* gdbarch.sh: Remove "macro" column of input table. Remove handling

of "macro" column throughout the file.  Remove (empty) "macro" entry
	of all gdbarch functions.
This commit is contained in:
Ulrich Weigand 2007-10-19 12:34:38 +00:00
parent 203c3895a5
commit 97030eea00
2 changed files with 111 additions and 223 deletions

View File

@ -1,3 +1,9 @@
2007-10-19 Ulrich Weigand <uweigand@de.ibm.com>
* gdbarch.sh: Remove "macro" column of input table. Remove handling
of "macro" column throughout the file. Remove (empty) "macro" entry
of all gdbarch functions.
2007-10-19 Ulrich Weigand <uweigand@de.ibm.com>
* gdbarch.sh (sofun_address_maybe_missing): New gdbarch variable.

View File

@ -42,7 +42,7 @@ compare_new ()
# Format of the input table
read="class macro returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
do_read ()
{
@ -90,29 +90,6 @@ EOF
fi
done
FUNCTION=`echo ${function} | tr '[a-z]' '[A-Z]'`
if test "x${macro}" = "x="
then
# Provide a UCASE version of function (for when there isn't MACRO)
macro="${FUNCTION}"
elif test "${macro}" = "${FUNCTION}"
then
echo "${function}: Specify = for macro field" 1>&2
kill $$
exit 1
fi
# Check that macro definition wasn't supplied for multi-arch
case "${class}" in
[mM] )
if test "${macro}" != ""
then
echo "Error: Function ${function} multi-arch yet macro ${macro} supplied" 1>&2
kill $$
exit 1
fi
esac
case "${class}" in
m ) staticdefault="${predefault}" ;;
M ) staticdefault="0" ;;
@ -245,12 +222,6 @@ do
# M -> multi-arch function + predicate
# hiding a multi-arch function + predicate to test function validity
macro ) : ;;
# The name of the legacy C macro by which this method can be
# accessed. If empty, no macro is defined. If "=", a macro
# formed from the upper-case function name is used.
returntype ) : ;;
# For functions, the return type; for variables, the data type
@ -365,26 +336,26 @@ function_list ()
{
# See below (DOCO) for description of each field
cat <<EOF
i::const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (current_gdbarch)->printable_name
i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (current_gdbarch)->printable_name
#
i::int:byte_order:::BFD_ENDIAN_BIG
i:int:byte_order:::BFD_ENDIAN_BIG
#
i::enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
#
i::const struct target_desc *:target_desc:::::::paddr_d ((long) current_gdbarch->target_desc)
i:const struct target_desc *:target_desc:::::::paddr_d ((long) current_gdbarch->target_desc)
# Number of bits in a char or unsigned char for the target machine.
# Just like CHAR_BIT in <limits.h> but describes the target machine.
# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
#
# Number of bits in a short or unsigned short for the target machine.
v::int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
# Number of bits in an int or unsigned int for the target machine.
v::int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
# Number of bits in a long or unsigned long for the target machine.
v::int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
# Number of bits in a long long or unsigned long long for the target
# machine.
v::int:long_long_bit:::8 * sizeof (LONGEST):2*current_gdbarch->long_bit::0
v:int:long_long_bit:::8 * sizeof (LONGEST):2*current_gdbarch->long_bit::0
# The ABI default bit-size and format for "float", "double", and "long
# double". These bit/format pairs should eventually be combined into
@ -392,12 +363,12 @@ v::int:long_long_bit:::8 * sizeof (LONGEST):2*current_gdbarch->long_bit::0
# Each format describes both the big and little endian layouts (if
# useful).
v::int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
v::const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (current_gdbarch->float_format)
v::int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
v::const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (current_gdbarch->double_format)
v::int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
v::const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (current_gdbarch->long_double_format)
v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (current_gdbarch->float_format)
v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (current_gdbarch->double_format)
v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (current_gdbarch->long_double_format)
# For most targets, a pointer on the target and its representation as an
# address in GDB have the same size and "look the same". For such a
@ -409,104 +380,104 @@ v::const struct floatformat **:long_double_format:::::floatformats_ieee_double::
# as well.
#
# ptr_bit is the size of a pointer on the target
v::int:ptr_bit:::8 * sizeof (void*):current_gdbarch->int_bit::0
v:int:ptr_bit:::8 * sizeof (void*):current_gdbarch->int_bit::0
# addr_bit is the size of a target address as represented in gdb
v::int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (current_gdbarch):
v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (current_gdbarch):
#
# One if \`char' acts like \`signed char', zero if \`unsigned char'.
v::int:char_signed:::1:-1:1
v:int:char_signed:::1:-1:1
#
F::CORE_ADDR:read_pc:struct regcache *regcache:regcache
F::void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
# Function for getting target's idea of a frame pointer. FIXME: GDB's
# whole scheme for dealing with "frames" and "frame pointers" needs a
# serious shakedown.
f::void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
f:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
#
M::void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
M::void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
#
v::int:num_regs:::0:-1
v:int:num_regs:::0:-1
# This macro gives the number of pseudo-registers that live in the
# register namespace but do not get fetched or stored on the target.
# These pseudo-registers may be aliases for other registers,
# combinations of other registers, or they may be computed by GDB.
v::int:num_pseudo_regs:::0:0::0
v:int:num_pseudo_regs:::0:0::0
# GDB's standard (or well known) register numbers. These can map onto
# a real register or a pseudo (computed) register or not be defined at
# all (-1).
# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
v::int:sp_regnum:::-1:-1::0
v::int:pc_regnum:::-1:-1::0
v::int:ps_regnum:::-1:-1::0
v::int:fp0_regnum:::0:-1::0
v:int:sp_regnum:::-1:-1::0
v:int:pc_regnum:::-1:-1::0
v:int:ps_regnum:::-1:-1::0
v:int:fp0_regnum:::0:-1::0
# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
f::int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
f:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
# Provide a default mapping from a ecoff register number to a gdb REGNUM.
f::int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
f:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
# Provide a default mapping from a DWARF register number to a gdb REGNUM.
f::int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0
f:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0
# Convert from an sdb register number to an internal gdb register number.
f::int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
f::int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
f::const char *:register_name:int regnr:regnr
f:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
f:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
f:const char *:register_name:int regnr:regnr
# Return the type of a register specified by the architecture. Only
# the register cache should call this function directly; others should
# use "register_type".
M::struct type *:register_type:int reg_nr:reg_nr
M:struct type *:register_type:int reg_nr:reg_nr
# See gdbint.texinfo, and PUSH_DUMMY_CALL.
M::struct frame_id:unwind_dummy_id:struct frame_info *info:info
M:struct frame_id:unwind_dummy_id:struct frame_info *info:info
# Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
# deprecated_fp_regnum.
v::int:deprecated_fp_regnum:::-1:-1::0
v:int:deprecated_fp_regnum:::-1:-1::0
# See gdbint.texinfo. See infcall.c.
M::CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
v::int:call_dummy_location::::AT_ENTRY_POINT::0
M::CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
v:int:call_dummy_location::::AT_ENTRY_POINT::0
M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
m::void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
M::void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
M::void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
# MAP a GDB RAW register number onto a simulator register number. See
# also include/...-sim.h.
f::int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
f::int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
f::int:cannot_store_register:int regnum:regnum::cannot_register_not::0
f:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
f:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
f:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
# setjmp/longjmp support.
F::int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
#
v::int:believe_pcc_promotion:::::::
v:int:believe_pcc_promotion:::::::
#
f::int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
f::void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
f::void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
f:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
# Construct a value representing the contents of register REGNUM in
# frame FRAME, interpreted as type TYPE. The routine needs to
# allocate and return a struct value with all value attributes
# (but not the value contents) filled in.
f::struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
#
f::CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
f::void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
M::CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
f:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
f:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
# It has been suggested that this, well actually its predecessor,
# should take the type/value of the function to be called and not the
# return type. This is left as an exercise for the reader.
M::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:valtype, regcache, readbuf, writebuf
M:enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:valtype, regcache, readbuf, writebuf
f::CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
f::int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
f::const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
M::CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
f::int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
f::int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
v::CORE_ADDR:decr_pc_after_break:::0:::0
f:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
f:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
f:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
f:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
v:CORE_ADDR:decr_pc_after_break:::0:::0
# A function can be addressed by either it's "pointer" (possibly a
# descriptor address) or "entry point" (first executable instruction).
@ -516,27 +487,27 @@ v::CORE_ADDR:decr_pc_after_break:::0:::0
# corresponds to the "function pointer" and the function's start
# corresponds to the "function entry point" - and hence is redundant.
v::CORE_ADDR:deprecated_function_start_offset:::0:::0
v:CORE_ADDR:deprecated_function_start_offset:::0:::0
# Return the remote protocol register number associated with this
# register. Normally the identity mapping.
m::int:remote_register_number:int regno:regno::default_remote_register_number::0
m:int:remote_register_number:int regno:regno::default_remote_register_number::0
# Fetch the target specific address used to represent a load module.
F::CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
#
v::CORE_ADDR:frame_args_skip:::0:::0
M::CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
M::CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
v:CORE_ADDR:frame_args_skip:::0:::0
M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
# frame-base. Enable frame-base before frame-unwind.
F::int:frame_num_args:struct frame_info *frame:frame
F:int:frame_num_args:struct frame_info *frame:frame
#
M::CORE_ADDR:frame_align:CORE_ADDR address:address
m::int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
v::int:frame_red_zone_size
M:CORE_ADDR:frame_align:CORE_ADDR address:address
m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
v:int:frame_red_zone_size
#
m::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
# On some machines there are bits in addresses which are not really
# part of the address, but are used by the kernel, the hardware, etc.
# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
@ -546,10 +517,10 @@ m::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:
# being a few stray bits in the PC which would mislead us, not as some
# sort of generic thing to handle alignment or segmentation (it's
# possible it should be in TARGET_READ_PC instead).
f::CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
f:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
# It is not at all clear why gdbarch_smash_text_address is not folded into
# gdbarch_addr_bits_remove.
f::CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
f:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
# FIXME/cagney/2001-01-18: This should be split in two. A target method that
# indicates if the target needs software single step. An ISA method to
@ -564,23 +535,23 @@ f::CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
#
# A return value of 1 means that the software_single_step breakpoints
# were inserted; 0 means they were not.
F::int:software_single_step:struct frame_info *frame:frame
F:int:software_single_step:struct frame_info *frame:frame
# Return non-zero if the processor is executing a delay slot and a
# further single-step is needed before the instruction finishes.
M::int:single_step_through_delay:struct frame_info *frame:frame
M:int:single_step_through_delay:struct frame_info *frame:frame
# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
# disassembler. Perhaps objdump can handle it?
f::int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
f::CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
# If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
# evaluates non-zero, this is the address where the debugger will place
# a step-resume breakpoint to get us past the dynamic linker.
m::CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
# Some systems also have trampoline code for returning from shared libs.
f::int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
f:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
# A target might have problems with watchpoints as soon as the stack
# frame of the current function has been destroyed. This mostly happens
@ -591,7 +562,7 @@ f::int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_
# already been invalidated regardless of the value of addr. Targets
# which don't suffer from that problem could just let this functionality
# untouched.
m::int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
# Given a vector of command-line arguments, return a newly allocated
# string which, when passed to the create_inferior function, will be
# parsed (on Unix systems, by the shell) to yield the same vector.
@ -600,49 +571,49 @@ m::int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue
# command-line arguments.
# ARGC is the number of elements in the vector.
# ARGV is an array of strings, one per argument.
m::char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
f::void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
f::void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
v::const char *:name_of_malloc:::"malloc":"malloc"::0:current_gdbarch->name_of_malloc
v::int:cannot_step_breakpoint:::0:0::0
v::int:have_nonsteppable_watchpoint:::0:0::0
F::int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
M::const char *:address_class_type_flags_to_name:int type_flags:type_flags
M::int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
m:char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
v:const char *:name_of_malloc:::"malloc":"malloc"::0:current_gdbarch->name_of_malloc
v:int:cannot_step_breakpoint:::0:0::0
v:int:have_nonsteppable_watchpoint:::0:0::0
F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
# Is a register in a group
m::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
# Fetch the pointer to the ith function argument.
F::CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
# Return the appropriate register set for a core file section with
# name SECT_NAME and size SECT_SIZE.
M::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
# core file into buffer READBUF with length LEN.
M::LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
# If the elements of C++ vtables are in-place function descriptors rather
# than normal function pointers (which may point to code or a descriptor),
# set this to one.
v::int:vtable_function_descriptors:::0:0::0
v:int:vtable_function_descriptors:::0:0::0
# Set if the least significant bit of the delta is used instead of the least
# significant bit of the pfn for pointers to virtual member functions.
v::int:vbit_in_delta:::0:0::0
v:int:vbit_in_delta:::0:0::0
# Advance PC to next instruction in order to skip a permanent breakpoint.
F::void:skip_permanent_breakpoint:struct regcache *regcache:regcache
F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
# Refresh overlay mapped state for section OSECT.
F::void:overlay_update:struct obj_section *osect:osect
F:void:overlay_update:struct obj_section *osect:osect
M::const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
# Handle special encoding of static variables in stabs debug info.
F::char *:static_transform_name:char *name:name
F:char *:static_transform_name:char *name:name
# Set if the address in N_SO or N_FUN stabs may be zero.
v::int:sofun_address_maybe_missing:::0:0::0
v:int:sofun_address_maybe_missing:::0:0::0
EOF
}
@ -768,15 +739,6 @@ do
printf "\n"
printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
if test -n "${macro}"
then
printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
printf "#error \"Non multi-arch definition of ${macro}\"\n"
printf "#endif\n"
printf "#if !defined (${macro})\n"
printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
printf "#endif\n"
fi
fi
done
@ -796,42 +758,14 @@ do
if class_is_predicate_p
then
if test -n "${macro}"
then
printf "\n"
printf "#if defined (${macro})\n"
printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
printf "#if !defined (${macro}_P)\n"
printf "#define ${macro}_P() (1)\n"
printf "#endif\n"
printf "#endif\n"
fi
printf "\n"
printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
if test -n "${macro}"
then
printf "#if !defined (GDB_TM_FILE) && defined (${macro}_P)\n"
printf "#error \"Non multi-arch definition of ${macro}\"\n"
printf "#endif\n"
printf "#if !defined (${macro}_P)\n"
printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
printf "#endif\n"
fi
fi
if class_is_variable_p
then
printf "\n"
printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
if test -n "${macro}"
then
printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
printf "#error \"Non multi-arch definition of ${macro}\"\n"
printf "#endif\n"
printf "#if !defined (${macro})\n"
printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
printf "#endif\n"
fi
fi
if class_is_function_p
then
@ -852,32 +786,6 @@ do
printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
fi
printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
if test -n "${macro}"
then
printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
printf "#error \"Non multi-arch definition of ${macro}\"\n"
printf "#endif\n"
if [ "x${actual}" = "x" ]
then
d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
elif [ "x${actual}" = "x-" ]
then
d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
else
d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
fi
printf "#if !defined (${macro})\n"
if [ "x${actual}" = "x" ]
then
printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
elif [ "x${actual}" = "x-" ]
then
printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
else
printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
fi
printf "#endif\n"
fi
fi
done
@ -1478,41 +1386,15 @@ gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
"gdbarch_dump: GDB_TM_FILE = %s\\n",
gdb_tm_file);
EOF
function_list | sort -t: -k 4 | while do_read
function_list | sort -t: -k 3 | while do_read
do
# First the predicate
if class_is_predicate_p
then
if test -n "${macro}"
then
printf "#ifdef ${macro}_P\n"
printf " fprintf_unfiltered (file,\n"
printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
printf " \"${macro}_P()\",\n"
printf " XSTRING (${macro}_P ()));\n"
printf "#endif\n"
fi
printf " fprintf_unfiltered (file,\n"
printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
printf " gdbarch_${function}_p (current_gdbarch));\n"
fi
# Print the macro definition.
if test -n "${macro}"
then
printf "#ifdef ${macro}\n"
if class_is_function_p
then
printf " fprintf_unfiltered (file,\n"
printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
printf " \"${macro}(${actual})\",\n"
printf " XSTRING (${macro} (${actual})));\n"
else
printf " fprintf_unfiltered (file,\n"
printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
printf " XSTRING (${macro}));\n"
fi
printf "#endif\n"
fi
# Print the corresponding value.
if class_is_function_p
then