* remote-sim.c: first attempt at general simulator interface

* remote-hms.c: whitespace
	* h8300-tdep.c: (h8300_skip_prologue, examine_prologue):
	understand new stack layout. (print_register_hook): print ccr
	register in a fancy way.
This commit is contained in:
Steve Chamberlain 1993-01-03 22:36:04 +00:00
parent fb6e675f95
commit ec25d19bd6
6 changed files with 1167 additions and 811 deletions

View File

@ -210,6 +210,7 @@ remote-es1800.c
remote-hms.c
remote-mm.c
remote-nindy.c
remote-sim.c
remote-st2000.c
remote-vx.c
remote.c

View File

@ -1,3 +1,11 @@
Sun Jan 3 14:24:56 1993 Steve Chamberlain (sac@thepub.cygnus.com)
* remote-sim.c: first attempt at general simulator interface
* remote-hms.c: whitespace
* h8300-tdep.c: (h8300_skip_prologue, examine_prologue):
understand new stack layout. (print_register_hook): print ccr
register in a fancy way.
Sun Jan 3 14:16:10 1993 Fred Fish (fnf@cygnus.com)
* eval.c (language.h): Include.

View File

@ -17,9 +17,9 @@ You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
/*
/*
Contributed by Steve Chamberlain
sac@cygnus.com
sac@cygnus.com
*/
#include "defs.h"
@ -29,61 +29,80 @@ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
#define UNSIGNED_SHORT(X) ((X) & 0xffff)
/* an easy to debug H8 stack frame looks like:
0x6df2 push r2
0x6df3 push r3
0x6df6 push r6
0x mov.w r7,r6
subs stuff,sp mov.w #x,r5
subs r5,sp
0x6df6 push r6
0x0d76 mov.w r7,r6
0x6dfn push reg
0x7905 nnnn mov.w #n,r5 or 0x1b87 subs #2,sp
0x1957 sub.w r5,sp
*/
#define IS_PUSH(x) ((x & 0xff00)==0x6d00)
#define IS_PUSH_FP(x) (x == 0x6df6)
#define IS_MOVE_FP(x) (x == 0x0d76)
#define IS_MOV_SP_FP(x) (x == 0x0d76)
#define IS_SUB2_SP(x) (x==0x1b87)
#define IS_MOVK_R5(x) (x==0x7905)
CORE_ADDR examine_prologue();
#define IS_SUB_R5SP(x) (x==0x1957)
CORE_ADDR examine_prologue ();
void frame_find_saved_regs ();
CORE_ADDR h8300_skip_prologue(start_pc)
CORE_ADDR start_pc;
void frame_find_saved_regs ();
CORE_ADDR
h8300_skip_prologue (start_pc)
CORE_ADDR start_pc;
{
/* Skip past all push insns */
short int w;
w = read_memory_short(start_pc);
while (IS_PUSH(w))
{
start_pc+=2;
w = read_memory_short(start_pc);
}
/* Skip past a move to FP */
if (IS_MOVE_FP(w)) {
start_pc +=2 ;
w = read_memory_short(start_pc);
w = read_memory_short (start_pc);
/* Skip past all push insns */
while (IS_PUSH_FP (w))
{
start_pc += 2;
w = read_memory_short (start_pc);
}
return start_pc;
}
/* Skip past a move to FP */
if (IS_MOVE_FP (w))
{
start_pc += 2;
w = read_memory_short (start_pc);
}
/* Skip the stack adjust */
if (IS_MOVK_R5 (w))
{
start_pc += 2;
w = read_memory_short (start_pc);
}
if (IS_SUB_R5SP (w))
{
start_pc += 2;
w = read_memory_short (start_pc);
}
while (IS_SUB2_SP (w))
{
start_pc += 2;
w = read_memory_short (start_pc);
}
return start_pc;
}
int
print_insn(memaddr, stream)
CORE_ADDR memaddr;
FILE *stream;
print_insn (memaddr, stream)
CORE_ADDR memaddr;
FILE *stream;
{
/* Nothing is bigger than 8 bytes */
char data[8];
read_memory (memaddr, data, sizeof(data));
return print_insn_h8300(memaddr, data, stream);
char data[8];
read_memory (memaddr, data, sizeof (data));
return print_insn_h8300 (memaddr, data, stream);
}
/* Given a GDB frame, determine the address of the calling function's frame.
This will be used to create a new GDB frame struct, and then
INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
@ -97,11 +116,9 @@ FRAME_CHAIN (thisframe)
{
frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
return thisframe->fsr->regs[SP_REGNUM];
return thisframe->fsr->regs[SP_REGNUM];
}
/* Put here the code to store, into a struct frame_saved_regs,
the addresses of the saved registers of frame described by FRAME_INFO.
This includes special registers such as pc and fp saved in special
@ -128,18 +145,19 @@ frame_find_saved_regs (fi, fsr)
if (!fi->fsr)
{
cache_fsr = (struct frame_saved_regs *)
obstack_alloc (&frame_cache_obstack,
sizeof (struct frame_saved_regs));
obstack_alloc (&frame_cache_obstack,
sizeof (struct frame_saved_regs));
bzero (cache_fsr, sizeof (struct frame_saved_regs));
fi->fsr = cache_fsr;
/* Find the start and end of the function prologue. If the PC
is in the function prologue, we only consider the part that
has executed already. */
ip = get_pc_function_start (fi->pc);
sal = find_pc_line (ip, 0);
limit = (sal.end && sal.end < fi->pc) ? sal.end: fi->pc;
limit = (sal.end && sal.end < fi->pc) ? sal.end : fi->pc;
/* This will fill in fields in *fi as well as in cache_fsr. */
examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
@ -148,55 +166,37 @@ frame_find_saved_regs (fi, fsr)
if (fsr)
*fsr = *fi->fsr;
}
/* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
is not the address of a valid instruction, the address of the next
instruction beyond ADDR otherwise. *PWORD1 receives the first word
of the instruction.*/
CORE_ADDR
NEXT_PROLOGUE_INSN(addr, lim, pword1)
CORE_ADDR addr;
CORE_ADDR lim;
short *pword1;
NEXT_PROLOGUE_INSN (addr, lim, pword1)
CORE_ADDR addr;
CORE_ADDR lim;
short *pword1;
{
if (addr < lim+8)
{
read_memory (addr, pword1, sizeof(*pword1));
SWAP_TARGET_AND_HOST (pword1, sizeof (short));
return addr + 2;
}
if (addr < lim + 8)
{
read_memory (addr, pword1, sizeof (*pword1));
SWAP_TARGET_AND_HOST (pword1, sizeof (short));
return addr + 2;
}
return 0;
}
/* Examine the prologue of a function. `ip' points to the first instruction.
`limit' is the limit of the prologue (e.g. the addr of the first
`limit' is the limit of the prologue (e.g. the addr of the first
linenumber, or perhaps the program counter if we're stepping through).
`frame_sp' is the stack pointer value in use in this frame.
`frame_sp' is the stack pointer value in use in this frame.
`fsr' is a pointer to a frame_saved_regs structure into which we put
info about the registers saved by this frame.
info about the registers saved by this frame.
`fi' is a struct frame_info pointer; we fill in various fields in it
to reflect the offsets of the arg pointer and the locals pointer. */
/* We will find two sorts of prologue, framefull and non framefull:
push r2
push r3
push fp
mov sp,fp
stack_ad
and
push x
push y
stack_ad
*/
static CORE_ADDR
examine_prologue (ip, limit, after_prolog_fp, fsr, fi)
register CORE_ADDR ip;
@ -209,107 +209,102 @@ examine_prologue (ip, limit, after_prolog_fp, fsr, fi)
int r;
int i;
int have_fp = 0;
register int src;
register struct pic_prologue_code *pcode;
INSN_WORD insn_word;
int size, offset;
unsigned int reg_save_depth = 2; /* Number of things pushed onto
unsigned int reg_save_depth = 2; /* Number of things pushed onto
stack, starts at 2, 'cause the
PC is already there */
unsigned int auto_depth = 0; /* Number of bytes of autos */
char in_frame[NUM_REGS]; /* One for each reg */
memset(in_frame, 1, NUM_REGS);
if (after_prolog_fp == 0) {
after_prolog_fp = read_register(SP_REGNUM);
}
if (ip == 0 || ip & ~0xffff) return 0;
char in_frame[NUM_REGS]; /* One for each reg */
memset (in_frame, 1, NUM_REGS);
for (r = 0; r < NUM_REGS; r++)
{
fsr->regs[r] = 0;
}
if (after_prolog_fp == 0)
{
after_prolog_fp = read_register (SP_REGNUM);
}
if (ip == 0 || ip & ~0xffff)
return 0;
next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
/* Skip over any push instructions, and remember where they were saved */
/* Skip over any fp push instructions */
fsr->regs[6] = after_prolog_fp;
while (next_ip && IS_PUSH_FP (insn_word))
{
ip = next_ip;
while (next_ip && IS_PUSH(insn_word))
{
ip = next_ip;
in_frame[insn_word & 0x7] = reg_save_depth;
next_ip = NEXT_PROLOGUE_INSN(ip, limit, &insn_word);
reg_save_depth +=2;
}
in_frame[insn_word & 0x7] = reg_save_depth;
next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
reg_save_depth += 2;
}
/* Is this a move into the fp */
if (next_ip && IS_MOV_SP_FP(insn_word))
{
ip = next_ip;
next_ip = NEXT_PROLOGUE_INSN(ip, limit, &insn_word);
have_fp = 1;
}
if (next_ip && IS_MOV_SP_FP (insn_word))
{
ip = next_ip;
next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
have_fp = 1;
}
/* Skip over any stack adjustment, happens either with a number of
sub#2,sp or a mov #x,r5 sub r5,sp */
if (next_ip && IS_SUB2_SP(insn_word))
{
while (next_ip && IS_SUB2_SP(insn_word))
if (next_ip && IS_SUB2_SP (insn_word))
{
auto_depth +=2 ;
ip = next_ip;
next_ip = NEXT_PROLOGUE_INSN(ip, limit, &insn_word);
while (next_ip && IS_SUB2_SP (insn_word))
{
auto_depth += 2;
ip = next_ip;
next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
}
}
}
else
{
if (next_ip && IS_MOVK_R5(insn_word))
else
{
if (next_ip && IS_MOVK_R5 (insn_word))
{
ip = next_ip;
next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
auto_depth += insn_word;
next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn_word);
auto_depth += insn_word;
}
}
/* Work out which regs are stored where */
while (next_ip && IS_PUSH (insn_word))
{
ip = next_ip;
next_ip = NEXT_PROLOGUE_INSN(ip, limit, &insn_word);
auto_depth += insn_word;
ip +=4;
next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
fsr->regs[r] = after_prolog_fp + auto_depth;
auto_depth += 2;
}
}
/* The args are always reffed based from the stack pointer */
fi->args_pointer = after_prolog_fp - auto_depth;
fi->args_pointer = after_prolog_fp;
/* Locals are always reffed based from the fp */
fi->locals_pointer = after_prolog_fp ;
fi->locals_pointer = after_prolog_fp;
/* The PC is at a known place */
fi->from_pc = read_memory_short(after_prolog_fp + reg_save_depth-2 );
fi->from_pc = read_memory_short (after_prolog_fp + 2);
/* Rememeber any others too */
in_frame[PC_REGNUM] = 0;
for (r = 0; r < NUM_REGS; r++)
{
if (in_frame[r] != 1)
{
fsr->regs[r] = after_prolog_fp + reg_save_depth - in_frame[r] -2;
}
else
{
fsr->regs[r] = 0;
}
}
if (have_fp)
/* We keep the old FP in the SP spot */
fsr->regs[SP_REGNUM] = (read_memory_short(fsr->regs[6])) ;
else
fsr->regs[SP_REGNUM] = after_prolog_fp + reg_save_depth;
if (have_fp)
/* We keep the old FP in the SP spot */
fsr->regs[SP_REGNUM] = (read_memory_short (fsr->regs[6]));
else
fsr->regs[SP_REGNUM] = after_prolog_fp + auto_depth;
return (ip);
}
@ -322,8 +317,9 @@ init_extra_frame_info (fromleaf, fi)
fi->args_pointer = 0; /* Unknown */
fi->locals_pointer = 0; /* Unknown */
fi->from_pc = 0;
}
/* Return the saved PC from this frame.
If the frame has a memory copy of SRP_REGNUM, use that. If not,
@ -331,23 +327,23 @@ init_extra_frame_info (fromleaf, fi)
CORE_ADDR
frame_saved_pc (frame)
FRAME frame;
FRAME frame;
{
return frame->from_pc;
}
CORE_ADDR
frame_locals_address (fi)
struct frame_info *fi;
{
if (!fi->locals_pointer)
{
struct frame_saved_regs ignore;
get_frame_saved_regs(fi, &ignore);
if (!fi->locals_pointer)
{
struct frame_saved_regs ignore;
}
get_frame_saved_regs (fi, &ignore);
}
return fi->locals_pointer;
}
@ -358,38 +354,87 @@ CORE_ADDR
frame_args_address (fi)
struct frame_info *fi;
{
if (!fi->args_pointer)
{
struct frame_saved_regs ignore;
get_frame_saved_regs(fi, &ignore);
if (!fi->args_pointer)
{
struct frame_saved_regs ignore;
get_frame_saved_regs (fi, &ignore);
}
}
return fi->args_pointer;
}
void h8300_pop_frame()
void
h8300_pop_frame ()
{
unsigned regnum;
struct frame_saved_regs fsr;
struct frame_info *fi;
FRAME frame = get_current_frame();
fi = get_frame_info(frame);
get_frame_saved_regs(fi, &fsr);
FRAME frame = get_current_frame ();
for (regnum = 0; regnum < NUM_REGS; regnum ++)
{
if(fsr.regs[regnum])
fi = get_frame_info (frame);
get_frame_saved_regs (fi, &fsr);
for (regnum = 0; regnum < NUM_REGS; regnum++)
{
write_register(regnum, read_memory_short (fsr.regs[regnum]));
if (fsr.regs[regnum])
{
write_register (regnum, read_memory_short (fsr.regs[regnum]));
}
flush_cached_frames ();
set_current_frame (create_new_frame (read_register (FP_REGNUM),
read_pc ()));
}
flush_cached_frames();
set_current_frame(create_new_frame(read_register(FP_REGNUM),
read_pc()));
}
}
void
print_register_hook (regno)
{
if (regno == 8)
{
/* CCR register */
int C, Z, N, V;
unsigned char b[2];
unsigned char l;
read_relative_register_raw_bytes (regno, b);
l = b[1];
printf ("\t");
printf ("I-%d - ", (l & 0x80) != 0);
printf ("H-%d - ", (l & 0x20) != 0);
N = (l & 0x8) != 0;
Z = (l & 0x4) != 0;
V = (l & 0x2) != 0;
C = (l & 0x1) != 0;
printf ("N-%d ", N);
printf ("Z-%d ", Z);
printf ("V-%d ", V);
printf ("C-%d ", C);
if ((C | Z) == 0)
printf ("u> ");
if ((C | Z) == 1)
printf ("u<= ");
if ((C == 0))
printf ("u>= ");
if (C == 1)
printf ("u< ");
if (Z == 0)
printf ("!= ");
if (Z == 1)
printf ("== ");
if ((N ^ V) == 0)
printf (">= ");
if ((N ^ V) == 1)
printf ("< ");
if ((Z | (N ^ V)) == 0)
printf ("> ");
if ((Z | (N ^ V)) == 1)
printf ("<= ");
}
}

File diff suppressed because it is too large Load Diff

293
gdb/remote-sim.c Normal file
View File

@ -0,0 +1,293 @@
/* Remote debugging interface for generalized simulator
Copyright 1992 Free Software Foundation, Inc.
Contributed by Cygnus Support. Written by Steve Chamberlain
(sac@cygnus.com).
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
#include "defs.h"
#include "inferior.h"
#include "wait.h"
#include "value.h"
#include <string.h>
#include <ctype.h>
#include <fcntl.h>
#include <signal.h>
#include <setjmp.h>
#include <errno.h>
#include "terminal.h"
#include "target.h"
#include "gdbcore.h"
/* Forward data declarations */
extern struct target_ops sim_ops; /* Forward declaration */
int
sim_write_inferior_memory (memaddr, myaddr, len)
CORE_ADDR memaddr;
unsigned char *myaddr;
int len;
{
return sim_write(memaddr, myaddr, len);
}
static int
store_register(regno)
int regno;
{
if (regno == -1)
{
for (regno = 0; regno < NUM_REGS; regno++)
store_register(regno);
}
else
{
sim_store_register(regno, read_register(regno));
}
return 0;
}
/*
* Download a file specified in 'args', to the sim.
*/
static void
sim_load(args,fromtty)
char *args;
int fromtty;
{
bfd *abfd;
asection *s;
inferior_pid = 0;
abfd = bfd_openr(args, (char*)0);
if (!abfd)
{
printf_filtered("Unable to open file %s\n", args);
return;
}
if (bfd_check_format(abfd, bfd_object) ==0)
{
printf_filtered("File is not an object file\n");
return ;
}
s = abfd->sections;
while (s != (asection *)NULL)
{
if (s->flags & SEC_LOAD)
{
int i;
int delta = 4096;
char *buffer = xmalloc(delta);
printf_filtered("%s\t: 0x%4x .. 0x%4x ",
s->name, s->vma, s->vma + s->_raw_size);
for (i = 0; i < s->_raw_size; i+= delta)
{
int sub_delta = delta;
if (sub_delta > s->_raw_size - i)
sub_delta = s->_raw_size - i ;
bfd_get_section_contents(abfd, s, buffer, i, sub_delta);
sim_write_inferior_memory(s->vma + i, buffer, sub_delta);
printf_filtered("*");
fflush(stdout);
}
printf_filtered( "\n");
free(buffer);
}
s = s->next;
}
sim_store_register(PC_REGNUM, abfd->start_address);
}
/* This is called not only when we first attach, but also when the
user types "run" after having attached. */
void
sim_create_inferior (execfile, args, env)
char *execfile;
char *args;
char **env;
{
int entry_pt;
if (args && *args)
error ("Can't pass arguments to remote sim process.");
if (execfile == 0 || exec_bfd == 0)
error ("No exec file specified");
entry_pt = (int) bfd_get_start_address (exec_bfd);
init_wait_for_inferior ();
insert_breakpoints ();
proceed(entry_pt, -1, 0);
}
static int
sim_open (name, from_tty)
char *name;
int from_tty;
{
if(name == 0)
{
name = "";
}
push_target (&sim_ops);
target_fetch_registers(-1);
printf_filtered("Connected to the simulator.\n");
}
/* Close out all files and local state before this target loses control. */
static int
sim_close (quitting)
int quitting;
{
}
/* Terminate the open connection to the remote debugger.
Use this when you want to detach and do something else
with your gdb. */
int
sim_detach (args,from_tty)
char *args;
int from_tty;
{
pop_target(); /* calls sim_close to do the real work */
if (from_tty)
printf_filtered ("Ending remote %s debugging\n", target_shortname);
return 0;
}
/* Tell the remote machine to resume. */
/* Wait until the remote machine stops, then return,
storing status in STATUS just as `wait' would. */
int
sim_wait (status)
WAITTYPE *status;
{
WSETSTOP(*status, sim_stop_signal());
return 0;
}
static void
fetch_register(regno)
int regno;
{
if (regno == -1)
{
for (regno = 0; regno < NUM_REGS; regno++)
fetch_register(regno);
}
else
{
char buf[MAX_REGISTER_RAW_SIZE];
sim_fetch_register(regno, buf);
supply_register(regno, buf);
}
}
int
sim_xfer_inferior_memory(memaddr, myaddr, len, write, target)
CORE_ADDR memaddr;
char *myaddr;
int len;
int write;
struct target_ops *target; /* ignored */
{
if (write)
{
sim_write(memaddr, myaddr, len);
}
else
{
sim_read(memaddr, myaddr, len);
}
return len;
}
/* This routine is run as a hook, just before the main command loop is
entered. If gdb is configured for the H8, but has not had its
target specified yet, this will loop prompting the user to do so.
*/
void
sim_before_main_loop ()
{
push_target (&sim_ops);
}
static int rem_resume(a,b)
{
sim_resume(a,b);
return 0;
}
pstore()
{
return 1;
}
/* Define the target subroutine names */
struct target_ops sim_ops =
{
"sim", "simulator",
"Use the simulator",
sim_open, sim_close,
0, sim_detach, rem_resume, sim_wait, /* attach */
fetch_register, store_register,
pstore,
sim_xfer_inferior_memory,
0,
0, 0, /* Breakpoints */
0, 0, 0, 0, 0, /* Terminal handling */
pstore,
sim_load,
0, /* lookup_symbol */
sim_create_inferior, /* create_inferior */
pstore, /* mourn_inferior FIXME */
0, /* can_run */
0, /* notice_signals */
process_stratum, 0, /* next */
1, 1, 1, 1, 1, /* all mem, mem, stack, regs, exec */
0,0, /* Section pointers */
OPS_MAGIC, /* Always the last thing */
};
/***********************************************************************/
void
_initialize_remote_sim ()
{
add_target (&sim_ops);
}

View File

@ -77,17 +77,8 @@ UNSIGNED_SHORT(read_memory_integer (read_register (SP_REGNUM), 2))
#define INNER_THAN <
/* Sequence of bytes for breakpoint instruction.
This is a TRAP instruction. The last 4 bits (0xf below) is the
vector. Systems which don't use 0xf should define BPT_VECTOR
themselves before including this file. */
#define BPT_VECTOR 0xf
#define BREAKPOINT {0x4e, (0x40 | BPT_VECTOR)}
#define BREAKPOINT {0x53, 0x00}
/* If your kernel resets the pc after the trap happens you may need to
@ -305,3 +296,6 @@ typedef unsigned short INSN_WORD;
#define read_memory_short(x) (read_memory_integer(x,2) & 0xffff)
#define DONT_USE_REMOTE
#define PRINT_REGISTER_HOOK(regno) print_register_hook(regno)