2011-03-10 Maxim Grigoriev <maxim2405@gmail.com>

* xtensa-tdep.c (xtensa_c0reg_t): Update comments.
	(xtensa_call0_frame_cache_t): Update comments. New fields added.
	(xtensa_alloc_frame_cache): Add initialization for new fields.
	(xtensa_frame_cache): Change the way how call0_frame_cache () is called.
	(warning_once): New function.
	(xtensa_insn_kind): New item c0opc_and.
	(call0_classify_opcode): Add the case for AND instruction.
	(call0_track_op): Change arguments. New local variable litbase. Add the
	case to handle c0opc_and. Update algorithms for c0opc_mov, c0opc_l32r,
	c0opc_s32i to take into account dynamic stack adjustments in prologue.
	Add cases for c0opc_l32e, c0opc_s32e, c0opc_rfwo, c0opc_rfwu.
	(call0_analyze_prologue): Update the comments. Change arguments.
	Add the variety of updates to handle extended prologues, which now can
	conduct dynamic stack adjustments.
	(call0_frame_cache): Likewise.
	(xtensa_skip_prologue): Update call0_analyze_prologue () function call.
	(xtensa_gdbarch_init): Initialize xtensa_session_once_reported.
This commit is contained in:
Maxim Grigoriev 2011-03-11 00:21:42 +00:00
parent a00888a47b
commit dbab50deda
2 changed files with 222 additions and 101 deletions

View File

@ -1,3 +1,23 @@
2011-03-10 Maxim Grigoriev <maxim2405@gmail.com>
* xtensa-tdep.c (xtensa_c0reg_t): Update comments.
(xtensa_call0_frame_cache_t): Update comments. New fields added.
(xtensa_alloc_frame_cache): Add initialization for new fields.
(xtensa_frame_cache): Change the way how call0_frame_cache () is called.
(warning_once): New function.
(xtensa_insn_kind): New item c0opc_and.
(call0_classify_opcode): Add the case for AND instruction.
(call0_track_op): Change arguments. New local variable litbase. Add the
case to handle c0opc_and. Update algorithms for c0opc_mov, c0opc_l32r,
c0opc_s32i to take into account dynamic stack adjustments in prologue.
Add cases for c0opc_l32e, c0opc_s32e, c0opc_rfwo, c0opc_rfwu.
(call0_analyze_prologue): Update the comments. Change arguments.
Add the variety of updates to handle extended prologues, which now can
conduct dynamic stack adjustments.
(call0_frame_cache): Likewise.
(xtensa_skip_prologue): Update call0_analyze_prologue () function call.
(xtensa_gdbarch_init): Initialize xtensa_session_once_reported.
2011-03-10 Michael Snyder <msnyder@vmware.com>
* tracepoint.c (cmd_qtv): Discard unused value 'packet'.
@ -57,7 +77,7 @@
2011-03-09 Maxim Grigoriev <maxim2405@gmail.com>
* xtensa-tdep.c (xtensa_read_register: Add comment.
* xtensa-tdep.c (xtensa_read_register): Add comment.
(xtensa_write_register): Likewise.
(xtensa_hextochar): Add comment and update to match coding conventions.
(xtensa_frame_cache, xtensa_return_value): Follow coding conventions.

View File

@ -982,24 +982,30 @@ extern xtensa_isa xtensa_default_isa;
typedef struct xtensa_c0reg
{
int fr_reg; /* original register from which register content
is derived, or C0_CONST, or C0_INEXP. */
int fr_ofs; /* constant offset from reg, or immediate value. */
int to_stk; /* offset from original SP to register (4-byte
aligned), or C0_NOSTK if register has not
been saved. */
int fr_reg; /* original register from which register content
is derived, or C0_CONST, or C0_INEXP. */
int fr_ofs; /* constant offset from reg, or immediate value. */
int to_stk; /* offset from original SP to register (4-byte aligned),
or C0_NOSTK if register has not been saved. */
} xtensa_c0reg_t;
/* Frame cache part for Call0 ABI. */
typedef struct xtensa_call0_frame_cache
{
int c0_frmsz; /* Stack frame size. */
int c0_hasfp; /* Current frame uses frame
pointer. */
int fp_regnum; /* A-register used as FP. */
int c0_fp; /* Actual value of frame pointer. */
xtensa_c0reg_t c0_rt[C0_NREGS]; /* Register tracking information. */
int c0_frmsz; /* Stack frame size. */
int c0_hasfp; /* Current frame uses frame pointer. */
int fp_regnum; /* A-register used as FP. */
int c0_fp; /* Actual value of frame pointer. */
int c0_fpalign; /* Dinamic adjustment for the stack
pointer. It's an AND mask. Zero,
if alignment was not adjusted. */
int c0_old_sp; /* In case of dynamic adjustment, it is
a register holding unaligned sp.
C0_INEXP, when undefined. */
int c0_sp_ofs; /* If "c0_old_sp" was spilled it's a
stack offset. C0_NOSTK otherwise. */
xtensa_c0reg_t c0_rt[C0_NREGS]; /* Register tracking information. */
} xtensa_call0_frame_cache_t;
typedef struct xtensa_frame_cache
@ -1040,6 +1046,9 @@ xtensa_alloc_frame_cache (int windowed)
cache->c0.c0_hasfp = 0;
cache->c0.fp_regnum = -1;
cache->c0.c0_fp = -1;
cache->c0.c0_fpalign = 0;
cache->c0.c0_old_sp = C0_INEXP;
cache->c0.c0_sp_ofs = C0_NOSTK;
for (i = 0; i < C0_NREGS; i++)
{
@ -1261,8 +1270,7 @@ done:
static void
call0_frame_cache (struct frame_info *this_frame,
xtensa_frame_cache_t *cache,
CORE_ADDR pc, CORE_ADDR litbase);
xtensa_frame_cache_t *cache, CORE_ADDR pc);
static void
xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
@ -1408,11 +1416,7 @@ xtensa_frame_cache (struct frame_info *this_frame, void **this_cache)
}
else /* Call0 framework. */
{
unsigned int litbase_regnum = gdbarch_tdep (gdbarch)->litbase_regnum;
CORE_ADDR litbase = (litbase_regnum == -1)
? 0 : get_frame_register_unsigned (this_frame, litbase_regnum);
call0_frame_cache (this_frame, cache, pc, litbase);
call0_frame_cache (this_frame, cache, pc);
fp_regnum = cache->c0.fp_regnum;
}
@ -1421,6 +1425,22 @@ xtensa_frame_cache (struct frame_info *this_frame, void **this_cache)
return cache;
}
static int xtensa_session_once_reported = 1;
/* Report a problem with prologue analysis while doing backtracing.
But, do it only once to avoid annoyng repeated messages. */
static inline void warning_once ()
{
if (xtensa_session_once_reported == 0)
warning (_("\
\nUnrecognised function prologue. Stack trace cannot be resolved. \
This message will not be repeated in this session.\n"));
xtensa_session_once_reported = 1;
}
static void
xtensa_frame_this_id (struct frame_info *this_frame,
void **this_cache,
@ -2088,6 +2108,7 @@ typedef enum
c0opc_break, /* Debugger software breakpoints. */
c0opc_add, /* Adding two registers. */
c0opc_addi, /* Adding a register and an immediate. */
c0opc_and, /* Bitwise "and"-ing two registers. */
c0opc_sub, /* Subtracting a register from a register. */
c0opc_mov, /* Moving a register to a register. */
c0opc_movi, /* Moving an immediate to a register. */
@ -2159,6 +2180,8 @@ call0_classify_opcode (xtensa_isa isa, xtensa_opcode opc)
else if (strcasecmp (opcname, "add") == 0
|| strcasecmp (opcname, "add.n") == 0)
opclass = c0opc_add;
else if (strcasecmp (opcname, "and") == 0)
opclass = c0opc_and;
else if (strcasecmp (opcname, "addi") == 0
|| strcasecmp (opcname, "addi.n") == 0
|| strcasecmp (opcname, "addmi") == 0)
@ -2190,16 +2213,16 @@ call0_classify_opcode (xtensa_isa isa, xtensa_opcode opc)
be within a bundle. Updates the destination register tracking info
accordingly. The pc is needed only for pc-relative load instructions
(eg. l32r). The SP register number is needed to identify stores to
the stack frame. */
the stack frame. Returns 0, if analysis was succesfull, non-zero
otherwise. */
static void
call0_track_op (struct gdbarch *gdbarch,
xtensa_c0reg_t dst[], xtensa_c0reg_t src[],
static int
call0_track_op (struct gdbarch *gdbarch, xtensa_c0reg_t dst[], xtensa_c0reg_t src[],
xtensa_insn_kind opclass, int nods, unsigned odv[],
CORE_ADDR pc, CORE_ADDR litbase, int spreg)
CORE_ADDR pc, int spreg, xtensa_frame_cache_t *cache)
{
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
unsigned litaddr, litval;
unsigned litbase, litaddr, litval;
switch (opclass)
{
@ -2224,6 +2247,39 @@ call0_track_op (struct gdbarch *gdbarch,
}
else dst[odv[0]].fr_reg = C0_INEXP;
break;
case c0opc_and:
/* 3 operands: dst, src1, src2. */
gdb_assert (nods == 3);
if (cache->c0.c0_fpalign == 0)
{
/* Handle dynamic stack alignment. */
if ((src[odv[0]].fr_reg == spreg) && (src[odv[1]].fr_reg == spreg))
{
if (src[odv[2]].fr_reg == C0_CONST)
cache->c0.c0_fpalign = src[odv[2]].fr_ofs;
break;
}
else if ((src[odv[0]].fr_reg == spreg)
&& (src[odv[2]].fr_reg == spreg))
{
if (src[odv[1]].fr_reg == C0_CONST)
cache->c0.c0_fpalign = src[odv[1]].fr_ofs;
break;
}
/* else fall through. */
}
if (src[odv[1]].fr_reg == C0_CONST)
{
dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs & src[odv[1]].fr_ofs;
}
else if (src[odv[2]].fr_reg == C0_CONST)
{
dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs & src[odv[2]].fr_ofs;
}
else dst[odv[0]].fr_reg = C0_INEXP;
break;
case c0opc_sub:
/* 3 operands: dst, src1, src2. */
gdb_assert (nods == 3);
@ -2237,6 +2293,13 @@ call0_track_op (struct gdbarch *gdbarch,
case c0opc_mov:
/* 2 operands: dst, src [, src]. */
gdb_assert (nods == 2);
/* First, check if it's a special case of saving unaligned SP
to a spare register in case of dynamic stack adjustment.
But, only do it one time. The second time could be initializing
frame pointer. We don't want to overwrite the first one. */
if ((odv[1] == spreg) && (cache->c0.c0_old_sp == C0_INEXP))
cache->c0.c0_old_sp = odv[0];
dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs;
break;
@ -2249,6 +2312,10 @@ call0_track_op (struct gdbarch *gdbarch,
case c0opc_l32r:
/* 2 operands: dst, literal offset. */
gdb_assert (nods == 2);
/* litbase = xtensa_get_litbase (pc); can be also used. */
litbase = (gdbarch_tdep (gdbarch)->litbase_regnum == -1)
? 0 : xtensa_read_register
(gdbarch_tdep (gdbarch)->litbase_regnum);
litaddr = litbase & 1
? (litbase & ~1) + (signed)odv[1]
: (pc + 3 + (signed)odv[1]) & ~3;
@ -2259,6 +2326,13 @@ call0_track_op (struct gdbarch *gdbarch,
case c0opc_s32i:
/* 3 operands: value, base, offset. */
gdb_assert (nods == 3 && spreg >= 0 && spreg < C0_NREGS);
/* First, check if it's a spill for saved unaligned SP,
when dynamic stack adjustment was applied to this frame. */
if ((cache->c0.c0_fpalign != 0) /* Dynamic stack adjustment. */
&& (odv[1] == spreg) /* SP usage indicates spill. */
&& (odv[0] == cache->c0.c0_old_sp)) /* Old SP register spilled. */
cache->c0.c0_sp_ofs = odv[2];
if (src[odv[1]].fr_reg == spreg /* Store to stack frame. */
&& (src[odv[1]].fr_ofs & 3) == 0 /* Alignment preserved. */
&& src[odv[0]].fr_reg >= 0 /* Value is from a register. */
@ -2270,20 +2344,29 @@ call0_track_op (struct gdbarch *gdbarch,
dst[src[odv[0]].fr_reg].to_stk = src[odv[1]].fr_ofs + odv[2];
}
break;
/* If we end up inside Window Overflow / Underflow interrupt handler
report an error because these handlers should have been handled
already in a different way. */
case c0opc_l32e:
case c0opc_s32e:
case c0opc_rfwo:
case c0opc_rfwu:
return 1;
default:
gdb_assert_not_reached ("unexpected instruction kind");
return 1;
}
return 0;
}
/* Analyze prologue of the function at start address to determine if it uses
/* Analyze prologue of the function at start address to determine if it uses
the Call0 ABI, and if so track register moves and linear modifications
in the prologue up to the PC or just beyond the prologue, whichever is first.
An 'entry' instruction indicates non-Call0 ABI and the end of the prologue.
The prologue may overlap non-prologue instructions but is guaranteed to end
by the first flow-control instruction (jump, branch, call or return).
Since an optimized function may move information around and change the
stack frame arbitrarily during the prologue, the information is guaranteed
valid only at the point in the function indicated by the PC.
in the prologue up to the PC or just beyond the prologue, whichever is
first. An 'entry' instruction indicates non-Call0 ABI and the end of the
prologue. The prologue may overlap non-prologue instructions but is
guaranteed to end by the first flow-control instruction (jump, branch,
call or return). Since an optimized function may move information around
and change the stack frame arbitrarily during the prologue, the information
is guaranteed valid only at the point in the function indicated by the PC.
May be used to skip the prologue or identify the ABI, w/o tracking.
Returns: Address of first instruction after prologue, or PC (whichever
@ -2293,21 +2376,17 @@ call0_track_op (struct gdbarch *gdbarch,
pc Program counter to stop at. Use 0 to continue to end of prologue.
If 0, avoids infinite run-on in corrupt code memory by bounding
the scan to the end of the function if that can be determined.
nregs Number of general registers to track (size of rt[] array).
nregs Number of general registers to track.
InOut args:
rt[] Array[nregs] of xtensa_c0reg structures for register tracking info.
If NULL, registers are not tracked.
Output args:
call0 If != NULL, *call0 is set non-zero if Call0 ABI used, else 0
(more accurately, non-zero until 'entry' insn is encountered).
cache Xtensa frame cache.
Note that these may produce useful results even if decoding fails
because they begin with default assumptions that analysis may change. */
static CORE_ADDR
call0_analyze_prologue (struct gdbarch *gdbarch,
CORE_ADDR start, CORE_ADDR pc, CORE_ADDR litbase,
int nregs, xtensa_c0reg_t rt[], int *call0)
CORE_ADDR start, CORE_ADDR pc,
int nregs, xtensa_frame_cache_t *cache)
{
CORE_ADDR ia; /* Current insn address in prologue. */
CORE_ADDR ba = 0; /* Current address at base of insn buffer. */
@ -2359,15 +2438,8 @@ call0_analyze_prologue (struct gdbarch *gdbarch,
else
body_pc = min (pc, body_pc);
if (call0 != NULL)
*call0 = 1;
if (rt != NULL)
{
rtmp = (xtensa_c0reg_t*) alloca(nregs * sizeof(xtensa_c0reg_t));
/* rt is already initialized in xtensa_alloc_frame_cache(). */
}
else nregs = 0;
cache->call0 = 1;
rtmp = (xtensa_c0reg_t*) alloca(nregs * sizeof(xtensa_c0reg_t));
if (!xtensa_default_isa)
xtensa_default_isa = xtensa_isa_init (0, 0);
@ -2386,9 +2458,8 @@ call0_analyze_prologue (struct gdbarch *gdbarch,
{
ba = ia;
bt = (ba + XTENSA_ISA_BSZ) < body_pc ? ba + XTENSA_ISA_BSZ : body_pc;
read_memory (ba, ibuf, bt - ba);
/* If there is a memory reading error read_memory () will report it
and then throw an exception, stopping command execution. */
if (target_read_memory (ba, ibuf, bt - ba) != 0 )
error (_("Unable to read target memory ..."));
}
/* Decode format information. */
@ -2418,7 +2489,7 @@ call0_analyze_prologue (struct gdbarch *gdbarch,
register changes do not take effect within this bundle. */
for (j = 0; j < nregs; ++j)
rtmp[j] = rt[j];
rtmp[j] = cache->c0.c0_rt[j];
for (is = 0; is < islots; ++is)
{
@ -2429,8 +2500,7 @@ call0_analyze_prologue (struct gdbarch *gdbarch,
goto done;
opc = xtensa_opcode_decode (isa, ifmt, is, slot);
DEBUGVERB ("[call0_analyze_prologue] instr "
"addr = 0x%08x, opc = %d\n",
DEBUGVERB ("[call0_analyze_prologue] instr addr = 0x%08x, opc = %d\n",
(unsigned)ia, opc);
if (opc == XTENSA_UNDEFINED)
opclass = c0opc_illegal;
@ -2449,23 +2519,20 @@ call0_analyze_prologue (struct gdbarch *gdbarch,
case c0opc_uninteresting:
continue;
case c0opc_flow:
case c0opc_flow: /* Flow control instructions stop analysis. */
case c0opc_rwxsr: /* RSR, WSR, XSR instructions stop analysis. */
goto done;
case c0opc_entry:
if (call0 != NULL)
*call0 = 0;
cache->call0 = 0;
ia += ilen; /* Skip over 'entry' insn. */
goto done;
default:
if (call0 != NULL)
*call0 = 1;
cache->call0 = 1;
}
/* Only expected opcodes should get this far. */
if (rt == NULL)
continue;
/* Extract and decode the operands. */
nods = xtensa_opcode_num_operands (isa, opc);
@ -2491,7 +2558,13 @@ call0_analyze_prologue (struct gdbarch *gdbarch,
if (opclass == c0opc_mov && nods == 3)
{
if (odv[2] == odv[1])
nods = 2;
{
nods = 2;
if ((odv[0] == 1) && (odv[1] != 1))
/* OR A1, An, An , where n != 1.
This means we are inside epilogue already. */
goto done;
}
else
{
opclass = c0opc_uninteresting;
@ -2500,8 +2573,10 @@ call0_analyze_prologue (struct gdbarch *gdbarch,
}
/* Track register movement and modification for this operation. */
call0_track_op (gdbarch, rt, rtmp, opclass,
nods, odv, ia, litbase, 1);
fail = call0_track_op (gdbarch, cache->c0.c0_rt, rtmp,
opclass, nods, odv, ia, 1, cache);
if (fail)
goto done;
}
}
done:
@ -2516,39 +2591,38 @@ done:
static void
call0_frame_cache (struct frame_info *this_frame,
xtensa_frame_cache_t *cache,
CORE_ADDR pc, CORE_ADDR litbase)
xtensa_frame_cache_t *cache, CORE_ADDR pc)
{
struct gdbarch *gdbarch = get_frame_arch (this_frame);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
CORE_ADDR start_pc; /* The beginning of the function. */
CORE_ADDR body_pc=UINT_MAX; /* PC, where prologue analysis stopped. */
CORE_ADDR sp, fp, ra;
int fp_regnum, c0_hasfp, c0_frmsz, prev_sp, to_stk;
int fp_regnum = C0_SP, c0_hasfp = 0, c0_frmsz = 0, prev_sp = 0, to_stk;
sp = get_frame_register_unsigned
(this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
fp = sp; /* Assume FP == SP until proven otherwise. */
/* Find the beginning of the prologue of the function containing the PC
and analyze it up to the PC or the end of the prologue. */
if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
{
body_pc = call0_analyze_prologue (gdbarch, start_pc, pc, litbase,
C0_NREGS,
&cache->c0.c0_rt[0],
&cache->call0);
body_pc = call0_analyze_prologue (gdbarch, start_pc, pc, C0_NREGS, cache);
if (body_pc == XTENSA_ISA_BADPC)
error (_("Xtensa-specific internal error: CALL0 prologue \
analysis failed in this frame. GDB command execution stopped."));
{
warning_once ();
ra = 0;
goto finish_frame_analysis;
}
}
sp = get_frame_register_unsigned
(this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
fp = sp; /* Assume FP == SP until proven otherwise. */
/* Get the frame information and FP (if used) at the current PC.
If PC is in the prologue, the prologue analysis is more reliable
than DWARF info. We don't not know for sure if PC is in the prologue,
but we know no calls have yet taken place, so we can almost
than DWARF info. We don't not know for sure, if PC is in the prologue,
but we do know no calls have yet taken place, so we can almost
certainly rely on the prologue analysis. */
if (body_pc <= pc)
@ -2571,7 +2645,35 @@ analysis failed in this frame. GDB command execution stopped."));
start_pc = pc;
}
prev_sp = fp + c0_frmsz;
if (cache->c0.c0_fpalign)
{
/* This frame has a special prologue with a dynamic stack adjustment
to force an alignment, which is bigger than standard 16 bytes. */
CORE_ADDR unaligned_sp;
if (cache->c0.c0_old_sp == C0_INEXP)
/* This can't be. Prologue code should be consistent.
Unaligned stack pointer should be saved in a spare register. */
{
warning_once ();
ra = 0;
goto finish_frame_analysis;
}
if (cache->c0.c0_sp_ofs == C0_NOSTK)
/* Saved unaligned value of SP is kept in a register. */
unaligned_sp = get_frame_register_unsigned
(this_frame, gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_old_sp);
else
/* Get the value from stack. */
unaligned_sp = (CORE_ADDR)
read_memory_integer (fp + cache->c0.c0_sp_ofs, 4, byte_order);
prev_sp = unaligned_sp + c0_frmsz;
}
else
prev_sp = fp + c0_frmsz;
/* Frame size from debug info or prologue tracking does not account for
alloca() and other dynamic allocations. Adjust frame size by FP - SP. */
@ -2579,8 +2681,6 @@ analysis failed in this frame. GDB command execution stopped."));
{
fp = get_frame_register_unsigned (this_frame, fp_regnum);
/* Recalculate previous SP. */
prev_sp = fp + c0_frmsz;
/* Update the stack frame size. */
c0_frmsz += fp - sp;
}
@ -2597,23 +2697,21 @@ analysis failed in this frame. GDB command execution stopped."));
else if (cache->c0.c0_rt[C0_RA].fr_reg == C0_CONST
&& cache->c0.c0_rt[C0_RA].fr_ofs == 0)
{
/* Special case for terminating backtrace at a function that
wants to be seen as the outermost. Such a function will
clear it's RA (A0) register to 0 in the prologue instead of
saving its original value. */
/* Special case for terminating backtrace at a function that wants to
be seen as the outermost one. Such a function will clear it's RA (A0)
register to 0 in the prologue instead of saving its original value. */
ra = 0;
}
else
{
/* RA was copied to another register or (before any function
call) may still be in the original RA register. This is not
always reliable: even in a leaf function, register tracking
stops after prologue, and even in prologue, non-prologue
instructions (not tracked) may overwrite RA or any register
it was copied to. If likely in prologue or before any call,
use retracking info and hope for the best (compiler should
have saved RA in stack if not in a leaf function). If not in
prologue, too bad. */
/* RA was copied to another register or (before any function call) may
still be in the original RA register. This is not always reliable:
even in a leaf function, register tracking stops after prologue, and
even in prologue, non-prologue instructions (not tracked) may overwrite
RA or any register it was copied to. If likely in prologue or before
any call, use retracking info and hope for the best (compiler should
have saved RA in stack if not in a leaf function). If not in prologue,
too bad. */
int i;
for (i = 0;
@ -2631,6 +2729,7 @@ analysis failed in this frame. GDB command execution stopped."));
else ra = 0;
}
finish_frame_analysis:
cache->pc = start_pc;
cache->ra = ra;
/* RA == 0 marks the outermost frame. Do not go past it. */
@ -2971,7 +3070,8 @@ xtensa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
}
/* No debug line info. Analyze prologue for Call0 or simply skip ENTRY. */
body_pc = call0_analyze_prologue (gdbarch, start_pc, 0, 0, 0, NULL, NULL);
body_pc = call0_analyze_prologue (gdbarch, start_pc, 0, 0,
xtensa_alloc_frame_cache (0));
return body_pc != 0 ? body_pc : start_pc;
}
@ -3122,6 +3222,7 @@ xtensa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
/* Verify our configuration. */
xtensa_verify_config (gdbarch);
xtensa_session_once_reported = 0;
/* Pseudo-Register read/write. */
set_gdbarch_pseudo_register_read (gdbarch, xtensa_pseudo_register_read);