Recognize and skip 64-bit PowerPC Linux linkage functions.

* ppc-linux-tdep.c (insn_d, insn_ds, insn_xfx, read_insn, struct
insn_pattern, insns_match_pattern, d_field, ds_field): New
functions, macros, and types for working with PPC instructions.
(ppc64_standard_linkage, PPC64_STANDARD_LINKAGE_LEN,
ppc64_in_solib_call_trampoline, ppc64_standard_linkage_target,
ppc64_skip_trampoline_code): New functions, variables, and macros
for recognizing and skipping linkage functions.
(ppc_linux_init_abi): Use ppc64_in_solib_call_trampoline and
ppc64_skip_trampoline_code for the 64-bit PowerPC Linux ABI.
This commit is contained in:
Jim Blandy 2003-06-13 00:06:11 +00:00
parent 49ff75ad91
commit f470a70ae3
2 changed files with 274 additions and 4 deletions

View File

@ -1,5 +1,16 @@
2003-06-12 Jim Blandy <jimb@redhat.com>
Recognize and skip 64-bit PowerPC Linux linkage functions.
* ppc-linux-tdep.c (insn_d, insn_ds, insn_xfx, read_insn, struct
insn_pattern, insns_match_pattern, d_field, ds_field): New
functions, macros, and types for working with PPC instructions.
(ppc64_standard_linkage, PPC64_STANDARD_LINKAGE_LEN,
ppc64_in_solib_call_trampoline, ppc64_standard_linkage_target,
ppc64_skip_trampoline_code): New functions, variables, and macros
for recognizing and skipping linkage functions.
(ppc_linux_init_abi): Use ppc64_in_solib_call_trampoline and
ppc64_skip_trampoline_code for the 64-bit PowerPC Linux ABI.
* ppc-linux-nat.c (ppc_register_u_addr): Correctly compute u-area
register offsets for both the 32- and 64-bit interfaces.

View File

@ -632,6 +632,258 @@ ppc_linux_svr4_fetch_link_map_offsets (void)
return lmp;
}
/* Macros for matching instructions. Note that, since all the
operands are masked off before they're or-ed into the instruction,
you can use -1 to make masks. */
#define insn_d(opcd, rts, ra, d) \
((((opcd) & 0x3f) << 26) \
| (((rts) & 0x1f) << 21) \
| (((ra) & 0x1f) << 16) \
| ((d) & 0xffff))
#define insn_ds(opcd, rts, ra, d, xo) \
((((opcd) & 0x3f) << 26) \
| (((rts) & 0x1f) << 21) \
| (((ra) & 0x1f) << 16) \
| ((d) & 0xfffc) \
| ((xo) & 0x3))
#define insn_xfx(opcd, rts, spr, xo) \
((((opcd) & 0x3f) << 26) \
| (((rts) & 0x1f) << 21) \
| (((spr) & 0x1f) << 16) \
| (((spr) & 0x3e0) << 6) \
| (((xo) & 0x3ff) << 1))
/* Read a PPC instruction from memory. PPC instructions are always
big-endian, no matter what endianness the program is running in, so
we can't use read_memory_integer or one of its friends here. */
static unsigned int
read_insn (CORE_ADDR pc)
{
unsigned char buf[4];
read_memory (pc, buf, 4);
return (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
}
/* An instruction to match. */
struct insn_pattern
{
unsigned int mask; /* mask the insn with this... */
unsigned int data; /* ...and see if it matches this. */
int optional; /* If non-zero, this insn may be absent. */
};
/* Return non-zero if the instructions at PC match the series
described in PATTERN, or zero otherwise. PATTERN is an array of
'struct insn_pattern' objects, terminated by an entry whose mask is
zero.
When the match is successful, fill INSN[i] with what PATTERN[i]
matched. If PATTERN[i] is optional, and the instruction wasn't
present, set INSN[i] to 0 (which is not a valid PPC instruction).
INSN should have as many elements as PATTERN. Note that, if
PATTERN contains optional instructions which aren't present in
memory, then INSN will have holes, so INSN[i] isn't necessarily the
i'th instruction in memory. */
static int
insns_match_pattern (CORE_ADDR pc,
struct insn_pattern *pattern,
unsigned int *insn)
{
int i;
for (i = 0; pattern[i].mask; i++)
{
insn[i] = read_insn (pc);
if ((insn[i] & pattern[i].mask) == pattern[i].data)
pc += 4;
else if (pattern[i].optional)
insn[i] = 0;
else
return 0;
}
return 1;
}
/* Return the 'd' field of the d-form instruction INSN, properly
sign-extended. */
static CORE_ADDR
insn_d_field (unsigned int insn)
{
return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
}
/* Return the 'ds' field of the ds-form instruction INSN, with the two
zero bits concatenated at the right, and properly
sign-extended. */
static CORE_ADDR
insn_ds_field (unsigned int insn)
{
return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
}
/* Pattern for the standard linkage function. These are built by
build_plt_stub in elf64-ppc.c, whose GLINK argument is always
zero. */
static struct insn_pattern ppc64_standard_linkage[] =
{
/* addis r12, r2, <any> */
{ insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
/* std r2, 40(r1) */
{ -1, insn_ds (62, 2, 1, 40, 0), 0 },
/* ld r11, <any>(r12) */
{ insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
/* addis r12, r12, 1 <optional> */
{ insn_d (-1, -1, -1, -1), insn_d (15, 12, 2, 1), 1 },
/* ld r2, <any>(r12) */
{ insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 },
/* addis r12, r12, 1 <optional> */
{ insn_d (-1, -1, -1, -1), insn_d (15, 12, 2, 1), 1 },
/* mtctr r11 */
{ insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467),
0 },
/* ld r11, <any>(r12) */
{ insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
/* bctr */
{ -1, 0x4e800420, 0 },
{ 0, 0, 0 }
};
#define PPC64_STANDARD_LINKAGE_LEN \
(sizeof (ppc64_standard_linkage) / sizeof (ppc64_standard_linkage[0]))
/* Recognize a 64-bit PowerPC Linux linkage function --- what GDB
calls a "solib trampoline". */
static int
ppc64_in_solib_call_trampoline (CORE_ADDR pc, char *name)
{
/* Detecting solib call trampolines on PPC64 Linux is a pain.
It's not specifically solib call trampolines that are the issue.
Any call from one function to another function that uses a
different TOC requires a trampoline, to save the caller's TOC
pointer and then load the callee's TOC. An executable or shared
library may have more than one TOC, so even intra-object calls
may require a trampoline. Since executable and shared libraries
will all have their own distinct TOCs, every inter-object call is
also an inter-TOC call, and requires a trampoline --- so "solib
call trampolines" are just a special case.
The 64-bit PowerPC Linux ABI calls these call trampolines
"linkage functions". Since they need to be near the functions
that call them, they all appear in .text, not in any special
section. The .plt section just contains an array of function
descriptors, from which the linkage functions load the callee's
entry point, TOC value, and environment pointer. So
in_plt_section is useless. The linkage functions don't have any
special linker symbols to name them, either.
The only way I can see to recognize them is to actually look at
their code. They're generated by ppc_build_one_stub and some
other functions in bfd/elf64-ppc.c, so that should show us all
the instruction sequences we need to recognize. */
unsigned int insn[PPC64_STANDARD_LINKAGE_LEN];
return insns_match_pattern (pc, ppc64_standard_linkage, insn);
}
/* When the dynamic linker is doing lazy symbol resolution, the first
call to a function in another object will go like this:
- The user's function calls the linkage function:
100007c4: 4b ff fc d5 bl 10000498
100007c8: e8 41 00 28 ld r2,40(r1)
- The linkage function loads the entry point (and other stuff) from
the function descriptor in the PLT, and jumps to it:
10000498: 3d 82 00 00 addis r12,r2,0
1000049c: f8 41 00 28 std r2,40(r1)
100004a0: e9 6c 80 98 ld r11,-32616(r12)
100004a4: e8 4c 80 a0 ld r2,-32608(r12)
100004a8: 7d 69 03 a6 mtctr r11
100004ac: e9 6c 80 a8 ld r11,-32600(r12)
100004b0: 4e 80 04 20 bctr
- But since this is the first time that PLT entry has been used, it
sends control to its glink entry. That loads the number of the
PLT entry and jumps to the common glink0 code:
10000c98: 38 00 00 00 li r0,0
10000c9c: 4b ff ff dc b 10000c78
- The common glink0 code then transfers control to the dynamic
linker's fixup code:
10000c78: e8 41 00 28 ld r2,40(r1)
10000c7c: 3d 82 00 00 addis r12,r2,0
10000c80: e9 6c 80 80 ld r11,-32640(r12)
10000c84: e8 4c 80 88 ld r2,-32632(r12)
10000c88: 7d 69 03 a6 mtctr r11
10000c8c: e9 6c 80 90 ld r11,-32624(r12)
10000c90: 4e 80 04 20 bctr
Eventually, this code will figure out how to skip all of this,
including the dynamic linker. At the moment, we just get through
the linkage function. */
/* If the current thread is about to execute a series of instructions
at PC matching the ppc64_standard_linkage pattern, and INSN is the result
from that pattern match, return the code address to which the
standard linkage function will send them. (This doesn't deal with
dynamic linker lazy symbol resolution stubs.) */
static CORE_ADDR
ppc64_standard_linkage_target (CORE_ADDR pc, unsigned int *insn)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
/* The address of the function descriptor this linkage function
references. */
CORE_ADDR desc
= ((CORE_ADDR) read_register (tdep->ppc_gp0_regnum + 2)
+ (insn_d_field (insn[0]) << 16)
+ insn_ds_field (insn[2]));
/* The first word of the descriptor is the entry point. Return that. */
return (CORE_ADDR) read_memory_unsigned_integer (desc, 8);
}
/* Given that we've begun executing a call trampoline at PC, return
the entry point of the function the trampoline will go to. */
static CORE_ADDR
ppc64_skip_trampoline_code (CORE_ADDR pc)
{
unsigned int ppc64_standard_linkage_insn[PPC64_STANDARD_LINKAGE_LEN];
if (insns_match_pattern (pc, ppc64_standard_linkage,
ppc64_standard_linkage_insn))
return ppc64_standard_linkage_target (pc, ppc64_standard_linkage_insn);
else
return 0;
}
enum {
ELF_NGREG = 48,
ELF_NFPREG = 33,
@ -743,13 +995,20 @@ ppc_linux_init_abi (struct gdbarch_info info,
set_gdbarch_memory_remove_breakpoint (gdbarch,
ppc_linux_memory_remove_breakpoint);
/* Shared library handling. */
set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
set_gdbarch_skip_trampoline_code (gdbarch,
ppc_linux_skip_trampoline_code);
set_solib_svr4_fetch_link_map_offsets
(gdbarch, ppc_linux_svr4_fetch_link_map_offsets);
}
/* Shared library handling. */
set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
set_gdbarch_skip_trampoline_code (gdbarch, ppc_linux_skip_trampoline_code);
if (tdep->wordsize == 8)
{
set_gdbarch_in_solib_call_trampoline
(gdbarch, ppc64_in_solib_call_trampoline);
set_gdbarch_skip_trampoline_code (gdbarch, ppc64_skip_trampoline_code);
}
}
void