GDBserver currently hangs forever in waitpid if the leader thread
exits before other threads, or if all resumed threads exit - e.g.,
next over a thread exit with sched-locking on. This is exposed by
leader-exit.exp. leader-exit.exp is part of a series of tests for a
set of related problems. See
<http://www.sourceware.org/ml/gdb-patches/2011-10/msg00704.html>:
"
To recap, on the Linux kernel, ptrace/waitpid don't allow reaping the
leader thread until all other threads in the group are reaped. When
the leader exits, it goes zombie, but waitpid will not return an exit
status until the other threads are gone. This is presently exercised
by the gdb.threads/leader-exit.exp test. The fix for that test, in
linux-nat.c:wait_lwp, handles the case where we see the leader gone
when we're stopping all threads to report an event to some other
thread to the core.
(...)
The latter bit about not blocking if there no resumed threads in the
process also applies to some other thread exiting, not just the main
thread. E.g., this test starts a thread, and runs to a breakpoint in
that thread:
...
(gdb) c
Continuing.
[New Thread 0x7ffff75a4700 (LWP 23397)]
[Switching to Thread 0x7ffff75a4700 (LWP 23397)]
Breakpoint 2, thread_a (arg=0x0) at ../../../src/gdb/testsuite/gdb.threads/no-unwaited-for-left.c:28
28 return 0; /* break-here */
(gdb) info threads
* 2 Thread 0x7ffff75a4700 (LWP 23397) thread_a (arg=0x0) at ../../../src/gdb/testsuite/gdb.threads/no-unwaited-for-left.c:28
1 Thread 0x7ffff7fcb720 (LWP 23391) 0x00007ffff7bc606d in pthread_join (threadid=140737343276800, thread_return=0x0) at pthread_join.c:89
The thread will exit as soon as we resume it. But if we only resume
that thread, leaving the rest of the threads stopped:
(gdb) set scheduler-locking on
(gdb) c
Continuing.
^C^C^C^C^C^C^C^C
"
This patch fixes the issues by implementing TARGET_WAITKIND_NO_RESUMED
on GDBserver, similarly to what the patch above did for native
Linux GDB.
gdb.threads/leader-exit.exp now passes.
gdb.threads/no-unwaited-for-left.exp now at least errors out instead
of hanging:
continue
Continuing.
warning: Remote failure reply: E.No unwaited-for children left.
[Thread 15454] #1 stopped.
0x00000034cf408e60 in pthread_join (threadid=140737353922368, thread_return=0x0) at pthread_join.c:93
93 lll_wait_tid (pd->tid);
(gdb) FAIL: gdb.threads/no-unwaited-for-left.exp: continue stops when the main thread exits
The gdb.threads/non-ldr-exc-*.exp tests are skipped because GDBserver
unfortunately doesn't support fork/exec yet, but I'm confident this
fixes the related issues.
I'm leaving modeling TARGET_WAITKIND_NO_RESUMED in the RSP for a
separate pass.
(BTW, in case of error in response to a vCont, it would be better for
GDB to query the target for the current thread, or re-select one,
instead of assuming current inferior_ptid is still the selected
thread.)
This implementation is a little different from GDB's, because I'm
avoiding bringing in more of this broken use of waitpid(PID) into
GDBserver. Specifically, this avoids waitpid(PID) when stopping all
threads. There's really no need for wait_for_sigstop to wait for each
LWP in turn. Instead, with some refactoring, we make it reuse
linux_wait_for_event.
gdb/gdbserver/
2014-02-27 Pedro Alves <palves@redhat.com>
PR 12702
* inferiors.h (A_I_NEXT, ALL_INFERIORS_TYPE, ALL_PROCESSES): New
macros.
* linux-low.c (delete_lwp, handle_extended_wait): Add debug
output.
(last_thread_of_process_p): Take a PID argument instead of a
thread pointer.
(linux_wait_for_lwp): Delete.
(num_lwps, check_zombie_leaders, not_stopped_callback): New
functions.
(linux_low_filter_event): New function, party factored out from
linux_wait_for_event.
(linux_wait_for_event): Rename to ...
(linux_wait_for_event_filtered): ... this. Add new filter ptid
argument. Partly rewrite. Always use waitpid(-1, WNOHANG) and
sigsuspend. Check for zombie leaders.
(linux_wait_for_event): Reimplement as wrapper around
linux_wait_for_event_filtered.
(linux_wait_1): Handle TARGET_WAITKIND_NO_RESUMED. Assume that if
a normal or signal exit is seen, it's the whole process exiting.
(wait_for_sigstop): No longer a for_each_inferior callback.
Rewrite on top of linux_wait_for_event_filtered.
(stop_all_lwps): Call wait_for_sigstop directly.
* server.c (resume, handle_target_event): Handle
TARGET_WAITKIND_NO_RESUMED.
* dll.c (clear_dlls): Replace accessing list implemention details
with API function.
* gdbthread.h (get_first_thread): Declare.
* inferiors.c (for_each_inferior_with_data): New function.
(get_first_thread): New function.
(find_thread_ptid): Simplify.
(get_first_inferior): New function.
(clear_list): Delete.
(one_inferior_p): New function.
(clear_inferior_list): New function.
(clear_inferiors): Update.
* inferiors.h (for_each_inferior_with_data): Declare.
(clear_inferior_list): Declare.
(one_inferior_p): Declare.
(get_first_inferior): Declare.
* linux-low.c (linux_wait_for_event): Replace accessing list
implemention details with API function.
* server.c (target_running): Ditto.
(accumulate_file_name_length): New function.
(emit_dll_description): New function.
(handle_qxfer_libraries): Replace accessing list implemention
details with API function.
(handle_qxfer_threads_worker): New function.
(handle_qxfer_threads_proper): Replace accessing list implemention
details with API function.
(handle_query): Ditto.
(visit_actioned_threads_callback_ftype): New typedef.
(visit_actioned_threads_data): New struct.
(visit_actioned_threads): Rewrite to be find_inferior callback.
(resume): Call find_inferior.
(handle_status): Replace accessing list implemention
details with API function.
(process_serial_event): Replace accessing list implemention details
with API function.
* target.c (set_desired_inferior): Replace accessing list implemention
details with API function.
* tracepoint.c (same_process_p): New function.
(gdb_agent_about_to_close): Replace accessing list implemention
details with API function.
* win32-low.c (child_delete_thread): Replace accessing list
implemention details with API function.
(match_dll_by_basename): New function.
(dll_is_loaded_by_basename): New function.
(win32_ensure_ntdll_loaded): Replace accessing list implemention
details call to dll_is_loaded_by_basename.
unhexify and hex2bin are identical, so this removes unhexify. The
particular choice of which to keep was made on the basis of
parallelism with the earlier patch that removed hexify.
2014-02-12 Tom Tromey <tromey@redhat.com>
* common/rsp-low.h (unhexify): Don't declare.
* common/rsp-low.c (unhexify): Remove.
2014-02-12 Tom Tromey <tromey@redhat.com>
* server.c (handle_query, handle_v_run): Use hex2bin, not
unhexify.
* tracepoint.c (cmd_qtdpsrc, cmd_qtdv, cmd_qtnotes): Likewise.
convert_int_to_ascii is identical to bin2hex. This removes the
former. In this case I made the choice of which to keep on the basis
that I consider the name bin2hex to be superior to
convert_int_to_ascii.
2014-02-12 Tom Tromey <tromey@redhat.com>
* common/rsp-low.h (convert_int_to_ascii): Don't declare.
* common/rsp-low.c (convert_int_to_ascii): Remove.
2014-02-12 Tom Tromey <tromey@redhat.com>
* ax.c (gdb_unparse_agent_expr): Use bin2hex, not
convert_int_to_ascii.
* regcache.c (registers_to_string, collect_register_as_string):
Likewise.
* remote-utils.c (look_up_one_symbol, relocate_instruction):
Likewise.
* server.c (process_serial_event): Likewise.
* tracepoint.c (cmd_qtstatus, response_source, response_tsv)
(cmd_qtbuffer, cstr_to_hexstr): Likewise.
This moves various low-level remote serial protocol bits into
common/rsp-low.[ch].
This is as close to a pure move as possible. There are some
redundancies remaining but those will be dealt with in a subsequent
patch.
Note that the two variants of remote_escape_output disagreed on the
treatment of "*". On the theory that quoting cannot hurt but the
absence possibly can, I chose the gdbserver variant to be the
canonical one.
2014-02-12 Tom Tromey <tromey@redhat.com>
* tracepoint.c: Include rsp-low.h.
* remote.h (hex2bin, bin2hex, unpack_varlen_hex): Don't declare.
* remote.c: Include rsp-low.h.
(hexchars, ishex, unpack_varlen_hex, pack_nibble, pack_hex_byte)
(fromhex, hex2bin, tohex, bin2hex, remote_escape_output)
(remote_unescape_input): Move to common/rsp-low.c.
* common/rsp-low.h: New file.
* common/rsp-low.c: New file.
* Makefile.in (SFILES): Add common/rsp-low.c.
(HFILES_NO_SRCDIR): Add common/rsp-low.h.
(COMMON_OBS): Add rsp-low.o.
(rsp-low.o): New target.
2014-02-12 Tom Tromey <tromey@redhat.com>
* tracepoint.c: Include rsp-low.h.
* server.c: Include rsp-low.h.
* remote-utils.h (convert_ascii_to_int, convert_int_to_ascii)
(unhexify, hexify, remote_escape_output, unpack_varlen_hex): Don't
declare.
* remote-utils.c: Include rsp-low.h.
(fromhex, hexchars, ishex, unhexify, tohex, hexify)
(remote_escape_output, remote_unescape_input, unpack_varlen_hex)
(convert_int_to_ascii, convert_ascii_to_int): Move to
common/rsp-low.c.
* regcache.c: Include rsp-low.h.
* ax.c: Include rsp-low.h.
* Makefile.in (SFILES): Add common/rsp-low.c.
(OBS): Add rsp-low.o.
(rsp-low.o): New target.
Read branch trace data incrementally and extend the current trace rather than
discarding it and reading the entire trace buffer each time.
If the branch trace buffer overflowed, we can't extend the current trace so we
discard it and start anew by reading the entire branch trace buffer.
2014-01-16 Markus Metzger <markus.t.metzger@intel.com>
* common/linux-btrace.c (perf_event_read_bts, linux_read_btrace):
Support delta reads.
(linux_disable_btrace): Change return type.
* common/linux-btrace.h (linux_read_btrace): Change parameters
and return type to allow error reporting. Update users.
(linux_disable_btrace): Change return type. Update users.
* common/btrace-common.h (btrace_read_type) <BTRACE_READ_DELTA>:
New.
(btrace_error): New.
(btrace_block) <begin>: Comment on BEGIN == 0.
* btrace.c (btrace_compute_ftrace): Start from the end of
the current trace.
(btrace_stitch_trace, btrace_clear_history): New.
(btrace_fetch): Read delta trace, return if replaying.
(btrace_clear): Move clear history code to btrace_clear_history.
(parse_xml_btrace): Throw an error if parsing failed.
* target.h (struct target_ops) <to_read_btrace>: Change parameters
and return type to allow error reporting.
(target_read_btrace): Change parameters and return type to allow
error reporting.
* target.c (target_read_btrace): Update.
* remote.c (remote_read_btrace): Support delta reads. Pass
errors on.
* NEWS: Announce it.
gdbserver/
* target.h (target_ops) <read_btrace>: Change parameters and
return type to allow error reporting.
* server.c (handle_qxfer_btrace): Support delta reads. Pass
trace reading errors on.
* linux-low.c (linux_low_read_btrace): Pass trace reading
errors on.
(linux_low_disable_btrace): New.
... not when a new GDB connection sends the status packet ('?').
Mainly just a cleanup/simplification, as GDB always sends '?' first.
Tested on x86_64 Fedora 17.
2014-01-08 Pedro Alves <palves@redhat.com>
* server.c (handle_status): Don't discard previous queued stop
replies or thread's pending status here.
(main) <disconnection>: Do it here instead.
Currently, when GDB connects in all-stop mode, GDBserver always
responds to the status packet with a GDB_SIGNAL_TRAP, even if the
program is actually stopped for some other signal.
(gdb) tar rem ...
...
(gdb) c
Program received signal SIGUSR1, User defined signal 1.
(gdb) disconnect
(gdb) tar rem ...
(gdb) c
(Or a GDB crash instead of an explicit disconnect.)
This results in the program losing that signal on that last continue,
because gdb will tell the target to resume with no signal (to suppress
the GDB_SIGNAL_TRAP, due to 'handle SISGTRAP nopass'), and that will
actually suppress the real signal the program had stopped for
(SIGUSR1). To fix that, I think we should make GDBserver report the
real signal the thread had stopped for in response to the status
packet:
@item ?
@cindex @samp{?} packet
Indicate the reason the target halted. The reply is the same as for
step and continue.
But, that raises the question -- which thread are we reporting the
status for? Due to how the RSP in all-stop works, we can only report
one status. The status packet's response is a stop reply packet, so
it includes the thread identifier, so it's not a problem packet-wise.
However, GDBserver is currently always reporting the status for first
thread in the thread list, even though that may well not be the thread
that got the signal that caused the program to stop. So the next
logical step would be to report the status for the
last_ptid/last_status thread (the last event reported to gdb), if it's
still around; and if not, fallback to some other thread.
There's an issue on the GDB side with that, though...
GDB currently always adds the thread reported in response to the
status query as the first thread in its list. That means that if we
start with e.g.,
(gdb) info threads
3 Thread 1003 ...
* 2 Thread 1002 ...
1 Thread 1001 ...
And reconnect:
(gdb) disconnect
(gdb) tar rem ...
We end up with:
(gdb) info threads
3 Thread 1003 ...
2 Thread 1001 ...
* 1 Thread 1002 ...
Not a real big issue, but it's reasonably fixable, by having GDB
fetch/sync the thread list before fetching the status/'?', and then
using the status to select the right thread as current on the GDB
side. Holes in the thread numbers are squashed before/after
reconnection (e.g., 2,3,5 becomes 1,2,3), but the order is preserved,
which I think is both good, and good enough.
However (yes, there's more...), the previous GDB that was connected
might have had gdbserver running in non-stop mode, or could have left
gdbserver doing disconnected tracing (which also forces non-stop), and
if the new gdb/connection is in all-stop mode, we can end up with more
than one thread with a signal to report back to gdb. As we can only
report one thread/status (in the all-stop RSP variant; the non-stop
variant doesn't have this issue), we get to do what we do at every
other place we have this situation -- leave events we can't report
right now as pending, so that the next resume picks them up.
Note all this ammounts to a QoI change, within the existing framework.
There's really no RSP change here.
The only user visible change (other than that the signal is program is
stopped at isn't lost / is passed to the program), is in "info
program", that now can show the signal the program stopped for. Of
course, the next resume will respect the pass/nopass setting for the
signal in question. It'd be reasonable to have the initial connection
tell the user the program was stopped with a signal, similar to when
we load a core to debug, but I'm leaving that out for a future change.
I think we'll need to either change how handle_inferior_event & co
handle stop_soon, or maybe bypass them completely (like
fork-child.c:startup_inferior) for that.
Tested on x86_64 Fedora 17.
gdb/gdbserver/
2014-01-08 Pedro Alves <palves@redhat.com>
* gdbthread.h (struct thread_info) <status_pending_p>: New field.
* server.c (visit_actioned_threads, handle_pending_status): New
function.
(handle_v_cont): Factor out parts to ...
(resume): ... this new function. If in all-stop, and a thread
being resumed has a pending status, report it without actually
resuming.
(myresume): Adjust to use the new 'resume' function.
(clear_pending_status_callback, set_pending_status_callback)
(find_status_pending_thread_callback): New functions.
(handle_status): Handle the case of multiple threads having
interesting statuses to report. Report threads' real last signal
instead of always reporting GDB_SIGNAL_TRAP. Look for a thread
with an interesting thread to report the status for, instead of
always reporting the status of the first thread.
gdb/
2014-01-08 Pedro Alves <palves@redhat.com>
* remote.c (remote_add_thread): Add threads silently if starting
up.
(remote_notice_new_inferior): If in all-stop, and starting up,
don't call notice_new_inferior.
(get_current_thread): New function, factored out from ...
(add_current_inferior_and_thread): ... this. Adjust.
(remote_start_remote) <all-stop>: Fetch the thread list. If we
found any thread, then select the remote's current thread as GDB's
current thread too.
gdb/testsuite/
2014-01-08 Pedro Alves <palves@redhat.com>
* gdb.threads/reconnect-signal.c: New file.
* gdb.threads/reconnect-signal.exp: New file.
gdb/ChangeLog:
* top.c (print_gdb_version): Set copyright year to 2014.
gdb/gdbserver/ChangeLog:
* gdbserver.c (gdbserver_version): Set copyright year to 2014.
* gdbreplay.c (gdbreplay_version): Likewise.
If we make gdbserver gdb_continue_to_end actually expect a process
exit with GDBserver, we get many testsuite failures with the remote
stdio board:
-PASS: gdb.arch/amd64-disp-step.exp: continue until exit at amd64-disp-step
+FAIL: gdb.arch/amd64-disp-step.exp: continue until exit at amd64-disp-step (the program exited)
-PASS: gdb.base/break.exp: continue until exit at recursive next test
+FAIL: gdb.base/break.exp: continue until exit at recursive next test (the program exited)
-PASS: gdb.base/chng-syms.exp: continue until exit at breakpoint first time through
+FAIL: gdb.base/chng-syms.exp: continue until exit at breakpoint first time through (the program exited)
... etc. ...
This is what the log shows for all of them:
(gdb) continue
Continuing.
Child exited with status 0
GDBserver exiting
[Inferior 1 (process 22721) exited normally]
(gdb) FAIL: gdb.arch/amd64-disp-step.exp: continue until exit (the program exited)
The problem is the whole "Child exited ... GDBserver exiting" output,
that comes out of GDBserver, and that the testsuite is not expecting.
I pondered somehow making the testsuite adjust to this. But,
testsuite aside, I think GDBserver should not be outputting this at
all when GDB is connected through stdio. GDBserver will be printing
this in GDB's console, but the user can already tell from the regular
output that the inferior is gone.
Again, manually:
(gdb) tar remote | ./gdbserver/gdbserver - program
Remote debugging using | ./gdbserver/gdbserver - program
Process program created; pid = 22486
stdin/stdout redirected
Remote debugging using stdio
done.
Loaded symbols for /lib64/ld-linux-x86-64.so.2
0x000000323d001530 in _start () from /lib64/ld-linux-x86-64.so.2
(gdb) c
Continuing.
Child exited with status 1
^^^^^^^^^^^^^^^^^^^^^^^^^^
GDBserver exiting
^^^^^^^^^^^^^^^^^
[Inferior 1 (process 22486) exited with code 01]
(gdb)
Suppressing those two lines makes the output be exactly like when
debugging against a remote tcp gdbserver:
(gdb) c
Continuing.
[Inferior 1 (process 22914) exited with code 01]
(gdb)
2013-10-02 Pedro Alves <palves@redhat.com>
* server.c (process_serial_event): Don't output "GDBserver
exiting" if GDB is connected through stdio.
* target.c (mywait): Likewise, be silent if GDB is connected
through stdio.
When I added gdb_read_memory, with bits factored out from elsewhere, I
missed adjusting this error return. gdb_read_memory has an interface
similar to Like GDB's xfer_partial:
> /* Read trace frame or inferior memory. Returns the number of bytes
> actually read, zero when no further transfer is possible, and -1 on
> error. Return of a positive value smaller than LEN does not
> indicate there's no more to be read, only the end of the transfer.
Returning EIO, a positive value, is obviously bogus, for the caller
will confuse it with a successful partial transfer.
Found by inspection.
Tested on x86_64 Fedora 17.
gdb/gdbserver/
2013-09-02 Pedro Alves <palves@redhat.com>
* server.c (gdb_read_memory): Return -1 on traceframe memory read
error instead of EIO.
With gnulib's unistd module, we can assume unistd.h is always present, and that
STDIN_FILENO, STDOUT_FILENO, STDERR_FILENO are always defined.
Don't remove unistd.h from GDB's configure.ac, as later tests in the
file use HAVE_UNISTD_H checks.
gdb/
2013-07-01 Pedro Alves <palves@redhat.com>
* defs.h: Don't check HAVE_UNISTD_H before including <unistd.h>.
(STDIN_FILENO, STDOUT_FILENO, STDERR_FILENO): Delete.
* tracepoint.c: Don't check HAVE_UNISTD_H before including
<unistd.h>.
gdb/gdbserver/
2013-07-01 Pedro Alves <palves@redhat.com>
* event-loop.c: Don't check HAVE_UNISTD_H before including
<unistd.h>.
* gdbreplay.c: Likewise.
* remote-utils.c: Likewise.
* server.c: Likewise.
* configure.ac: Don't check for unistd.h.
* configure: Regenerate.
This patch makes GDBserver support multi-process + biarch.
Currently, if you're debugging more than one process at once with a
single gdbserver (in extended-remote mode), then all processes must
have the same architecture (e.g., 64-bit vs 32-bit). Otherwise, you
see this:
Added inferior 2
[Switching to inferior 2 [<null>] (<noexec>)]
Reading symbols from /home/pedro/gdb/tests/main32...done.
Temporary breakpoint 2 at 0x4004cf: main. (2 locations)
Starting program: /home/pedro/gdb/tests/main32
warning: Selected architecture i386 is not compatible with reported target architecture i386:x86-64
warning: Architecture rejected target-supplied description
Remote 'g' packet reply is too long: 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000090cfffff0000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000000000000000000b042f7460000000000020000230000002b0000002b0000002b000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007f03000000000000ffff0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000801f00003b0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
... etc, etc ...
Even though the process was running a 32-bit program, GDBserver sent
back to GDB a register set in 64-bit layout.
A patch (http://sourceware.org/ml/gdb-patches/2012-11/msg00228.html) a
while ago made GDB track a target_gdbarch per inferior, and as
consequence, fetch a target description per-inferior. This patch is
the GDBserver counterpart, that makes GDBserver keep track of each
process'es XML target description and register layout. So in the
example above, GDBserver will send the correct register set in 32-bit
layout to GDB.
A new "struct target_desc" object (tdesc for short) is added, that
holds the target description and register layout information about
each process. Each `struct process_info' holds a pointer to a target
description. The regcache also gains a pointer to a target
description, mainly for convenience, and parallel with GDB (and
possible future support for programs that flip processor modes).
The low target's arch_setup routines are responsible for setting the
process'es correct tdesc. This isn't that much different to how
things were done before, except that instead of detecting the inferior
process'es architecture and calling the corresponding
init_registers_FOO routine, which would change the regcache layout
globals and recreate the threads' regcaches, the regcache.c globals
are gone, and the init_registers_$BAR routines now each initialize a
separate global struct target_desc object (one for each arch variant
GDBserver supports), and so all the init_registers_$BAR routines that
are built into GDBserver are called early at GDBserver startup time
(similarly to how GDB handles its built-in target descriptions), and
then the arch_setup routine is responsible for making
process_info->tdesc point to one of these target description globals.
The regcache module is all parameterized to get the regcache's layout
from the tdesc object instead of the old register_bytes, etc. globals.
The threads' regcaches are now created lazily. The old scheme where
we created each of them when we added a new thread doesn't work
anymore, because we add the main thread/lwp before we see it stop for
the first time, and it is only when we see the thread stop for the
first time that we have a chance of determining the inferior's
architecture (through the_low_target.arch_setup). Therefore when we
add the main thread we don't know which architecture/tdesc its
regcache should have.
This patch makes the gdb.multi/multi-arch.exp test now pass against
(extended-remote) GDBserver. It currently fails, without this patch.
The IPA also uses the regcache, so it gains a new global struct
target_desc pointer, which points at the description of the process it
is loaded in.
Re. the linux-low.c & friends changes. Since the register map
etc. may differ between processes (64-bit vs 32-bit) etc., the
linux_target_ops num_regs, regmap and regset_bitmap data fields are no
longer sufficient. A new method is added in their place that returns
a pointer to a new struct that includes all info linux-low.c needs to
access registers of the current inferior.
The patch/discussion that originally introduced
linux-low.c:disabled_regsets mentions that the disabled_regsets set
may be different per mode (in a biarch setup), and indeed that is
cleared whenever we start a new (first) inferior, so that global is
moved as well behind the new `struct regs_info'.
On the x86 side:
I simply replaced the i387-fp.c:num_xmm_registers global with a check
for 64-bit or 32-bit process, which is equivalent to how the global
was set. This avoided coming up with some more general mechanism that
would work for all targets that use this module (GNU/Linux, Windows,
etc.).
Tested:
GNU/Linux IA64
GNU/Linux MIPS64
GNU/Linux PowerPC (Fedora 16)
GNU/Linux s390x (Fedora 16)
GNU/Linux sparc64 (Debian)
GNU/Linux x86_64, -m64 and -m32 (Fedora 17)
Cross built, and smoke tested:
i686-w64-mingw32, under Wine.
GNU/Linux TI C6x, by Yao Qi.
Cross built but otherwise not tested:
aarch64-linux-gnu
arm-linux-gnu
m68k-linux
nios2-linux-gnu
sh-linux-gnu
spu
tilegx-unknown-linux-gnu
Completely untested:
GNU/Linux Blackfin
GNU/Linux CRIS
GNU/Linux CRISv32
GNU/Linux TI Xtensa
GNU/Linux M32R
LynxOS
QNX NTO
gdb/gdbserver/
2013-06-07 Pedro Alves <palves@redhat.com>
* Makefile.in (OBS): Add tdesc.o.
(IPA_OBJS): Add tdesc-ipa.o.
(tdesc-ipa.o): New rule.
* ax.c (gdb_eval_agent_expr): Adjust register_size call to new
interface.
* linux-low.c (new_inferior): Delete.
(disabled_regsets, num_regsets): Delete.
(linux_add_process): Adjust to set the new per-process
new_inferior flag.
(linux_detach_one_lwp): Adjust to call regcache_invalidate_thread.
(linux_wait_for_lwp): Adjust. Only call arch_setup if the event
was a stop. When calling arch_setup, switch the current inferior
to the thread that got an event.
(linux_resume_one_lwp): Adjust to call regcache_invalidate_thread.
(regsets_fetch_inferior_registers)
(regsets_store_inferior_registers): New regsets_info parameter.
Adjust to use it.
(linux_register_in_regsets): New regs_info parameter. Adjust to
use it.
(register_addr, fetch_register, store_register): New usrregs_info
parameter. Adjust to use it.
(usr_fetch_inferior_registers, usr_store_inferior_registers): New
parameter regs_info. Adjust to use it.
(linux_fetch_registers): Get the current inferior's regs_info, and
adjust to use it.
(linux_store_registers): Ditto.
[HAVE_LINUX_REGSETS] (initialize_regsets_info): New.
(initialize_low): Don't initialize the target_regsets here. Call
initialize_low_arch.
* linux-low.h (target_regsets): Delete declaration.
(struct regsets_info): New.
(struct usrregs_info): New.
(struct regs_info): New.
(struct process_info_private) <new_inferior>: New field.
(struct linux_target_ops): Delete the num_regs, regmap, and
regset_bitmap fields. New field regs_info.
[HAVE_LINUX_REGSETS] (initialize_regsets_info): Declare.
* i387-fp.c (num_xmm_registers): Delete.
(i387_cache_to_fsave, i387_fsave_to_cache): Adjust find_regno
calls to new interface.
(i387_cache_to_fxsave, i387_cache_to_xsave, i387_fxsave_to_cache)
(i387_xsave_to_cache): Adjust find_regno calls to new interface.
Infer the number of xmm registers from the regcache's target
description.
* i387-fp.h (num_xmm_registers): Delete.
* inferiors.c (add_thread): Don't install the thread's regcache
here.
* proc-service.c (gregset_info): Fetch the current inferior's
regs_info. Adjust to use it.
* regcache.c: Include tdesc.h.
(register_bytes, reg_defs, num_registers)
(gdbserver_expedite_regs): Delete.
(get_thread_regcache): If the thread doesn't have a regcache yet,
create one, instead of aborting gdbserver.
(regcache_invalidate_one): Rename to ...
(regcache_invalidate_thread): ... this.
(regcache_invalidate_one): New.
(regcache_invalidate): Only invalidate registers of the current
process.
(init_register_cache): Add target_desc parameter, and use it.
(new_register_cache): Ditto. Assert the target description has a
non zero registers_size.
(regcache_cpy): Add assertions. Adjust.
(realloc_register_cache, set_register_cache): Delete.
(registers_to_string, registers_from_string): Adjust.
(find_register_by_name, find_regno, find_register_by_number)
(register_cache_size): Add target_desc parameter, and use it.
(free_register_cache_thread, free_register_cache_thread_one)
(regcache_release, register_cache_size): New.
(register_size): Add target_desc parameter, and use it.
(register_data, supply_register, supply_register_zeroed)
(supply_regblock, supply_register_by_name, collect_register)
(collect_register_as_string, collect_register_by_name): Adjust.
* regcache.h (struct target_desc): Forward declare.
(struct regcache) <tdesc>: New field.
(init_register_cache, new_register_cache): Add target_desc
parameter.
(regcache_invalidate_thread): Declare.
(regcache_invalidate_one): Delete declaration.
(regcache_release): Declare.
(find_register_by_number, register_cache_size, register_size)
(find_regno): Add target_desc parameter.
(gdbserver_expedite_regs, gdbserver_xmltarget): Delete
declarations.
* remote-utils.c: Include tdesc.h.
(outreg, prepare_resume_reply): Adjust.
* server.c: Include tdesc.h.
(gdbserver_xmltarget): Delete declaration.
(get_features_xml, process_serial_event): Adjust.
* server.h [IN_PROCESS_AGENT] (struct target_desc): Forward
declare.
(struct process_info) <tdesc>: New field.
(ipa_tdesc): Declare.
* tdesc.c: New file.
* tdesc.h: New file.
* tracepoint.c: Include tdesc.h.
[IN_PROCESS_AGENT] (ipa_tdesc): Define.
(get_context_regcache): Adjust to pass ipa_tdesc down.
(do_action_at_tracepoint): Adjust to get the register cache size
from the context regcache's description.
(traceframe_walk_blocks): Adjust to get the register cache size
from the current trace frame's description.
(traceframe_get_pc): Adjust to get current trace frame's
description and pass it down.
(gdb_collect): Adjust to get the register cache size from the
IPA's description.
* linux-amd64-ipa.c (tdesc_amd64_linux): Declare.
(gdbserver_xmltarget): Delete.
(initialize_low_tracepoint): Set the ipa's target description.
* linux-i386-ipa.c (tdesc_i386_linux): Declare.
(initialize_low_tracepoint): Set the ipa's target description.
* linux-x86-low.c: Include tdesc.h.
[__x86_64__] (is_64bit_tdesc): New.
(ps_get_thread_area, x86_get_thread_area): Use it.
(i386_cannot_store_register): Rename to ...
(x86_cannot_store_register): ... this. Use is_64bit_tdesc.
(i386_cannot_fetch_register): Rename to ...
(x86_cannot_fetch_register): ... this. Use is_64bit_tdesc.
(x86_fill_gregset, x86_store_gregset): Adjust register_size calls
to new interface.
(target_regsets): Rename to ...
(x86_regsets): ... this.
(x86_get_pc, x86_set_pc): Adjust register_size calls to new
interface.
(x86_siginfo_fixup): Use is_64bit_tdesc.
[__x86_64__] (tdesc_amd64_linux, tdesc_amd64_avx_linux)
(tdesc_x32_avx_linux, tdesc_x32_linux)
(tdesc_i386_linux, tdesc_i386_mmx_linux, tdesc_i386_avx_linux):
Declare.
(x86_linux_update_xmltarget): Delete.
(I386_LINUX_XSAVE_XCR0_OFFSET): Define.
(have_ptrace_getfpxregs, have_ptrace_getregset): New.
(AMD64_LINUX_USER64_CS): New.
(x86_linux_read_description): New, based on
x86_linux_update_xmltarget.
(same_process_callback): New.
(x86_arch_setup_process_callback): New.
(x86_linux_update_xmltarget): New.
(x86_regsets_info): New.
(amd64_linux_regs_info): New.
(i386_linux_usrregs_info): New.
(i386_linux_regs_info): New.
(x86_linux_regs_info): New.
(x86_arch_setup): Reimplement.
(x86_install_fast_tracepoint_jump_pad): Use is_64bit_tdesc.
(x86_emit_ops): Ditto.
(the_low_target): Adjust. Install x86_linux_regs_info,
x86_cannot_fetch_register, and x86_cannot_store_register.
(initialize_low_arch): New.
* linux-ia64-low.c (tdesc_ia64): Declare.
(ia64_fetch_register): Adjust.
(ia64_usrregs_info, regs_info): New globals.
(ia64_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-sparc-low.c (tdesc_sparc64): Declare.
(sparc_fill_gregset_to_stack, sparc_store_gregset_from_stack):
Adjust.
(sparc_arch_setup): New function.
(sparc_regsets_info, sparc_usrregs_info, regs_info): New globals.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-ppc-low.c (tdesc_powerpc_32l, tdesc_powerpc_altivec32l)
(tdesc_powerpc_cell32l, tdesc_powerpc_vsx32l)
(tdesc_powerpc_isa205_32l, tdesc_powerpc_isa205_altivec32l)
(tdesc_powerpc_isa205_vsx32l, tdesc_powerpc_e500l)
(tdesc_powerpc_64l, tdesc_powerpc_altivec64l)
(tdesc_powerpc_cell64l, tdesc_powerpc_vsx64l)
(tdesc_powerpc_isa205_64l, tdesc_powerpc_isa205_altivec64l)
(tdesc_powerpc_isa205_vsx64l): Declare.
(ppc_cannot_store_register, ppc_collect_ptrace_register)
(ppc_supply_ptrace_register, parse_spufs_run, ppc_get_pc)
(ppc_set_pc, ppc_get_hwcap): Adjust.
(ppc_usrregs_info): Forward declare.
(!__powerpc64__) ppc_regmap_adjusted: New global.
(ppc_arch_setup): Adjust to the current process'es target
description.
(ppc_fill_vsxregset, ppc_store_vsxregset, ppc_fill_vrregset)
(ppc_store_vrregset, ppc_fill_evrregset, ppc_store_evrregse)
(ppc_store_evrregset): Adjust.
(target_regsets): Rename to ...
(ppc_regsets): ... this, and make static.
(ppc_usrregs_info, ppc_regsets_info, regs_info): New globals.
(ppc_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-s390-low.c (tdesc_s390_linux32, tdesc_s390_linux32v1)
(tdesc_s390_linux32v2, tdesc_s390_linux64, tdesc_s390_linux64v1)
(tdesc_s390_linux64v2, tdesc_s390x_linux64, tdesc_s390x_linux64v1)
(tdesc_s390x_linux64v2): Declare.
(s390_collect_ptrace_register, s390_supply_ptrace_register)
(s390_fill_gregset, s390_store_last_break): Adjust.
(target_regsets): Rename to ...
(s390_regsets): ... this, and make static.
(s390_get_pc, s390_set_pc): Adjust.
(s390_get_hwcap): New target_desc parameter, and use it.
[__s390x__] (have_hwcap_s390_high_gprs): New global.
(s390_arch_setup): Adjust to set the current process'es target
description. Don't adjust the regmap.
(s390_usrregs_info, s390_regsets_info, regs_info): New globals.
[__s390x__] (s390_usrregs_info_3264, s390_regsets_info_3264)
(regs_info_3264): New globals.
(s390_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-mips-low.c (tdesc_mips_linux, tdesc_mips_dsp_linux)
(tdesc_mips64_linux, tdesc_mips64_dsp_linux): Declare.
[__mips64] (init_registers_mips_linux)
(init_registers_mips_dsp_linux): Delete defines.
[__mips64] (tdesc_mips_linux, tdesc_mips_dsp_linux): New defines.
(have_dsp): New global.
(mips_read_description): New, based on mips_arch_setup.
(mips_arch_setup): Reimplement.
(get_usrregs_info): New function.
(mips_cannot_fetch_register, mips_cannot_store_register)
(mips_get_pc, mips_set_pc, mips_fill_gregset, mips_store_gregset)
(mips_fill_fpregset, mips_store_fpregset): Adjust.
(target_regsets): Rename to ...
(mips_regsets): ... this, and make static.
(mips_regsets_info, mips_dsp_usrregs_info, mips_usrregs_info)
(dsp_regs_info, regs_info): New globals.
(mips_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-arm-low.c (tdesc_arm, tdesc_arm_with_iwmmxt)
(tdesc_arm_with_vfpv2, tdesc_arm_with_vfpv3, tdesc_arm_with_neon):
Declare.
(arm_fill_vfpregset, arm_store_vfpregset): Adjust.
(arm_read_description): New, with bits factored from
arm_arch_setup.
(arm_arch_setup): Reimplement.
(target_regsets): Rename to ...
(arm_regsets): ... this, and make static.
(arm_regsets_info, arm_usrregs_info, regs_info): New globals.
(arm_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-m68k-low.c (tdesc_m68k): Declare.
(target_regsets): Rename to ...
(m68k_regsets): ... this, and make static.
(m68k_regsets_info, m68k_usrregs_info, regs_info): New globals.
(m68k_regs_info): New function.
(m68k_arch_setup): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-sh-low.c (tdesc_sharch): Declare.
(target_regsets): Rename to ...
(sh_regsets): ... this, and make static.
(sh_regsets_info, sh_usrregs_info, regs_info): New globals.
(sh_regs_info, sh_arch_setup): New functions.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-bfin-low.c (tdesc_bfin): Declare.
(bfin_arch_setup): New function.
(bfin_usrregs_info, regs_info): New globals.
(bfin_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-cris-low.c (tdesc_cris): Declare.
(cris_arch_setup): New function.
(cris_usrregs_info, regs_info): New globals.
(cris_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-cris-low.c (tdesc_crisv32): Declare.
(cris_arch_setup): New function.
(cris_regsets_info, cris_usrregs_info, regs_info): New globals.
(cris_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-m32r-low.c (tdesc_m32r): Declare.
(m32r_arch_setup): New function.
(m32r_usrregs_info, regs_info): New globals.
(m32r_regs_info): Adjust.
(initialize_low_arch): New function.
* linux-tic6x-low.c (tdesc_tic6x_c64xp_linux)
(tdesc_tic6x_c64x_linux, tdesc_tic6x_c62x_linux): Declare.
(tic6x_usrregs_info): Forward declare.
(tic6x_read_description): New function, based on ...
(tic6x_arch_setup): ... this. Reimplement.
(target_regsets): Rename to ...
(tic6x_regsets): ... this, and make static.
(tic6x_regsets_info, tic6x_usrregs_info, regs_info): New globals.
(tic6x_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-xtensa-low.c (tdesc_xtensa): Declare.
(xtensa_fill_gregset, xtensa_store_gregset): Adjust.
(target_regsets): Rename to ...
(xtensa_regsets): ... this, and make static.
(xtensa_regsets_info, xtensa_usrregs_info, regs_info): New
globals.
(xtensa_arch_setup, xtensa_regs_info): New functions.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-nios2-low.c (tdesc_nios2_linux): Declare.
(nios2_arch_setup): Set the current process'es tdesc.
(target_regsets): Rename to ...
(nios2_regsets): ... this.
(nios2_regsets_info, nios2_usrregs_info, regs_info): New globals.
(nios2_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-aarch64-low.c (tdesc_aarch64): Declare.
(aarch64_arch_setup): Set the current process'es tdesc.
(target_regsets): Rename to ...
(aarch64_regsets): ... this.
(aarch64_regsets_info, aarch64_usrregs_info, regs_info): New globals.
(aarch64_regs_info): New function.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* linux-tile-low.c (tdesc_tilegx, tdesc_tilegx32): Declare
globals.
(target_regsets): Rename to ...
(tile_regsets): ... this.
(tile_regsets_info, tile_usrregs_info, regs_info): New globals.
(tile_regs_info): New function.
(tile_arch_setup): Set the current process'es tdesc.
(the_low_target): Adjust.
(initialize_low_arch): New function.
* spu-low.c (tdesc_spu): Declare.
(spu_create_inferior, spu_attach): Set the new process'es tdesc.
* win32-arm-low.c (tdesc_arm): Declare.
(arm_arch_setup): New function.
(the_low_target): Install arm_arch_setup instead of
init_registers_arm.
* win32-i386-low.c (tdesc_i386, tdesc_amd64): Declare.
(init_windows_x86): Rename to ...
(i386_arch_setup): ... this. Set `win32_tdesc'.
(the_low_target): Adjust.
* win32-low.c (win32_tdesc): New global.
(child_add_thread): Don't create the thread cache here.
(do_initial_child_stuff): Set the new process'es tdesc.
* win32-low.h (struct target_desc): Forward declare.
(win32_tdesc): Declare.
* lynx-i386-low.c (tdesc_i386): Declare global.
(lynx_i386_arch_setup): Set `lynx_tdesc'.
* lynx-low.c (lynx_tdesc): New global.
(lynx_add_process): Set the new process'es tdesc.
* lynx-low.h (struct target_desc): Forward declare.
(lynx_tdesc): Declare global.
* lynx-ppc-low.c (tdesc_powerpc_32): Declare global.
(lynx_ppc_arch_setup): Set `lynx_tdesc'.
* nto-low.c (nto_tdesc): New global.
(do_attach): Set the new process'es tdesc.
* nto-low.h (struct target_desc): Forward declare.
(nto_tdesc): Declare.
* nto-x86-low.c (tdesc_i386): Declare.
(nto_x86_arch_setup): Set `nto_tdesc'.
gdb/
2013-06-07 Pedro Alves <palves@redhat.com>
* regformats/regdat.sh: Output #include tdesc.h. Make globals
static. Output a global target description pointer.
(init_registers_${name}): Adjust to initialize a
target description structure.
This bit:
+ p1 = strchr (p, ':');
+ decode_address (&resume_info[i].step_range_end, p, p1 - p);
should not expect the ':' to be there. An action without a ptid is
valid:
"If an action is specified with no thread-id, then it is applied to any
threads that don't have a specific action specified"
This is handled further below:
if (p[0] == 0)
{
resume_info[i].thread = minus_one_ptid;
default_action = resume_info[i];
/* Note: we don't increment i here, we'll overwrite this entry
the next time through. */
}
else if (p[0] == ':')
A stub that doesn't support and report to gdb thread ids at all (like
metal metal targets) only will always only see a single default action
with no ptid.
Use unpack_varlen_hex instead of decode_address. The former doesn't
need to be told where the hex number ends, and it actually returns
that info instead, which we can use for validation.
Tested on x86_64 Fedora 17.
gdb/gdbserver/
2013-05-24 Pedro Alves <palves@redhat.com>
* server.c (handle_v_cont) <vCont;r>: Use unpack_varlen_hex
instead of strchr/decode_address. Error if the range isn't split
with a ','. Don't assume there's be a ':' in the action.
This patch adds support for range stepping to GDBserver, teaching it
about vCont;r.
It'd be easy to enable this for all hardware single-step targets
without needing the linux_target_ops hook, however, at least PPC needs
special care, due to the fact that PPC atomic sequences can't be
hardware single-stepped through, a thing which GDBserver doesn't know
about. So this leaves the support limited to x86/x86_64.
gdb/
2013-05-23 Pedro Alves <palves@redhat.com>
* NEWS: Mention GDBserver range stepping support.
gdb/gdbserver/
2013-05-23 Yao Qi <yao@codesourcery.com>
Pedro Alves <palves@redhat.com>
* linux-low.c (lwp_in_step_range): New function.
(linux_wait_1): If the thread was range stepping and stopped
outside the stepping range, report the stop to GDB. Otherwise,
continue stepping. Add range stepping debug output.
(linux_set_resume_request): Copy the step range from the resume
request to the lwp.
(linux_supports_range_stepping): New.
(linux_target_ops) <supports_range_stepping>: Set to
linux_supports_range_stepping.
* linux-low.h (struct linux_target_ops)
<supports_range_stepping>: New field.
(struct lwp_info) <step_range_start, step_range_end>: New fields.
* linux-x86-low.c (x86_supports_range_stepping): New.
(the_low_target) <supports_range_stepping>: Set to
x86_supports_range_stepping.
* server.c (handle_v_cont): Handle 'r' action.
(handle_v_requests): Append ";r" if the target supports range
stepping.
* target.h (struct thread_resume) <step_range_start,
step_range_end>: New fields.
(struct target_ops) <supports_range_stepping>:
New field.
(target_supports_range_stepping): New macro.
We define the following packets:
Qbtrace:bts enable branch tracing for the current thread
returns "OK" or "Enn"
Qbtrace:off disable branch tracing for the current thread
returns "OK" or "Enn"
qXfer:btrace:read read the full branch trace data for the current thread
gdb/
* target.h (enum target_object): Add TARGET_OBJECT_BTRACE.
* remote.c: Include btrace.h.
(struct btrace_target_info): New struct.
(remote_supports_btrace): New function.
(send_Qbtrace): New function.
(remote_enable_btrace): New function.
(remote_disable_btrace): New function.
(remote_teardown_btrace): New function.
(remote_read_btrace): New function.
(init_remote_ops): Add btrace ops.
(enum <unnamed>): Add btrace packets.
(struct protocol_feature remote_protocol_features[]): Add btrace packets.
(_initialize_remote): Add packet configuration for branch tracing.
gdbserver/
* target.h (struct target_ops): Add btrace ops.
(target_supports_btrace): New macro.
(target_enable_btrace): New macro.
(target_disable_btrace): New macro.
(target_read_btrace): New macro.
* gdbthread.h (struct thread_info): Add btrace field.
* server.c: Include btrace-common.h.
(handle_btrace_general_set): New function.
(handle_btrace_enable): New function.
(handle_btrace_disable): New function.
(handle_general_set): Call handle_btrace_general_set.
(handle_qxfer_btrace): New function.
(struct qxfer qxfer_packets[]): Add btrace entry.
* inferiors.c (remove_thread): Disable btrace.
* linux-low: Include linux-btrace.h.
(linux_low_enable_btrace): New function.
(linux_low_read_btrace): New function.
(linux_target_ops): Add btrace ops.
* configure.srv (i[34567]86-*-linux*): Add linux-btrace.o.
Add srv_linux_btrace=yes.
(x86_64-*-linux*): Add linux-btrace.o.
Add srv_linux_btrace=yes.
* configure.ac: Define HAVE_LINUX_BTRACE.
* config.in: Regenerated.
* configure: Regenerated.
Hafiz Abid Qadeer <abidh@codesourcery.com>
gdb/
* NEWS: Mention set and show trace-buffer-size commands.
Mention new packet.
* target.h (struct target_ops): New method
to_set_trace_buffer_size.
(target_set_trace_buffer_size): New macro.
* target.c (update_current_target): Set up new method.
* tracepoint.c (trace_buffer_size): New global.
(start_tracing): Send it to the target.
(set_trace_buffer_size): New function.
(_initialize_tracepoint): Add new setshow for trace-buffer-size.
* remote.c (remote_set_trace_buffer_size): New function.
(_initialize_remote): Use it.
(QTBuffer:size) New remote command.
(PACKET_QTBuffer_size): New enum.
(remote_protocol_features): Add an entry for
PACKET_QTBuffer_size.
gdb/gdbserver/
* tracepoint.c (trace_buffer_size): New global.
(DEFAULT_TRACE_BUFFER_SIZE): New define.
(init_trace_buffer): Change to one-argument function. Allocate
trace buffer memory.
(handle_tracepoint_general_set): Call cmd_bigqtbuffer_size to
handle QTBuffer:size packet.
(cmd_bigqtbuffer_size): New function.
(initialize_tracepoint): Call init_trace_buffer with
DEFAULT_TRACE_BUFFER_SIZE.
* server.c (handle_query): Add QTBuffer:size in the
supported packets.
gdb/doc/
* gdb.texinfo (Starting and Stopping Trace Experiments): Document
trace-buffer-size set and show commands.
(Tracepoint Packets): Document QTBuffer:size.
(General Query Packets): Document QTBuffer:size.
gdb/testsuite/
* gdb.trace/trace-buffer-size.exp: New file.
* gdb.trace/trace-buffer-size.c: New file.
Addresses, as most numbers in the RSP are hex encoded, with variable
length (that just means the width isn't specified, and there's no top
cap. So they should be extracted with unpack_varlen_hex.
A couple spots in server.c are using strto(u)l, which doesn't work on
LLP64 targets.
This patch fixes it.
Tested on x86_64 Fedora 17.
2013-02-19 Pedro Alves <palves@redhat.com>
Kai Tietz <ktietz@redhat.com>
PR gdb/15161
* server.c (handle_query) <CRC check>: Use unpack_varlen_hex
instead of strtoul to extract address from packet.
(process_serial_event) <'z'>: Likewise.
Two modifications:
1. The addition of 2013 to the copyright year range for every file;
2. The use of a single year range, instead of potentially multiple
year ranges, as approved by the FSF.
ARI fixes: move gdb_wait and gdb_stat headers to common subdirectory.
* gdb_stat.h: Delete. Moved to common directory.
* common/gdb_stat.h: New file.
* gdb_wait.h: Delete. Moved to common directory.
* common/gdb_wait.h: New file.
* Makefile.in (H_FILES_NO_SRC): Adapt to new header
location.
* contrib/ari/gdb_ari.sh (wait.h rule): Adapt to new gdb_wait.h
location.
(stat.h rule): Adapt to new gdb_stat.h location.
* common/linux-osdata.c: Include "gdb_stat.h" header instead of
<sys/stat.h> header.
* common/linux-ptrace.c: Include "gdb_wait.h" header instead of
<sys/wait.h> header.
gdbserver ChangeLog entry:
2012-11-15 Pierre Muller <muller@sourceware.org>
* configure.ac (AC_CHECK_HEADERS): Add wait.h header.
* config.in: Regenerate.
* configure: Regenerate.
* linux-low.c: Use "gdb_stat.h" header instead of <sys/stat.h> header.
Use "gdb_wait.h" header instead of <sys/wait.h> header.
* lynx-low.c: Use "gdb_wait.h" header instead of <sys/wait.h> header.
* remote-utils.c: Use "gdb_stat.h" header instead of <sys/stat.h>
header.
* server.c: Remove HAVE_WAIT_H conditional. Use "gdb_wait.h" header
instead of <sys/wait.h> header.
* spu-low.c: Use "gdb_wait.h" header instead of <sys/wait.h> header.
gdb/ChangeLog
* target.c (simple_search_memory): Include access length in
warning message.
gdb/gdbserver/ChangeLog
* server.c (handle_search_memory_1): Include access length in
warning message.
gdb/testsuite/ChangeLog
Test find command on unmapped memory.
* gdb.base/find-unmapped.c: New file.
* gdb.base/find-unmapped.exp: New file.
* server.c (process_point_options): Only skip tokens if we find
one that is unrecognized. Don't treat 'X' specially while
skipping unrecognized tokens.