Switching GDB to make use of gnulib's C++ namespace support mode
revealed these direct uses of fprintf in the C parser, where
parser_fprintf should be used to handle rewiring stderr to gdb_stderr:
..../src/gdb/c-exp.y: In function ‘void c_print_token(FILE*, int, YYSTYPE)’:
..../src/gdb/c-exp.y:3220:45: error: call to ‘fprintf’ declared with attribute warning: The symbol ::fprintf refers to the system function. Use gnulib::fprintf instead. [-Werror]
pulongest (value.typed_val_int.val));
^
..../src/gdb/c-exp.y:3231:62: error: call to ‘fprintf’ declared with attribute warning: The symbol ::fprintf refers to the system function. Use gnulib::fprintf instead. [-Werror]
fprintf (file, "tsval<type=%d, %s>", value.tsval.type, copy);
^
..../src/gdb/c-exp.y:3237:57: error: call to ‘fprintf’ declared with attribute warning: The symbol ::fprintf refers to the system function. Use gnulib::fprintf instead. [-Werror]
fprintf (file, "sval<%s>", copy_name (value.sval));
^
..../src/gdb/c-exp.y:3243:39: error: call to ‘fprintf’ declared with attribute warning: The symbol ::fprintf refers to the system function. Use gnulib::fprintf instead. [-Werror]
copy_name (value.tsym.stoken));
^
..../src/gdb/c-exp.y:3254:39: error: call to ‘fprintf’ declared with attribute warning: The symbol ::fprintf refers to the system function. Use gnulib::fprintf instead. [-Werror]
value.ssym.is_a_field_of_this);
^
..../src/gdb/c-exp.y:3258:70: error: call to ‘fprintf’ declared with attribute warning: The symbol ::fprintf refers to the system function. Use gnulib::fprintf instead. [-Werror]
fprintf (file, "bval<%s>", host_address_to_string (value.bval));
^
gdb/ChangeLog:
2016-11-17 Pedro Alves <palves@redhat.com>
* c-exp.y (c_print_token): Use parser_fprintf instead of fprintf.
Making GDB use gnulib's C++ namespace support shows this build error
on mingw:
../../src/gdb/ctf.c: In function 'void ctf_start(trace_file_writer*, const char*)':
../../src/gdb/ctf.c:309:46: error: no match for call to '(const gnulib::_gl_mkdir_wrapper) (const char*&)'
#define mkdir(pathname, mode) mkdir (pathname)
^
../../src/gdb/ctf.c:327:15: note: in expansion of macro 'mkdir'
if (gnulib::mkdir (dirname, hmode) && errno != EEXIST)
^
../../src/gdb/ctf.c:309:46: note: candidate: gnulib::_gl_mkdir_wrapper::type {aka int (*)(const char*, short unsigned int)} <conversion>
#define mkdir(pathname, mode) mkdir (pathname)
^
../../src/gdb/ctf.c:327:15: note: in expansion of macro 'mkdir'
if (gnulib::mkdir (dirname, hmode) && errno != EEXIST)
^
../../src/gdb/ctf.c:309:46: note: candidate expects 3 arguments, 2 provided
#define mkdir(pathname, mode) mkdir (pathname)
^
../../src/gdb/ctf.c:327:15: note: in expansion of macro 'mkdir'
if (gnulib::mkdir (dirname, hmode) && errno != EEXIST)
^
The problem is the '#define mkdir ...'
Fortunately, we can just remove it, since gnulib's sys/stat.h
replacement already takes care of the Windows mkdir prototype quirk:
~~~
/* mingw's _mkdir() function has 1 argument, but we pass 2 arguments.
Additionally, it declares _mkdir (and depending on compile flags, an
alias mkdir), only in the nonstandard includes <direct.h> and <io.h>,
which are included above. */
# if (defined _WIN32 || defined __WIN32__) && ! defined __CYGWIN__
# if !GNULIB_defined_rpl_mkdir
static int
rpl_mkdir (char const *name, mode_t mode)
{
return _mkdir (name);
}
~~~
That's sys_stat.in.h, part of the sys_stat module, which we explictly
pull in nowadays. It wasn't being pulled when this macro was added:
https://sourceware.org/ml/gdb-patches/2013-03/msg00736.html
That patch was partially reverted meanwhile here:
https://sourceware.org/ml/gdb-patches/2013-12/msg00023.html
But the mkdir macro had been left behind unnoticed.
gdb/ChangeLog:
2016-11-17 Pedro Alves <palves@redhat.com>
* ctf.c [USE_WIN32API] (mkdir): Delete.
Switching gdb to use gnulib's C++ namespace mode reveals we're calling
malloc instead of xmalloc here:
..../src/gdb/ada-lang.c: In function ‘value* ada_value_primitive_packed_val(value*, const gdb_byte*, long int, int, int, type*)’:
..../src/gdb/ada-lang.c:2592:50: error: call to ‘malloc’ declared with attribute warning: The symbol ::malloc refers to the system function. Use gnulib::malloc instead. [-Werror]
staging = (gdb_byte *) malloc (staging_len);
^
We're unconditionaly using the result afterwards -- so it's not a case
of gracefully handling huge allocations.
Since we want to get rid of all cleanups, fix this by switching to
new[] and unique_ptr<[]> instead, while at it.
Regtested on Fedora 23.
gdb/ChangeLog:
2016-11-16 Pedro Alves <palves@redhat.com>
* ada-lang.c (ada_value_primitive_packed_val): Use unique_ptr and
new gdb_byte[] instead of malloc and cleanups.
I noticed that bfd's printf_vma prints to stdout directly:
bfd-in2.h:202:#define printf_vma(x) fprintf_vma(stdout,x)
This is a bad idea in gdb, where we should use
gdb_stdout/gdb_stderr/gdb_stdlog, etc., to support redirection.
Eliminate uses of sprintf_vma too while at it.
Tested on Fedora 23, w/ gdbserver.
gdb/ChangeLog:
2016-11-17 Pedro Alves <palves@redhat.com>
* tracepoint.c (collection_list::add_memrange): Add gdbarch
parameter. Use paddress instead of printf_vma. Adjust recursive
calls.
(collection_list::stringify): Use paddress and phex_nz instead of
sprintf_vma. Adjust add_memrange call.
* tracepoint.h (collection_list::add_memrange): Add gdbarch
parameter.
This patch ensures that the frame id for the current frame is stashed
before that of the previous frame (to the current frame).
First, it should be noted that the frame id for the current frame is
not stashed by get_current_frame(). The current frame's frame id is
lazily computed and stashed via calls to get_frame_id(). However,
it's possible for get_prev_frame() to be called without first stashing
the current frame.
The frame stash is used not only to speed up frame lookups, but
also to detect cycles. When attempting to compute the frame id
for a "previous" frame (in get_prev_frame_if_no_cycle), a cycle
is detected if the computed frame id is already in the stash.
If it should happen that a previous frame id is stashed which should
represent a cycle for the current frame, then an assertion failure
will trigger should get_frame_id() be later called to determine
the frame id for the current frame.
As of late 2016, with the "Tweak meaning of VALUE_FRAME_ID" patch in
place, this actually occurs when running the
gdb.dwarf2/dw2-dup-frame.exp test. While attempting to generate a
backtrace, the python frame filter code is invoked, leading to
frame_info_to_frame_object() (in python/py-frame.c) being called.
That function will potentially call get_prev_frame() before
get_frame_id() is called. The call to get_prev_frame() can eventually
end up in get_prev_frame_if_no_cycle() which, in turn, calls
compute_frame_id(), after which the frame id is stashed for the
previous frame.
If the frame id for the current frame is stashed, the cycle detection
code (which relies on the frame stash) in get_prev_frame_if_no_cycle()
will be triggered for a cycle starting with the current frame. If the
current frame's id is not stashed, the cycle detecting code can't
operate as designed. Instead, when get_frame_id() is called on the
current frame at some later point, the current frame's id will found
to be already in the stash, triggering an assertion failure.
Below is an in depth examination of the failure which lead to this change.
I've shortened pathnames for brevity and readability.
Here's the portion of the log file showing the failure/internal error:
(gdb) break stop_frame
Breakpoint 1 at 0x40059a: file dw2-dup-frame.c, line 22.
(gdb) run
Starting program: testsuite/outputs/gdb.dwarf2/dw2-dup-frame/dw2-dup-frame
Breakpoint 1, stop_frame () at dw2-dup-frame.c:22
22 }
(gdb) bt
gdb/frame.c:544: internal-error: frame_id get_frame_id(frame_info*): Assertion `stashed' failed.
A problem internal to GDB has been detected,
further debugging may prove unreliable.
Quit this debugging session? (y or n)
FAIL: gdb.dwarf2/dw2-dup-frame.exp: backtrace from stop_frame (GDB internal error)
Here's a partial backtrace from the internal error, showing the frames
which I think are relevant, plus several extra to provide context:
#0 internal_error (
file=0x932b98 "gdb/frame.c", line=544,
fmt=0x932b20 "%s: Assertion `%s' failed.")
at gdb/common/errors.c:54
#1 0x000000000072207e in get_frame_id (fi=0xe5a760)
at gdb/frame.c:544
#2 0x00000000004eb50d in frame_info_to_frame_object (frame=0xe5a760)
at gdb/python/py-frame.c:390
#3 0x00000000004ef5be in bootstrap_python_frame_filters (frame=0xe5a760,
frame_low=0, frame_high=-1)
at gdb/python/py-framefilter.c:1453
#4 0x00000000004ef7a9 in gdbpy_apply_frame_filter (
extlang=0x8857e0 <extension_language_python>, frame=0xe5a760, flags=7,
args_type=CLI_SCALAR_VALUES, out=0xf6def0, frame_low=0, frame_high=-1)
at gdb/python/py-framefilter.c:1548
#5 0x00000000005f2c5a in apply_ext_lang_frame_filter (frame=0xe5a760,
flags=7, args_type=CLI_SCALAR_VALUES, out=0xf6def0, frame_low=0,
frame_high=-1)
at gdb/extension.c:572
#6 0x00000000005ea896 in backtrace_command_1 (count_exp=0x0, show_locals=0,
no_filters=0, from_tty=1)
at gdb/stack.c:1834
Examination of the code in frame_info_to_frame_object(), which is in
python/py-frame.c, is key to understanding this problem:
if (get_prev_frame (frame) == NULL
&& get_frame_unwind_stop_reason (frame) != UNWIND_NO_REASON
&& get_next_frame (frame) != NULL)
{
frame_obj->frame_id = get_frame_id (get_next_frame (frame));
frame_obj->frame_id_is_next = 1;
}
else
{
frame_obj->frame_id = get_frame_id (frame);
frame_obj->frame_id_is_next = 0;
}
I will first note that the frame id for frame has not been computed yet. (This
was verified by placing a breakpoint on compute_frame_id().)
The call to get_prev_frame() causes the the frame id to (eventually) be
computed for the previous frame. Here's a backtrace showing how we
get there:
#0 compute_frame_id (fi=0x10e2810)
at gdb/frame.c:496
#1 0x0000000000724a67 in get_prev_frame_if_no_cycle (this_frame=0xe5a760)
at gdb/frame.c:1871
#2 0x0000000000725136 in get_prev_frame_always_1 (this_frame=0xe5a760)
at gdb/frame.c:2045
#3 0x000000000072516b in get_prev_frame_always (this_frame=0xe5a760)
at gdb/frame.c:2061
#4 0x000000000072570f in get_prev_frame (this_frame=0xe5a760)
at gdb/frame.c:2303
#5 0x00000000004eb471 in frame_info_to_frame_object (frame=0xe5a760)
at gdb/python/py-frame.c:381
For this particular case, we end up in the else clause of the code above
which calls get_frame_id (frame). It's at this point that the frame id
for frame is computed. Again, here's a backtrace:
#0 compute_frame_id (fi=0xe5a760)
at gdb/frame.c:496
#1 0x000000000072203d in get_frame_id (fi=0xe5a760)
at gdb/frame.c:539
#2 0x00000000004eb50d in frame_info_to_frame_object (frame=0xe5a760)
at gdb/python/py-frame.c:390
The test in question, dw2-dup-frame.exp, deliberately creates a broken
(cyclic) stack. So, in this instance, the frame id for the prev
`frame' will be the same as that for `frame'. But that particular
frame id ended up in the stash during the previous frame operation.
When, just a few lines later, we compute the frame id for `frame', the
id in question is already in the stash, thus triggering the assertion
failure.
I considered two other solutions to solving this problem:
We could prevent get_prev_frame() from being called before
get_frame_id() in frame_info_to_frame_object(). (See above for the
snippet of code where this happens.) A call to get_frame_id (frame)
could be placed ahead of that code snippet above. I have tested this
approach and, while it does work, I can't be certain that
get_prev_frame() isn't called ahead of stashing the current frame
somewhere else in GDB, but in a less obvious way.
Another approach is to stash the current frame's id by calling
get_frame_id() in get_current_frame(). This approach is conceptually
simpler, but when importing a python unwinder, has the unwelcome side
effect of causing the unwinder to be called during import.
A cleaner looking fix would be to place this code after code
corresponding to the "Don't compute the frame id of the current frame
yet..." comment in get_prev_frame_if_no_cycle(). Sadly, this does not
work though; by the time we get to this point, the frame state for the
prev frame has been modified just enough to cause an internal error to
occur when attempting to compute the (current) frame id for inline
frames. (The unexpected failure count increases by roughly 130
failures.) Therefore, I decided to place it as early as possible
in get_prev_frame().
gdb/ChangeLog:
* frame.c (get_prev_frame): Stash frame id for current frame
prior to computing frame id for previous frame.
The C function, pending_framepy_read_register(), which implements
the python interface gdb.PendingFrame.read_register does not handle
the so called "user" registers like "pc". An assertion error is
triggered due to the user registers having numbers larger than or
equal to gdbarch_num_regs(gdbarch).
With the VALUE_FRAME_ID tweak in place, the call to
get_frame_register_value() can simply be replaced by a call to
value_of_register(), which handles both real registers as well as the
user registers.
gdb/ChangeLog:
* python/py-unwind.c (pending_framepy_read_register): Use
value_of_register() instead of get_frame_register_value().
The VALUE_FRAME_ID macro provides access to a member in struct value
that's used to hold the frame id that's used when determining a
register's value or when assigning to a register. The underlying
member has a long and obscure name. I won't refer to it here, but
will simply refer to VALUE_FRAME_ID as if it's the struct value member
instead of being a convenient macro.
At the moment, without this patch in place, VALUE_FRAME_ID is set in
value_of_register_lazy() and several other locations to hold the frame
id of the frame passed to those functions.
VALUE_FRAME_ID is used in the lval_register case of
value_fetch_lazy(). To fetch the register's value, it calls
get_frame_register_value() which, in turn, calls
frame_unwind_register_value() with frame->next.
A python based unwinder may wish to determine the value of a register
or evaluate an expression containing a register. When it does this,
value_fetch_lazy() will be called under some circumstances. It will
attempt to determine the frame id associated with the frame passed to
it. In so doing, it will end up back in the frame sniffer of the very
same python unwinder that's attempting to learn the value of a
register as part of the sniffing operation. This recursion is not
desirable.
As noted above, when value_fetch_lazy() wants to fetch a register's
value, it does so (indirectly) by unwinding from frame->next.
With this in mind, a solution suggests itself: Change VALUE_FRAME_ID
to hold the frame id associated with the next frame. Then, when it
comes time to obtain the value associated with the register, we can
simply unwind from the frame corresponding to the frame id stored in
VALUE_FRAME_ID. This neatly avoids the python unwinder recursion
problem by changing when the "next" operation occurs. Instead of the
"next" operation occuring when the register value is fetched, it
occurs earlier on when assigning a frame id to VALUE_FRAME_ID.
(Thanks to Pedro for this suggestion.)
This patch implements this idea.
It builds on the patch "Distinguish sentinel frame from null frame".
Without that work in place, it's necessary to check for null_id at
several places and then obtain the sentinel frame.
It also renames most occurences of VALUE_FRAME_ID to
VALUE_NEXT_FRAME_ID to reflect the new meaning of this field.
There are several uses of VALUE_FRAME_ID which were not changed. In
each case, the original meaning of VALUE_FRAME_ID is required to get
correct results. In all but one of these uses, either
put_frame_register_bytes() or get_frame_register_bytes() is being
called with the frame value obtained from VALUE_FRAME_ID. Both of
these functions perform some unwinding by performing a "->next"
operation on the frame passed to it. If we were to use the new
VALUE_NEXT_FRAME_ID macro, this would effectively do two "->next"
operations, which is not what we want.
The VALUE_FRAME_ID macro has been redefined in terms of
VALUE_NEXT_FRAME_ID. It simply fetches the previous frame's id,
providing this id as the value of the macro.
gdb/ChangeLog:
* value.h (VALUE_FRAME_ID): Rename to VALUE_NEXT_FRAME_ID. Update
comment. Create new VALUE_FRAME_ID which is defined in terms of
VALUE_NEXT_FRAME_ID.
(deprecated_value_frame_id_hack): Rename to
deprecated_value_next_frame_id_hack.
* dwarf2loc.c, findvar.c, frame-unwind.c, sentinel-frame.c,
valarith.c, valops.c, value.c: Adjust nearly all occurences of
VALUE_FRAME_ID to VALUE_NEXT_FRAME_ID. Add comments for those
which did not change.
* value.c (struct value): Rename frame_id field to next_frame_id.
Update comment.
(deprecated_value_frame_id_hack): Rename to
deprecated_value_next_frame_id_hack.
(value_fetch_lazy): Call frame_unwind_register_value()
instead of get_frame_register_value().
* frame.c (get_prev_frame_id_by_id): New function.
* frame.h (get_prev_frame_id_by_id): Declare.
* dwarf2loc.c (dwarf2_evaluate_loc_desc_full): Make
VALUE_NEXT_FRAME_ID refer to the next frame.
* findvar.c (value_of_register_lazy): Likewise.
(default_value_from_register): Likewise.
(value_from_register): Likewise.
* frame_unwind.c (frame_unwind_got_optimized): Likewise.
* sentinel-frame.c (sentinel_frame_prev_register): Likewise.
* value.h (VALUE_FRAME_ID): Update comment describing this macro.
This patch replaces the `current_frame' static global in frame.c with
`sentinel_frame'. It also makes the sentinel frame id unique and
different from the null frame.
By itself, there is not much point to this patch, but it makes
the code cleaner for the VALUE_FRAME_ID changes in another patch.
Since we now allow "navigation" to the sentinel frame, it removes
the necessity of adding special cases to other parts of GDB.
Note that a new function, get_next_frame_sentinel_okay, is introduced
in this patch. It will be used by the VALUE_FRAME_ID changes that
I've made.
Thanks to Pedro Alves for this suggestion.
gdb/ChangeLog:
* frame.h (enum frame_id_stack_status): Add FID_STACK_SENTINEL.
(struct frame_id): Increase number of bits required for storing
stack status to 3 from 2.
(sentinel_frame_id): New declaration.
(get_next_frame_sentinel_okay): Declare.
(frame_find_by_id_sentinel_okay): Declare.
* frame.c (current_frame): Rename this static global to...
(sentinel_frame): ...this static global, which has also been
moved an earlier location in the file.
(fprint_frame_id): Add case for sentinel frame id.
(get_frame_id): Return early for sentinel frame.
(sentinel_frame_id): Define.
(frame_find_by_id): Add case for sentinel_frame_id.
(create_sentinel_frame): Use sentinel_frame_id for this_id.value
instead of null_frame_id.
(get_current_frame): Add local declaration for `current_frame'.
Remove local declaration for `sentinel_frame.'
(get_next_frame_sentinel_okay): New function.
(reinit_frame_cache): Use `sentinel_frame' in place of
`current_frame'.
This patch modifies the unwinder (sniffer) defined in
py-recurse-unwind.py so that, depending upon the value of one of its
class variables, it will take different paths through the code,
testing different functionality.
The original test attempted to obtain the value of an undefined
symbol.
This somewhat expanded test checks to see if 'pc' can be read via
gdb.PendingFrame.read_register() and also via gdb.parse_and_eval().
gdb/testsuite/ChangeLog:
* gdb.python/py-recurse-unwind.c (main): Add loop.
* gdb.python/py-recurse-unwind.py (TestUnwinder): Add calls
to read_register() and gdb.parse_and_eval(). Make each code
call a separate case that can be individually tested.
* gdb.python/py-recurse-unwind.exp (cont_and_backtrace): New
proc. Call cont_and_backtrace for each of the code paths that
we want to test in the unwinder.
Now that we require C++11 and all uses of gdb::unique_ptr and
gdb::move are gone, let's remove their definitions...
With my lazy hat on, I repurposed the header for "generally useful
unique_ptr specializations", and left gdb::unique_xmalloc_ptr in
there. Not sure whether we it'd be better move it out of the gdb
namespace or leave it be. I left it because it's less work and avoids
disrupting yet-unmerged patches that use it.
gdb/ChangeLog:
2016-11-15 Pedro Alves <palves@redhat.com>
* common/common-defs.h: Update comment.
* common/gdb_unique_ptr.h: Update header comment and copyright
year.
(gdb::unique_ptr, gdb::move): Delete.
Now that we require C++11, use std::unique_ptr and std::move directly.
gdb/ChangeLog:
2016-11-15 Pedro Alves <palves@redhat.com>
* ada-lang.c (create_excep_cond_exprs): Use std::move instead of
gdb::move.
* break-catch-throw.c (handle_gnu_v3_exceptions): Use
std::unique_ptr instead of gdb::unique_ptr.
* breakpoint.c (watch_command_1): Use std::move instead of
gdb::move.
* cli/cli-dump.c (dump_memory_to_file, restore_binary_file): Use
std::unique_ptr instead of gdb::unique_ptr.
* dtrace-probe.c (dtrace_process_dof_probe): Use std::move instead
of gdb::move.
* elfread.c (elf_read_minimal_symbols): Use std::unique_ptr
instead of gdb::unique_ptr.
* mi/mi-main.c (mi_cmd_data_read_memory): Use std::unique_ptr
instead of gdb::unique_ptr.
* parse.c (parse_expression_for_completion): Use std::move instead
of gdb::move.
* printcmd.c (display_command): std::move instead of gdb::move.
The "struct S" type in bitfield-parent-optimized-out.exp is declared to
have a size of 4 bytes but to hold two 4-byte members: an int-based
bitfield and a 4-byte int. Also, both members have the same
data_member_location 2, causing them to overlap and to reach 2 bytes
beyond the structure's boundary.
This is fixed by increasing the structure size to 8 and setting the
first and second member's data_member_location to 0 and 4, respectively.
gdb/testsuite/ChangeLog:
* gdb.dwarf2/bitfield-parent-optimized-out.exp: Fix DWARF code for
the definition of struct S.
The data_head of a perf event data buffer grows indefinitely. Users are
expected to compute data_head % data_size to find the location inside the perf
event data buffer.
The aux_head of a perf event aux buffer wraps around and always stays within the
perf event aux buffer.
Well, at least that's the behaviour for BTS and PT - where BTS uses the data
buffer and PT the aux buffer.
GDB does not read beyond data_head or aux_head. This is OK for BTS but wrong
for PT. It causes only a portion of the trace to be considered by GDB. In the
extreme case, the buffer may appear (almost) empty.
Thanks to Tim Wiederhake <tim.wiederhake@intel.com> for reporting the anomaly.
Change it to read the entire aux buffer for PT. The buffer is initially zero so
any extra zeroes we read before aux_head wraps around the first time will be
ignored when searching for the first PSB packet in order to synchronize onto the
trace stream.
gdb/
* nat/linux-btrace.c (perf_event_read): Allow data_head < size.
* nat/linux-btrace.c (perf_event_read_all): Do not adjust size.
Change-Id: If4f8049a2080a5f16f336309450b32a3eb1e3ec9
This removes some cleanups from the rust code, in favor of C++ objects
with destructors.
2016-11-12 Tom Tromey <tom@tromey.com>
* rust-exp.y (super_name): Use std::vector.
(lex_number): Use std::string.
(convert_params_to_types): Return std::vector.
(convert_ast_to_type, convert_name): Update.
* rust-lang.c (rust_get_disr_info): Use unique_xmalloc_ptr.
This changes rust_get_disr_info to use std::string in one more spot,
avoiding a memory leak.
2016-11-12 Tom Tromey <tom@tromey.com>
* rust-lang.c (rust_get_disr_info): Use std::string in one more
spot.
When we do software single step, frame is always the innermost one,
so it is impossible to get unavailable/optimized-out errors.
gdb:
2016-11-11 Yao Qi <yao.qi@linaro.org>
* spu-tdep.c (spu_software_single_step): Don't call
get_frame_register_bytes, call get_frame_register_unsigned
instead.
This patch removes the parameter valaddr of
extension_language_ops::apply_val_pretty_printer and remove const from
"struct value *val". valaddr can be got in each extension language's
implementation of apply_val_pretty_printer.
gdb:
2016-11-11 Yao Qi <yao.qi@linaro.org>
* cp-valprint.c (cp_print_value): Remove local base_valaddr.
* extension-priv.h (struct extension_language_ops)
<apply_val_pretty_printer>: Remove the second parameter.
Remove const from "struct value *". Callers updated.
* extension.c (apply_ext_lang_val_pretty_printer): Update
comments. Remove parameter valaddr. Remove const from
"struct value *".
* extension.h (apply_ext_lang_val_pretty_printer): Update
declaration.
* guile/guile-internal.h (gdbscm_apply_val_pretty_printer):
Update declaration.
* guile/scm-pretty-print.c (gdbscm_apply_val_pretty_printer):
Remove parameter valaddr. Remove const from "struct value *".
* python/py-prettyprint.c (gdbpy_apply_val_pretty_printer):
Likewise.
* python/python-internal.h (gdbpy_apply_val_pretty_printer):
Update declaration.
- Use multi_line for matching multi-line GDB output.
- Add a multi_line_input variant of multi_line to build GDB input and
use it throughout.
(The two changes above make the tests much more readable, IMO.)
- Add a new valnum_re global to get rid of the multiple "\\\$\[0-9\]*".
- Remove gdb_stop_suppressing_tests uses.
- tighten a few regexps.
- Replace send_gdb/gdb_expect with gdb_test_multiple and simplify,
making pass/fail messages the same.
gdb/ChangeLog:
2016-11-09 Pedro Alves <palves@redhat.com>
* gdb.base/commands.exp (runto_or_return): New procedure.
(gdbvar_simple_if_test, gdbvar_simple_while_test)
(gdbvar_complex_if_while_test, progvar_simple_if_test)
(progvar_simple_while_test, progvar_complex_if_while_test)
(if_while_breakpoint_command_test)
(infrun_breakpoint_command_test, breakpoint_command_test)
(user_defined_command_test, watchpoint_command_test)
(test_command_prompt_position, redefine_hook_test)
(stray_arg0_test, error_clears_commands_left, redefine_hook_test)
(redefine_backtrace_test): Use runto_or_return, $valnum_re,
multi_line_input and multi_line. Remove gdb_expect and
gdb_stop_suppressing_tests uses.
* lib/gdb.exp (valnum_re): New global.
* lib/gdb.exp (valnum_re): New global.
(multi_line_input): New procedure.
Pedro's patch provides a cleaner way to prefix tests with the proc name,
so let's use that.
gdb/testsuite/ChangeLog:
* gdb.mi/user-selected-context-sync.exp (with_test_prefix_procname):
Remove.
(test_setup): Define with proc_with_prefix.
(test_cli_inferior): Likewise.
(test_cli_thread): Likewise.
(test_cli_frame): Likewise.
(test_cli_select_frame): Likewise.
(test_cli_up_down): Likewise.
(test_mi_thread_select): Likewise.
(test_mi_stack_select_frame): Likewise.
(test_cli_in_mi_inferior): Likewise.
(test_cli_in_mi_thread): Likewise.
(test_cli_in_mi_frame): Likewise.
(top level): Do not use with_test_prefix_procname.
While adding new tests to gdb.base/commands.exp, I noticed that the
file includes a bunch of individual testcases split into their own
procedures, and that none have ever been adjusted to use
with_test_prefix. Instead, each gdb_test/gdb_test_multiple/etc
invocation takes care of including the procedure name in the test
message, in order to make sure test messages are unique.
Simon convinced me that using the procedure name as prefix is not that
bad of an idea:
https://sourceware.org/ml/gdb-patches/2016-10/msg00020.html
This commit adds an IMO simpler alternative to
with_test_prefix_procname added by that patch -- a new
"proc_with_prefix" convenience proc that is meant to be used in place
of "proc", and then uses it in commands.exp. Procedures defined with
this automatically run their bodies under with_test_prefix $proc_name.
Here's a sample of the resulting gdb.sum diff:
[...]
-PASS: gdb.base/commands.exp: break factorial #3
-PASS: gdb.base/commands.exp: set value to 5 in test_command_prompt_position
-PASS: gdb.base/commands.exp: if test in test_command_prompt_position
-PASS: gdb.base/commands.exp: > OK in test_command_prompt_position
+PASS: gdb.base/commands.exp: test_command_prompt_position: break factorial
+PASS: gdb.base/commands.exp: test_command_prompt_position: set value to 5
+PASS: gdb.base/commands.exp: test_command_prompt_position: if test
+PASS: gdb.base/commands.exp: test_command_prompt_position: > OK
[...]
gdb/testsuite/ChangeLog:
2016-11-09 Pedro Alves <palves@redhat.com>
* gdb.base/commands.exp (gdbvar_simple_if_test)
(gdbvar_simple_while_test, gdbvar_complex_if_while_test)
(progvar_simple_if_test, progvar_simple_while_test)
(progvar_complex_if_while_test, if_while_breakpoint_command_test)
(infrun_breakpoint_command_test, breakpoint_command_test)
(user_defined_command_test, watchpoint_command_test)
(test_command_prompt_position, deprecated_command_test)
(bp_deleted_in_command, temporary_breakpoint_commands)
(stray_arg0_test, source_file_with_indented_comment)
(recursive_source_test, if_commands_test)
(error_clears_commands_left, redefine_hook_test)
(redefine_backtrace_test): Use proc_with_prefix.
* lib/gdb.exp (proc_with_prefix): New proc.
Now that we require C++11, use std::unique_ptr directly. This allows
simplifying collection_list a bit by placing unique pointers in the
vector directly, making the vector own its elements.
gdb/ChangeLog:
2016-11-09 Pedro Alves <palves@redhat.com>
* ax-gdb.c (agent_eval_command_one): Use std::move instead of
gdb::move.
* ax.h (agent_expr_up): Use std::unique_ptr instead of
gdb::unique_ptr.
* breakpoint.c (parse_cond_to_aexpr): Use std::move instead of
gdb::move.
* tracepoint.c (collection_list::collect_symbol): Likewise.
(collection_list::~collection_list): Delete.
(encode_actions_1): Use std::move instead of gdb::move.
(collection_list::add_aexpr): Use std::move instead of
unique_ptr::release.
* tracepoint.h (collection_list) <~collection_list>: Delete
declaration.
<m_aexprs>: Now a vector of agent_ptr_up.
Now that we require C++11, we can use vector::emplace_back to
construct elements in place instead of constructing and then copying.
gdb/ChangeLog:
2016-11-09 Pedro Alves <palves@redhat.com>
* main.c (struct cmdarg): Add constructor.
(captured_main_1): Use vector::emplace_back.
* tracepoint.c (collection_list::add_memrange): Likewise.
This removes dead code in tui_alloc_source_buffer for handling a NULL
return value from xmalloc.
gdb/ChangeLog:
* tui/tui-winsource.c (tui_alloc_source_buffer): Remove
failed-xmalloc handling.
The logic for allocating a TUI source window's content buffer allocates
two more lines than needed, because it does not reduce the window height
by the highlight box's overhead. However, it does reduce the line width
accordingly. This patch makes the height and width calculation
consistent and improves the comment.
gdb/ChangeLog:
* tui/tui-winsource.c (tui_alloc_source_buffer): Subtract
highlight box's overhead when calculating the content height.
The code that fills the TUI disassembly window content first calculates
the maximum full length of a displayed disassembly line. This
calculation typically yields the wrong result. The result is too large,
so the bug does not cause any run-time failures, but unnecessary
confusion for the reader. This patch fixes the calculation.
gdb/ChangeLog:
* tui/tui-disasm.c (tui_set_disassem_content): Fix calculation of
the longest disassembly line's length.
A user reported a GDB crash with TUI when trying to debug a function
with a long demangled C++ method name. It turned out that the logic for
displaying the TUI disassembly window has a bug that can cause a buffer
overrun, possibly overwriting GDB-internal data structures. In
particular, the logic performs an unguarded strcpy.
Another (harmless) bug in tui_alloc_source_buffer causes the buffer to
be two lines longer than needed. This may have made the crash appear
less frequently.
gdb/ChangeLog:
* tui/tui-disasm.c (tui_set_disassem_content): Fix line buffer
overrun due to unchecked strcpy.
gdb/testsuite/ChangeLog:
* gdb.base/tui-layout.c: New file.
* gdb.base/tui-layout.exp: Use tui-layout.c, to ensure that the
disassembly window contains very long lines.
Support message from new task and dead name notification on task of an
existing process.
With Sierra, exec(2) terminate the current task and creates a new one.
'set startup-with-shell off' must still be used on Darwin 16.
2016-11-09 Tristan Gingold <gingold@adacore.com>
* darwin-nat.c (find_inferior_task_it): Fix indentation.
(find_inferior_notify_it): Remove.
(find_inferior_pid_it): New function.
(darwin_find_inferior_by_notify): Remove.
(darwin_find_inferior_by_pid): New function.
(darwin_find_new_inferior): New function.
(darwin_check_message_ndr): New function from
darwin_decode_exception_message.
(darwin_decode_exception_message): Call darwin_check_message_ndr.
Handle SIGTRAP addressed to an unknown task (when a task spawned).
(darwin_decode_notify_message): New function.
(darwin_decode_message): Handle unknown task.
(darwin_deallocate_threads): New function from darwin_mourn_inferior.
(darwin_mourn_inferior): Use darwin_deallocate_threads and
darwin_deallocate_exception_ports.
(darwin_deallocate_exception_ports): New function from
darwin_mourn_inferior.
(darwin_setup_exceptions): New function from darwin_attach_pid.
(darwin_setup_request_notification): Likewise.
(darwin_attach_pid): Call darwin_setup_request_notification and
darwin_setup_request_notification.
I happened to notice that one test in py-value.exp did not work
properly with Python 3. This patch fixes the problem.
2016-11-08 Tom Tromey <tom@tromey.com>
* gdb.python/py-value.exp (test_value_creation): Make "long" test
depend on Python 2.
While writing a Python frame filter, I found a few bugs in the current
frame filter code. In particular:
* One spot converts a Python long to a CORE_ADDR using PyLong_AsLong.
However, this can fail on overflow. I changed this to use
get_addr_from_python.
* Another spot is doing the same but with PyLong_AsUnsignedLongLong; I
changed this as well just for consistency.
* Converting line numbers can print "-1" if conversion from long
fails. This isn't fatal but just a bit ugly.
I've included a test case for the first issue. The line number one
didn't seem important enough to bother with.
2016-11-08 Tom Tromey <tom@tromey.com>
* python/py-framefilter.c (py_print_frame): Use
get_addr_from_python. Check for errors when getting line number.
2016-11-08 Tom Tromey <tom@tromey.com>
* gdb.python/py-framefilter.py (ElidingFrameDecorator.address):
New method.
This patch calls get_frame_register_value instead of
deprecated_frame_register_read, so that we can pass
value_contents_for_printing to val_print. Both
get_frame_register_value and deprecated_frame_register_read call
frame_unwind_register_value indirectly, so no functionality is changed
by this patch.
gdb:
2016-11-08 Yao Qi <yao.qi@linaro.org>
* mt-tdep.c (mt_registers_info): Call
get_frame_register_value instead of
deprecated_frame_register_read.
* sh64-tdep.c (sh64_do_register): Likewise.
After the previous patch, we end up with these two types with quite
similar, and potentially confusing names:
typedef gdb::unique_ptr<agent_expr> agent_expr_up;
/* Pointer to an agent_expr structure. */
typedef struct agent_expr *agent_expr_p;
The latter is only necessary to put agent_expr pointers in VECs. So
just eliminate it and use std::vector instead.
gdb/ChangeLog:
2016-11-08 Pedro Alves <palves@redhat.com>
* ax.h (agent_expr_p): Delete.
(DEF_VEC_P (agent_expr_p)): Delete.
* breakpoint.c (build_target_condition_list)
(build_target_command_list): Adjust to use of std::vector.
(bp_location_dtor): Remove now unnecessary VEC_free calls.
* breakpoint.h: Include <vector>.
(struct bp_target_info) <conditions, tcommands>: Now
std::vector's.
* remote.c (remote_add_target_side_condition): bp_tgt->conditions
is now a std::vector; adjust.
(remote_add_target_side_commands, remote_insert_breakpoint):
bp_tgt->tcommands is now a std::vector; adjust.
This patch makes the gen_* functions return a unique_ptr instead of
raw pointer:
typedef gdb::unique_ptr<agent_expr> agent_expr_up;
and then adjusts the codebase throughout to stop using
make_cleanup_free_agent_expr.
The cond_bytecode and cmd_bytecode fields of struct bp_location are
owning pointers, so they're changed to be unique_ptr's instead of raw
pointers.
gdb/ChangeLog:
2016-11-08 Pedro Alves <palves@redhat.com>
* ax-gdb.c (is_nontrivial_conversion): Use agent_expr_up.
(gen_trace_for_var, gen_trace_for_expr, gen_eval_for_expr)
(gen_trace_for_return_address, gen_printf): Use and return an
agent_expr_up. Don't use make_cleanup_free_agent_expr.
(agent_eval_command_one, maint_agent_printf_command): Use
agent_expr_up. Don't use make_cleanup_free_agent_expr.
* ax-gdb.h (gen_trace_for_expr, gen_trace_for_var)
(gen_trace_for_return_address, gen_eval_for_expr, gen_printf): Use
agent_expr_up.
* ax-general.c (new_agent_expr): Rename to ...
(agent_expr::agent_expr): ... this, and now a constructor.
(free_agent_expr): Rename to ...
(agent_expr::~agent_exp): ... this, and now a destructor.
(do_free_agent_expr_cleanup, make_cleanup_free_agent_expr):
Delete.
* ax.h (struct agent_expr): Add ctor/dtor.
(agent_expr_up): New typedef.
(new_agent_expr, free_agent_expr, make_cleanup_free_agent_expr):
Delete declarations.
* breakpoint.c (parse_cond_to_aexpr): Use and return an
agent_expr_up. Don't use make_cleanup_free_agent_expr.
(build_target_condition_list): Adjust to use agent_expr_up.
(parse_cmd_to_aexpr): Use and return an agent_expr_up. Don't use
make_cleanup_free_agent_expr.
(build_target_command_list): Adjust to use agent_expr_up.
(force_breakpoint_reinsertion): Adjust to use agent_expr_up.
(bp_location_dtor): Remove unnecessary free_agent_expr and xfree
calls.
* breakpoint.h (struct bp_target_info) <cond_bytecode,
cmd_bytecode>: Now agent_expr_up's.
* remote.c (remote_download_tracepoint): Adjust to use
agent_expr_up and remove use of make_cleanup_free_agent_expr.
* tracepoint.c (validate_actionline, collect_symbol): Adjust to
use agent_expr_up and remove uses of make_cleanup_free_agent_expr.
(collection_list::~collection_list): Call delete instead of
free_agent_expr.
(encode_actions_1): Adjust to use agent_expr_up and remove uses of
make_cleanup_free_agent_expr.
(add_aexpr): Change parameter type to agent_expr_up; Return a raw
agent_expr pointer.
This replaces most of the remaining ui_file_xstrdup calls with
ui_file_as_string calls. Whenever a call was replaced, that led to a
cascade of other necessary adjustments throughout, to make the code
use std::string instead of raw pointers. And then whenever I added a
std::string as member of a struct, I needed to adjust
allocation/destruction of said struct to use new/delete instead of
xmalloc/xfree.
The stopping point was once gdb built again. These doesn't seem to be
a way to reasonably split this out further.
Maybe-not-obvious changes:
- demangle_for_lookup returns a cleanup today. To get rid of that,
and avoid unnecessary string dupping/copying, this introduces a
demangle_result_storage type that the caller instantiates and
passes to demangle_for_lookup.
- Many methods returned a "char *" to indicate that the caller owns
the memory and must free it. Those are switched to return a
std::string instead. Methods that return a "view" into some
internal string return a "const char *" instead. I.e., we only
copy/allocate when necessary.
gdb/ChangeLog:
2016-11-08 Pedro Alves <palves@redhat.com>
* ada-lang.c (ada_name_for_lookup, type_as_string): Use and return
std::string.
(type_as_string_and_cleanup): Delete.
(ada_lookup_struct_elt_type): Use type_as_string.
* ada-lang.h (ada_name_for_lookup): Now returns std::string.
* ada-varobj.c (ada_varobj_scalar_image): Return a std::string.
(ada_varobj_describe_child): Make 'child_name' and
'child_path_expr' parameters std::string pointers.
(ada_varobj_describe_struct_child, ada_varobj_describe_ptr_child):
Likewise, and use string_printf.
(ada_varobj_describe_simple_array_child)
(ada_varobj_describe_child): Likewise.
(ada_varobj_get_name_of_child, ada_varobj_get_path_expr_of_child)
(ada_varobj_get_value_image)
(ada_varobj_get_value_of_array_variable)
(ada_varobj_get_value_of_variable, ada_name_of_variable)
(ada_name_of_child, ada_path_expr_of_child)
(ada_value_of_variable): Now returns std::string. Use
string_printf.
(ada_value_of_child): Adjust.
* break-catch-throw.c (check_status_exception_catchpoint): Adjust
to use std::string.
* breakpoint.c (watch_command_1): Adjust to use std::string.
* c-lang.c (c_get_string): Adjust to use std::string.
* c-typeprint.c (print_name_maybe_canonical): Use std::string.
* c-varobj.c (varobj_is_anonymous_child): Use ==/!= std::string
operators.
(c_name_of_variable): Now returns a std::string.
(c_describe_child): The 'cname' and 'cfull_expression' output
parameters are now std::string pointers. Adjust.
(c_name_of_child, c_path_expr_of_child, c_value_of_variable)
(cplus_number_of_children): Adjust to use std::string and
string_printf.
(cplus_name_of_variable): Now returns a std::string.
(cplus_describe_child): The 'cname' and 'cfull_expression' output
parameters are now std::string pointers. Adjust.
(cplus_name_of_child, cplus_path_expr_of_child)
(cplus_value_of_variable): Now returns a std::string.
* cp-abi.c (cplus_typename_from_type_info): Return std::string.
* cp-abi.h (cplus_typename_from_type_info): Return std::string.
(struct cp_abi_ops) <get_typename_from_type_info>: Return
std::string.
* cp-support.c (inspect_type): Use std::string.
(cp_canonicalize_string_full, cp_canonicalize_string_no_typedefs)
(cp_canonicalize_string): Return std::string and adjust.
* cp-support.h (cp_canonicalize_string)
(cp_canonicalize_string_no_typedefs, cp_canonicalize_string_full):
Return std::string.
* dbxread.c (read_dbx_symtab): Use std::string.
* dwarf2read.c (dwarf2_canonicalize_name): Adjust to use std::string.
* gdbcmd.h (lookup_struct_elt_type): Adjust to use std::string.
* gnu-v3-abi.c (gnuv3_get_typeid): Use std::string.
(gnuv3_get_typename_from_type_info): Return a std::string and
adjust.
(gnuv3_get_type_from_type_info): Adjust to use std::string.
* guile/guile.c (gdbscm_execute_gdb_command): Adjust to use
std::string.
* infcmd.c (print_return_value_1): Adjust to use std::string.
* linespec.c (find_linespec_symbols): Adjust to
demangle_for_lookup API change. Use std::string.
* mi/mi-cmd-var.c (print_varobj, mi_cmd_var_set_format)
(mi_cmd_var_info_type, mi_cmd_var_info_path_expression)
(mi_cmd_var_info_expression, mi_cmd_var_evaluate_expression)
(mi_cmd_var_assign, varobj_update_one): Adjust to use std::string.
* minsyms.c (lookup_minimal_symbol): Use std::string.
* python/py-varobj.c (py_varobj_iter_next): Use new instead of
XNEW. vitem->name is a std::string now, adjust.
* rust-exp.y (convert_ast_to_type, convert_name): Adjust to use
std::string.
* stabsread.c (define_symbol): Adjust to use std::string.
* symtab.c (demangle_for_lookup): Now returns 'const char *'. Add
a demangle_result_storage parameter. Use it for storage.
(lookup_symbol_in_language)
(lookup_symbol_in_objfile_from_linkage_name): Adjust to new
demangle_for_lookup API.
* symtab.h (struct demangle_result_storage): New type.
(demangle_for_lookup): Now returns 'const char *'. Add a
demangle_result_storage parameter.
* typeprint.c (type_to_string): Return std::string and use
ui_file_as_string.
* value.h (type_to_string): Change return type to std::string.
* varobj-iter.h (struct varobj_item) <name>: Now a std::string.
(varobj_iter_delete): Use delete instead of xfree.
* varobj.c (create_child): Return std::string instead of char * in
output parameter.
(name_of_variable, name_of_child, my_value_of_variable): Return
std::string instead of char *.
(varobj_create, varobj_get_handle): Constify 'objname' parameter.
Adjust to std::string fields.
(varobj_get_objname): Return a const char * instead of a char *.
(varobj_get_expression): Return a std::string.
(varobj_list_children): Adjust to use std::string.
(varobj_get_type): Return a std::string.
(varobj_get_path_expr): Return a const char * instead of a char *.
Adjust to std::string fields.
(varobj_get_formatted_value, varobj_get_value): Return a
std::string.
(varobj_set_value): Change type of 'expression' parameter to
std::string. Use std::string.
(install_new_value): Use std::string.
(delete_variable_1): Adjust to use std::string.
(create_child): Change the 'name' parameter to a std::string
reference. Swap it into the new item's name.
(create_child_with_value): Swap item's name into the new child's
name. Use string_printf.
(new_variable): Use new instead of XNEW.
(free_variable): Don't xfree fields that are now std::string.
(name_of_variable, name_of_child): Now returns std::string.
(value_of_root): Adjust to use std::string.
(my_value_of_variable, varobj_value_get_print_value): Return
and use std::string.
(varobj_value_get_print_value): Adjust to use ui_file_as_string
and std::string.
* varobj.h (struct varobj) <name, path_expr, obj_name,
print_value>: Now std::string's.
<name_of_variable, name_of_child, path_expr_of_child,
value_of_variable>: Return std::string.
(varobj_create, varobj_get_handle): Constify 'objname' parameter.
(varobj_get_objname): Return a const char * instead of a char *.
(varobj_get_expression, varobj_get_type): Return a std::string.
(varobj_get_path_expr): Return a const char * instead of a char *.
(varobj_get_formatted_value, varobj_get_value): Return a
std::string.
(varobj_set_value): Constify 'expression' parameter.
(varobj_value_get_print_value): Return a std::string.
gdb/ChangeLog:
2016-11-08 Pedro Alves <palves@redhat.com>
Tom Tromey <tom@tromey.com>
* rust-lang.c (struct disr_info) <name>: Now a std::string.
(rust_get_disr_info): Use ui_file_as_string and adjust to use
std::string.
(rust_val_print): Adjust to use std::string.
gdb/ChangeLog:
2016-11-08 Pedro Alves <palves@redhat.com>
* ada-lang.c (type_as_string): Use ui_file_as_string and return
std::string.
(type_as_string_and_cleanup): Delete.
(ada_lookup_struct_elt_type): Use type_as_string.
gdb/ChangeLog:
2016-11-08 Pedro Alves <palves@redhat.com>
* gdbarch.sh (verify_gdbarch): Use ui_file_as_string and
std::string.
* gdbarch.c: Regenerate.
Using ui_file_as_string would imply changing a few prototypes to pass
around source and object file names as std::string. Instead of that,
wrap those two in a new class. This ends up eliminating a small
wrinkle: get_new_file_names and compile_object_load have swapped
parameters. The former takes "source, objfile", while the latter
takes "objfile, source".
gdb/ChangeLog:
2016-11-08 Pedro Alves <palves@redhat.com>
* c-lang.h (c_compute_program): Now returns std::string.
* compile/compile-internal.h (class compile_file_names): New
class.
* compile/compile-object-load.c (compile_object_load): Replace
object_file and source_file parameters with a compile_file_names
parameter. Adjust.
* compile-object-load.h: Include "compile-internal.h".
(compile_object_load): Replace object_file and source_file
parameters with a compile_file_names parameter.
* compile/compile-c-support.c (c_compute_program): Now returns a
std::string. Use ui_file_as_string.
* compile/compile.c (get_new_file_names): Remove parameters and
return a compile_file_names instead.
(compile_to_object): Now returns a compile_file_names. Use
ui_file_as_string.
(eval_compile_command): Use compile_file_names.
* language.h (struct language_defn) <la_compute_program>: Now
returns std::string.
gdb/ChangeLog:
2016-11-08 Pedro Alves <palves@redhat.com>
* remote.c (escape_buffer): Use ui_file_as_string and return
std::string.
(putpkt_binary, read_frame): Adjust to use std::string.
Yet another cleanup eliminated.
gdb/ChangeLog:
2016-11-08 Pedro Alves <palves@redhat.com>
* printcmd.c (eval_command): Use ui_file_as_string and
std::string.