Clarifications and rephrasings, largely due to Pinard's comments on

refcard.
This commit is contained in:
Roland Pesch 1991-10-16 20:00:20 +00:00
parent 314f3eeda3
commit e0dacfd17a
1 changed files with 36 additions and 26 deletions

View File

@ -3078,16 +3078,22 @@ End of assembler dump.
The usual way to examine data in your program is with the @code{print}
command (abbreviated @code{p}), or its synonym @code{inspect}. It
evaluates and prints the value of an expression of the language your
program is written in (@pxref{Languages}). You type
program is written in (@pxref{Languages}).
@example
print @var{exp}
@end example
@noindent
where @var{exp} is an expression (in the source language), and
@table @code
@item print @var{exp}
@itemx print /@var{f} @var{exp}
@var{exp} is an expression (in the source language). By default
the value of @var{exp} is printed in a format appropriate to its data
type.
type; you can choose a different format by specifying @samp{/@var{f}},
where @var{f} is a letter specifying the format; @pxref{Output formats}.
@item print
@itemx print /@var{f}
If you omit @var{exp}, _GDBN__ displays the last value again (from the
@dfn{value history}; @pxref{Value History}). This allows you to
conveniently inspect the same value in an alternative format.
@end table
A more low-level way of examining data is with the @code{x} command.
It examines data in memory at a specified address and prints it in a
@ -5192,6 +5198,7 @@ the name of a type, or for C code it may have the form
@samp{enum @var{enum-tag}}.@refill
@item ptype @var{exp}
@itemx ptype
Print a description of the type of expression @var{exp}. @code{ptype}
differs from @code{whatis} by printing a detailed description, instead of just
the name of the type. For example, if your program declares a variable
@ -5210,6 +5217,9 @@ type = struct complex @{
double imag;
@}
@end example
@noindent
As with @code{whatis}, using @code{ptype} without an argument refers to
the type of @code{$}, the last value in the value history.
@item info types @var{regexp}
@itemx info types
@ -5280,17 +5290,17 @@ which match the regular-expression @var{regexp}.
@kindex printsyms
@cindex partial symbol dump
Write a dump of debugging symbol data into the file @var{filename}.
These commands are useful for debugging the _GDBN__ symbol-reading code.
Only symbols with debugging data are included. If you use
@code{printsyms}, _GDBN__ includes all the symbols for which it has
already collected full details: that is, @var{filename} reflects symbols
for only those files whose symbols _GDBN__ has read. You can find out
which files these are using the command @code{info sources}. On the
other hand, if you use @code{printpsyms}, the dump also shows
information about symbols that _GDBN__ only knows partially---that is,
symbols defined in files that _GDBN__ has skimmed, but not yet read
completely. The description of @code{symbol-file} describes how _GDBN__
reads symbols; both commands are described under @ref{Files}.
These commands are used to debug the _GDBN__ symbol-reading code. Only
symbols with debugging data are included. If you use @code{printsyms},
_GDBN__ includes all the symbols for which it has already collected full
details: that is, @var{filename} reflects symbols for only those files
whose symbols _GDBN__ has read. You can use the command @code{info
sources} to find out which files these are. If you use
@code{printpsyms}, the dump also shows information about symbols that
_GDBN__ only knows partially---that is, symbols defined in files that
_GDBN__ has skimmed, but not yet read completely. The description of
@code{symbol-file} describes how _GDBN__ reads symbols; both commands
are described under @ref{Files}.
@end table
@ -5570,16 +5580,18 @@ directories to search, just as the shell does when looking for a program
to run. You can change the value of this variable, for both _GDBN__ and
your program, using the @code{path} command.
@item file
@code{file} with no argument makes _GDBN__ discard any information it
has on both executable file and the symbol table.
@item exec-file @var{filename}
@item exec-file @r{[} @var{filename} @r{]}
@kindex exec-file
Specify that the program to be run (but not the symbol table) is found
in @var{filename}. _GDBN__ will search the environment variable @code{PATH}
if necessary to locate the program.
if necessary to locate the program. Omitting @var{filename} means to
discard information on the executable file.
@item symbol-file @var{filename}
@item symbol-file @r{[} @var{filename} @r{]}
@kindex symbol-file
Read symbol table information from file @var{filename}. @code{PATH} is
searched when necessary. Use the @code{file} command to get both symbol
@ -5620,8 +5632,7 @@ other compilers that adhere to the local conventions. Best results are
usually obtained from GNU compilers; for example, using @code{_GCC__}
you can generate debugging information for optimized code.
@item core-file @var{filename}
@itemx core @var{filename}
@item core-file @r{[} @var{filename} @r{]}
@kindex core
@kindex core-file
Specify the whereabouts of a core dump file to be used as the ``contents
@ -6466,8 +6477,7 @@ space. This is useful for outputting a string with spaces at the
beginning or the end, since leading and trailing spaces are otherwise
trimmed from all arguments. Thus, to print @samp{@ and foo =@ }, use the
command @samp{echo \@ and foo = \@ }.
@c FIXME: verify hard copy actually issues enspaces for '@ '! Will this
@c confuse texinfo?
@c FIXME? '@ ' works in tex and info, but confuses texi2roff[-2].
A backslash at the end of @var{text} can be used, as in C, to continue
the command onto subsequent lines. For example,