2004-08-01 Andrew Cagney <cagney@gnu.org>

* mips-tdep.c (mips16_frame_cache)
	(mips16_frame_this_id, mips16_frame_prev_register)
	(mips16_frame_unwind, mips16_frame_sniffer)
	(mips16_frame_base_address, mips16_frame_base)
	(mips16_frame_base_sniffer, mips32_frame_cache)
	(mips32_frame_this_id, mips32_frame_prev_register)
	(mips32_frame_unwind, mips32_frame_sniffer)
	(mips32_frame_base_address, mips32_frame_base)
	(mips32_frame_base_sniffer): Clone the mdebug unwinder into
	separate heuristic mips16 and mips32 unwinders.
	(mips_stub_frame_cache, mips_stub_frame_this_id)
	(mips_stub_frame_prev_register)
	(mips_stub_frame_unwind, mips_stub_frame_sniffer)
	(mips_stub_frame_base_address, mips_stub_frame_base)
	(mips_stub_frame_base_sniffer): Add a simple stub unwinder.
	(mips_mdebug_frame_base_sniffer, mips_mdebug_frame_sniffer): Only
	match true mdebug frames.
	(non_heuristic_proc_desc): Add forward declaration.
This commit is contained in:
Andrew Cagney 2004-08-01 18:47:58 +00:00
parent 83cbbf3ecb
commit eec6393997
2 changed files with 653 additions and 2 deletions

View File

@ -1,3 +1,24 @@
2004-08-01 Andrew Cagney <cagney@gnu.org>
* mips-tdep.c (mips16_frame_cache)
(mips16_frame_this_id, mips16_frame_prev_register)
(mips16_frame_unwind, mips16_frame_sniffer)
(mips16_frame_base_address, mips16_frame_base)
(mips16_frame_base_sniffer, mips32_frame_cache)
(mips32_frame_this_id, mips32_frame_prev_register)
(mips32_frame_unwind, mips32_frame_sniffer)
(mips32_frame_base_address, mips32_frame_base)
(mips32_frame_base_sniffer): Clone the mdebug unwinder into
separate heuristic mips16 and mips32 unwinders.
(mips_stub_frame_cache, mips_stub_frame_this_id)
(mips_stub_frame_prev_register)
(mips_stub_frame_unwind, mips_stub_frame_sniffer)
(mips_stub_frame_base_address, mips_stub_frame_base)
(mips_stub_frame_base_sniffer): Add a simple stub unwinder.
(mips_mdebug_frame_base_sniffer, mips_mdebug_frame_sniffer): Only
match true mdebug frames.
(non_heuristic_proc_desc): Add forward declaration.
2004-08-01 Andrew Cagney <cagney@gnu.org>
* config/mips/tm-irix6.h: Delete file.

View File

@ -395,6 +395,8 @@ mips_stack_argsize (struct gdbarch *gdbarch)
static mips_extra_func_info_t heuristic_proc_desc (CORE_ADDR, CORE_ADDR,
struct frame_info *, int);
static mips_extra_func_info_t non_heuristic_proc_desc (CORE_ADDR pc,
CORE_ADDR *addrptr);
static CORE_ADDR heuristic_proc_start (CORE_ADDR);
@ -1720,7 +1722,35 @@ static const struct frame_unwind mips_mdebug_frame_unwind =
static const struct frame_unwind *
mips_mdebug_frame_sniffer (struct frame_info *next_frame)
{
return &mips_mdebug_frame_unwind;
CORE_ADDR pc = frame_pc_unwind (next_frame);
CORE_ADDR startaddr = 0;
mips_extra_func_info_t proc_desc;
int kernel_trap;
/* Only use the mdebug frame unwinder on mdebug frames where all the
registers have been saved. Leave hard cases such as no mdebug or
in prologue for the heuristic unwinders. */
proc_desc = non_heuristic_proc_desc (pc, &startaddr);
if (proc_desc == NULL)
return NULL;
/* Not sure exactly what kernel_trap means, but if it means the
kernel saves the registers without a prologue doing it, we better
not examine the prologue to see whether registers have been saved
yet. */
kernel_trap = PROC_REG_MASK (proc_desc) & 1;
if (kernel_trap)
return &mips_mdebug_frame_unwind;
/* In any frame other than the innermost or a frame interrupted by a
signal, we assume that all registers have been saved. This
assumes that all register saves in a function happen before the
first function call. */
if (!in_prologue (pc, PROC_LOW_ADDR (proc_desc)))
return &mips_mdebug_frame_unwind;
return NULL;
}
static CORE_ADDR
@ -1742,7 +1772,601 @@ static const struct frame_base mips_mdebug_frame_base = {
static const struct frame_base *
mips_mdebug_frame_base_sniffer (struct frame_info *next_frame)
{
return &mips_mdebug_frame_base;
if (mips_mdebug_frame_sniffer (next_frame) != NULL)
return &mips_mdebug_frame_base;
else
return NULL;
}
static struct mips_frame_cache *
mips16_frame_cache (struct frame_info *next_frame, void **this_cache)
{
mips_extra_func_info_t proc_desc;
struct mips_frame_cache *cache;
struct gdbarch *gdbarch = get_frame_arch (next_frame);
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
/* r0 bit means kernel trap */
int kernel_trap;
/* What registers have been saved? Bitmasks. */
unsigned long gen_mask, float_mask;
if ((*this_cache) != NULL)
return (*this_cache);
cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
(*this_cache) = cache;
cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
/* Get the mdebug proc descriptor. */
proc_desc = find_proc_desc (frame_pc_unwind (next_frame), next_frame, 1);
if (proc_desc == NULL)
/* I'm not sure how/whether this can happen. Normally when we
can't find a proc_desc, we "synthesize" one using
heuristic_proc_desc and set the saved_regs right away. */
return cache;
/* Extract the frame's base. */
cache->base = (frame_unwind_register_signed (next_frame, NUM_REGS + PROC_FRAME_REG (proc_desc))
+ PROC_FRAME_OFFSET (proc_desc) - PROC_FRAME_ADJUST (proc_desc));
kernel_trap = PROC_REG_MASK (proc_desc) & 1;
gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
/* In any frame other than the innermost or a frame interrupted by a
signal, we assume that all registers have been saved. This
assumes that all register saves in a function happen before the
first function call. */
if (in_prologue (frame_pc_unwind (next_frame), PROC_LOW_ADDR (proc_desc))
/* Not sure exactly what kernel_trap means, but if it means the
kernel saves the registers without a prologue doing it, we
better not examine the prologue to see whether registers
have been saved yet. */
&& !kernel_trap)
{
/* We need to figure out whether the registers that the
proc_desc claims are saved have been saved yet. */
CORE_ADDR addr;
/* Bitmasks; set if we have found a save for the register. */
unsigned long gen_save_found = 0;
unsigned long float_save_found = 0;
int mips16;
/* If the address is odd, assume this is MIPS16 code. */
addr = PROC_LOW_ADDR (proc_desc);
mips16 = pc_is_mips16 (addr);
/* Scan through this function's instructions preceding the
current PC, and look for those that save registers. */
while (addr < frame_pc_unwind (next_frame))
{
if (mips16)
{
mips16_decode_reg_save (mips16_fetch_instruction (addr),
&gen_save_found);
addr += MIPS16_INSTLEN;
}
else
{
mips32_decode_reg_save (mips32_fetch_instruction (addr),
&gen_save_found, &float_save_found);
addr += MIPS_INSTLEN;
}
}
gen_mask = gen_save_found;
float_mask = float_save_found;
}
/* Fill in the offsets for the registers which gen_mask says were
saved. */
{
CORE_ADDR reg_position = (cache->base
+ PROC_REG_OFFSET (proc_desc));
int ireg;
for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
if (gen_mask & 0x80000000)
{
cache->saved_regs[NUM_REGS + ireg].addr = reg_position;
reg_position -= mips_abi_regsize (gdbarch);
}
}
/* The MIPS16 entry instruction saves $s0 and $s1 in the reverse
order of that normally used by gcc. Therefore, we have to fetch
the first instruction of the function, and if it's an entry
instruction that saves $s0 or $s1, correct their saved addresses. */
if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
{
ULONGEST inst = mips16_fetch_instruction (PROC_LOW_ADDR (proc_desc));
if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700)
/* entry */
{
int reg;
int sreg_count = (inst >> 6) & 3;
/* Check if the ra register was pushed on the stack. */
CORE_ADDR reg_position = (cache->base
+ PROC_REG_OFFSET (proc_desc));
if (inst & 0x20)
reg_position -= mips_abi_regsize (gdbarch);
/* Check if the s0 and s1 registers were pushed on the
stack. */
/* NOTE: cagney/2004-02-08: Huh? This is doing no such
check. */
for (reg = 16; reg < sreg_count + 16; reg++)
{
cache->saved_regs[NUM_REGS + reg].addr = reg_position;
reg_position -= mips_abi_regsize (gdbarch);
}
}
}
/* Fill in the offsets for the registers which float_mask says were
saved. */
{
CORE_ADDR reg_position = (cache->base
+ PROC_FREG_OFFSET (proc_desc));
int ireg;
/* Fill in the offsets for the float registers which float_mask
says were saved. */
for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
if (float_mask & 0x80000000)
{
if (mips_abi_regsize (gdbarch) == 4
&& TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
{
/* On a big endian 32 bit ABI, floating point registers
are paired to form doubles such that the most
significant part is in $f[N+1] and the least
significant in $f[N] vis: $f[N+1] ||| $f[N]. The
registers are also spilled as a pair and stored as a
double.
When little-endian the least significant part is
stored first leading to the memory order $f[N] and
then $f[N+1].
Unfortunately, when big-endian the most significant
part of the double is stored first, and the least
significant is stored second. This leads to the
registers being ordered in memory as firt $f[N+1] and
then $f[N].
For the big-endian case make certain that the
addresses point at the correct (swapped) locations
$f[N] and $f[N+1] pair (keep in mind that
reg_position is decremented each time through the
loop). */
if ((ireg & 1))
cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->fp0 + ireg]
.addr = reg_position - mips_abi_regsize (gdbarch);
else
cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->fp0 + ireg]
.addr = reg_position + mips_abi_regsize (gdbarch);
}
else
cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->fp0 + ireg]
.addr = reg_position;
reg_position -= mips_abi_regsize (gdbarch);
}
cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->pc]
= cache->saved_regs[NUM_REGS + RA_REGNUM];
}
/* SP_REGNUM, contains the value and not the address. */
trad_frame_set_value (cache->saved_regs, NUM_REGS + MIPS_SP_REGNUM, cache->base);
return (*this_cache);
}
static void
mips16_frame_this_id (struct frame_info *next_frame, void **this_cache,
struct frame_id *this_id)
{
struct mips_frame_cache *info = mips16_frame_cache (next_frame,
this_cache);
(*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
}
static void
mips16_frame_prev_register (struct frame_info *next_frame,
void **this_cache,
int regnum, int *optimizedp,
enum lval_type *lvalp, CORE_ADDR *addrp,
int *realnump, void *valuep)
{
struct mips_frame_cache *info = mips16_frame_cache (next_frame,
this_cache);
trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
optimizedp, lvalp, addrp, realnump, valuep);
}
static const struct frame_unwind mips16_frame_unwind =
{
NORMAL_FRAME,
mips16_frame_this_id,
mips16_frame_prev_register
};
static const struct frame_unwind *
mips16_frame_sniffer (struct frame_info *next_frame)
{
CORE_ADDR pc = frame_pc_unwind (next_frame);
if (pc_is_mips16 (pc))
return &mips16_frame_unwind;
return NULL;
}
static CORE_ADDR
mips16_frame_base_address (struct frame_info *next_frame,
void **this_cache)
{
struct mips_frame_cache *info = mips16_frame_cache (next_frame,
this_cache);
return info->base;
}
static const struct frame_base mips16_frame_base =
{
&mips16_frame_unwind,
mips16_frame_base_address,
mips16_frame_base_address,
mips16_frame_base_address
};
static const struct frame_base *
mips16_frame_base_sniffer (struct frame_info *next_frame)
{
if (mips16_frame_sniffer (next_frame) != NULL)
return &mips16_frame_base;
else
return NULL;
}
static struct mips_frame_cache *
mips32_frame_cache (struct frame_info *next_frame, void **this_cache)
{
mips_extra_func_info_t proc_desc;
struct mips_frame_cache *cache;
struct gdbarch *gdbarch = get_frame_arch (next_frame);
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
/* r0 bit means kernel trap */
int kernel_trap;
/* What registers have been saved? Bitmasks. */
unsigned long gen_mask, float_mask;
if ((*this_cache) != NULL)
return (*this_cache);
cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
(*this_cache) = cache;
cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
/* Get the mdebug proc descriptor. */
proc_desc = find_proc_desc (frame_pc_unwind (next_frame), next_frame, 1);
if (proc_desc == NULL)
/* I'm not sure how/whether this can happen. Normally when we
can't find a proc_desc, we "synthesize" one using
heuristic_proc_desc and set the saved_regs right away. */
return cache;
/* Extract the frame's base. */
cache->base = (frame_unwind_register_signed (next_frame, NUM_REGS + PROC_FRAME_REG (proc_desc))
+ PROC_FRAME_OFFSET (proc_desc) - PROC_FRAME_ADJUST (proc_desc));
kernel_trap = PROC_REG_MASK (proc_desc) & 1;
gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
/* In any frame other than the innermost or a frame interrupted by a
signal, we assume that all registers have been saved. This
assumes that all register saves in a function happen before the
first function call. */
if (in_prologue (frame_pc_unwind (next_frame), PROC_LOW_ADDR (proc_desc))
/* Not sure exactly what kernel_trap means, but if it means the
kernel saves the registers without a prologue doing it, we
better not examine the prologue to see whether registers
have been saved yet. */
&& !kernel_trap)
{
/* We need to figure out whether the registers that the
proc_desc claims are saved have been saved yet. */
CORE_ADDR addr;
/* Bitmasks; set if we have found a save for the register. */
unsigned long gen_save_found = 0;
unsigned long float_save_found = 0;
int mips16;
/* If the address is odd, assume this is MIPS16 code. */
addr = PROC_LOW_ADDR (proc_desc);
mips16 = pc_is_mips16 (addr);
/* Scan through this function's instructions preceding the
current PC, and look for those that save registers. */
while (addr < frame_pc_unwind (next_frame))
{
if (mips16)
{
mips16_decode_reg_save (mips16_fetch_instruction (addr),
&gen_save_found);
addr += MIPS16_INSTLEN;
}
else
{
mips32_decode_reg_save (mips32_fetch_instruction (addr),
&gen_save_found, &float_save_found);
addr += MIPS_INSTLEN;
}
}
gen_mask = gen_save_found;
float_mask = float_save_found;
}
/* Fill in the offsets for the registers which gen_mask says were
saved. */
{
CORE_ADDR reg_position = (cache->base
+ PROC_REG_OFFSET (proc_desc));
int ireg;
for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
if (gen_mask & 0x80000000)
{
cache->saved_regs[NUM_REGS + ireg].addr = reg_position;
reg_position -= mips_abi_regsize (gdbarch);
}
}
/* The MIPS16 entry instruction saves $s0 and $s1 in the reverse
order of that normally used by gcc. Therefore, we have to fetch
the first instruction of the function, and if it's an entry
instruction that saves $s0 or $s1, correct their saved addresses. */
if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
{
ULONGEST inst = mips16_fetch_instruction (PROC_LOW_ADDR (proc_desc));
if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700)
/* entry */
{
int reg;
int sreg_count = (inst >> 6) & 3;
/* Check if the ra register was pushed on the stack. */
CORE_ADDR reg_position = (cache->base
+ PROC_REG_OFFSET (proc_desc));
if (inst & 0x20)
reg_position -= mips_abi_regsize (gdbarch);
/* Check if the s0 and s1 registers were pushed on the
stack. */
/* NOTE: cagney/2004-02-08: Huh? This is doing no such
check. */
for (reg = 16; reg < sreg_count + 16; reg++)
{
cache->saved_regs[NUM_REGS + reg].addr = reg_position;
reg_position -= mips_abi_regsize (gdbarch);
}
}
}
/* Fill in the offsets for the registers which float_mask says were
saved. */
{
CORE_ADDR reg_position = (cache->base
+ PROC_FREG_OFFSET (proc_desc));
int ireg;
/* Fill in the offsets for the float registers which float_mask
says were saved. */
for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
if (float_mask & 0x80000000)
{
if (mips_abi_regsize (gdbarch) == 4
&& TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
{
/* On a big endian 32 bit ABI, floating point registers
are paired to form doubles such that the most
significant part is in $f[N+1] and the least
significant in $f[N] vis: $f[N+1] ||| $f[N]. The
registers are also spilled as a pair and stored as a
double.
When little-endian the least significant part is
stored first leading to the memory order $f[N] and
then $f[N+1].
Unfortunately, when big-endian the most significant
part of the double is stored first, and the least
significant is stored second. This leads to the
registers being ordered in memory as firt $f[N+1] and
then $f[N].
For the big-endian case make certain that the
addresses point at the correct (swapped) locations
$f[N] and $f[N+1] pair (keep in mind that
reg_position is decremented each time through the
loop). */
if ((ireg & 1))
cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->fp0 + ireg]
.addr = reg_position - mips_abi_regsize (gdbarch);
else
cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->fp0 + ireg]
.addr = reg_position + mips_abi_regsize (gdbarch);
}
else
cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->fp0 + ireg]
.addr = reg_position;
reg_position -= mips_abi_regsize (gdbarch);
}
cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->pc]
= cache->saved_regs[NUM_REGS + RA_REGNUM];
}
/* SP_REGNUM, contains the value and not the address. */
trad_frame_set_value (cache->saved_regs, NUM_REGS + MIPS_SP_REGNUM, cache->base);
return (*this_cache);
}
static void
mips32_frame_this_id (struct frame_info *next_frame, void **this_cache,
struct frame_id *this_id)
{
struct mips_frame_cache *info = mips32_frame_cache (next_frame,
this_cache);
(*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
}
static void
mips32_frame_prev_register (struct frame_info *next_frame,
void **this_cache,
int regnum, int *optimizedp,
enum lval_type *lvalp, CORE_ADDR *addrp,
int *realnump, void *valuep)
{
struct mips_frame_cache *info = mips32_frame_cache (next_frame,
this_cache);
trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
optimizedp, lvalp, addrp, realnump, valuep);
}
static const struct frame_unwind mips32_frame_unwind =
{
NORMAL_FRAME,
mips32_frame_this_id,
mips32_frame_prev_register
};
static const struct frame_unwind *
mips32_frame_sniffer (struct frame_info *next_frame)
{
CORE_ADDR pc = frame_pc_unwind (next_frame);
if (! pc_is_mips16 (pc))
return &mips32_frame_unwind;
return NULL;
}
static CORE_ADDR
mips32_frame_base_address (struct frame_info *next_frame,
void **this_cache)
{
struct mips_frame_cache *info = mips32_frame_cache (next_frame,
this_cache);
return info->base;
}
static const struct frame_base mips32_frame_base =
{
&mips32_frame_unwind,
mips32_frame_base_address,
mips32_frame_base_address,
mips32_frame_base_address
};
static const struct frame_base *
mips32_frame_base_sniffer (struct frame_info *next_frame)
{
if (mips32_frame_sniffer (next_frame) != NULL)
return &mips32_frame_base;
else
return NULL;
}
static struct trad_frame_cache *
mips_stub_frame_cache (struct frame_info *next_frame, void **this_cache)
{
CORE_ADDR pc;
CORE_ADDR start_addr;
CORE_ADDR stack_addr;
struct trad_frame_cache *this_trad_cache;
if ((*this_cache) != NULL)
return (*this_cache);
this_trad_cache = trad_frame_cache_zalloc (next_frame);
(*this_cache) = this_trad_cache;
/* The return address is in the link register. */
trad_frame_set_reg_realreg (this_trad_cache, PC_REGNUM, RA_REGNUM);
/* Frame ID, since it's a frameless / stackless function, no stack
space is allocated and SP on entry is the current SP. */
pc = frame_pc_unwind (next_frame);
find_pc_partial_function (pc, NULL, &start_addr, NULL);
stack_addr = frame_unwind_register_signed (next_frame, SP_REGNUM);
trad_frame_set_id (this_trad_cache, frame_id_build (start_addr, stack_addr));
/* Assume that the frame's base is the same as the
stack-pointer. */
trad_frame_set_this_base (this_trad_cache, stack_addr);
return this_trad_cache;
}
static void
mips_stub_frame_this_id (struct frame_info *next_frame, void **this_cache,
struct frame_id *this_id)
{
struct trad_frame_cache *this_trad_cache
= mips_stub_frame_cache (next_frame, this_cache);
trad_frame_get_id (this_trad_cache, this_id);
}
static void
mips_stub_frame_prev_register (struct frame_info *next_frame,
void **this_cache,
int regnum, int *optimizedp,
enum lval_type *lvalp, CORE_ADDR *addrp,
int *realnump, void *valuep)
{
struct trad_frame_cache *this_trad_cache
= mips_stub_frame_cache (next_frame, this_cache);
trad_frame_get_register (this_trad_cache, next_frame, regnum, optimizedp,
lvalp, addrp, realnump, valuep);
}
static const struct frame_unwind mips_stub_frame_unwind =
{
NORMAL_FRAME,
mips_stub_frame_this_id,
mips_stub_frame_prev_register
};
static const struct frame_unwind *
mips_stub_frame_sniffer (struct frame_info *next_frame)
{
CORE_ADDR pc = frame_pc_unwind (next_frame);
if (in_plt_section (pc, NULL))
return &mips_stub_frame_unwind;
else
return NULL;
}
static CORE_ADDR
mips_stub_frame_base_address (struct frame_info *next_frame,
void **this_cache)
{
struct trad_frame_cache *this_trad_cache
= mips_stub_frame_cache (next_frame, this_cache);
return trad_frame_get_this_base (this_trad_cache);
}
static const struct frame_base mips_stub_frame_base =
{
&mips_stub_frame_unwind,
mips_stub_frame_base_address,
mips_stub_frame_base_address,
mips_stub_frame_base_address
};
static const struct frame_base *
mips_stub_frame_base_sniffer (struct frame_info *next_frame)
{
if (mips_stub_frame_sniffer (next_frame) != NULL)
return &mips_stub_frame_base;
else
return NULL;
}
static CORE_ADDR
@ -5801,8 +6425,14 @@ mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
gdbarch_init_osabi (info, gdbarch);
/* Unwind the frame. */
frame_unwind_append_sniffer (gdbarch, mips_stub_frame_sniffer);
frame_unwind_append_sniffer (gdbarch, mips_mdebug_frame_sniffer);
frame_unwind_append_sniffer (gdbarch, mips16_frame_sniffer);
frame_unwind_append_sniffer (gdbarch, mips32_frame_sniffer);
frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
frame_base_append_sniffer (gdbarch, mips_mdebug_frame_base_sniffer);
frame_base_append_sniffer (gdbarch, mips16_frame_base_sniffer);
frame_base_append_sniffer (gdbarch, mips32_frame_base_sniffer);
return gdbarch;
}