Move struct buildsym_compunit to buildsym.h

This moves struct buildsym_compunit to buildsym.h.  Now that the
members are private, and it no longer affects any global state in
buildsym.c, an instance can be used directly for symtab creation.

gdb/ChangeLog
2018-07-20  Tom Tromey  <tom@tromey.com>

	* buildsym.h (struct buildsym_compunit): Move from buildsym.c.
	* buildsym.c (struct buildsym_compunit): Move to buildsym.h.
	(buildsym_compunit::buildsym_compunit)
	(buildsym_compunit::~buildsym_compunit)
	(buildsym_compunit::get_macro_table): Define.
This commit is contained in:
Tom Tromey 2018-05-22 14:27:43 -06:00
parent 74c72eac23
commit ab209f6fa9
3 changed files with 365 additions and 344 deletions

View File

@ -1,3 +1,11 @@
2018-07-20 Tom Tromey <tom@tromey.com>
* buildsym.h (struct buildsym_compunit): Move from buildsym.c.
* buildsym.c (struct buildsym_compunit): Move to buildsym.h.
(buildsym_compunit::buildsym_compunit)
(buildsym_compunit::~buildsym_compunit)
(buildsym_compunit::get_macro_table): Define.
2018-07-20 Tom Tromey <tom@tromey.com>
* buildsym.c (reset_symtab_globals): Remove.

View File

@ -85,350 +85,6 @@
#include "stabsread.h"
/* Buildsym's counterpart to struct compunit_symtab. */
struct buildsym_compunit
{
/* Start recording information about a primary source file (IOW, not an
included source file).
COMP_DIR is the directory in which the compilation unit was compiled
(or NULL if not known). */
buildsym_compunit (struct objfile *objfile_, const char *name,
const char *comp_dir_, enum language language_,
CORE_ADDR last_addr)
: objfile (objfile_),
m_last_source_file (name == nullptr ? nullptr : xstrdup (name)),
comp_dir (comp_dir_ == nullptr ? nullptr : xstrdup (comp_dir_)),
language (language_),
m_last_source_start_addr (last_addr)
{
/* Allocate the compunit symtab now. The caller needs it to allocate
non-primary symtabs. It is also needed by get_macro_table. */
compunit_symtab = allocate_compunit_symtab (objfile, name);
/* Build the subfile for NAME (the main source file) so that we can record
a pointer to it for later.
IMPORTANT: Do not allocate a struct symtab for NAME here.
It can happen that the debug info provides a different path to NAME than
DIRNAME,NAME. We cope with this in watch_main_source_file_lossage but
that only works if the main_subfile doesn't have a symtab yet. */
start_subfile (name);
/* Save this so that we don't have to go looking for it at the end
of the subfiles list. */
main_subfile = m_current_subfile;
}
/* Reopen an existing compunit_symtab so that additional symbols can
be added to it. Arguments are as for the main constructor. CUST
is the expandable compunit_symtab to be reopened. */
buildsym_compunit (struct objfile *objfile_, const char *name,
const char *comp_dir_, enum language language_,
CORE_ADDR last_addr, struct compunit_symtab *cust)
: objfile (objfile_),
m_last_source_file (name == nullptr ? nullptr : xstrdup (name)),
comp_dir (comp_dir_ == nullptr ? nullptr : xstrdup (comp_dir_)),
compunit_symtab (cust),
language (language_),
m_last_source_start_addr (last_addr)
{
}
~buildsym_compunit ()
{
struct subfile *subfile, *nextsub;
if (m_pending_macros != nullptr)
free_macro_table (m_pending_macros);
for (subfile = subfiles;
subfile != NULL;
subfile = nextsub)
{
nextsub = subfile->next;
xfree (subfile->name);
xfree (subfile->line_vector);
xfree (subfile);
}
struct pending *next, *next1;
for (next = m_file_symbols; next != NULL; next = next1)
{
next1 = next->next;
xfree ((void *) next);
}
for (next = m_global_symbols; next != NULL; next = next1)
{
next1 = next->next;
xfree ((void *) next);
}
}
void set_last_source_file (const char *name)
{
char *new_name = name == NULL ? NULL : xstrdup (name);
m_last_source_file.reset (new_name);
}
const char *get_last_source_file ()
{
return m_last_source_file.get ();
}
struct macro_table *get_macro_table ()
{
if (m_pending_macros == nullptr)
m_pending_macros = new_macro_table (&objfile->per_bfd->storage_obstack,
objfile->per_bfd->macro_cache,
compunit_symtab);
return m_pending_macros;
}
struct macro_table *release_macros ()
{
struct macro_table *result = m_pending_macros;
m_pending_macros = nullptr;
return result;
}
/* This function is called to discard any pending blocks. */
void free_pending_blocks ()
{
m_pending_block_obstack.clear ();
m_pending_blocks = nullptr;
}
struct block *finish_block (struct symbol *symbol,
struct pending_block *old_blocks,
const struct dynamic_prop *static_link,
CORE_ADDR start, CORE_ADDR end);
void record_block_range (struct block *block,
CORE_ADDR start, CORE_ADDR end_inclusive);
void start_subfile (const char *name);
void patch_subfile_names (struct subfile *subfile, const char *name);
void push_subfile ();
const char *pop_subfile ();
void record_line (struct subfile *subfile, int line, CORE_ADDR pc);
struct compunit_symtab *get_compunit_symtab ()
{
return compunit_symtab;
}
void set_last_source_start_addr (CORE_ADDR addr)
{
m_last_source_start_addr = addr;
}
CORE_ADDR get_last_source_start_addr ()
{
return m_last_source_start_addr;
}
struct using_direct **get_local_using_directives ()
{
return &m_local_using_directives;
}
void set_local_using_directives (struct using_direct *new_local)
{
m_local_using_directives = new_local;
}
struct using_direct **get_global_using_directives ()
{
return &m_global_using_directives;
}
bool outermost_context_p () const
{
return m_context_stack.empty ();
}
struct context_stack *get_current_context_stack ()
{
if (m_context_stack.empty ())
return nullptr;
return &m_context_stack.back ();
}
int get_context_stack_depth () const
{
return m_context_stack.size ();
}
struct subfile *get_current_subfile ()
{
return m_current_subfile;
}
struct pending **get_local_symbols ()
{
return &m_local_symbols;
}
struct pending **get_file_symbols ()
{
return &m_file_symbols;
}
struct pending **get_global_symbols ()
{
return &m_global_symbols;
}
void record_debugformat (const char *format)
{
debugformat = format;
}
void record_producer (const char *producer)
{
this->producer = producer;
}
struct context_stack *push_context (int desc, CORE_ADDR valu);
struct context_stack pop_context ();
struct block *end_symtab_get_static_block (CORE_ADDR end_addr,
int expandable, int required);
struct compunit_symtab *end_symtab_from_static_block
(struct block *static_block, int section, int expandable);
struct compunit_symtab *end_symtab (CORE_ADDR end_addr, int section);
struct compunit_symtab *end_expandable_symtab (CORE_ADDR end_addr,
int section);
void augment_type_symtab ();
private:
void record_pending_block (struct block *block, struct pending_block *opblock);
struct block *finish_block_internal (struct symbol *symbol,
struct pending **listhead,
struct pending_block *old_blocks,
const struct dynamic_prop *static_link,
CORE_ADDR start, CORE_ADDR end,
int is_global, int expandable);
struct blockvector *make_blockvector ();
void watch_main_source_file_lossage ();
struct compunit_symtab *end_symtab_with_blockvector
(struct block *static_block, int section, int expandable);
/* The objfile we're reading debug info from. */
struct objfile *objfile;
/* List of subfiles (source files).
Files are added to the front of the list.
This is important mostly for the language determination hacks we use,
which iterate over previously added files. */
struct subfile *subfiles = nullptr;
/* The subfile of the main source file. */
struct subfile *main_subfile = nullptr;
/* Name of source file whose symbol data we are now processing. This
comes from a symbol of type N_SO for stabs. For DWARF it comes
from the DW_AT_name attribute of a DW_TAG_compile_unit DIE. */
gdb::unique_xmalloc_ptr<char> m_last_source_file;
/* E.g., DW_AT_comp_dir if DWARF. Space for this is malloc'd. */
gdb::unique_xmalloc_ptr<char> comp_dir;
/* Space for this is not malloc'd, and is assumed to have at least
the same lifetime as objfile. */
const char *producer = nullptr;
/* Space for this is not malloc'd, and is assumed to have at least
the same lifetime as objfile. */
const char *debugformat = nullptr;
/* The compunit we are building. */
struct compunit_symtab *compunit_symtab = nullptr;
/* Language of this compunit_symtab. */
enum language language;
/* The macro table for the compilation unit whose symbols we're
currently reading. */
struct macro_table *m_pending_macros = nullptr;
/* True if symtab has line number info. This prevents an otherwise
empty symtab from being tossed. */
bool m_have_line_numbers = false;
/* Core address of start of text of current source file. This too
comes from the N_SO symbol. For Dwarf it typically comes from the
DW_AT_low_pc attribute of a DW_TAG_compile_unit DIE. */
CORE_ADDR m_last_source_start_addr;
/* Stack of subfile names. */
std::vector<const char *> m_subfile_stack;
/* The "using" directives local to lexical context. */
struct using_direct *m_local_using_directives = nullptr;
/* Global "using" directives. */
struct using_direct *m_global_using_directives = nullptr;
/* The stack of contexts that are pushed by push_context and popped
by pop_context. */
std::vector<struct context_stack> m_context_stack;
struct subfile *m_current_subfile = nullptr;
/* The mutable address map for the compilation unit whose symbols
we're currently reading. The symtabs' shared blockvector will
point to a fixed copy of this. */
struct addrmap *m_pending_addrmap = nullptr;
/* The obstack on which we allocate pending_addrmap.
If pending_addrmap is NULL, this is uninitialized; otherwise, it is
initialized (and holds pending_addrmap). */
auto_obstack m_pending_addrmap_obstack;
/* True if we recorded any ranges in the addrmap that are different
from those in the blockvector already. We set this to false when
we start processing a symfile, and if it's still false at the
end, then we just toss the addrmap. */
bool m_pending_addrmap_interesting = false;
/* An obstack used for allocating pending blocks. */
auto_obstack m_pending_block_obstack;
/* Pointer to the head of a linked list of symbol blocks which have
already been finalized (lexical contexts already closed) and which
are just waiting to be built into a blockvector when finalizing the
associated symtab. */
struct pending_block *m_pending_blocks = nullptr;
/* Pending static symbols and types at the top level. */
struct pending *m_file_symbols = nullptr;
/* Pending global functions and variables. */
struct pending *m_global_symbols = nullptr;
/* Pending symbols that are local to the lexical context. */
struct pending *m_local_symbols = nullptr;
};
/* The work-in-progress of the compunit we are building.
This is created first, before any subfiles by start_symtab. */
@ -454,6 +110,75 @@ static int compare_line_numbers (const void *ln1p, const void *ln2p);
#define INITIAL_LINE_VECTOR_LENGTH 1000
buildsym_compunit::buildsym_compunit (struct objfile *objfile_,
const char *name,
const char *comp_dir_,
enum language language_,
CORE_ADDR last_addr)
: objfile (objfile_),
m_last_source_file (name == nullptr ? nullptr : xstrdup (name)),
comp_dir (comp_dir_ == nullptr ? nullptr : xstrdup (comp_dir_)),
language (language_),
m_last_source_start_addr (last_addr)
{
/* Allocate the compunit symtab now. The caller needs it to allocate
non-primary symtabs. It is also needed by get_macro_table. */
compunit_symtab = allocate_compunit_symtab (objfile, name);
/* Build the subfile for NAME (the main source file) so that we can record
a pointer to it for later.
IMPORTANT: Do not allocate a struct symtab for NAME here.
It can happen that the debug info provides a different path to NAME than
DIRNAME,NAME. We cope with this in watch_main_source_file_lossage but
that only works if the main_subfile doesn't have a symtab yet. */
start_subfile (name);
/* Save this so that we don't have to go looking for it at the end
of the subfiles list. */
main_subfile = m_current_subfile;
}
buildsym_compunit::~buildsym_compunit ()
{
struct subfile *subfile, *nextsub;
if (m_pending_macros != nullptr)
free_macro_table (m_pending_macros);
for (subfile = subfiles;
subfile != NULL;
subfile = nextsub)
{
nextsub = subfile->next;
xfree (subfile->name);
xfree (subfile->line_vector);
xfree (subfile);
}
struct pending *next, *next1;
for (next = m_file_symbols; next != NULL; next = next1)
{
next1 = next->next;
xfree ((void *) next);
}
for (next = m_global_symbols; next != NULL; next = next1)
{
next1 = next->next;
xfree ((void *) next);
}
}
struct macro_table *
buildsym_compunit::get_macro_table ()
{
if (m_pending_macros == nullptr)
m_pending_macros = new_macro_table (&objfile->per_bfd->storage_obstack,
objfile->per_bfd->macro_cache,
compunit_symtab);
return m_pending_macros;
}
/* Maintain the lists of symbols and blocks. */
/* Add a symbol to one of the lists of symbols. */

View File

@ -108,6 +108,294 @@ struct context_stack
};
/* Buildsym's counterpart to struct compunit_symtab. */
struct buildsym_compunit
{
/* Start recording information about a primary source file (IOW, not an
included source file).
COMP_DIR is the directory in which the compilation unit was compiled
(or NULL if not known). */
buildsym_compunit (struct objfile *objfile_, const char *name,
const char *comp_dir_, enum language language_,
CORE_ADDR last_addr);
/* Reopen an existing compunit_symtab so that additional symbols can
be added to it. Arguments are as for the main constructor. CUST
is the expandable compunit_symtab to be reopened. */
buildsym_compunit (struct objfile *objfile_, const char *name,
const char *comp_dir_, enum language language_,
CORE_ADDR last_addr, struct compunit_symtab *cust)
: objfile (objfile_),
m_last_source_file (name == nullptr ? nullptr : xstrdup (name)),
comp_dir (comp_dir_ == nullptr ? nullptr : xstrdup (comp_dir_)),
compunit_symtab (cust),
language (language_),
m_last_source_start_addr (last_addr)
{
}
~buildsym_compunit ();
DISABLE_COPY_AND_ASSIGN (buildsym_compunit);
void set_last_source_file (const char *name)
{
char *new_name = name == NULL ? NULL : xstrdup (name);
m_last_source_file.reset (new_name);
}
const char *get_last_source_file ()
{
return m_last_source_file.get ();
}
struct macro_table *get_macro_table ();
struct macro_table *release_macros ()
{
struct macro_table *result = m_pending_macros;
m_pending_macros = nullptr;
return result;
}
/* This function is called to discard any pending blocks. */
void free_pending_blocks ()
{
m_pending_block_obstack.clear ();
m_pending_blocks = nullptr;
}
struct block *finish_block (struct symbol *symbol,
struct pending_block *old_blocks,
const struct dynamic_prop *static_link,
CORE_ADDR start, CORE_ADDR end);
void record_block_range (struct block *block,
CORE_ADDR start, CORE_ADDR end_inclusive);
void start_subfile (const char *name);
void patch_subfile_names (struct subfile *subfile, const char *name);
void push_subfile ();
const char *pop_subfile ();
void record_line (struct subfile *subfile, int line, CORE_ADDR pc);
struct compunit_symtab *get_compunit_symtab ()
{
return compunit_symtab;
}
void set_last_source_start_addr (CORE_ADDR addr)
{
m_last_source_start_addr = addr;
}
CORE_ADDR get_last_source_start_addr ()
{
return m_last_source_start_addr;
}
struct using_direct **get_local_using_directives ()
{
return &m_local_using_directives;
}
void set_local_using_directives (struct using_direct *new_local)
{
m_local_using_directives = new_local;
}
struct using_direct **get_global_using_directives ()
{
return &m_global_using_directives;
}
bool outermost_context_p () const
{
return m_context_stack.empty ();
}
struct context_stack *get_current_context_stack ()
{
if (m_context_stack.empty ())
return nullptr;
return &m_context_stack.back ();
}
int get_context_stack_depth () const
{
return m_context_stack.size ();
}
struct subfile *get_current_subfile ()
{
return m_current_subfile;
}
struct pending **get_local_symbols ()
{
return &m_local_symbols;
}
struct pending **get_file_symbols ()
{
return &m_file_symbols;
}
struct pending **get_global_symbols ()
{
return &m_global_symbols;
}
void record_debugformat (const char *format)
{
debugformat = format;
}
void record_producer (const char *producer)
{
this->producer = producer;
}
struct context_stack *push_context (int desc, CORE_ADDR valu);
struct context_stack pop_context ();
struct block *end_symtab_get_static_block (CORE_ADDR end_addr,
int expandable, int required);
struct compunit_symtab *end_symtab_from_static_block
(struct block *static_block, int section, int expandable);
struct compunit_symtab *end_symtab (CORE_ADDR end_addr, int section);
struct compunit_symtab *end_expandable_symtab (CORE_ADDR end_addr,
int section);
void augment_type_symtab ();
private:
void record_pending_block (struct block *block, struct pending_block *opblock);
struct block *finish_block_internal (struct symbol *symbol,
struct pending **listhead,
struct pending_block *old_blocks,
const struct dynamic_prop *static_link,
CORE_ADDR start, CORE_ADDR end,
int is_global, int expandable);
struct blockvector *make_blockvector ();
void watch_main_source_file_lossage ();
struct compunit_symtab *end_symtab_with_blockvector
(struct block *static_block, int section, int expandable);
/* The objfile we're reading debug info from. */
struct objfile *objfile;
/* List of subfiles (source files).
Files are added to the front of the list.
This is important mostly for the language determination hacks we use,
which iterate over previously added files. */
struct subfile *subfiles = nullptr;
/* The subfile of the main source file. */
struct subfile *main_subfile = nullptr;
/* Name of source file whose symbol data we are now processing. This
comes from a symbol of type N_SO for stabs. For DWARF it comes
from the DW_AT_name attribute of a DW_TAG_compile_unit DIE. */
gdb::unique_xmalloc_ptr<char> m_last_source_file;
/* E.g., DW_AT_comp_dir if DWARF. Space for this is malloc'd. */
gdb::unique_xmalloc_ptr<char> comp_dir;
/* Space for this is not malloc'd, and is assumed to have at least
the same lifetime as objfile. */
const char *producer = nullptr;
/* Space for this is not malloc'd, and is assumed to have at least
the same lifetime as objfile. */
const char *debugformat = nullptr;
/* The compunit we are building. */
struct compunit_symtab *compunit_symtab = nullptr;
/* Language of this compunit_symtab. */
enum language language;
/* The macro table for the compilation unit whose symbols we're
currently reading. */
struct macro_table *m_pending_macros = nullptr;
/* True if symtab has line number info. This prevents an otherwise
empty symtab from being tossed. */
bool m_have_line_numbers = false;
/* Core address of start of text of current source file. This too
comes from the N_SO symbol. For Dwarf it typically comes from the
DW_AT_low_pc attribute of a DW_TAG_compile_unit DIE. */
CORE_ADDR m_last_source_start_addr;
/* Stack of subfile names. */
std::vector<const char *> m_subfile_stack;
/* The "using" directives local to lexical context. */
struct using_direct *m_local_using_directives = nullptr;
/* Global "using" directives. */
struct using_direct *m_global_using_directives = nullptr;
/* The stack of contexts that are pushed by push_context and popped
by pop_context. */
std::vector<struct context_stack> m_context_stack;
struct subfile *m_current_subfile = nullptr;
/* The mutable address map for the compilation unit whose symbols
we're currently reading. The symtabs' shared blockvector will
point to a fixed copy of this. */
struct addrmap *m_pending_addrmap = nullptr;
/* The obstack on which we allocate pending_addrmap.
If pending_addrmap is NULL, this is uninitialized; otherwise, it is
initialized (and holds pending_addrmap). */
auto_obstack m_pending_addrmap_obstack;
/* True if we recorded any ranges in the addrmap that are different
from those in the blockvector already. We set this to false when
we start processing a symfile, and if it's still false at the
end, then we just toss the addrmap. */
bool m_pending_addrmap_interesting = false;
/* An obstack used for allocating pending blocks. */
auto_obstack m_pending_block_obstack;
/* Pointer to the head of a linked list of symbol blocks which have
already been finalized (lexical contexts already closed) and which
are just waiting to be built into a blockvector when finalizing the
associated symtab. */
struct pending_block *m_pending_blocks = nullptr;
/* Pending static symbols and types at the top level. */
struct pending *m_file_symbols = nullptr;
/* Pending global functions and variables. */
struct pending *m_global_symbols = nullptr;
/* Pending symbols that are local to the lexical context. */
struct pending *m_local_symbols = nullptr;
};
/* The type of the record_line function. */
typedef void (record_line_ftype) (struct subfile *subfile, int line,
CORE_ADDR pc);