gdb/riscv: Fix failures on rv64 in gdb.arch/riscv-reg-aliases.exp test

The gdb.arch/riscv-reg-aliases.exp test didn't take into account that
on RV64 (and RV128) the floating point registers are represented as a
union.  This patch updates the test to handle this.

Tested against RV32 and RV64.

gdb/testsuite/ChangeLog:

	* gdb.arch/riscv-reg-aliases.exp: Rewrite to take account of float
	registers being unions.
This commit is contained in:
Andrew Burgess 2018-10-27 10:34:04 +01:00
parent 68b9ac18cf
commit 92dcebf3fa
2 changed files with 120 additions and 65 deletions

View File

@ -1,3 +1,8 @@
2018-10-31 Andrew Burgess <andrew.burgess@embecosm.com>
* gdb.arch/riscv-reg-aliases.exp: Rewrite to take account of float
registers being unions.
2018-10-31 Tom de Vries <tdevries@suse.de>
* lib/valgrind.exp: New file.

View File

@ -29,32 +29,108 @@ if ![runto_main] then {
return 0
}
# A list, each entry is itself a list, the first item being the
# primary name of a register (the name GDB uses by default), and the
# second entry being a list of register aliases.
set register_names \
# A list for all the integer register names and their aliases. The format is
# a list with each entry being itself a list, the first item being the primary
# name of a register (the name GDB uses by default), and the second entry
# being a list of register aliases.
set xreg_names \
{ { ra {x1} } { sp {x2} } { gp {x3} } { tp {x4} } { t0 {x5} } \
{ t1 {x6} } { t2 {x7} } { fp {x8 s0} } { s1 {x9} } { a0 {x10} } \
{ a1 {x11} } { a2 {x12} } { a3 {x13} } { a4 {x14} } { a5 {x15} } \
{ a6 {x16} } { a7 {x17} } { s2 {x18} } { s3 {x19} } { s4 {x20} } \
{ s5 {x21} } { s6 {x22} } { s7 {x23} } { s8 {x24} } { s9 {x25} } \
{ s10 {x26} } { s11 {x27} } { t3 {x28} } { t4 {x29} } { t5 {x30} } \
{ t6 {x31} } { ft0 {f0} } { ft1 {f1} } { ft2 {f2} } { ft3 {f3} } \
{ ft4 {f4} } { ft5 {f5} } { ft6 {f6} } { ft7 {f7} } { fs0 {f8} } \
{ fs1 {f9} } { fa0 {f10} } { fa1 {f11} } { fa2 {f12} } { fa3 {f13} } \
{ fa4 {f14} } { fa5 {f15} } { fa6 {f16} } { fa7 {f17} } { fs2 {f18} } \
{ fs3 {f19} } { fs4 {f20} } { fs5 {f21} } { fs6 {f22} } { fs7 {f23} } \
{ fs8 {f24} } { fs9 {f25} } { fs10 {f26} } { fs11 {f27} } { ft8 {f28} } \
{ ft9 {f29} } { ft10 {f30} } { ft11 {f31} } }
{ t6 {x31} } }
# This is just like XREG_NAMES, except it contains all the floating point
# register names and their aliases.
set freg_names \
{ { ft0 {f0} } { ft1 {f1} } { ft2 {f2} } { ft3 {f3} } { ft4 {f4} } \
{ ft5 {f5} } { ft6 {f6} } { ft7 {f7} } { fs0 {f8} } { fs1 {f9} } \
{ fa0 {f10} } { fa1 {f11} } { fa2 {f12} } { fa3 {f13} } { fa4 {f14} } \
{ fa5 {f15} } { fa6 {f16} } { fa7 {f17} } { fs2 {f18} } { fs3 {f19} } \
{ fs4 {f20} } { fs5 {f21} } { fs6 {f22} } { fs7 {f23} } { fs8 {f24} } \
{ fs9 {f25} } { fs10 {f26} } { fs11 {f27} } { ft8 {f28} } { ft9 {f29} } \
{ ft10 {f30} } { ft11 {f31} } }
# Check that the zero register (and its x0 alias) both contain the
# value 0.
proc check_zero_register_value {testname} {
gdb_test "p/d \$zero" " = 0" "check \$zero: ${testname}"
gdb_test "p/d \$x0" " = 0" "check \$x0: ${testname}"
}
# Set all of the registers in REG_SET to zero. Confirm that the value of zero
# can be read back using the primary name, and from all of the alias names.
#
# For some architectures (RV64, RV128) the float registers have union type,
# and we need to read/write using a ".float" extension. This is passed in
# REG_EXTENSION. If no extension is needed then REG_EXTENSION is the empty
# string.
proc check_setting_registers_to_zero { reg_set reg_extension } {
foreach reg_desc ${reg_set} {
set primary_name [lindex ${reg_desc} 0]
set alias_names [lindex ${reg_desc} 1]
gdb_test_no_output "set \$${primary_name}${reg_extension} = 0" \
"set register ${primary_name} to an initial value of zero"
gdb_test "p/d \$${primary_name}${reg_extension}" " = 0" \
"check the initial value of ${primary_name} is now zero"
foreach reg_alias ${alias_names} {
gdb_test "p/d \$${reg_alias}${reg_extension}" " = 0" \
"check the initial value of ${reg_alias} is now zero"
}
}
}
# Set all of the registers in REG_SET to a new value (the value starts at
# REG_VALUE and is incremented after each test). Then confirm that the new
# value can be read back using the primary name, and from all of the alias
# names.
#
# Next, set each register in REG_SET using each of its alias names, then
# confirm that the value can be read back using both the primary name, and all
# of the aliases.
#
# The REG_EXTENSION field is used as in CHECK_SETTING_REGISTERS_TO_ZERO.
proc check_setting_registers_to_value { reg_set reg_extension reg_value } {
foreach reg_desc ${reg_set} {
set primary_name [lindex ${reg_desc} 0]
set alias_names [lindex ${reg_desc} 1]
# Set value through the primary register name, and check that all
# the aliases see the same value.
set reg_value [incr reg_value]
gdb_test_no_output "set \$${primary_name}${reg_extension} = $reg_value" \
"write non-zero value to ${primary_name}"
gdb_test "p/d \$${primary_name}${reg_extension}" " = $reg_value" \
"read ${primary_name} after non-zero write to ${primary_name}"
foreach reg_alias ${alias_names} {
gdb_test "p/d \$${reg_alias}${reg_extension}" " = $reg_value" \
"read ${reg_alias} after non-zero write to ${primary_name}"
}
# For each alias, set a new value, and check that the primary
# register name, and all the other aliases, see the new value.
foreach reg_alias ${alias_names} {
set reg_value [incr reg_value]
gdb_test_no_output "set \$${reg_alias}${reg_extension} = $reg_value" \
"write non-zero value to ${reg_alias}"
gdb_test "p/d \$${primary_name}${reg_extension}" " = $reg_value" \
"read ${primary_name} after non-zero write to ${reg_alias}"
foreach other_reg_alias ${alias_names} {
gdb_test "p/d \$${other_reg_alias}${reg_extension}" " = $reg_value" \
"read ${other_reg_alias} after non-zero write to ${reg_alias}"
}
}
}
}
# First, some testing of the zero register. This register should
# always read as zero, and should swallow any attempt to write a
# non-zero value to the register.
@ -71,60 +147,34 @@ gdb_test_no_output "set \$x0 = 123" \
check_zero_register_value "after write to \$x0"
# Set all of the general registers to zero. Confirm that the value of
# zero can be read back from the primary name, and from all of the
# alias names.
foreach reg_desc ${register_names} {
set primary_name [lindex ${reg_desc} 0]
set alias_names [lindex ${reg_desc} 1]
gdb_test_no_output "set \$${primary_name} = 0" \
"set register ${primary_name} to an initial value of zero"
gdb_test "p/d \$${primary_name}" " = 0" \
"check the initial value of ${primary_name} is now zero"
foreach reg_alias ${alias_names} {
gdb_test "p/d \$${reg_alias}" " = 0" \
"check the initial value of ${reg_alias} is now zero"
# Some RISC-V variants model the fregs as a union (RV64, RV128). In this case
# we should access the register using 'REG_NAME.float'. In the following we
# figure out if the field name is needed or not by looking at how GDB prints
# on register.
set freg_extension "INVALID"
set message "check format of float registers"
gdb_test_multiple "p \$ft0" $message {
-re " = {float = \[^\r\n\]+}\r\n$gdb_prompt $" {
set freg_extension ".float"
pass $message
}
-re " = \[^{}\r\n\]+\r\n$gdb_prompt $" {
set freg_extension ""
pass $message
}
}
gdb_assert ![string eq "${freg_extension}" "INVALID"] \
"check that floating point format has been understood"
# Set each register in turn to a new value, and confirm that the new
# value can be read back from the primary name, and from all of the
# alias names.
# Now check that we can write zero, and read zero back to all of the integer
# and floating point registers.
check_setting_registers_to_zero ${xreg_names} ""
check_setting_registers_to_zero ${freg_names} ${freg_extension}
set reg_value 100
foreach reg_desc ${register_names} {
set primary_name [lindex ${reg_desc} 0]
set alias_names [lindex ${reg_desc} 1]
# Set value through the primary register name, and check that all
# the aliases see the same value.
set reg_value [incr reg_value]
gdb_test_no_output "set \$${primary_name} = $reg_value" \
"write non-zero value to ${primary_name}"
gdb_test "p/d \$${primary_name}" " = $reg_value" \
"read ${primary_name} after non-zero write to ${primary_name}"
foreach reg_alias ${alias_names} {
gdb_test "p/d \$${reg_alias}" " = $reg_value" \
"read ${reg_alias} after non-zero write to ${primary_name}"
}
# For each alias, set a new value, and check that the primary
# register name, and all the other aliases, see the new value.
foreach reg_alias ${alias_names} {
set reg_value [incr reg_value]
gdb_test_no_output "set \$${reg_alias} = $reg_value" \
"write non-zero value to ${reg_alias}"
gdb_test "p/d \$${primary_name}" " = $reg_value" \
"read ${primary_name} after non-zero write to ${reg_alias}"
foreach other_reg_alias ${alias_names} {
gdb_test "p/d \$${other_reg_alias}" " = $reg_value" \
"read ${other_reg_alias} after non-zero write to ${reg_alias}"
}
}
}
# Set each register in turn to a new value, and confirm that the new value can
# be read back from the primary name, and from all of the alias names. The
# value passed in to each test invocation here is arbitrary, they are
# significantly different so that the float tests don't reuse value from the
# integer tests.
check_setting_registers_to_value ${xreg_names} "" 100
check_setting_registers_to_value ${freg_names} ${freg_extension} 500