Add texinfo wrappers

This commit is contained in:
Roland Pesch 1991-03-05 00:14:55 +00:00
parent 0245d1cd26
commit ca714d0352
1 changed files with 116 additions and 49 deletions

View File

@ -1,10 +1,67 @@
GDB Internals documentation
Copyright 1990, 1991 Free Software Foundation, Inc.
\input texinfo
@setfilename gdb-internals
@ifinfo
This file documents the internals of the GNU debugger GDB.
Copyright (C) 1990, 1991 Free Software Foundation, Inc.
Contributed by Cygnus Support. Written by John Gilmore.
This needs to be wrapped in texinfo stuff...
Permission is granted to make and distribute verbatim copies of
this manual provided the copyright notice and this permission notice
are preserved on all copies.
Cleanups
@ignore
Permission is granted to process this file through Tex and print the
results, provided the printed document carries copying permission
notice identical to this one except for the removal of this paragraph
(this paragraph not being relevant to the printed manual).
@end ignore
Permission is granted to copy or distribute modified versions of this
manual under the terms of the GPL (for which purpose this text may be
regarded as a program in the language TeX).
@end ifinfo
@setchapternewpage odd
@settitle GDB Internals
@titlepage
@title{Working in GDB}
@subtitle{A guide to the internals of the GNU debugger}
@author John Gilmore
@author Cygnus Support
@page
@tex
\def\$#1${{#1}} % Kluge: collect RCS revision info without $...$
\xdef\manvers{\$Revision$} % For use in headers, footers too
{\parskip=0pt
\hfill Cygnus Support\par
\hfill \manvers\par
\hfill \TeX{}info \texinfoversion\par
}
@end tex
@vskip 0pt plus 1filll
Copyright @copyright{} 1990, 1991 Free Software Foundation, Inc.
Permission is granted to make and distribute verbatim copies of
this manual provided the copyright notice and this permission notice
are preserved on all copies.
@end titlepage
@node Top, Cleanups, (dir), (dir)
@menu
* Cleanups:: Cleanups
* Wrapping:: Wrapping output lines
* Releases:: Configuring GDB for release
* README:: The README file
* New Architectures:: Defining a new host or target architecture
@end menu
@node Cleanups, Wrapping, Top, Top
@chapter Cleanups
Cleanups are a structured way to deal with things that need to be done
later. When your code does something (like malloc some memory, or open
@ -18,36 +75,36 @@ what they say. This is only done if you ask that it be done.
Syntax:
old_chain = make_cleanup (function, arg);
@table @code
@item old_chain = make_cleanup (function, arg);
This makes a cleanup which will cause FUNCTION to be called with ARG
(a char *) later. The result, OLD_CHAIN, is a handle that can be
passed to do_cleanups or discard_cleanups later. Unless you are
going to call do_cleanups or discard_cleanups yourself,
you can ignore the result from make_cleanup.
do_cleanups (old_chain);
@item do_cleanups (old_chain);
Performs all cleanups done since make_cleanup returned OLD_CHAIN.
E.g.: make_cleanup (a, 0); old = make_cleanup (b, 0); do_cleanups (old);
will call b() but will not call a(). The cleanup that calls a() will remain
in the cleanup chain, and will be done later unless otherwise discarded.
discard_cleanups (old_chain);
@item discard_cleanups (old_chain);
Same as do_cleanups except that it just removes the cleanups from the
chain and does not call the specified functions.
@end table
Some functions, e.g. fputs_filtered() or error(), specify that they
"should not be called when cleanups are not in place". This means
Some functions, e.g. @code{fputs_filtered()} or @code{error()}, specify that they
``should not be called when cleanups are not in place''. This means
that any actions you need to reverse in the case of an error or
interruption must be on the cleanup chain before you call these functions,
since they might never return to your code (they "longjmp" instead).
since they might never return to your code (they @samp{longjmp} instead).
Wrapping output lines
@node Wrapping, Releases, Cleanups, Top
@chapter Wrapping output lines
Output that goes through printf_filtered or fputs_filtered or
fputs_demangled needs only to have calls to wrap_here() added
@ -71,25 +128,25 @@ unfiltered ("printf") output. Symbol reading routines that print
warnings are a good example.
Configuring GDB for release
@node Releases, README, Wrapping, Top
@chapter Configuring GDB for release
GDB should be released after doing "config.gdb none" in the top level
GDB should be released after doing @samp{config.gdb none} in the top level
directory. This will leave a makefile there, but no tm- or xm- files.
The makefile is needed, for example, for "make gdb.tar.Z"... If you
The makefile is needed, for example, for @samp{make gdb.tar.Z}@dots{} If you
have tm- or xm-files in the main source directory, C's include rules
cause them to be used in preference to tm- and xm-files in the
subdirectories where the user will actually configure and build the
binaries.
"config.gdb none" is also a good way to rebuild the top level Makefile
@samp{config.gdb none} is also a good way to rebuild the top level Makefile
after changing Makefile.dist, alldeps.mak, etc.
The README file
@node README, New Architectures, Releases, Top
@chapter The README file
Check the README file, it often has useful information that does not
@ -97,55 +154,65 @@ appear anywhere else in the directory.
Defining a new host or target architecture
@node New Architectures, , README, Top
@chapter Defining a new host or target architecture
When building support for a new host and/or target, this will help you
organize where to put the various parts. ARCH stands for the
organize where to put the various parts. @var{ARCH} stands for the
architecture involved.
Object files needed when the host system is an ARCH are listed in the file
xconfig/ARCH, in the Makefile macro "XDEPFILES = ...". You can also
define XXXXXX in there.
Object files needed when the host system is an @var{ARCH} are listed in
the file @file{xconfig/@var{ARCH}}, in the Makefile macro @samp{XDEPFILES
= }@dots{}. You can also define XXXXXX in there.
There are some "generic" versions of routines that can be used by
various host systems. If these routines work for the ARCH host, you
can just include the generic file's name (with .o, not .c) in
XDEPFILES. Otherwise, you will need to write routines that perform the
same functions as the generic file, put them into ARCH-xdep.c, and put
ARCH-xdep.o into XDEPFILES. These generic host support files include:
There are some ``generic'' versions of routines that can be used by
various host systems. If these routines work for the @var{ARCH} host,
you can just include the generic file's name (with .o, not .c) in
@code{XDEPFILES}. Otherwise, you will need to write routines that
perform the same functions as the generic file, put them into
@code{@var{ARCH}-xdep.c}, and put @code{@var{ARCH}-xdep.o} into
@code{XDEPFILES}. These generic host support files include:
@example
coredep.c, coredep.o
@end example
fetch_core_registers():
@table @code
@item fetch_core_registers()
Support for reading registers out of a core file. This routine calls
register_addr(), see below.
@code{register_addr(}), see below.
register_addr():
If your xm-ARCH.h file defines the macro REGISTER_U_ADDR(reg) to be the
offset within the "user" struct of a register (represented as a GDB
register number), coredep.c will define the register_addr() function
and use the macro in it. If you do not define REGISTER_U_ADDR, but
you are using the standard fetch_core_registers, you
will need to define your own version of register_addr, put it into
your ARCH-xdep.c file, and be sure ARCH-xdep.o is in the XDEPFILES list.
If you have your own fetch_core_registers, you only need to define
register_addr if your fetch_core_registers calls it. Many custom
fetch_core_registers implementations simply locate the registers
@item register_addr()
If your @code{xm-@var{ARCH}.h} file defines the macro @code{REGISTER_U_ADDR(reg)} to be the
offset within the @samp{user} struct of a register (represented as a GDB
register number), @file{coredep.c} will define the @code{register_addr()} function
and use the macro in it. If you do not define @code{REGISTER_U_ADDR}, but
you are using the standard @code{fetch_core_registers}, you
will need to define your own version of @code{register_addr}, put it into
your @code{@var{ARCH}-xdep.c} file, and be sure @code{@var{ARCH}-xdep.o} is in the @code{XDEPFILES} list.
If you have your own @code{fetch_core_registers}, you only need to define
@code{register_addr} if your @code{fetch_core_registers} calls it. Many custom
@code{fetch_core_registers} implementations simply locate the registers
themselves.
@end table
Files needed when the target system is an ARCH are listed in the file
tconfig/ARCH, in the Makefile macro "TDEPFILES = ...". You can also
Files needed when the target system is an @var{ARCH} are listed in the file
@file{tconfig/@var{ARCH}}, in the @code{Makefile} macro @samp{TDEPFILES = }@dots{}. You can also
define XXXXXX in there.
Similar generic support files for target systems are:
@example
exec.c, exec.o:
@end example
This file defines functions for accessing files that are executable
on the target system. These functions open and examine an exec file,
extract data from one, write data to one, print information about one,
etc. Now that executable files are handled with BFD, every architecture
should be able to use the generic exec.c rather than its own custom code.
@contents
@bye