tells us to stop. */
char stop;
/* Function called by bpstat_print to print stuff associated with
this element of the bpstat chain. Returns 0 or 1 just like
bpstat_print, or -1 if it can't deal with it. */
int (*print_it) PARAMS((bpstat bs));
};
/* Prototypes for breakpoint-related functions. */
#ifdef __STDC__ /* Forward declarations for prototypes */

View File

@ -554,6 +554,8 @@ arguments. */
#define CALL_DUMMY_START_OFFSET 148
#define CALL_DUMMY_BREAKPOINT_OFFSET (CALL_DUMMY_START_OFFSET + (8 * 4))
#define CALL_DUMMY_STACK_ADJUST 68
/* Insert the specified number of args and function address

View File

@ -180,7 +180,7 @@ discard_cleanups PARAMS ((struct cleanup *));
Should be, once all calls and called-functions are cleaned up:
extern struct cleanup *
make_cleanup PARAMS ((void (*function) (PTR), PTR));
make_cleanup PARAMS ((void (*function) (void *), void *));
Until then, lint and/or various type-checking compiler options will
complain about make_cleanup calls. It'd be wrong to just cast things,

View File

@ -497,6 +497,15 @@ signal_command (signum_exp, from_tty)
proceed (stop_pc, signum, 0);
}
/* Call breakpoint_auto_delete on the current contents of the bpstat
pointed to by arg (which is really a bpstat *). */
void
breakpoint_auto_delete_contents (arg)
PTR arg;
{
breakpoint_auto_delete (*(bpstat *)arg);
}
/* Execute a "stack dummy", a piece of code stored in the stack
by the debugger to be executed in the inferior.
@ -522,6 +531,8 @@ run_stack_dummy (addr, buffer)
CORE_ADDR addr;
char buffer[REGISTER_BYTES];
{
struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
/* Now proceed, having reached the desired place. */
clear_proceed_status ();
if (stack_dummy_testing & 4)
@ -529,9 +540,38 @@ run_stack_dummy (addr, buffer)
POP_FRAME;
return(0);
}
#ifdef CALL_DUMMY_BREAKPOINT_OFFSET
{
struct breakpoint *bpt;
struct symtab_and_line sal;
sal.pc = addr - CALL_DUMMY_START_OFFSET + CALL_DUMMY_BREAKPOINT_OFFSET;
sal.symtab = NULL;
sal.line = 0;
/* If defined, CALL_DUMMY_BREAKPOINT_OFFSET is where we need to put
a breakpoint instruction. If not, the call dummy already has the
breakpoint instruction in it.
addr is the address of the call dummy plus the CALL_DUMMY_START_OFFSET,
so we need to subtract the CALL_DUMMY_START_OFFSET. */
bpt = set_momentary_breakpoint (sal,
NULL,
bp_call_dummy);
bpt->disposition = delete;
/* If all error()s out of proceed ended up calling normal_stop (and
perhaps they should; it already does in the special case of error
out of resume()), then we wouldn't need this. */
make_cleanup (breakpoint_auto_delete_contents, &stop_bpstat);
}
#endif /* CALL_DUMMY_BREAKPOINT_OFFSET. */
proceed_to_finish = 1; /* We want stop_registers, please... */
proceed (addr, 0, 0);
discard_cleanups (old_cleanups);
if (!stop_stack_dummy)
return 1;

View File

@ -721,7 +721,9 @@ wait_for_inferior ()
random_signal
= !(bpstat_explains_signal (stop_bpstat)
|| trap_expected
#ifndef CALL_DUMMY_BREAKPOINT_OFFSET
|| PC_IN_CALL_DUMMY (stop_pc, stop_sp, stop_frame_address)
#endif /* No CALL_DUMMY_BREAKPOINT_OFFSET. */
|| (step_range_end && step_resume_breakpoint == NULL));
else
{
@ -730,7 +732,9 @@ wait_for_inferior ()
/* End of a stack dummy. Some systems (e.g. Sony
news) give another signal besides SIGTRAP,
so check here as well as above. */
#ifndef CALL_DUMMY_BREAKPOINT_OFFSET
|| PC_IN_CALL_DUMMY (stop_pc, stop_sp, stop_frame_address)
#endif /* No CALL_DUMMY_BREAKPOINT_OFFSET. */
);
if (!random_signal)
stop_signal = SIGTRAP;
@ -793,6 +797,14 @@ wait_for_inferior ()
what = bpstat_what (stop_bpstat);
if (what.call_dummy)
{
stop_stack_dummy = 1;
#ifdef HP_OS_BUG
trap_expected_after_continue = 1;
#endif
}
switch (what.main_action)
{
case BPSTAT_WHAT_SET_LONGJMP_RESUME:
@ -887,6 +899,12 @@ wait_for_inferior ()
test for stepping. But, if not stepping,
do not stop. */
#ifndef CALL_DUMMY_BREAKPOINT_OFFSET
/* This is the old way of detecting the end of the stack dummy.
An architecture which defines CALL_DUMMY_BREAKPOINT_OFFSET gets
handled above. As soon as we can test it on all of them, all
architectures should define it. */
/* If this is the breakpoint at the end of a stack dummy,
just stop silently, unless the user was doing an si/ni, in which
case she'd better know what she's doing. */
@ -901,7 +919,8 @@ wait_for_inferior ()
#endif
break;
}
#endif /* No CALL_DUMMY_BREAKPOINT_OFFSET. */
if (step_resume_breakpoint)
/* Having a step-resume breakpoint overrides anything
else having to do with stepping commands until
@ -1081,8 +1100,7 @@ step_into_function:
since on some machines the prologue
is where the new fp value is established. */
step_resume_breakpoint =
set_momentary_breakpoint (sr_sal, (CORE_ADDR)0,
bp_step_resume);
set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
if (breakpoints_inserted)
insert_breakpoints ();