Add information about the symbol-reading interface.

This commit is contained in:
John Gilmore 1991-07-21 12:16:38 +00:00
parent fb3ee1c0d5
commit eb752e4e4e
1 changed files with 129 additions and 4 deletions

View File

@ -57,6 +57,8 @@ are preserved on all copies.
* Releases:: Configuring GDB for release
* README:: The README file
* New Architectures:: Defining a new host or target architecture
* Host versus Target:: What features are in which files
* Symbol Reading:: Defining new symbol readers
@end menu
@ -132,7 +134,7 @@ warnings are a good example.
@chapter Configuring GDB for release
GDB should be released after doing @samp{config.gdb none} in the top level
GDB should be released after doing @samp{./configure none} in the top level
directory. This will leave a makefile there, but no tm- or xm- files.
The makefile is needed, for example, for @samp{make gdb.tar.Z}@dots{} If you
have tm- or xm-files in the main source directory, C's include rules
@ -140,10 +142,22 @@ cause them to be used in preference to tm- and xm-files in the
subdirectories where the user will actually configure and build the
binaries.
@samp{config.gdb none} is also a good way to rebuild the top level Makefile
after changing Makefile.dist, alldeps.mak, etc.
@samp{./configure none} is also a good way to rebuild the top level Makefile
after changing Makefile.in, alldeps.mak, etc.
@emph{TEMPORARY RELEASE PROCEDURE FOR DOCUMENTATION}
@file{gdb.texinfo} is currently marked up using the texinfo-2 macros,
which are not yet a default for anything (but we have to start using
them sometime).
For making paper, the only thing this implies is the right generation of
texinfo.tex needs to be included in the distribution.
For making info files, however, rather than duplicating the texinfo2
distribution, generate gdb.texinfo locally, and include the files
gdb.info* in the distribution. Note the plural;
@samp{M-x texinfo-format-buffer} will split the document into one overall file
and five or so include files.
@node README, New Architectures, Releases, Top
@chapter The README file
@ -154,7 +168,7 @@ appear anywhere else in the directory.
@node New Architectures, , README, Top
@node New Architectures, Host versus Target, README, Top
@chapter Defining a new host or target architecture
@ -213,6 +227,117 @@ extract data from one, write data to one, print information about one,
etc. Now that executable files are handled with BFD, every architecture
should be able to use the generic exec.c rather than its own custom code.
@node Host versus Target, Symbol Reading, New Architectures, Top
@chapter What is considered ``host-dependent'' versus ``target-dependent''?
The xconfig/*, xm-*.h and *-xdep.c files are for host support. The
question is, what features or aspects of a debugging or cross-debugging
environment are considered to be ``host'' support.
Defines and include files needed to build on the host are host support.
Examples are tty support, system defined types, host byte order, host
float format.
Unix child process support is considered an aspect of the host. Since
when you fork on the host you are still on the host, the various macros
needed for finding the registers in the upage, running ptrace, and such
are all in the host-dependent files.
This is still somewhat of a grey area; I (John Gilmore) didn't do the
xm- and tm- split for gdb (it was done by Jim Kingdon) so I have had to
figure out the grounds on which it was split, and make my own choices
as I evolve it. I have moved many things out of the xdep files
actually, partly as a result of BFD and partly by removing duplicated
code.
@node Symbol Reading, , Host Versus Target, Top
@chapter Symbol Reading
GDB reads symbols from "symbol files". The usual symbol file is the
file containing the program which gdb is debugging. GDB can be directed
to use a different file for symbols (with the ``symbol-file''
command), and it can also read more symbols via the ``add-file'' and ``load''
commands, or while reading symbols from shared libraries.
Symbol files are initially opened by @file{symfile.c} using the BFD
library. BFD identifies the type of the file by examining its header.
@code{symfile_init} then uses this identification to locate a
set of symbol-reading functions.
Symbol reading modules identify themselves to GDB by calling
@code{add_symtab_fns} during their module initialization. The argument
to @code{add_symtab_fns} is a @code{struct sym_fns} which contains
the name (or name prefix) of the symbol format, the length of the prefix,
and pointers to four functions. These functions are called at various
times to process symbol-files whose identification matches the specified
prefix.
The functions supplied by each module are:
@table @code
@item XXX_symfile_init(struct sym_fns *sf)
Called from @code{symbol_file_add} when we are about to read a new
symbol file. This function should clean up any internal state
(possibly resulting from half-read previous files, for example)
and prepare to read a new symbol file. Note that the symbol file
which we are reading might be a new "main" symbol file, or might
be a secondary symbol file whose symbols are being added to the
existing symbol table.
The argument to @code{XXX_symfile_init} is a newly allocated
@code{struct sym_fns} whose @code{bfd} field contains the BFD
for the new symbol file being read. Its @code{private} field
has been zeroed, and can be modified as desired. Typically,
a struct of private information will be @code{malloc}'d, and
a pointer to it will be placed in the @code{private} field.
There is no result from @code{XXX_symfile_init}, but it can call
@code{error} if it detects an unavoidable problem.
@item XXX_new_init()
Called from @code{symbol_file_add} when discarding existing symbols.
This function need only handle
the symbol-reading module's internal state; the symbol table data
structures visible to the rest of GDB will be discarded by
@code{symbol_file_add}. It has no arguments and no result.
It may be called after @code{XXX_symfile_init}, if a new symbol
table is being read, or may be called alone if all symbols are
simply being discarded.
@item XXX_symfile_read(struct sym_fns *sf, CORE_ADDR addr, int mainline)
Called from @code{symbol_file_add} to actually read the symbols from a
symbol-file into a set of psymtabs or symtabs.
@code{sf} points to the struct sym_fns originally passed to @code{XXX_sym_init} for possible initialization.
@code{addr} is the offset between the file's specified start address and
its true address in memory. @code{mainline} is 1 if this is the
main symbol table being read, and 0 if a secondary
symbol file (e.g. shared library or dynamically loaded file)
is being read.
@end table
In addition, if a symbol-reading module creates psymtabs when
XXX_symfile_read is called, these psymtabs will contain a pointer to
a function @code{XXX_psymtab_to_symtab}, which can be called from
any point in the GDB symbol-handling code.
@table @code
@item XXX_psymtab_to_symtab (struct partial_symtab *pst)
Called from @code{psymtab_to_symtab} (or the PSYMTAB_TO_SYMTAB
macro) if the psymtab has not already been read in and had its
@code{pst->symtab} pointer set. The argument is the psymtab
to be fleshed-out into a symtab. Upon return, pst->readin
should have been set to 1, and pst->symtab should contain a
pointer to the new corresponding symtab, or zero if there
were no symbols in that part of the symbol file.
@end table
@contents
@bye