Changes to support alpha OSF/1 in native mode.

* alpha-nat.c, alpha-tdep.c, config/alpha/alpha-osf1.mt,
	  config/alpha/nm-alpha.h, config/alpha/tm-alpha.h, osfsolib.c:
	New files.
	* Makefile.in:  Add new files and dependencies.
	* configure.in:  Add alpha target.
	* config/alpha/alpha-osf1.mh (NATDEPFILES):  Add osfsolib.o
	* config/alpha/alpha-osf1.mh (MH_CFLAGS):  Remove, we can handle
	shared libraries now.
	* config/alpha/xm-alpha.h:  Cleanup, get MAKEVA_* defines right.

	* defs.h (CORE_ADDR):  Make its type overridable via CORE_ADDR_TYPE,
	provide `unsigned int' default.
	* breakpoint.c (breakpoint_auto_delete):  Delete only if we really
	stopped for the breakpoint.
	* stabsread.c, stabsread.h (define_symbol):  Change valu parameter
	to a CORE_ADDR.
	* stabsread.c (read_range_type):  Handle the case where the lower
	bound overflows and the upper doesn't and the range is legal.
	* infrun.c (resume):  Do not step a breakpoint instruction if
	CANNOT_STEP_BREAKPOINT is defined.

	* inferior.h (CALL_DUMMY_LOCATION):  New variant AT_ENTRY_POINT.
	Now that we have the bp_call_dummy breakpoint the call dummy code
	is no longer needed. PUSH_DUMMY_FRAME, PUSH_ARGUMENTS and
	FIX_CALL_DUMMY can be used to set up everything for the dummy.
	The breakpoint for the dummy is set at the entry point and thats it.
	* blockframe.c (inside_entry_file, inside_entry_func):  Do not stop
	backtraces if pc is in the call dummy at the entry point.
	* infcmd.c (run_stack_dummy):  Handle AT_ENTRY_POINT case. Use
	the expected breakpoint pc when setting up the frame for
	set_momentary_breakpoint.
	* symfile.c (entry_point_address):  New function for AT_ENTRY_POINT
	support.
	* valops.c (call_function_by_hand):  Handle AT_ENTRY_POINT case.
This commit is contained in:
Peter Schauer 1993-10-05 19:44:57 +00:00
parent a72e983365
commit cef4c2e7a5
13 changed files with 2055 additions and 43 deletions

View File

@ -42,6 +42,8 @@ TODO
a29k-pinsn.c a29k-pinsn.c
a29k-tdep.c a29k-tdep.c
a68v-nat.c a68v-nat.c
alpha-nat.c
alpha-tdep.c
altos-xdep.c altos-xdep.c
arm-convert.s arm-convert.s
arm-pinsn.c arm-pinsn.c
@ -174,6 +176,7 @@ ns32k-opcode.h
ns32k-pinsn.c ns32k-pinsn.c
objfiles.c objfiles.c
objfiles.h objfiles.h
osfsolib.c
paread.c paread.c
parse.c parse.c
parser-defs.h parser-defs.h

View File

@ -1,3 +1,43 @@
Tue Oct 5 12:17:40 1993 Peter Schauer (pes@regent.e-technik.tu-muenchen.de)
Jim Kingdon (kingdon@cygnus.com)
Stu Grossman (grossman@cygnus.com)
Changes to support alpha OSF/1 in native mode.
* alpha-nat.c, alpha-tdep.c, config/alpha/alpha-osf1.mt,
config/alpha/nm-alpha.h, config/alpha/tm-alpha.h, osfsolib.c:
New files.
* Makefile.in: Add new files and dependencies.
* configure.in: Add alpha target.
* config/alpha/alpha-osf1.mh (NATDEPFILES): Add osfsolib.o
* config/alpha/alpha-osf1.mh (MH_CFLAGS): Remove, we can handle
shared libraries now.
* config/alpha/xm-alpha.h: Cleanup, get MAKEVA_* defines right.
* defs.h (CORE_ADDR): Make its type overridable via CORE_ADDR_TYPE,
provide `unsigned int' default.
* breakpoint.c (breakpoint_auto_delete): Delete only if we really
stopped for the breakpoint.
* stabsread.c, stabsread.h (define_symbol): Change valu parameter
to a CORE_ADDR.
* stabsread.c (read_range_type): Handle the case where the lower
bound overflows and the upper doesn't and the range is legal.
* infrun.c (resume): Do not step a breakpoint instruction if
CANNOT_STEP_BREAKPOINT is defined.
* inferior.h (CALL_DUMMY_LOCATION): New variant AT_ENTRY_POINT.
Now that we have the bp_call_dummy breakpoint the call dummy code
is no longer needed. PUSH_DUMMY_FRAME, PUSH_ARGUMENTS and
FIX_CALL_DUMMY can be used to set up everything for the dummy.
The breakpoint for the dummy is set at the entry point and thats it.
* blockframe.c (inside_entry_file, inside_entry_func): Do not stop
backtraces if pc is in the call dummy at the entry point.
* infcmd.c (run_stack_dummy): Handle AT_ENTRY_POINT case. Use
the expected breakpoint pc when setting up the frame for
set_momentary_breakpoint.
* symfile.c (entry_point_address): New function for AT_ENTRY_POINT
support.
* valops.c (call_function_by_hand): Handle AT_ENTRY_POINT case.
Tue Oct 5 11:37:02 1993 Jim Kingdon (kingdon@lioth.cygnus.com) Tue Oct 5 11:37:02 1993 Jim Kingdon (kingdon@lioth.cygnus.com)
* configure.in: Recognize hppa*-*-hiux* (currently synonym for hpux). * configure.in: Recognize hppa*-*-hiux* (currently synonym for hpux).

View File

@ -802,7 +802,8 @@ unexport CHILLFLAGS CHILL_LIB CHILL_FOR_TARGET :
# why they are separate from the lists of files above. # why they are separate from the lists of files above.
ALLDEPFILES = 29k-share/udi/udip2soc.c 29k-share/udi/udr.c \ ALLDEPFILES = 29k-share/udi/udip2soc.c 29k-share/udi/udr.c \
a29k-pinsn.c a29k-tdep.c a68v-nat.c altos-xdep.c arm-convert.s \ a29k-pinsn.c a29k-tdep.c a68v-nat.c alpha-nat.c alpha-tdep.c \
altos-xdep.c arm-convert.s \
arm-pinsn.c arm-tdep.c arm-xdep.c coff-solib.c convex-pinsn.c \ arm-pinsn.c arm-tdep.c arm-xdep.c coff-solib.c convex-pinsn.c \
convex-tdep.c \ convex-tdep.c \
convex-xdep.c core-svr4.c coredep.c corelow.c dcache.c delta68-nat.c \ convex-xdep.c core-svr4.c coredep.c corelow.c dcache.c delta68-nat.c \
@ -810,13 +811,14 @@ ALLDEPFILES = 29k-share/udi/udip2soc.c 29k-share/udi/udr.c \
go32-xdep.c gould-pinsn.c gould-xdep.c h8300-tdep.c h8500-tdep.c \ go32-xdep.c gould-pinsn.c gould-xdep.c h8300-tdep.c h8500-tdep.c \
hp300ux-nat.c hppa-pinsn.c hppa-tdep.c hppab-nat.c hppah-nat.c \ hp300ux-nat.c hppa-pinsn.c hppa-tdep.c hppab-nat.c hppah-nat.c \
i386-pinsn.c i386-tdep.c i386b-nat.c i386mach-nat.c i386v-nat.c \ i386-pinsn.c i386-tdep.c i386b-nat.c i386mach-nat.c i386v-nat.c \
i386aix-nat.c i386v4-nat.c i386lynx-nat.c i386lynx-tdep.c i387-tdep.c \ i386aix-nat.c i386v4-nat.c i386lynx-nat.c i386ly-tdep.c i387-tdep.c \
i960-pinsn.c i960-tdep.c \ i960-pinsn.c i960-tdep.c \
infptrace.c inftarg.c irix4-nat.c isi-xdep.c m68k-pinsn.c m68k-tdep.c \ infptrace.c inftarg.c irix4-nat.c isi-xdep.c m68k-pinsn.c m68k-tdep.c \
m88k-nat.c m88k-pinsn.c m88k-tdep.c mips-nat.c mips-pinsn.c \ m88k-nat.c m88k-pinsn.c m88k-tdep.c mips-nat.c mips-pinsn.c \
mips-tdep.c news-xdep.c nindy-share/Onindy.c nindy-share/nindy.c \ mips-tdep.c news-xdep.c nindy-share/Onindy.c nindy-share/nindy.c \
nindy-share/ttyflush.c nindy-tdep.c \ nindy-share/ttyflush.c nindy-tdep.c \
ns32k-pinsn.c paread.c procfs.c pyr-pinsn.c pyr-tdep.c pyr-xdep.c \ ns32k-pinsn.c osfsolib.c \
paread.c procfs.c pyr-pinsn.c pyr-tdep.c pyr-xdep.c \
remote-adapt.c remote-bug.c remote-eb.c remote-es.c remote-hms.c remote-mips.c \ remote-adapt.c remote-bug.c remote-eb.c remote-es.c remote-hms.c remote-mips.c \
remote-mm.c remote-mon.c remote-nindy.c remote-sim.c \ remote-mm.c remote-mon.c remote-nindy.c remote-sim.c \
remote-st.c remote-utils.c dcache.c \ remote-st.c remote-utils.c dcache.c \
@ -829,6 +831,7 @@ ALLDEPFILES = 29k-share/udi/udip2soc.c 29k-share/udi/udr.c \
ALLPARAM = config/a29k/nm-ultra3.h config/a29k/tm-a29k.h \ ALLPARAM = config/a29k/nm-ultra3.h config/a29k/tm-a29k.h \
config/a29k/tm-ultra3.h config/a29k/xm-ultra3.h \ config/a29k/tm-ultra3.h config/a29k/xm-ultra3.h \
config/alpha/nm-alpha.h config/alpha/tm-alpha.h \
config/alpha/xm-alpha.h config/arm/tm-arm.h \ config/alpha/xm-alpha.h config/arm/tm-arm.h \
config/arm/xm-arm.h config/convex/tm-convex.h \ config/arm/xm-arm.h config/convex/tm-convex.h \
config/convex/xm-convex.h config/gould/tm-np1.h config/gould/tm-pn.h \ config/convex/xm-convex.h config/gould/tm-np1.h config/gould/tm-pn.h \
@ -897,7 +900,7 @@ ALLPARAM = config/a29k/nm-ultra3.h config/a29k/tm-a29k.h \
ALLCONFIG = config/a29k/a29k-kern.mt config/a29k/a29k-udi.mt \ ALLCONFIG = config/a29k/a29k-kern.mt config/a29k/a29k-udi.mt \
config/a29k/a29k.mt config/a29k/ultra3.mh config/a29k/ultra3.mt \ config/a29k/a29k.mt config/a29k/ultra3.mh config/a29k/ultra3.mt \
config/alpha/alpha-osf1.mh \ config/alpha/alpha-osf1.mh config/alpha/alpha-osf1.mt \
config/arm/arm.mh config/arm/arm.mt config/convex/convex.mh \ config/arm/arm.mh config/arm/arm.mt config/convex/convex.mh \
config/convex/convex.mt config/gould/np1.mh config/gould/np1.mt \ config/convex/convex.mt config/gould/np1.mh config/gould/np1.mt \
config/gould/pn.mh config/gould/pn.mt config/h8300/h8300hms.mt \ config/gould/pn.mh config/gould/pn.mt config/h8300/h8300hms.mt \
@ -956,6 +959,12 @@ udr.o: 29k-share/udi/udr.c $(udiheaders)
a29k-pinsn.o: a29k-pinsn.c $(bfd_h) $(dis-asm_h) a29k-pinsn.o: a29k-pinsn.c $(bfd_h) $(dis-asm_h)
a29k-tdep.o: a29k-tdep.c $(gdbcmd_h) $(gdbcore_h) $(inferior_h) $(defs_h) a29k-tdep.o: a29k-tdep.c $(gdbcmd_h) $(gdbcore_h) $(inferior_h) $(defs_h)
a68v-nat.o: a68v-nat.c $(defs_h) $(gdbcore_h) $(inferior_h) a68v-nat.o: a68v-nat.c $(defs_h) $(gdbcore_h) $(inferior_h)
alpha-nat.o: alpha-nat.c $(defs_h) $(gdbcore_h) $(inferior_h) target.h
alpha-tdep.o: alpha-tdep.c $(defs_h) $(gdbcmd_h) $(gdbcore_h) \
$(inferior_h) $(symtab_h) $(dis-asm.h)
altos-xdep.o: altos-xdep.c $(defs_h) $(gdbcore_h) $(inferior_h) altos-xdep.o: altos-xdep.c $(defs_h) $(gdbcore_h) $(inferior_h)
arm-pinsn.o: arm-pinsn.c $(OP_INCLUDE)/arm.h $(defs_h) $(symtab_h) arm-pinsn.o: arm-pinsn.c $(OP_INCLUDE)/arm.h $(defs_h) $(symtab_h)
@ -1086,7 +1095,7 @@ i386-pinsn.o: i386-pinsn.c $(bfd_h) $(dis-asm_h) $(defs_h)
i386-tdep.o: i386-tdep.c $(defs_h) $(gdbcore_h) $(inferior_h) target.h i386-tdep.o: i386-tdep.c $(defs_h) $(gdbcore_h) $(inferior_h) target.h
i386b-nat.o: i386b-nat.c $(defs_h) i386b-nat.o: i386b-nat.c $(defs_h)
i386lynx-nat.o: i386lynx-nat.c $(defs_h) $(frame_h) $(inferior_h) target.h i386lynx-nat.o: i386lynx-nat.c $(defs_h) $(frame_h) $(inferior_h) target.h
i386lynx-tdep.o: i386lynx-tdep.c $(defs_h) $(inferior_h) target.h i386ly-tdep.o: i386ly-tdep.c $(defs_h) $(inferior_h) target.h
i386mach-nat.o: i386mach-nat.c $(defs_h) $(gdbcore_h) $(inferior_h) i386mach-nat.o: i386mach-nat.c $(defs_h) $(gdbcore_h) $(inferior_h)
i386v-nat.o: i386v-nat.c $(ieee-float_h) $(defs_h) $(gdbcore_h) \ i386v-nat.o: i386v-nat.c $(ieee-float_h) $(defs_h) $(gdbcore_h) \
@ -1184,6 +1193,9 @@ ns32k-pinsn.o: ns32k-pinsn.c $(defs_h) $(gdbcore_h) ns32k-opcode.h \
objfiles.o: objfiles.c $(bfd_h) $(defs_h) objfiles.h symfile.h \ objfiles.o: objfiles.c $(bfd_h) $(defs_h) objfiles.h symfile.h \
$(symtab_h) $(symtab_h)
osfsolib.o: osfsolib.c $(command_h) $(defs_h) $(gdbcore_h) $(inferior_h) \
objfiles.h regex.h symfile.h target.h language.h
paread.o: paread.c $(bfd_h) buildsym.h complaints.h $(defs_h) \ paread.o: paread.c $(bfd_h) buildsym.h complaints.h $(defs_h) \
gdb-stabs.h objfiles.h symfile.h $(symtab_h) gdb-stabs.h objfiles.h symfile.h $(symtab_h)

144
gdb/alpha-nat.c Normal file
View File

@ -0,0 +1,144 @@
/* Low level Alpha interface, for GDB when running native.
Copyright 1993 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
#include "defs.h"
#include "inferior.h"
#include "gdbcore.h"
#include "target.h"
#include <sys/ptrace.h>
#include <machine/reg.h>
/* Size of elements in jmpbuf */
#define JB_ELEMENT_SIZE 8
/* The definition for JB_PC in machine/reg.h is wrong.
And we can't get at the correct definition in setjmp.h as it is
not always available (eg. if _POSIX_SOURCE is defined which is the
default). As the defintion is unlikely to change (see comment
in <setjmp.h>, define the correct value here. */
#undef JB_PC
#define JB_PC 2
/* Figure out where the longjmp will land.
We expect the first arg to be a pointer to the jmp_buf structure from which
we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
This routine returns true on success. */
int
get_longjmp_target (pc)
CORE_ADDR *pc;
{
CORE_ADDR jb_addr;
char raw_buffer[MAX_REGISTER_RAW_SIZE];
jb_addr = read_register(A0_REGNUM);
if (target_read_memory(jb_addr + JB_PC * JB_ELEMENT_SIZE, raw_buffer,
sizeof(CORE_ADDR)))
return 0;
*pc = extract_address (raw_buffer, sizeof(CORE_ADDR));
return 1;
}
/* Extract the register values out of the core file and store
them where `read_register' will find them.
CORE_REG_SECT points to the register values themselves, read into memory.
CORE_REG_SIZE is the size of that area.
WHICH says which set of registers we are handling (0 = int, 2 = float
on machines where they are discontiguous).
REG_ADDR is the offset from u.u_ar0 to the register values relative to
core_reg_sect. This is used with old-fashioned core files to
locate the registers in a large upage-plus-stack ".reg" section.
Original upage address X is at location core_reg_sect+x+reg_addr.
*/
void
fetch_core_registers (core_reg_sect, core_reg_size, which, reg_addr)
char *core_reg_sect;
unsigned core_reg_size;
int which;
unsigned reg_addr;
{
register int regno;
register int addr;
int bad_reg = -1;
/* Table to map a gdb regnum to an index in the core register section.
The floating point register values are garbage in OSF/1.2 core files. */
static int core_reg_mapping[NUM_REGS] =
{
#define EFL (EF_SIZE / 8)
EF_V0, EF_T0, EF_T1, EF_T2, EF_T3, EF_T4, EF_T5, EF_T6,
EF_T7, EF_S0, EF_S1, EF_S2, EF_S3, EF_S4, EF_S5, EF_S6,
EF_A0, EF_A1, EF_A2, EF_A3, EF_A4, EF_A5, EF_T8, EF_T9,
EF_T10, EF_T11, EF_RA, EF_T12, EF_AT, EF_GP, EF_SP, -1,
EFL+0, EFL+1, EFL+2, EFL+3, EFL+4, EFL+5, EFL+6, EFL+7,
EFL+8, EFL+9, EFL+10, EFL+11, EFL+12, EFL+13, EFL+14, EFL+15,
EFL+16, EFL+17, EFL+18, EFL+19, EFL+20, EFL+21, EFL+22, EFL+23,
EFL+24, EFL+25, EFL+26, EFL+27, EFL+28, EFL+29, EFL+30, EFL+31,
EF_PC, -1
};
static char zerobuf[MAX_REGISTER_RAW_SIZE] = {0};
for (regno = 0; regno < NUM_REGS; regno++)
{
if (CANNOT_FETCH_REGISTER (regno))
{
supply_register (regno, zerobuf);
continue;
}
addr = 8 * core_reg_mapping[regno];
if (addr < 0 || addr >= core_reg_size)
{
if (bad_reg < 0)
bad_reg = regno;
}
else
{
supply_register (regno, core_reg_sect + addr);
}
}
if (bad_reg >= 0)
{
error ("Register %s not found in core file.", reg_names[bad_reg]);
}
}
/* Map gdb internal register number to a ptrace ``address''.
These ``addresses'' are defined in <sys/ptrace.h> */
#define REGISTER_PTRACE_ADDR(regno) \
(regno < FP0_REGNUM ? GPR_BASE + (regno) \
: regno == PC_REGNUM ? PC \
: regno >= FP0_REGNUM ? FPR_BASE + ((regno) - FP0_REGNUM) \
: 0)
/* Return the ptrace ``address'' of register REGNO. */
unsigned int
register_addr (regno, blockend)
int regno;
int blockend;
{
return REGISTER_PTRACE_ADDR (regno);
}

987
gdb/alpha-tdep.c Normal file
View File

@ -0,0 +1,987 @@
/* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
Copyright 1993 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
#include "defs.h"
#include "frame.h"
#include "inferior.h"
#include "symtab.h"
#include "value.h"
#include "gdbcmd.h"
#include "gdbcore.h"
#include "dis-asm.h"
/* FIXME: Some of this code should perhaps be merged with mips-tdep.c. */
#define VM_MIN_ADDRESS (CORE_ADDR)0x120000000
/* Forward declarations. */
static CORE_ADDR
read_next_frame_reg PARAMS ((FRAME, int));
static CORE_ADDR
heuristic_proc_start PARAMS ((CORE_ADDR));
static alpha_extra_func_info_t
heuristic_proc_desc PARAMS ((CORE_ADDR, CORE_ADDR, FRAME));
static alpha_extra_func_info_t
find_proc_desc PARAMS ((CORE_ADDR, FRAME));
static int
alpha_in_lenient_prologue PARAMS ((CORE_ADDR, CORE_ADDR));
static void
reinit_frame_cache_sfunc PARAMS ((char *, int, struct cmd_list_element *));
void
_initialize_alpha_tdep PARAMS ((void));
/* Heuristic_proc_start may hunt through the text section for a long
time across a 2400 baud serial line. Allows the user to limit this
search. */
static unsigned int heuristic_fence_post = 0;
/* Layout of a stack frame on the alpha:
| |
pdr members: | 7th ... nth arg, |
| `pushed' by caller. |
| |
----------------|-------------------------------|<-- old_sp == vfp
^ ^ ^ ^ | |
| | | | | |
| |localoff | Copies of 1st .. 6th |
| | | | | argument if necessary. |
| | | v | |
| | | --- |-------------------------------|<-- FRAME_ARGS_ADDRESS,
| | | | | FRAME_LOCALS_ADDRESS
| | | | Locals and temporaries. |
| | | | |
| | | |-------------------------------|
| | | | |
|-fregoffset | Saved float registers. |
| | | | F9 |
| | | | . |
| | | | . |
| | | | F2 |
| | v | |
| | -------|-------------------------------|
| | | |
| | | Saved registers. |
| | | S6 |
|-regoffset | . |
| | | . |
| | | S0 |
| | | pdr.pcreg |
| v | |
| ----------|-------------------------------|
| | |
frameoffset | Argument build area, gets |
| | 7th ... nth arg for any |
| | called procedure. |
v | |
-------------|-------------------------------|<-- sp
| |
*/
#define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
#define PROC_HIGH_ADDR(proc) ((proc)->pdr.iline) /* upper address bound */
#define PROC_DUMMY_FRAME(proc) ((proc)->pdr.iopt) /* frame for CALL_DUMMY */
#define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
#define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
#define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
#define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
#define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
#define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
#define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
#define PROC_LOCALOFF(proc) ((proc)->pdr.localoff)
#define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
#define _PROC_MAGIC_ 0x0F0F0F0F
#define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
#define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
struct linked_proc_info
{
struct alpha_extra_func_info info;
struct linked_proc_info *next;
} *linked_proc_desc_table = NULL;
#define READ_FRAME_REG(fi, regno) read_next_frame_reg((fi)->next, regno)
static CORE_ADDR
read_next_frame_reg(fi, regno)
FRAME fi;
int regno;
{
/* If it is the frame for sigtramp we have a pointer to the sigcontext
on the stack.
If the stack layout for __sigtramp changes or if sigcontext offsets
change we might have to update this code. */
#ifndef SIGFRAME_PC_OFF
#define SIGFRAME_PC_OFF (2 * 8)
#define SIGFRAME_REGSAVE_OFF (4 * 8)
#endif
for (; fi; fi = fi->next)
{
if (fi->signal_handler_caller)
{
int offset;
CORE_ADDR sigcontext_addr = read_memory_integer(fi->frame, 8);
if (regno == PC_REGNUM)
offset = SIGFRAME_PC_OFF;
else if (regno < 32)
offset = SIGFRAME_REGSAVE_OFF + regno * 8;
else
return 0;
return read_memory_integer(sigcontext_addr + offset, 8);
}
else if (regno == SP_REGNUM)
return fi->frame;
else if (fi->saved_regs->regs[regno])
return read_memory_integer(fi->saved_regs->regs[regno], 8);
}
return read_register(regno);
}
CORE_ADDR
alpha_frame_saved_pc(frame)
FRAME frame;
{
alpha_extra_func_info_t proc_desc = frame->proc_desc;
int pcreg = proc_desc ? PROC_PC_REG(proc_desc) : RA_REGNUM;
if (proc_desc && PROC_DESC_IS_DUMMY(proc_desc))
return read_memory_integer(frame->frame - 8, 8);
return read_next_frame_reg(frame, pcreg);
}
CORE_ADDR
alpha_saved_pc_after_call (frame)
FRAME frame;
{
alpha_extra_func_info_t proc_desc = find_proc_desc (frame->pc, frame->next);
int pcreg = proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM;
return read_register (pcreg);
}
static struct alpha_extra_func_info temp_proc_desc;
static struct frame_saved_regs temp_saved_regs;
/* This fencepost looks highly suspicious to me. Removing it also
seems suspicious as it could affect remote debugging across serial
lines. */
static CORE_ADDR
heuristic_proc_start(pc)
CORE_ADDR pc;
{
CORE_ADDR start_pc = pc;
CORE_ADDR fence = start_pc - heuristic_fence_post;
if (start_pc == 0) return 0;
if (heuristic_fence_post == UINT_MAX
|| fence < VM_MIN_ADDRESS)
fence = VM_MIN_ADDRESS;
/* search back for previous return */
for (start_pc -= 4; ; start_pc -= 4)
if (start_pc < fence)
{
/* It's not clear to me why we reach this point when
stop_soon_quietly, but with this test, at least we
don't print out warnings for every child forked (eg, on
decstation). 22apr93 rich@cygnus.com. */
if (!stop_soon_quietly)
{
static int blurb_printed = 0;
if (fence == VM_MIN_ADDRESS)
warning("Hit beginning of text section without finding");
else
warning("Hit heuristic-fence-post without finding");
warning("enclosing function for address 0x%lx", pc);
if (!blurb_printed)
{
printf_filtered ("\
This warning occurs if you are debugging a function without any symbols\n\
(for example, in a stripped executable). In that case, you may wish to\n\
increase the size of the search with the `set heuristic-fence-post' command.\n\
\n\
Otherwise, you told GDB there was a function where there isn't one, or\n\
(more likely) you have encountered a bug in GDB.\n");
blurb_printed = 1;
}
}
return 0;
}
else if (ABOUT_TO_RETURN(start_pc))
break;
start_pc += 4; /* skip return */
return start_pc;
}
static alpha_extra_func_info_t
heuristic_proc_desc(start_pc, limit_pc, next_frame)
CORE_ADDR start_pc, limit_pc;
FRAME next_frame;
{
CORE_ADDR sp = next_frame ? next_frame->frame : read_register (SP_REGNUM);
CORE_ADDR cur_pc;
int frame_size;
int has_frame_reg = 0;
unsigned long reg_mask = 0;
if (start_pc == 0)
return NULL;
memset(&temp_proc_desc, '\0', sizeof(temp_proc_desc));
memset(&temp_saved_regs, '\0', sizeof(struct frame_saved_regs));
PROC_LOW_ADDR(&temp_proc_desc) = start_pc;
if (start_pc + 200 < limit_pc)
limit_pc = start_pc + 200;
frame_size = 0;
for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += 4)
{
char buf[4];
unsigned long word;
int status;
status = read_memory_nobpt (cur_pc, buf, 4);
if (status)
memory_error (status, cur_pc);
word = extract_unsigned_integer (buf, 4);
if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
frame_size += (-word) & 0xffff;
else if ((word & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
&& (word & 0xffff0000) != 0xb7fe0000) /* reg != $zero */
{
int reg = (word & 0x03e00000) >> 21;
reg_mask |= 1 << reg;
temp_saved_regs.regs[reg] = sp + (short)word;
}
else if (word == 0x47de040f) /* bis sp,sp fp */
has_frame_reg = 1;
}
if (has_frame_reg)
PROC_FRAME_REG(&temp_proc_desc) = GCC_FP_REGNUM;
else
PROC_FRAME_REG(&temp_proc_desc) = SP_REGNUM;
PROC_FRAME_OFFSET(&temp_proc_desc) = frame_size;
PROC_REG_MASK(&temp_proc_desc) = reg_mask;
PROC_PC_REG(&temp_proc_desc) = RA_REGNUM;
return &temp_proc_desc;
}
static alpha_extra_func_info_t
find_proc_desc(pc, next_frame)
CORE_ADDR pc;
FRAME next_frame;
{
alpha_extra_func_info_t proc_desc;
struct block *b;
struct symbol *sym;
CORE_ADDR startaddr;
/* Try to get the proc_desc from the linked call dummy proc_descs
if the pc is in the call dummy.
This is hairy. In the case of nested dummy calls we have to find the
right proc_desc, but we might not yet know the frame for the dummy
as it will be contained in the proc_desc we are searching for.
So we have to find the proc_desc whose frame is closest to the current
stack pointer. */
if (PC_IN_CALL_DUMMY (pc, 0, 0))
{
struct linked_proc_info *link;
CORE_ADDR sp = next_frame ? next_frame->frame : read_register (SP_REGNUM);
alpha_extra_func_info_t found_proc_desc = NULL;
long min_distance = LONG_MAX;
for (link = linked_proc_desc_table; link; link = link->next)
{
long distance = (CORE_ADDR) PROC_DUMMY_FRAME (&link->info) - sp;
if (distance > 0 && distance < min_distance)
{
min_distance = distance;
found_proc_desc = &link->info;
}
}
if (found_proc_desc != NULL)
return found_proc_desc;
}
b = block_for_pc(pc);
find_pc_partial_function (pc, NULL, &startaddr, NULL);
if (b == NULL)
sym = NULL;
else
{
if (startaddr > BLOCK_START (b))
/* This is the "pathological" case referred to in a comment in
print_frame_info. It might be better to move this check into
symbol reading. */
sym = NULL;
else
sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE,
0, NULL);
}
if (sym)
{
/* IF (this is the topmost frame OR a frame interrupted by a signal)
* AND (this proc does not have debugging information OR
* the PC is in the procedure prologue)
* THEN create a "heuristic" proc_desc (by analyzing
* the actual code) to replace the "official" proc_desc.
*/
proc_desc = (alpha_extra_func_info_t)SYMBOL_VALUE(sym);
if (next_frame == NULL || next_frame->signal_handler_caller) {
struct symtab_and_line val;
struct symbol *proc_symbol =
PROC_DESC_IS_DUMMY(proc_desc) ? 0 : PROC_SYMBOL(proc_desc);
if (proc_symbol) {
val = find_pc_line (BLOCK_START
(SYMBOL_BLOCK_VALUE(proc_symbol)),
0);
val.pc = val.end ? val.end : pc;
}
if (!proc_symbol || pc < val.pc) {
alpha_extra_func_info_t found_heuristic =
heuristic_proc_desc(PROC_LOW_ADDR(proc_desc),
pc, next_frame);
if (found_heuristic)
{
/* The call to heuristic_proc_desc determines
which registers have been saved so far and if the
frame is already set up.
The heuristic algorithm doesn't work well for other
information in the procedure descriptor, so copy
it from the found procedure descriptor. */
PROC_LOCALOFF(found_heuristic) = PROC_LOCALOFF(proc_desc);
PROC_PC_REG(found_heuristic) = PROC_PC_REG(proc_desc);
proc_desc = found_heuristic;
}
}
}
}
else
{
if (startaddr == 0)
startaddr = heuristic_proc_start (pc);
proc_desc =
heuristic_proc_desc (startaddr, pc, next_frame);
}
return proc_desc;
}
alpha_extra_func_info_t cached_proc_desc;
FRAME_ADDR
alpha_frame_chain(frame)
FRAME frame;
{
alpha_extra_func_info_t proc_desc;
CORE_ADDR saved_pc = FRAME_SAVED_PC(frame);
if (saved_pc == 0 || inside_entry_file (saved_pc))
return 0;
proc_desc = find_proc_desc(saved_pc, frame);
if (!proc_desc)
return 0;
cached_proc_desc = proc_desc;
/* Fetch the frame pointer for a dummy frame from the procedure
descriptor. */
if (PROC_DESC_IS_DUMMY(proc_desc))
return (FRAME_ADDR) PROC_DUMMY_FRAME(proc_desc);
/* If no frame pointer and frame size is zero, we must be at end
of stack (or otherwise hosed). If we don't check frame size,
we loop forever if we see a zero size frame. */
if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
&& PROC_FRAME_OFFSET (proc_desc) == 0
/* The alpha __sigtramp routine is frameless and has a frame size
of zero. Luckily it is the only procedure which has PC_REGNUM
as PROC_PC_REG. */
&& PROC_PC_REG (proc_desc) != PC_REGNUM
/* The previous frame from a sigtramp frame might be frameless
and have frame size zero. */
&& !frame->signal_handler_caller)
return 0;
else
return read_next_frame_reg(frame, PROC_FRAME_REG(proc_desc))
+ PROC_FRAME_OFFSET(proc_desc);
}
void
init_extra_frame_info(fci)
struct frame_info *fci;
{
extern struct obstack frame_cache_obstack;
/* Use proc_desc calculated in frame_chain */
alpha_extra_func_info_t proc_desc =
fci->next ? cached_proc_desc : find_proc_desc(fci->pc, fci->next);
fci->saved_regs = (struct frame_saved_regs*)
obstack_alloc (&frame_cache_obstack, sizeof(struct frame_saved_regs));
memset (fci->saved_regs, 0, sizeof (struct frame_saved_regs));
fci->proc_desc =
proc_desc == &temp_proc_desc ? 0 : proc_desc;
if (proc_desc)
{
int ireg;
CORE_ADDR reg_position;
unsigned long mask;
int returnreg;
/* Get the locals offset from the procedure descriptor, it is valid
even if we are in the middle of the prologue. */
fci->localoff = PROC_LOCALOFF(proc_desc);
/* FIXME: This is a kludge for gcc-2.4.5.
gcc-2.4.5 builds frames for the alpha in a peculiar way.
It uses $fp as a frame register (which seems to be identical to $sp
in all procedures that do not use alloca).
It has the arguments and the locals above the frame register, if
there are few arguments then the locals are above the arguments,
otherwise the arguments are above the local.
Frame offsets for arguments and locals are relative to $fp and always
positive.
If we want to stay compatible with the native cc compiler we have
to set localoff to frameoffset so that FRAME_ARGS_ADDRESS and
FRAME_LOCALS_ADDRESS point to the right place in the frame.
Please note that the setting of localoff in the compiler won't work
as localoff is only 8 bits wide (which is enough for cc as it needs
at most number_of_arg_regs * 8 == 48). */
if (PROC_FRAME_REG(proc_desc) == GCC_FP_REGNUM)
fci->localoff = PROC_FRAME_OFFSET(proc_desc);
/* Fixup frame-pointer - only needed for top frame */
/* Fetch the frame pointer for a dummy frame from the procedure
descriptor. */
if (PROC_DESC_IS_DUMMY(proc_desc))
fci->frame = (FRAME_ADDR) PROC_DUMMY_FRAME(proc_desc);
/* This may not be quite right, if proc has a real frame register.
Get the value of the frame relative sp, procedure might have been
interrupted by a signal at it's very start. */
else if (fci->pc == PROC_LOW_ADDR(proc_desc))
fci->frame = READ_FRAME_REG(fci, SP_REGNUM);
else
fci->frame = READ_FRAME_REG(fci, PROC_FRAME_REG(proc_desc))
+ PROC_FRAME_OFFSET(proc_desc);
/* If this is the innermost frame, and we are still in the
prologue (loosely defined), then the registers may not have
been saved yet. */
if (fci->next == NULL
&& !PROC_DESC_IS_DUMMY(proc_desc)
&& alpha_in_lenient_prologue (PROC_LOW_ADDR (proc_desc), fci->pc))
{
/* Can't just say that the registers are not saved, because they
might get clobbered halfway through the prologue.
heuristic_proc_desc already has the right code to figure out
exactly what has been saved, so use it. As far as I know we
could be doing this (as we do on the 68k, for example)
regardless of whether we are in the prologue; I'm leaving in
the check for being in the prologue only out of conservatism
(I'm not sure whether heuristic_proc_desc handles all cases,
for example).
This stuff is ugly (and getting uglier by the minute). Probably
the best way to clean it up is to ignore the proc_desc's from
the symbols altogher, and get all the information we need by
examining the prologue (provided we can make the prologue
examining code good enough to get all the cases...). */
proc_desc =
heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
fci->pc,
fci->next);
}
if (proc_desc == &temp_proc_desc)
*fci->saved_regs = temp_saved_regs;
else
{
/* Find which general-purpose registers were saved.
The return address register is the first saved register,
the other registers follow in ascending order. */
reg_position = fci->frame + PROC_REG_OFFSET(proc_desc);
mask = PROC_REG_MASK(proc_desc) & 0xffffffffL;
returnreg = PROC_PC_REG(proc_desc);
if (mask & (1 << returnreg))
{
fci->saved_regs->regs[returnreg] = reg_position;
reg_position += 8;
}
for (ireg = 0; mask; ireg++, mask >>= 1)
if (mask & 1)
{
if (ireg == returnreg)
continue;
fci->saved_regs->regs[ireg] = reg_position;
reg_position += 8;
}
/* find which floating-point registers were saved */
reg_position = fci->frame + PROC_FREG_OFFSET(proc_desc);
mask = PROC_FREG_MASK(proc_desc) & 0xffffffffL;
for (ireg = 0; mask; ireg++, mask >>= 1)
if (mask & 1)
{
fci->saved_regs->regs[FP0_REGNUM+ireg] = reg_position;
reg_position += 8;
}
}
fci->saved_regs->regs[PC_REGNUM] = fci->saved_regs->regs[PROC_PC_REG(proc_desc)];
}
}
/* ALPHA stack frames are almost impenetrable. When execution stops,
we basically have to look at symbol information for the function
that we stopped in, which tells us *which* register (if any) is
the base of the frame pointer, and what offset from that register
the frame itself is at.
This presents a problem when trying to examine a stack in memory
(that isn't executing at the moment), using the "frame" command. We
don't have a PC, nor do we have any registers except SP.
This routine takes two arguments, SP and PC, and tries to make the
cached frames look as if these two arguments defined a frame on the
cache. This allows the rest of info frame to extract the important
arguments without difficulty. */
FRAME
setup_arbitrary_frame (argc, argv)
int argc;
FRAME_ADDR *argv;
{
if (argc != 2)
error ("ALPHA frame specifications require two arguments: sp and pc");
return create_new_frame (argv[0], argv[1]);
}
/* The alpha passes the first six arguments in the registers, the rest on
the stack. The register arguments are eventually transferred to the
argument transfer area immediately below the stack by the called function
anyway. So we `push' at least six arguments on the stack, `reload' the
argument registers and then adjust the stack pointer to point past the
sixth argument. This algorithm simplifies the passing of a large struct
which extends from the registers to the stack.
If the called function is returning a structure, the address of the
structure to be returned is passed as a hidden first argument. */
#define NUM_ARG_REGS 6
CORE_ADDR
alpha_push_arguments (nargs, args, sp, struct_return, struct_addr)
int nargs;
value *args;
CORE_ADDR sp;
int struct_return;
CORE_ADDR struct_addr;
{
register i;
int accumulate_size = struct_return ? 8 : 0;
int arg_regs_size = NUM_ARG_REGS * 8;
struct alpha_arg { char *contents; int len; int offset; };
struct alpha_arg *alpha_args =
(struct alpha_arg*)alloca (nargs * sizeof (struct alpha_arg));
register struct alpha_arg *m_arg;
char raw_buffer[sizeof (CORE_ADDR)];
int required_arg_regs;
for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
{
value arg = value_arg_coerce (args[i]);
/* Cast argument to long if necessary as the compiler does it too. */
if (TYPE_LENGTH (VALUE_TYPE (arg)) < TYPE_LENGTH (builtin_type_long))
arg = value_cast (builtin_type_long, arg);
m_arg->len = TYPE_LENGTH (VALUE_TYPE (arg));
m_arg->offset = accumulate_size;
accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
m_arg->contents = VALUE_CONTENTS(arg);
}
/* Determine required argument register loads, loading an argument register
is expensive as it uses three ptrace calls. */
required_arg_regs = accumulate_size / 8;
if (required_arg_regs > NUM_ARG_REGS)
required_arg_regs = NUM_ARG_REGS;
/* Make room for the arguments on the stack. */
if (accumulate_size < arg_regs_size)
accumulate_size = arg_regs_size;
sp -= accumulate_size;
/* Keep sp aligned to a multiple of 16 as the compiler does it too. */
sp &= ~15;
/* `Push' arguments on the stack. */
for (i = nargs; m_arg--, --i >= 0; )
write_memory(sp + m_arg->offset, m_arg->contents, m_arg->len);
if (struct_return)
{
store_address (raw_buffer, sizeof (CORE_ADDR), struct_addr);
write_memory (sp, raw_buffer, sizeof (CORE_ADDR));
}
/* Load the argument registers. */
for (i = 0; i < required_arg_regs; i++)
{
LONGEST val;
val = read_memory_integer (sp + i * 8, 8);
write_register (A0_REGNUM + i, val);
write_register (FPA0_REGNUM + i, val);
}
return sp + arg_regs_size;
}
void
alpha_push_dummy_frame()
{
int ireg;
struct linked_proc_info *link = (struct linked_proc_info*)
xmalloc(sizeof (struct linked_proc_info));
alpha_extra_func_info_t proc_desc = &link->info;
CORE_ADDR sp = read_register (SP_REGNUM);
CORE_ADDR save_address;
char raw_buffer[MAX_REGISTER_RAW_SIZE];
unsigned long mask;
link->next = linked_proc_desc_table;
linked_proc_desc_table = link;
/*
* The registers we must save are all those not preserved across
* procedure calls.
* In addition, we must save the PC and RA.
*
* Dummy frame layout:
* (high memory)
* Saved PC
* Saved F30
* ...
* Saved F0
* Saved R29
* ...
* Saved R0
* Saved R26 (RA)
* Parameter build area
* (low memory)
*/
/* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<31. */
#define MASK(i,j) (((1L << ((j)+1)) - 1) ^ ((1L << (i)) - 1))
#define GEN_REG_SAVE_MASK (MASK(0,8) | MASK(16,29))
#define GEN_REG_SAVE_COUNT 24
#define FLOAT_REG_SAVE_MASK (MASK(0,1) | MASK(10,30))
#define FLOAT_REG_SAVE_COUNT 23
/* The special register is the PC as we have no bit for it in the save masks.
alpha_frame_saved_pc knows where the pc is saved in a dummy frame. */
#define SPECIAL_REG_SAVE_COUNT 1
PROC_REG_MASK(proc_desc) = GEN_REG_SAVE_MASK;
PROC_FREG_MASK(proc_desc) = FLOAT_REG_SAVE_MASK;
/* PROC_REG_OFFSET is the offset from the dummy frame to the saved RA,
but keep SP aligned to a multiple of 16. */
PROC_REG_OFFSET(proc_desc) =
- ((8 * (SPECIAL_REG_SAVE_COUNT
+ GEN_REG_SAVE_COUNT
+ FLOAT_REG_SAVE_COUNT)
+ 15) & ~15);
PROC_FREG_OFFSET(proc_desc) =
PROC_REG_OFFSET(proc_desc) + 8 * GEN_REG_SAVE_COUNT;
/* Save general registers.
The return address register is the first saved register, all other
registers follow in ascending order.
The PC is saved immediately below the SP. */
save_address = sp + PROC_REG_OFFSET(proc_desc);
store_address (raw_buffer, 8, read_register (RA_REGNUM));
write_memory (save_address, raw_buffer, 8);
save_address += 8;
mask = PROC_REG_MASK(proc_desc) & 0xffffffffL;
for (ireg = 0; mask; ireg++, mask >>= 1)
if (mask & 1)
{
if (ireg == RA_REGNUM)
continue;
store_address (raw_buffer, 8, read_register (ireg));
write_memory (save_address, raw_buffer, 8);
save_address += 8;
}
store_address (raw_buffer, 8, read_register (PC_REGNUM));
write_memory (sp - 8, raw_buffer, 8);
/* Save floating point registers. */
save_address = sp + PROC_FREG_OFFSET(proc_desc);
mask = PROC_FREG_MASK(proc_desc) & 0xffffffffL;
for (ireg = 0; mask; ireg++, mask >>= 1)
if (mask & 1)
{
store_address (raw_buffer, 8, read_register (ireg + FP0_REGNUM));
write_memory (save_address, raw_buffer, 8);
save_address += 8;
}
/* Set and save the frame address for the dummy.
This is tricky. The only registers that are suitable for a frame save
are those that are preserved across procedure calls (s0-s6). But if
a read system call is interrupted and then a dummy call is made
(see testsuite/gdb.t17/interrupt.exp) the dummy call hangs till the read
is satisfied. Then it returns with the s0-s6 registers set to the values
on entry to the read system call and our dummy frame pointer would be
destroyed. So we save the dummy frame in the proc_desc and handle the
retrieval of the frame pointer of a dummy specifically. The frame register
is set to the virtual frame (pseudo) register, it's value will always
be read as zero and will help us to catch any errors in the dummy frame
retrieval code. */
PROC_DUMMY_FRAME(proc_desc) = sp;
PROC_FRAME_REG(proc_desc) = FP_REGNUM;
PROC_FRAME_OFFSET(proc_desc) = 0;
sp += PROC_REG_OFFSET(proc_desc);
write_register (SP_REGNUM, sp);
PROC_LOW_ADDR(proc_desc) = entry_point_address ();
PROC_HIGH_ADDR(proc_desc) = PROC_LOW_ADDR(proc_desc) + 4;
SET_PROC_DESC_IS_DUMMY(proc_desc);
PROC_PC_REG(proc_desc) = RA_REGNUM;
}
void
alpha_pop_frame()
{
register int regnum;
FRAME frame = get_current_frame ();
CORE_ADDR new_sp = frame->frame;
alpha_extra_func_info_t proc_desc = frame->proc_desc;
write_register (PC_REGNUM, FRAME_SAVED_PC(frame));
if (proc_desc)
{
for (regnum = 32; --regnum >= 0; )
if (PROC_REG_MASK(proc_desc) & (1 << regnum))
write_register (regnum,
read_memory_integer (frame->saved_regs->regs[regnum],
8));
for (regnum = 32; --regnum >= 0; )
if (PROC_FREG_MASK(proc_desc) & (1 << regnum))
write_register (regnum + FP0_REGNUM,
read_memory_integer (frame->saved_regs->regs[regnum + FP0_REGNUM], 8));
}
write_register (SP_REGNUM, new_sp);
flush_cached_frames ();
/* We let init_extra_frame_info figure out the frame pointer */
set_current_frame (create_new_frame (0, read_pc ()));
if (proc_desc && PROC_DESC_IS_DUMMY(proc_desc))
{
struct linked_proc_info *pi_ptr, *prev_ptr;
for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
pi_ptr != NULL;
prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
{
if (&pi_ptr->info == proc_desc)
break;
}
if (pi_ptr == NULL)
error ("Can't locate dummy extra frame info\n");
if (prev_ptr != NULL)
prev_ptr->next = pi_ptr->next;
else
linked_proc_desc_table = pi_ptr->next;
free (pi_ptr);
}
}
/* To skip prologues, I use this predicate. Returns either PC itself
if the code at PC does not look like a function prologue; otherwise
returns an address that (if we're lucky) follows the prologue. If
LENIENT, then we must skip everything which is involved in setting
up the frame (it's OK to skip more, just so long as we don't skip
anything which might clobber the registers which are being saved.
Currently we must not skip more on the alpha, but we might the lenient
stuff some day. */
CORE_ADDR
alpha_skip_prologue (pc, lenient)
CORE_ADDR pc;
int lenient;
{
unsigned long inst;
int offset;
/* Skip the typical prologue instructions. These are the stack adjustment
instruction and the instructions that save registers on the stack
or in the gcc frame. */
for (offset = 0; offset < 100; offset += 4)
{
char buf[4];
int status;
status = read_memory_nobpt (pc + offset, buf, 4);
if (status)
memory_error (status, pc + offset);
inst = extract_unsigned_integer (buf, 4);
/* The alpha has no delay slots. But let's keep the lenient stuff,
we might need it for something else in the future. */
if (lenient && 0)
continue;
if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
continue;
if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
continue;
if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
continue;
else if ((inst & 0xfc1f0000) == 0xb41e0000
&& (inst & 0xffff0000) != 0xb7fe0000)
continue; /* stq reg,n($sp) */
/* reg != $zero */
else if ((inst & 0xfc1f0000) == 0x9c1e0000
&& (inst & 0xffff0000) != 0x9ffe0000)
continue; /* stt reg,n($sp) */
/* reg != $zero */
else if (inst == 0x47de040f) /* bis sp,sp,fp */
continue;
else
break;
}
return pc + offset;
}
/* Is address PC in the prologue (loosely defined) for function at
STARTADDR? */
static int
alpha_in_lenient_prologue (startaddr, pc)
CORE_ADDR startaddr;
CORE_ADDR pc;
{
CORE_ADDR end_prologue = alpha_skip_prologue (startaddr, 1);
return pc >= startaddr && pc < end_prologue;
}
/* Given a return value in `regbuf' with a type `valtype',
extract and copy its value into `valbuf'. */
void
alpha_extract_return_value (valtype, regbuf, valbuf)
struct type *valtype;
char regbuf[REGISTER_BYTES];
char *valbuf;
{
int regnum;
regnum = TYPE_CODE (valtype) == TYPE_CODE_FLT ? FP0_REGNUM : V0_REGNUM;
memcpy (valbuf, regbuf + REGISTER_BYTE (regnum), TYPE_LENGTH (valtype));
}
/* Given a return value in `regbuf' with a type `valtype',
write it's value into the appropriate register. */
void
alpha_store_return_value (valtype, valbuf)
struct type *valtype;
char *valbuf;
{
int regnum;
char raw_buffer[MAX_REGISTER_RAW_SIZE];
regnum = TYPE_CODE (valtype) == TYPE_CODE_FLT ? FP0_REGNUM : V0_REGNUM;
memcpy(raw_buffer, valbuf, TYPE_LENGTH (valtype));
write_register_bytes(REGISTER_BYTE (regnum), raw_buffer, TYPE_LENGTH (valtype));
}
/* Print the instruction at address MEMADDR in debugged memory,
on STREAM. Returns length of the instruction, in bytes. */
int
print_insn (memaddr, stream)
CORE_ADDR memaddr;
FILE *stream;
{
disassemble_info info;
GDB_INIT_DISASSEMBLE_INFO(info, stream);
return print_insn_alpha (memaddr, &info);
}
/* Just like reinit_frame_cache, but with the right arguments to be
callable as an sfunc. */
static void
reinit_frame_cache_sfunc (args, from_tty, c)
char *args;
int from_tty;
struct cmd_list_element *c;
{
reinit_frame_cache ();
}
void
_initialize_alpha_tdep ()
{
struct cmd_list_element *c;
/* Let the user set the fence post for heuristic_proc_start. */
/* We really would like to have both "0" and "unlimited" work, but
command.c doesn't deal with that. So make it a var_zinteger
because the user can always use "999999" or some such for unlimited. */
c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
(char *) &heuristic_fence_post,
"\
Set the distance searched for the start of a function.\n\
If you are debugging a stripped executable, GDB needs to search through the\n\
program for the start of a function. This command sets the distance of the\n\
search. The only need to set it is when debugging a stripped executable.",
&setlist);
/* We need to throw away the frame cache when we set this, since it
might change our ability to get backtraces. */
c->function.sfunc = reinit_frame_cache_sfunc;
add_show_from_set (c, &showlist);
}

View File

@ -45,6 +45,12 @@ inside_entry_file (addr)
return 1; return 1;
if (symfile_objfile == 0) if (symfile_objfile == 0)
return 0; return 0;
#if CALL_DUMMY_LOCATION == AT_ENTRY_POINT
/* Do not stop backtracing if the pc is in the call dummy
at the entry point. */
if (PC_IN_CALL_DUMMY (addr, 0, 0))
return 0;
#endif
return (addr >= symfile_objfile -> ei.entry_file_lowpc && return (addr >= symfile_objfile -> ei.entry_file_lowpc &&
addr < symfile_objfile -> ei.entry_file_highpc); addr < symfile_objfile -> ei.entry_file_highpc);
} }
@ -85,6 +91,12 @@ CORE_ADDR pc;
return 1; return 1;
if (symfile_objfile == 0) if (symfile_objfile == 0)
return 0; return 0;
#if CALL_DUMMY_LOCATION == AT_ENTRY_POINT
/* Do not stop backtracing if the pc is in the call dummy
at the entry point. */
if (PC_IN_CALL_DUMMY (pc, 0, 0))
return 0;
#endif
return (symfile_objfile -> ei.entry_func_lowpc <= pc && return (symfile_objfile -> ei.entry_func_lowpc <= pc &&
symfile_objfile -> ei.entry_func_highpc > pc); symfile_objfile -> ei.entry_func_highpc > pc);
} }
@ -653,7 +665,8 @@ find_pc_partial_function (pc, name, address, endaddr)
goto return_cached_value; goto return_cached_value;
} }
} }
else
{
/* Now that static symbols go in the minimal symbol table, perhaps /* Now that static symbols go in the minimal symbol table, perhaps
we could just ignore the partial symbols. But at least for now we could just ignore the partial symbols. But at least for now
we use the partial or minimal symbol, whichever is larger. */ we use the partial or minimal symbol, whichever is larger. */
@ -661,7 +674,8 @@ find_pc_partial_function (pc, name, address, endaddr)
if (psb if (psb
&& (msymbol == NULL || && (msymbol == NULL ||
(SYMBOL_VALUE_ADDRESS (psb) >= SYMBOL_VALUE_ADDRESS (msymbol)))) (SYMBOL_VALUE_ADDRESS (psb)
>= SYMBOL_VALUE_ADDRESS (msymbol))))
{ {
/* This case isn't being cached currently. */ /* This case isn't being cached currently. */
if (address) if (address)
@ -672,6 +686,7 @@ find_pc_partial_function (pc, name, address, endaddr)
return 1; return 1;
} }
} }
}
/* Must be in the minimal symbol table. */ /* Must be in the minimal symbol table. */
if (msymbol == NULL) if (msymbol == NULL)

View File

@ -494,11 +494,11 @@ remove_breakpoints ()
b->inserted = 0; b->inserted = 0;
#ifdef BREAKPOINT_DEBUG #ifdef BREAKPOINT_DEBUG
printf ("Removed breakpoint at %s", printf ("Removed breakpoint at %s",
local_hex_string(b->address)); local_hex_string((unsigned long) b->address));
printf (", shadow %s", printf (", shadow %s",
local_hex_string(b->shadow_contents[0])); local_hex_string((unsigned long) b->shadow_contents[0]));
printf (", %s.\n", printf (", %s.\n",
local_hex_string(b->shadow_contents[1])); local_hex_string((unsigned long) b->shadow_contents[1]));
#endif /* BREAKPOINT_DEBUG */ #endif /* BREAKPOINT_DEBUG */
} }
@ -945,8 +945,8 @@ watchpoint_check (p)
{ {
/* We use value_{,free_to_}mark because it could be a /* We use value_{,free_to_}mark because it could be a
*long* time before we return to the command level and *long* time before we return to the command level and
call free_all_values. */ call free_all_values. We can't call free_all_values because
/* But couldn't we just call free_all_values instead? */ we might be in the middle of evaluating a function call. */
value mark = value_mark (); value mark = value_mark ();
value new_val = evaluate_expression (bs->breakpoint_at->exp); value new_val = evaluate_expression (bs->breakpoint_at->exp);
@ -1252,6 +1252,8 @@ bpstat_what (bs)
enum bpstat_what_main_action current_action = BPSTAT_WHAT_KEEP_CHECKING; enum bpstat_what_main_action current_action = BPSTAT_WHAT_KEEP_CHECKING;
struct bpstat_what retval; struct bpstat_what retval;
retval.call_dummy = 0;
retval.step_resume = 0;
for (; bs != NULL; bs = bs->next) for (; bs != NULL; bs = bs->next)
{ {
enum class bs_class = no_effect; enum class bs_class = no_effect;
@ -1396,7 +1398,7 @@ breakpoint_1 (bnum, allflag)
case bp_step_resume: case bp_step_resume:
case bp_call_dummy: case bp_call_dummy:
if (addressprint) if (addressprint)
printf_filtered ("%s ", local_hex_string_custom(b->address, "08")); printf_filtered ("%s ", local_hex_string_custom ((unsigned long) b->address, "08l"));
last_addr = b->address; last_addr = b->address;
if (b->source_file) if (b->source_file)
@ -1421,7 +1423,7 @@ breakpoint_1 (bnum, allflag)
if (b->frame) if (b->frame)
printf_filtered ("\tstop only in stack frame at %s\n", printf_filtered ("\tstop only in stack frame at %s\n",
local_hex_string(b->frame)); local_hex_string((unsigned long) b->frame));
if (b->cond) if (b->cond)
{ {
printf_filtered ("\tstop only if "); printf_filtered ("\tstop only if ");
@ -1510,7 +1512,7 @@ describe_other_breakpoints (pc)
(b->enable == disabled) ? " (disabled)" : "", (b->enable == disabled) ? " (disabled)" : "",
(others > 1) ? "," : ((others == 1) ? " and" : "")); (others > 1) ? "," : ((others == 1) ? " and" : ""));
} }
printf ("also set at pc %s.\n", local_hex_string(pc)); printf ("also set at pc %s.\n", local_hex_string((unsigned long) pc));
} }
} }
@ -1744,7 +1746,7 @@ mention (b)
break; break;
case bp_breakpoint: case bp_breakpoint:
printf_filtered ("Breakpoint %d at %s", b->number, printf_filtered ("Breakpoint %d at %s", b->number,
local_hex_string(b->address)); local_hex_string((unsigned long) b->address));
if (b->source_file) if (b->source_file)
printf_filtered (": file %s, line %d.", printf_filtered (": file %s, line %d.",
b->source_file, b->line_number); b->source_file, b->line_number);
@ -2503,7 +2505,8 @@ breakpoint_auto_delete (bs)
bpstat bs; bpstat bs;
{ {
for (; bs; bs = bs->next) for (; bs; bs = bs->next)
if (bs->breakpoint_at && bs->breakpoint_at->disposition == delete) if (bs->breakpoint_at && bs->breakpoint_at->disposition == delete
&& bs->stop)
delete_breakpoint (bs->breakpoint_at); delete_breakpoint (bs->breakpoint_at);
} }

View File

@ -130,6 +130,7 @@ hostfile=`awk '$1 == "XM_FILE=" { print $2 }' <${srcdir}/config/${gdb_host_cpu}/
case "${target_cpu}" in case "${target_cpu}" in
alpha) gdb_target_cpu=alpha ;;
c[12]) gdb_target_cpu=convex ;; c[12]) gdb_target_cpu=convex ;;
hppa*) gdb_target_cpu=pa ;; hppa*) gdb_target_cpu=pa ;;
i[34]86) gdb_target_cpu=i386 ;; i[34]86) gdb_target_cpu=i386 ;;
@ -159,6 +160,8 @@ a29k-*-none) gdb_target=a29k ;;
a29k-*-sym1) gdb_target=ultra3 ;; a29k-*-sym1) gdb_target=ultra3 ;;
a29k-*-udi) gdb_target=a29k-udi ;; a29k-*-udi) gdb_target=a29k-udi ;;
alpha-*-osf*) gdb_target=alpha-osf1 ;;
arm-*-*) gdb_target=arm ;; arm-*-*) gdb_target=arm ;;
c1-*-*) gdb_target=convex ;; c1-*-*) gdb_target=convex ;;

View File

@ -283,6 +283,14 @@ resume (step, sig)
struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0); struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
QUIT; QUIT;
#ifdef CANNOT_STEP_BREAKPOINT
/* Most targets can step a breakpoint instruction, thus executing it
normally. But if this one cannot, just continue and we will hit
it anyway. */
if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
step = 0;
#endif
#ifdef NO_SINGLE_STEP #ifdef NO_SINGLE_STEP
if (step) { if (step) {
single_step(sig); /* Do it the hard way, w/temp breakpoints */ single_step(sig); /* Do it the hard way, w/temp breakpoints */
@ -1255,6 +1263,8 @@ step_into_function:
/* I'm not sure when this following segment applies. I do know, now, /* I'm not sure when this following segment applies. I do know, now,
that we shouldn't rewrite the regs when we were stopped by a that we shouldn't rewrite the regs when we were stopped by a
random signal from the inferior process. */ random signal from the inferior process. */
/* FIXME: Shouldn't this be based on the valid bit of the SXIP?
(this is only used on the 88k). */
if (!bpstat_explains_signal (stop_bpstat) if (!bpstat_explains_signal (stop_bpstat)
&& (stop_signal != SIGCLD) && (stop_signal != SIGCLD)

786
gdb/osfsolib.c Normal file
View File

@ -0,0 +1,786 @@
/* Handle OSF/1 shared libraries for GDB, the GNU Debugger.
Copyright 1993 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
/* FIXME: Most of this code could be merged with solib.c by using
next_link_map_member and xfer_link_map_member in solib.c. */
#include "defs.h"
#include <sys/types.h>
#include <signal.h>
#include <string.h>
#include <fcntl.h>
#include "symtab.h"
#include "bfd.h"
#include "symfile.h"
#include "objfiles.h"
#include "gdbcore.h"
#include "command.h"
#include "target.h"
#include "frame.h"
#include "regex.h"
#include "inferior.h"
#include "language.h"
#define MAX_PATH_SIZE 256 /* FIXME: Should be dynamic */
/* FIXME: This is a terrible hack for shared library support under OSF/1.
The main problem is that the needed definitions are not contained in
the system header files.
The ldr_* routines described in loader(3) would be the way to go here.
But they do not work for arbitrary target processes (as documented). */
#ifndef USE_LDR_ROUTINES
#define RLD_CONTEXT_ADDRESS 0x3ffc0000000
typedef struct
{
CORE_ADDR next;
CORE_ADDR previous;
CORE_ADDR unknown;
char *module_name;
CORE_ADDR modinfo_addr;
} ldr_module_info_t;
typedef struct
{
CORE_ADDR unknown1;
CORE_ADDR unknown2;
CORE_ADDR head;
CORE_ADDR tail;
} ldr_context_t;
static ldr_context_t ldr_context;
#else
#include <loader.h>
#endif
/* Define our own link_map structure.
This will help to share code with solib.c. */
struct link_map {
CORE_ADDR l_addr; /* address at which object mapped */
char *l_name; /* full name of loaded object */
ldr_module_info_t module_info; /* corresponding module info */
};
#define LM_ADDR(so) ((so) -> lm.l_addr)
#define LM_NAME(so) ((so) -> lm.l_name)
struct so_list {
struct so_list *next; /* next structure in linked list */
struct link_map lm; /* copy of link map from inferior */
struct link_map *lmaddr; /* addr in inferior lm was read from */
CORE_ADDR lmend; /* upper addr bound of mapped object */
char so_name[MAX_PATH_SIZE]; /* shared object lib name (FIXME) */
char symbols_loaded; /* flag: symbols read in yet? */
char from_tty; /* flag: print msgs? */
struct objfile *objfile; /* objfile for loaded lib */
struct section_table *sections;
struct section_table *sections_end;
struct section_table *textsection;
bfd *bfd;
};
static struct so_list *so_list_head; /* List of known shared objects */
extern int
fdmatch PARAMS ((int, int)); /* In libiberty */
/* Local function prototypes */
static void
sharedlibrary_command PARAMS ((char *, int));
static void
info_sharedlibrary_command PARAMS ((char *, int));
static int
symbol_add_stub PARAMS ((char *));
static struct so_list *
find_solib PARAMS ((struct so_list *));
static struct link_map *
first_link_map_member PARAMS ((void));
static struct link_map *
next_link_map_member PARAMS ((struct so_list *));
static void
xfer_link_map_member PARAMS ((struct so_list *, struct link_map *));
static void
solib_map_sections PARAMS ((struct so_list *));
void
_initialize_solib PARAMS ((void));
/*
LOCAL FUNCTION
solib_map_sections -- open bfd and build sections for shared lib
SYNOPSIS
static void solib_map_sections (struct so_list *so)
DESCRIPTION
Given a pointer to one of the shared objects in our list
of mapped objects, use the recorded name to open a bfd
descriptor for the object, build a section table, and then
relocate all the section addresses by the base address at
which the shared object was mapped.
FIXMES
In most (all?) cases the shared object file name recorded in the
dynamic linkage tables will be a fully qualified pathname. For
cases where it isn't, do we really mimic the systems search
mechanism correctly in the below code (particularly the tilde
expansion stuff?).
*/
static void
solib_map_sections (so)
struct so_list *so;
{
char *filename;
char *scratch_pathname;
int scratch_chan;
struct section_table *p;
struct cleanup *old_chain;
bfd *abfd;
filename = tilde_expand (so -> so_name);
old_chain = make_cleanup (free, filename);
scratch_chan = openp (getenv ("PATH"), 1, filename, O_RDONLY, 0,
&scratch_pathname);
if (scratch_chan < 0)
{
scratch_chan = openp (getenv ("LD_LIBRARY_PATH"), 1, filename,
O_RDONLY, 0, &scratch_pathname);
}
if (scratch_chan < 0)
{
perror_with_name (filename);
}
/* Leave scratch_pathname allocated. bfd->name will point to it. */
abfd = bfd_fdopenr (scratch_pathname, gnutarget, scratch_chan);
if (!abfd)
{
close (scratch_chan);
error ("Could not open `%s' as an executable file: %s",
scratch_pathname, bfd_errmsg (bfd_error));
}
/* Leave bfd open, core_xfer_memory and "info files" need it. */
so -> bfd = abfd;
abfd -> cacheable = true;
if (!bfd_check_format (abfd, bfd_object))
{
error ("\"%s\": not in executable format: %s.",
scratch_pathname, bfd_errmsg (bfd_error));
}
if (build_section_table (abfd, &so -> sections, &so -> sections_end))
{
error ("Can't find the file sections in `%s': %s",
bfd_get_filename (exec_bfd), bfd_errmsg (bfd_error));
}
for (p = so -> sections; p < so -> sections_end; p++)
{
/* Relocate the section binding addresses as recorded in the shared
object's file by the base address to which the object was actually
mapped. */
p -> addr += (CORE_ADDR) LM_ADDR (so);
p -> endaddr += (CORE_ADDR) LM_ADDR (so);
so -> lmend = (CORE_ADDR) max (p -> endaddr, so -> lmend);
if (STREQ (p -> sec_ptr -> name, ".text"))
{
so -> textsection = p;
}
}
/* Free the file names, close the file now. */
do_cleanups (old_chain);
}
/*
LOCAL FUNCTION
first_link_map_member -- locate first member in dynamic linker's map
SYNOPSIS
static struct link_map *first_link_map_member (void)
DESCRIPTION
Read in a copy of the first member in the inferior's dynamic
link map from the inferior's dynamic linker structures, and return
a pointer to the copy in our address space.
*/
static struct link_map *
first_link_map_member ()
{
struct link_map *lm = NULL;
static struct link_map first_lm;
#ifdef USE_LDR_ROUTINES
ldr_module_t mod_id = LDR_NULL_MODULE;
size_t retsize;
if (ldr_next_module(inferior_pid, &mod_id) != 0
|| mod_id == LDR_NULL_MODULE
|| ldr_inq_module(inferior_pid, mod_id,
&first_lm.module_info, sizeof(ldr_module_info_t),
&retsize) != 0)
return lm;
#else
CORE_ADDR ldr_context_addr;
if (target_read_memory ((CORE_ADDR) RLD_CONTEXT_ADDRESS,
(char *) &ldr_context_addr,
sizeof (CORE_ADDR)) != 0
|| target_read_memory (ldr_context_addr,
(char *) &ldr_context,
sizeof (ldr_context_t)) != 0
|| target_read_memory ((CORE_ADDR) ldr_context.head,
(char *) &first_lm.module_info,
sizeof (ldr_module_info_t)) != 0)
return lm;
#endif
lm = &first_lm;
/* The first entry is for the main program and should be skipped. */
lm->l_name = NULL;
return lm;
}
static struct link_map *
next_link_map_member (so_list_ptr)
struct so_list *so_list_ptr;
{
struct link_map *lm = NULL;
static struct link_map next_lm;
#ifdef USE_LDR_ROUTINES
ldr_module_t mod_id = lm->module_info.lmi_modid;
size_t retsize;
if (ldr_next_module(inferior_pid, &mod_id) != 0
|| mod_id == LDR_NULL_MODULE
|| ldr_inq_module(inferior_pid, mod_id,
&next_lm.module_info, sizeof(ldr_module_info_t),
&retsize) != 0)
return lm;
lm = &next_lm;
lm->l_name = lm->module_info.lmi_name;
#else
CORE_ADDR ldr_context_addr;
/* Reread context in case ldr_context.tail was updated. */
if (target_read_memory ((CORE_ADDR) RLD_CONTEXT_ADDRESS,
(char *) &ldr_context_addr,
sizeof (CORE_ADDR)) != 0
|| target_read_memory (ldr_context_addr,
(char *) &ldr_context,
sizeof (ldr_context_t)) != 0
|| so_list_ptr->lm.module_info.modinfo_addr == ldr_context.tail
|| target_read_memory (so_list_ptr->lm.module_info.next,
(char *) &next_lm.module_info,
sizeof (ldr_module_info_t)) != 0)
return lm;
lm = &next_lm;
lm->l_name = lm->module_info.module_name;
#endif
return lm;
}
static void
xfer_link_map_member (so_list_ptr, lm)
struct so_list *so_list_ptr;
struct link_map *lm;
{
so_list_ptr->lm = *lm;
/* OSF/1 has absolute addresses in shared libraries. */
LM_ADDR (so_list_ptr) = 0;
/* There is one entry that has no name (for the inferior executable)
since it is not a shared object. */
if (LM_NAME (so_list_ptr) != 0)
{
#ifdef USE_LDR_ROUTINES
int len = strlen (LM_NAME (so_list_ptr) + 1);
if (len > MAX_PATH_SIZE)
len = MAX_PATH_SIZE;
strncpy (so_list_ptr->so_name, LM_NAME (so_list_ptr), MAX_PATH_SIZE);
#else
if (!target_read_string((CORE_ADDR) LM_NAME (so_list_ptr),
so_list_ptr->so_name, MAX_PATH_SIZE - 1))
error ("xfer_link_map_member: Can't read pathname for load map\n");
#endif
so_list_ptr->so_name[MAX_PATH_SIZE - 1] = 0;
solib_map_sections (so_list_ptr);
}
}
/*
LOCAL FUNCTION
find_solib -- step through list of shared objects
SYNOPSIS
struct so_list *find_solib (struct so_list *so_list_ptr)
DESCRIPTION
This module contains the routine which finds the names of any
loaded "images" in the current process. The argument in must be
NULL on the first call, and then the returned value must be passed
in on subsequent calls. This provides the capability to "step" down
the list of loaded objects. On the last object, a NULL value is
returned.
The arg and return value are "struct link_map" pointers, as defined
in <link.h>.
*/
static struct so_list *
find_solib (so_list_ptr)
struct so_list *so_list_ptr; /* Last lm or NULL for first one */
{
struct so_list *so_list_next = NULL;
struct link_map *lm = NULL;
struct so_list *new;
if (so_list_ptr == NULL)
{
/* We are setting up for a new scan through the loaded images. */
if ((so_list_next = so_list_head) == NULL)
{
/* Find the first link map list member. */
lm = first_link_map_member ();
}
}
else
{
/* We have been called before, and are in the process of walking
the shared library list. Advance to the next shared object. */
lm = next_link_map_member (so_list_ptr);
so_list_next = so_list_ptr -> next;
}
if ((so_list_next == NULL) && (lm != NULL))
{
/* Get next link map structure from inferior image and build a local
abbreviated load_map structure */
new = (struct so_list *) xmalloc (sizeof (struct so_list));
memset ((char *) new, 0, sizeof (struct so_list));
new -> lmaddr = lm;
/* Add the new node as the next node in the list, or as the root
node if this is the first one. */
if (so_list_ptr != NULL)
{
so_list_ptr -> next = new;
}
else
{
so_list_head = new;
}
so_list_next = new;
xfer_link_map_member (new, lm);
}
return (so_list_next);
}
/* A small stub to get us past the arg-passing pinhole of catch_errors. */
static int
symbol_add_stub (arg)
char *arg;
{
register struct so_list *so = (struct so_list *) arg; /* catch_errs bogon */
so -> objfile = symbol_file_add (so -> so_name, so -> from_tty,
so -> textsection -> addr,
0, 0, 0);
return (1);
}
/*
GLOBAL FUNCTION
solib_add -- add a shared library file to the symtab and section list
SYNOPSIS
void solib_add (char *arg_string, int from_tty,
struct target_ops *target)
DESCRIPTION
*/
void
solib_add (arg_string, from_tty, target)
char *arg_string;
int from_tty;
struct target_ops *target;
{
register struct so_list *so = NULL; /* link map state variable */
/* Last shared library that we read. */
struct so_list *so_last = NULL;
char *re_err;
int count;
int old;
if ((re_err = re_comp (arg_string ? arg_string : ".")) != NULL)
{
error ("Invalid regexp: %s", re_err);
}
/* Add the shared library sections to the section table of the
specified target, if any. We have to do this before reading the
symbol files as symbol_file_add calls reinit_frame_cache and
creating a new frame might access memory in the shared library. */
if (target)
{
/* Count how many new section_table entries there are. */
so = NULL;
count = 0;
while ((so = find_solib (so)) != NULL)
{
if (so -> so_name[0])
{
count += so -> sections_end - so -> sections;
}
}
if (count)
{
/* Reallocate the target's section table including the new size. */
if (target -> to_sections)
{
old = target -> to_sections_end - target -> to_sections;
target -> to_sections = (struct section_table *)
xrealloc ((char *)target -> to_sections,
(sizeof (struct section_table)) * (count + old));
}
else
{
old = 0;
target -> to_sections = (struct section_table *)
xmalloc ((sizeof (struct section_table)) * count);
}
target -> to_sections_end = target -> to_sections + (count + old);
/* Add these section table entries to the target's table. */
while ((so = find_solib (so)) != NULL)
{
if (so -> so_name[0])
{
count = so -> sections_end - so -> sections;
memcpy ((char *) (target -> to_sections + old),
so -> sections,
(sizeof (struct section_table)) * count);
old += count;
}
}
}
}
/* Now add the symbol files. */
so = NULL;
while ((so = find_solib (so)) != NULL)
{
if (so -> so_name[0] && re_exec (so -> so_name))
{
so -> from_tty = from_tty;
if (so -> symbols_loaded)
{
if (from_tty)
{
printf ("Symbols already loaded for %s\n", so -> so_name);
}
}
else if (catch_errors
(symbol_add_stub, (char *) so,
"Error while reading shared library symbols:\n",
RETURN_MASK_ALL))
{
so_last = so;
so -> symbols_loaded = 1;
}
}
}
}
/*
LOCAL FUNCTION
info_sharedlibrary_command -- code for "info sharedlibrary"
SYNOPSIS
static void info_sharedlibrary_command ()
DESCRIPTION
Walk through the shared library list and print information
about each attached library.
*/
static void
info_sharedlibrary_command (ignore, from_tty)
char *ignore;
int from_tty;
{
register struct so_list *so = NULL; /* link map state variable */
int header_done = 0;
if (exec_bfd == NULL)
{
printf ("No exec file.\n");
return;
}
while ((so = find_solib (so)) != NULL)
{
if (so -> so_name[0])
{
unsigned long txt_start = 0;
unsigned long txt_end = 0;
if (!header_done)
{
printf("%-20s%-20s%-12s%s\n", "From", "To", "Syms Read",
"Shared Object Library");
header_done++;
}
if (so -> textsection)
{
txt_start = (unsigned long) so -> textsection -> addr;
txt_end = (unsigned long) so -> textsection -> endaddr;
}
printf ("%-20s", local_hex_string_custom (txt_start, "08l"));
printf ("%-20s", local_hex_string_custom (txt_end, "08l"));
printf ("%-12s", so -> symbols_loaded ? "Yes" : "No");
printf ("%s\n", so -> so_name);
}
}
if (so_list_head == NULL)
{
printf ("No shared libraries loaded at this time.\n");
}
}
/*
GLOBAL FUNCTION
solib_address -- check to see if an address is in a shared lib
SYNOPSIS
int solib_address (CORE_ADDR address)
DESCRIPTION
Provides a hook for other gdb routines to discover whether or
not a particular address is within the mapped address space of
a shared library. Any address between the base mapping address
and the first address beyond the end of the last mapping, is
considered to be within the shared library address space, for
our purposes.
For example, this routine is called at one point to disable
breakpoints which are in shared libraries that are not currently
mapped in.
*/
int
solib_address (address)
CORE_ADDR address;
{
register struct so_list *so = 0; /* link map state variable */
while ((so = find_solib (so)) != NULL)
{
if (so -> so_name[0] && so -> textsection)
{
if ((address >= (CORE_ADDR) so -> textsection -> addr) &&
(address < (CORE_ADDR) so -> textsection -> endaddr))
{
return (1);
}
}
}
return (0);
}
/* Called by free_all_symtabs */
void
clear_solib()
{
struct so_list *next;
char *bfd_filename;
while (so_list_head)
{
if (so_list_head -> sections)
{
free ((PTR)so_list_head -> sections);
}
if (so_list_head -> bfd)
{
bfd_filename = bfd_get_filename (so_list_head -> bfd);
bfd_close (so_list_head -> bfd);
}
else
/* This happens for the executable on SVR4. */
bfd_filename = NULL;
next = so_list_head -> next;
if (bfd_filename)
free ((PTR)bfd_filename);
free ((PTR)so_list_head);
so_list_head = next;
}
}
/*
GLOBAL FUNCTION
solib_create_inferior_hook -- shared library startup support
SYNOPSIS
void solib_create_inferior_hook()
DESCRIPTION
When gdb starts up the inferior, it nurses it along (through the
shell) until it is ready to execute it's first instruction. At this
point, this function gets called via expansion of the macro
SOLIB_CREATE_INFERIOR_HOOK.
For a statically bound executable, this first instruction is the
one at "_start", or a similar text label. No further processing is
needed in that case.
For a dynamically bound executable, this first instruction is somewhere
in the rld, and the actual user executable is not yet mapped in.
We continue the inferior again, rld then maps in the actual user
executable and any needed shared libraries and then sends
itself a SIGTRAP.
At that point we discover the names of all shared libraries and
read their symbols in.
FIXME
This code does not properly handle hitting breakpoints which the
user might have set in the rld itself. Proper handling would have
to check if the SIGTRAP happened due to a kill call.
Also, what if child has exit()ed? Must exit loop somehow.
*/
void
solib_create_inferior_hook()
{
/* Nothing to do for statically bound executables. */
if (symfile_objfile == 0 || symfile_objfile->ei.entry_file_lowpc == stop_pc)
return;
/* Now run the target. It will eventually get a SIGTRAP, at
which point all of the libraries will have been mapped in and we
can go groveling around in the rld structures to find
out what we need to know about them. */
clear_proceed_status ();
stop_soon_quietly = 1;
stop_signal = 0;
do
{
target_resume (inferior_pid, 0, stop_signal);
wait_for_inferior ();
}
while (stop_signal != SIGTRAP);
stop_soon_quietly = 0;
solib_add ((char *) 0, 0, (struct target_ops *) 0);
}
/*
LOCAL FUNCTION
sharedlibrary_command -- handle command to explicitly add library
SYNOPSIS
static void sharedlibrary_command (char *args, int from_tty)
DESCRIPTION
*/
static void
sharedlibrary_command (args, from_tty)
char *args;
int from_tty;
{
dont_repeat ();
solib_add (args, from_tty, (struct target_ops *) 0);
}
void
_initialize_solib()
{
add_com ("sharedlibrary", class_files, sharedlibrary_command,
"Load shared object library symbols for files matching REGEXP.");
add_info ("sharedlibrary", info_sharedlibrary_command,
"Status of loaded shared object libraries.");
}

View File

@ -467,7 +467,7 @@ static char *type_synonym_name;
/* ARGSUSED */ /* ARGSUSED */
struct symbol * struct symbol *
define_symbol (valu, string, desc, type, objfile) define_symbol (valu, string, desc, type, objfile)
unsigned int valu; CORE_ADDR valu;
char *string; char *string;
int desc; int desc;
int type; int type;
@ -3228,8 +3228,12 @@ read_range_type (pp, typenums, objfile)
nbits = n3bits; nbits = n3bits;
} }
/* Range from <large number> to <large number>-1 is a large signed /* Range from <large number> to <large number>-1 is a large signed
integral type. */ integral type. Take care of the case where <large number> doesn't
else if (n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1) fit in a long but <large number>-1 does. */
else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
|| (n2bits != 0 && n3bits == 0
&& (n2bits == sizeof (long) * HOST_CHAR_BIT)
&& n3 == LONG_MAX))
{ {
got_signed = 1; got_signed = 1;
nbits = n2bits; nbits = n2bits;

View File

@ -152,7 +152,7 @@ extern void
add_undefined_type PARAMS ((struct type *)); add_undefined_type PARAMS ((struct type *));
extern struct symbol * extern struct symbol *
define_symbol PARAMS ((unsigned int, char *, int, int, struct objfile *)); define_symbol PARAMS ((CORE_ADDR, char *, int, int, struct objfile *));
extern void extern void
stabsread_init PARAMS ((void)); stabsread_init PARAMS ((void));

View File

@ -896,8 +896,8 @@ call_function_by_hand (function, nargs, args)
#if CALL_DUMMY_LOCATION == ON_STACK #if CALL_DUMMY_LOCATION == ON_STACK
write_memory (start_sp, (char *)dummy1, sizeof dummy); write_memory (start_sp, (char *)dummy1, sizeof dummy);
#endif /* On stack. */
#else /* Not on stack. */
#if CALL_DUMMY_LOCATION == BEFORE_TEXT_END #if CALL_DUMMY_LOCATION == BEFORE_TEXT_END
/* Convex Unix prohibits executing in the stack segment. */ /* Convex Unix prohibits executing in the stack segment. */
/* Hope there is empty room at the top of the text segment. */ /* Hope there is empty room at the top of the text segment. */
@ -913,7 +913,9 @@ call_function_by_hand (function, nargs, args)
real_pc = text_end - sizeof dummy; real_pc = text_end - sizeof dummy;
write_memory (real_pc, (char *)dummy1, sizeof dummy); write_memory (real_pc, (char *)dummy1, sizeof dummy);
} }
#else /* After text_end. */ #endif /* Before text_end. */
#if CALL_DUMMY_LOCATION == AFTER_TEXT_END
{ {
extern CORE_ADDR text_end; extern CORE_ADDR text_end;
int errcode; int errcode;
@ -924,7 +926,10 @@ call_function_by_hand (function, nargs, args)
error ("Cannot write text segment -- call_function failed"); error ("Cannot write text segment -- call_function failed");
} }
#endif /* After text_end. */ #endif /* After text_end. */
#endif /* Not on stack. */
#if CALL_DUMMY_LOCATION == AT_ENTRY_POINT
real_pc = funaddr;
#endif /* At entry point. */
#ifdef lint #ifdef lint
sp = old_sp; /* It really is used, for some ifdef's... */ sp = old_sp; /* It really is used, for some ifdef's... */
@ -1056,7 +1061,7 @@ call_function_by_hand (function, nargs, args)
char format[80]; char format[80];
sprintf (format, "at %s", local_hex_format ()); sprintf (format, "at %s", local_hex_format ());
name = alloca (80); name = alloca (80);
sprintf (name, format, funaddr); sprintf (name, format, (unsigned long) funaddr);
} }
/* Execute the stack dummy routine, calling FUNCTION. /* Execute the stack dummy routine, calling FUNCTION.
@ -1349,7 +1354,7 @@ search_struct_field (name, arg1, offset, type, looking_for_baseclass)
/* Helper function used by value_struct_elt to recurse through baseclasses. /* Helper function used by value_struct_elt to recurse through baseclasses.
Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes, Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
and search in it assuming it has (class) type TYPE. and search in it assuming it has (class) type TYPE.
If found, return value, else if name matched and args not return -1, If found, return value, else if name matched and args not return (value)-1,
else return NULL. */ else return NULL. */
static value static value
@ -1409,7 +1414,7 @@ search_struct_method (name, arg1p, args, offset, static_memfuncp, type)
} }
v = search_struct_method (name, arg1p, args, base_offset + offset, v = search_struct_method (name, arg1p, args, base_offset + offset,
static_memfuncp, TYPE_BASECLASS (type, i)); static_memfuncp, TYPE_BASECLASS (type, i));
if (v == -1) if (v == (value) -1)
{ {
name_matched = 1; name_matched = 1;
} }
@ -1420,7 +1425,7 @@ search_struct_method (name, arg1p, args, offset, static_memfuncp, type)
return v; return v;
} }
} }
if (name_matched) return -1; if (name_matched) return (value) -1;
else return NULL; else return NULL;
} }
@ -1519,7 +1524,7 @@ value_struct_elt (argp, args, name, static_memfuncp, err)
else else
v = search_struct_method (name, argp, args, 0, static_memfuncp, t); v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
if (v == -1) if (v == (value) -1)
{ {
error("Argument list of %s mismatch with component in the structure.", name); error("Argument list of %s mismatch with component in the structure.", name);
} }