This is the first pass at implementing support for all-stop mode
running against the remote target using the non-stop variant of the
protocol.
The trickiest part here is the initial connection setup/synching. We
need to fetch all inferiors' target descriptions etc. before stopping
threads, because stop_all_threads needs to read the threads' registers
(to record each thread's stop_pc). But OTOH, the initial inferior
setup (target_post_attach, post_create_inferior, etc.), only works
correctly if the inferior is stopped... So I've split that initial
setup part from attach_command_post_wait to a separate function, and
added a "still needs setup" flag to the inferior structure. This is
similar to gdbserver/linux-low.c's handling of discovering the
process's target description). Then if on connection all threads of
the remote inferior are running, when we go about stopping them, as
soon as they stop we call setup_inferior, from within
stop_all_threads.
Also, in all-stop, we need to process all the initial stop replies to
learn about all the pending signal the threads may already be stopped
for, and pick the one to report as current. This is exposed by
gdb.threads/reconnect-signal.exp.
gdb/
2015-11-30 Pedro Alves <palves@redhat.com>
* gdbthread.h (switch_to_thread_no_regs): Declare.
* infcmd.c (setup_inferior): New function, factored out from ...
(attach_command_post_wait): ... this. Rename to ...
(attach_post_wait): ... this. Replace parameter async_exec with
attach_post_wait_mode parameter. Adjust.
(enum attach_post_wait_mode): New enum.
(struct attach_command_continuation_args): Replace 'async_exec'
field with 'mode' field.
(attach_command_continuation): Adjust.
(attach_command): Add comment. Mark the inferior as needing
setup. Adjust to use enum attach_post_wait_mode.
(notice_new_inferior): Use switch_to_thread_no_regs. Adjust to
use enum attach_post_wait_mode.
* inferior.h (setup_inferior): Declare.
(struct inferior) <needs_setup>: New field.
* infrun.c (set_last_target_status): Make extern.
(stop_all_threads): Make extern. Setup inferior, if necessary.
* infrun.h (set_last_target_status, stop_all_threads): Declare.
* remote-notif.c (remote_async_get_pending_events_handler)
(handle_notification): Replace non_stop checks with
target_is_non_stop_p() checks.
* remote.c (remote_notice_new_inferior): Remove non_stop check.
(remote_update_thread_list): Replace non_stop check with
target_is_non_stop_p() check.
(print_one_stopped_thread): New function.
(process_initial_stop_replies): New 'from_tty' parameter.
"Notice" all new live inferiors after storing initial stops as
pending status in each corresponding thread. If all-stop, stop
all threads, try picking a signalled thread as current, and print
the status of that one thread. Record the last target status.
(remote_start_remote): Replace non_stop checks with
target_is_non_stop_p() checks. Don't query for the remote current
thread of use qOffsets here. Pass from_tty to
process_initial_stop_replies.
(extended_remote_attach): Replace non_stop checks with
target_is_non_stop_p() checks.
(extended_remote_post_attach): Send qOffsets here.
(remote_vcont_resume, remote_resume, remote_stop)
(remote_interrupt, remote_parse_stop_reply, remote_wait): Replace
non_stop checks with target_is_non_stop_p() checks.
(remote_async): If target is non-stop, mark/clear the pending
events token.
* thread.c (switch_to_thread_no_regs): New function.
Since this code path returns a string owned by the target (we don't know how
it's allocated, could be a static read-only string), it's safer if we return
a constant string. If, for some reasons, the caller wishes to modify the
string, it should make itself a copy.
gdb/ChangeLog:
* linux-nat.c (linux_nat_thread_name): Constify return value.
* target.h (struct target_ops) <to_thread_name>: Likewise.
(target_thread_name): Likewise.
* target.c (target_thread_name): Likewise.
* target-delegates.c (debug_thread_name): Regenerate.
* python/py-infthread.c (thpy_get_name): Constify local variables.
* thread.c (print_thread_info): Likewise.
(thread_find_command): Likewise.
Before:
(gdb) info threads
Id Target Id Frame
3 Thread 0x7ffff77c3700 (LWP 29035) callme () at foo.c:30
2 Thread 0x7ffff7fc4700 (LWP 29034) 0x000000000040087b in child_function_2 (arg=0x0) at foo.c:60
* 1 Thread 0x7ffff7fc5740 (LWP 29030) 0x0000003b37209237 in pthread_join (threadid=140737353893632, thread_return=0x0) at pthread_join.c:92
After:
(gdb) info threads
Id Target Id Frame
* 1 Thread 0x7ffff7fc5740 (LWP 29030) 0x0000003b37209237 in pthread_join (threadid=140737353893632, thread_return=0x0) at pthread_join.c:92
2 Thread 0x7ffff7fc4700 (LWP 29034) 0x000000000040087b in child_function_2 (arg=0x0) at foo.c:60
3 Thread 0x7ffff77c3700 (LWP 29035) callme () at foo.c:30
gdb/doc/ChangeLog:
2015-11-24 Pedro Alves <palves@redhat.com>
PR 17539
* gdb.texinfo (Inferiors and Programs): Adjust "maint info
program-spaces" example to ascending order listing.
(Threads): Adjust "info threads" example to ascending order
listing.
(Forks): Adjust "info inferiors" example to ascending order
listing.
gdb/ChangeLog:
2015-11-24 Pedro Alves <palves@redhat.com>
PR 17539
* inferior.c (add_inferior_silent): Append the new inferior to the
end of the list.
* progspace.c (add_program_space): Append the new pspace to the
end of the list.
* thread.c (new_thread): Append the new thread to the end of the
list.
gdb/testsuite/ChangeLog:
2015-11-24 Pedro Alves <palves@redhat.com>
PR 17539
* gdb.base/foll-exec-mode.exp: Adjust to GDB listing inferiors and
threads in ascending order.
* gdb.base/foll-fork.exp: Likewise.
* gdb.base/foll-vfork.exp: Likewise.
* gdb.base/multi-forks.exp: Likewise.
* gdb.mi/mi-nonstop.exp: Likewise.
* gdb.mi/mi-nsintrall.exp: Likewise.
* gdb.multi/base.exp: Likewise.
* gdb.multi/multi-arch.exp: Likewise.
* gdb.python/py-inferior.exp: Likewise.
* gdb.threads/break-while-running.exp: Likewise.
* gdb.threads/execl.exp: Likewise.
* gdb.threads/gcore-thread.exp: Likewise.
* gdb.threads/info-threads-cur-sal.exp: Likewise.
* gdb.threads/kill.exp: Likewise.
* gdb.threads/linux-dp.exp: Likewise.
* gdb.threads/multiple-step-overs.exp: Likewise.
* gdb.threads/next-bp-other-thread.exp: Likewise.
* gdb.threads/step-bg-decr-pc-switch-thread.exp: Likewise.
* gdb.threads/step-over-lands-on-breakpoint.exp: Likewise.
* gdb.threads/step-over-trips-on-watchpoint.exp: Likewise.
* gdb.threads/thread-find.exp: Likewise.
* gdb.threads/tls.exp: Likewise.
* lib/mi-support.exp (mi_reverse_list): Delete.
(mi_check_thread_states): No longer reverse list.
This adds an object oriented replacement for the "struct continuation"
mechanism, and converts the stepping commands (step, next, stepi,
nexti) and the "finish" commands to use it.
It adds a new thread "class" (struct thread_fsm) that contains the
necessary info and callbacks to manage the state machine of a thread's
execution command.
This allows getting rid of some hacks. E.g., in fetch_inferior_event
and normal_stop we no longer need to know whether a thread is doing a
multi-step (e.g., step N). This effectively makes the
intermediate_continuations unused -- they'll be garbage collected in a
separate patch. (They were never a proper abstraction, IMO. See how
fetch_inferior_event needs to check step_multi before knowing whether
to call INF_EXEC_CONTINUE or INF_EXEC_COMPLETE.)
The target async vs !async uiout hacks in mi_on_normal_stop go away
too.
print_stop_event is no longer called from normal_stop. Instead it is
now called from within each interpreter's normal_stop observer. This
clears the path to make each interpreter print a stop event the way it
sees fit. Currently we have some hacks in common code to
differenciate CLI vs TUI vs MI around this area.
The "finish" command's FSM class stores the return value plus that
value's position in the value history, so that those can be printed to
both MI and CLI's streams. This fixes the CLI "finish" command when
run from MI -- it now also includes the function's return value in the
CLI stream:
(gdb)
~"callee3 (strarg=0x400730 \"A string argument.\") at src/gdb/testsuite/gdb.mi/basics.c:35\n"
~"35\t}\n"
+~"Value returned is $1 = 0\n"
*stopped,reason="function-finished",frame=...,gdb-result-var="$1",return-value="0",thread-id="1",stopped-threads="all",core="0"
-FAIL: gdb.mi/mi-cli.exp: CLI finish: check CLI output
+PASS: gdb.mi/mi-cli.exp: CLI finish: check CLI output
gdb/ChangeLog:
2015-09-09 Pedro Alves <palves@redhat.com>
* Makefile.in (COMMON_OBS): Add thread-fsm.o.
* breakpoint.c (handle_jit_event): Print debug output.
(bpstat_what): Split event callback handling to ...
(bpstat_run_callbacks): ... this new function.
(momentary_bkpt_print_it): No longer handle bp_finish here.
* breakpoint.h (bpstat_run_callbacks): Declare.
* gdbthread.h (struct thread_info) <step_multi>: Delete field.
<thread_fsm>: New field.
(thread_cancel_execution_command): Declare.
* infcmd.c: Include thread-fsm.h.
(struct step_command_fsm): New.
(step_command_fsm_ops): New global.
(new_step_command_fsm, step_command_fsm_prepare): New functions.
(step_1): Adjust to use step_command_fsm_prepare and
prepare_one_step.
(struct step_1_continuation_args): Delete.
(step_1_continuation): Delete.
(step_command_fsm_should_stop): New function.
(step_once): Delete.
(step_command_fsm_clean_up, step_command_fsm_async_reply_reason)
(prepare_one_step): New function, based on step_once.
(until_next_command): Remove step_multi reference.
(struct return_value_info): New.
(print_return_value): Rename to ...
(print_return_value_1): ... this. New struct return_value_info
parameter. Adjust.
(print_return_value): Reimplement as wrapper around
print_return_value_1.
(struct finish_command_fsm): New.
(finish_command_continuation): Delete.
(finish_command_fsm_ops): New global.
(new_finish_command_fsm, finish_command_fsm_should_stop): New
functions.
(finish_command_fsm_clean_up, finish_command_fsm_return_value):
New.
(finish_command_continuation_free_arg): Delete.
(finish_command_fsm_async_reply_reason): New.
(finish_backward, finish_forward): Change symbol parameter to a
finish_command_fsm. Adjust.
(finish_command): Create a finish_command_fsm. Adjust.
* infrun.c: Include "thread-fsm.h".
(clear_proceed_status_thread): Delete the thread's FSM.
(infrun_thread_stop_requested_callback): Cancel the thread's
execution command.
(clean_up_just_stopped_threads_fsms): New function.
(fetch_inferior_event): Handle the event_thread's should_stop
method saying the command isn't done yet.
(process_event_stop_test): Run breakpoint callbacks here.
(print_stop_event): Rename to ...
(print_stop_location): ... this.
(restore_current_uiout_cleanup): New function.
(print_stop_event): Reimplement.
(normal_stop): No longer notify the end_stepping_range observers
here handle "step N" nor "finish" here. No longer call
print_stop_event here.
* infrun.h (struct return_value_info): Forward declare.
(print_return_value): Declare.
(print_stop_event): Change prototype.
* thread-fsm.c: New file.
* thread-fsm.h: New file.
* thread.c: Include "thread-fsm.h".
(thread_cancel_execution_command): New function.
(clear_thread_inferior_resources): Call it.
* cli/cli-interp.c (cli_on_normal_stop): New function.
(cli_interpreter_init): Install cli_on_normal_stop as normal_stop
observer.
* mi/mi-interp.c: Include "thread-fsm.h".
(restore_current_uiout_cleanup): Delete.
(mi_on_normal_stop): If the thread has an FSM associated, and it
finished, ask it for the async-reply-reason to print. Always call
print_stop_event here, regardless of the top-level interpreter.
Check bpstat_what to tell whether an asynchronous breakpoint hit
triggered.
* tui/tui-interp.c (tui_on_normal_stop): New function.
(tui_init): Install tui_on_normal_stop as normal_stop observer.
gdb/testsuite/ChangeLog:
2015-09-09 Pedro Alves <palves@redhat.com>
* gdb.mi/mi-cli.exp: Add CLI finish tests.
That is, step past breakpoints by:
- pausing all threads
- removing breakpoint at PC
- single-step
- reinsert breakpoint
- restart threads
similarly to all-stop (with displaced stepping disabled). This allows
non-stop to work on targets/architectures without displaced stepping
support. That is, it makes displaced stepping an optimization instead
of a requirement. For example, in principle, all GNU/Linux ports
support non-stop mode at the target_ops level, but not all
corresponding gdbarch's implement displaced stepping. This should
make non-stop work for all (albeit, not as efficiently). And then
there are scenarios where even if the architecture supports displaced
stepping, we can't use it, because we e.g., don't find a usable
address to use as displaced step scratch pad. It should also fix
stepping past watchpoints on targets that have non-continuable
watchpoints in non-stop mode (e.g., PPC, untested). Running the
instruction out of line in the displaced stepping scratch pad doesn't
help that case, as the copied instruction reads/writes the same
watched memory... We can fix that too by teaching GDB to only remove
the watchpoint from the thread that we want to move past the
watchpoint (currently, removing a watchpoint always removes it from
all threads), but again, that can be considered an optimization; not
all targets would support it.
For those familiar with the gdb and gdbserver Linux target_ops
backends, the implementation should look similar, except it is done on
the core side. When we pause threads, we may find they stop with an
interesting event that should be handled later when the thread is
re-resumed, thus we store such events in the thread object, and mark
the event as pending. We should only consume pending events if the
thread is indeed resumed, thus we add a new "resumed" flag to the
thread object. At a later stage, we might add new target methods to
accelerate some of this, like "pause all threads", with corresponding
RSP packets, but we'd still need a fallback method for remote targets
that don't support such packets, so, again, that can be deferred as
optimization.
My _real_ motivation here is making it possible to reimplement
all-stop mode on top of the target always working on non-stop mode, so
that e.g., we can send RSP packets to a remote target even while the
target is running -- can't do that in the all-stop RSP variant, by
design).
Tested on x86_64 Fedora 20, with and without "set displaced off"
forced. The latter forces the new code paths whenever GDB needs to
step past a breakpoint.
gdb/ChangeLog:
2015-08-07 Pedro Alves <pedro@codesourcery.com>
* breakpoint.c (breakpoints_should_be_inserted_now): If any thread
has a pending status, return true.
* gdbthread.h: Include target/waitstatus.h.
(struct thread_suspend_state) <stop_reason, waitstatus_pending_p,
stop_pc>: New fields.
(struct thread_info) <resumed>: New field.
(set_resumed): Declare.
* infrun.c: Include "event-loop.h".
(infrun_async_inferior_event_token, infrun_is_async): New globals.
(infrun_async): New function.
(clear_step_over_info): Add debug output.
(displaced_step_in_progress_any_inferior): New function.
(displaced_step_fixup): New returns int.
(start_step_over): Handle in-line step-overs too. Assert the
thread is marked resumed.
(resume_cleanups): Clear the thread's resumed flag.
(resume): Set the thread's resumed flag. Return early if the
thread has a pending status. Allow stepping a breakpoint with no
signal.
(proceed): Adjust to check 'resumed' instead of 'executing'.
(clear_proceed_status_thread): If the thread has a pending status,
and that status is a finished step, discard the pending status.
(clear_proceed_status): Don't clear step_over_info here.
(random_pending_event_thread, do_target_wait): New functions.
(prepare_for_detach, wait_for_inferior, fetch_inferior_event): Use
do_target_wait.
(wait_one): New function.
(THREAD_STOPPED_BY): New macro.
(thread_stopped_by_watchpoint, thread_stopped_by_sw_breakpoint)
(thread_stopped_by_hw_breakpoint): New functions.
(switch_to_thread_cleanup, save_waitstatus, stop_all_threads): New
functions.
(handle_inferior_event): Also call set_resumed(false) on all
threads implicitly stopped by the event.
(restart_threads, resumed_thread_with_pending_status): New
functions.
(finish_step_over): If we were doing an in-line step-over before,
and no longer are after trying to start a new step-over, restart
all threads. If we have multiple threads with pending events,
save the current event and go through the event loop again.
(handle_signal_stop): Return early if finish_step_over returns
false.
<random signal>: If we get a signal while stepping over a
breakpoint in-line in non-stop mode, restart all threads. Clear
step_over_info before delivering the signal.
(keep_going_stepped_thread): Use internal_error instead of
gdb_assert. Mark the thread as resumed.
(keep_going_pass_signal): Assert the thread isn't already resumed.
If some other thread is doing an in-line step-over, defer the
resume. If we just started a new in-line step-over, stop all
threads. Don't clear step_over_info.
(infrun_async_inferior_event_handler): New function.
(_initialize_infrun): Create async event handler with
infrun_async_inferior_event_handler as callback.
(infrun_async): New declaration.
* target.c (target_async): New function.
* target.h (target_async): Declare macro and readd as function
declaration.
* target/waitstatus.h (enum target_stop_reason)
<TARGET_STOPPED_BY_SINGLE_STEP>: New value.
* thread.c (new_thread): Clear the new waitstatus field.
(set_resumed): New function.
The main motivation of this patch is sharing more code between the
proceed (starting the inferior for the first time) and keep_going
(restarting the inferior after handling an event) paths and using the
step_over_chain queue now embedded in the thread_info object for
pending in-line step-overs too (instead of just for displaced
stepping).
So this commit:
- splits out a new keep_going_pass_signal function out of keep_going
that is just like keep_going except for the bits that clear the
signal to pass if the signal is set to "handle nopass".
- makes proceed use keep_going too.
- Makes start_step_over use keep_going_pass_signal instead of lower
level displaced stepping things.
One user visible change: if inserting breakpoints while trying to
proceed fails, we now get:
(gdb) si
Warning:
Could not insert hardware watchpoint 7.
Could not insert hardware breakpoints:
You may have requested too many hardware breakpoints/watchpoints.
Command aborted.
(gdb)
while before we only saw warnings with no indication that the command
was cancelled:
(gdb) si
Warning:
Could not insert hardware watchpoint 7.
Could not insert hardware breakpoints:
You may have requested too many hardware breakpoints/watchpoints.
(gdb)
Tested on x86_64-linux-gnu, ppc64-linux-gnu and s390-linux-gnu.
gdb/ChangeLog:
2015-08-07 Pedro Alves <palves@redhat.com>
* gdbthread.h (struct thread_info) <prev_pc>: Extend comment.
* infrun.c (struct execution_control_state): Move higher up in the
file.
(reset_ecs): New function.
(start_step_over): Now returns int. Rewrite to use
keep_going_pass_signal instead of manually starting a displaced step.
(resume): Don't call set_running here. If displaced stepping
can't start now, clear trap_expected.
(find_thread_needs_step_over): Delete function.
(proceed): Set up finish_thread_state_cleanup. Call set_running.
If the current thread needs a step over, push it in the step-over
chain. Don't set insert breakpoints nor call resume directly
here. Instead rewrite to use start_step_over and
keep_going_pass_signal.
(finish_step_over): New function.
(handle_signal_stop): Call finish_step_over instead of
start_step_over.
(switch_back_to_stepped_thread): If the event thread needs another
step-over do that first. Use start_step_over.
(keep_going_pass_signal): New function, factored out from ...
(keep_going): ... here.
(_initialize_infrun): Comment moved here.
* thread.c (set_running_thread): New function.
(set_running, finish_thread_state): Use set_running_thread.
In order to teach non-stop mode to do in-line step-overs (pause all
threads, remove breakpoint, single-step, reinsert breakpoint, restart
threads), we'll need to be able to queue in-line step over requests,
much like we queue displaced stepping (out-of-line) requests.
Actually, the queue should be the same -- threads wait for their turn
to step past something (breakpoint, watchpoint), doesn't matter what
technique we end up using when the step over actually starts.
I found that the queue management ends up simpler and more efficient
if embedded in the thread objects themselves. This commit converts
the existing displaced stepping queue to that. Later patches will
make the in-line step-overs code paths use it too.
gdb/ChangeLog:
2015-08-07 Pedro Alves <palves@redhat.com>
* gdbthread.h (struct thread_info) <step_over_prev,
step_over_next>: New fields.
(thread_step_over_chain_enqueue, thread_step_over_chain_remove)
(thread_step_over_chain_next, thread_is_in_step_over_chain): New
declarations.
* infrun.c (struct displaced_step_request): Delete.
(struct displaced_step_inferior_state) <step_request_queue>:
Delete field.
(displaced_step_prepare): Assert that trap_expected is set. Use
thread_step_over_chain_enqueue. Split starting a new displaced
step to ...
(start_step_over): ... this new function.
(resume): Assert the thread isn't waiting for a step over already.
(proceed): Assert the thread isn't waiting for a step over
already.
(infrun_thread_stop_requested): Adjust to remove threads from the
embedded step-over chain.
(handle_inferior_event) <fork/vfork>: Call start_step_over after
displaced_step_fixup.
(handle_signal_stop): Call start_step_over after
displaced_step_fixup.
* infrun.h (step_over_queue_head): New declaration.
* thread.c (step_over_chain_enqueue, step_over_chain_remove)
(thread_step_over_chain_next, thread_is_in_step_over_chain)
(thread_step_over_chain_enqueue)
(thread_step_over_chain_remove): New functions.
(delete_thread_1): Remove thread from the step-over chain.
Letting a "checkpoint" run to exit with "set non-stop on" behaves
differently compared to the default all-stop mode ("set non-stop
off").
Currently, in non-stop mode:
(gdb) start
Temporary breakpoint 1 at 0x40086b: file src/gdb/testsuite/gdb.base/checkpoint.c, line 28.
Starting program: build/gdb/testsuite/gdb.base/checkpoint
Temporary breakpoint 1, main () at src/gdb/testsuite/gdb.base/checkpoint.c:28
28 char *tmp = &linebuf[0];
(gdb) checkpoint
checkpoint 1: fork returned pid 24948.
(gdb) c
Continuing.
Copy complete.
Deleting copy.
[Inferior 1 (process 24944) exited normally]
[Switching to process 24948]
(gdb) info threads
Id Target Id Frame
1 process 24948 "checkpoint" (running)
No selected thread. See `help thread'.
(gdb) c
The program is not being run.
(gdb)
Two issues above:
1. Thread 1 got stuck in "(running)" state (it isn't really running)
2. While checkpoints try to preserve the illusion that the thread is
still the same when the process exits, GDB switched to "No thread
selected." instead of staying with thread 1 selected.
Problem #1 is caused by handle_inferior_event and normal_stop not
considering that when a
TARGET_WAITKIND_SIGNALLED/TARGET_WAITKIND_EXITED event is reported,
and the inferior is mourned, the target may still have execution.
Problem #2 is caused by the make_cleanup_restore_current_thread
cleanup installed by fetch_inferior_event not being able to find the
original thread 1's ptid in the thread list, thus not being able to
restore thread 1 as selected thread. The fix is to make the cleanup
installed by make_cleanup_restore_current_thread aware of thread ptid
changes, by installing a thread_ptid_changed observer that adjusts the
cleanup's data.
After the patch, we get the same in all-stop and non-stop modes:
(gdb) c
Continuing.
Copy complete.
Deleting copy.
[Inferior 1 (process 25109) exited normally]
[Switching to process 25113]
(gdb) info threads
Id Target Id Frame
* 1 process 25113 "checkpoint" main () at src/gdb/testsuite/gdb.base/checkpoint.c:28
(gdb)
Turns out the whole checkpoints.exp file can run in non-stop mode
unmodified. I thought of moving most of the test file's contents to a
procedure that can be called twice, once in non-stop mode and another
in all-stop mode. But then, the test already takes close to 30
seconds to run on my machine, so I thought it'd be nicer to run
all-stop and non-stop mode in parallel. Thus I added a new
checkpoint-ns.exp file that just appends "set non-stop on" to GDBFLAGS
and sources checkpoint.exp.
gdb/ChangeLog:
2015-08-07 Pedro Alves <palves@redhat.com>
* infrun.c (handle_inferior_event): If we get
TARGET_WAITKIND_SIGNALLED or TARGET_WAITKIND_EXITED in non-stop
mode, mark all threads of the exiting process as not-executing.
(normal_stop): If we get TARGET_WAITKIND_SIGNALLED or
TARGET_WAITKIND_EXITED in non-stop mode, finish all threads of the
exiting process, if inferior_ptid still points at a process.
* thread.c (struct current_thread_cleanup) <next>: New field.
(current_thread_cleanup_chain): New global.
(restore_current_thread_ptid_changed): New function.
(restore_current_thread_cleanup_dtor): Remove the cleanup from the
current_thread_cleanup_chain list.
(make_cleanup_restore_current_thread): Add the cleanup data to the
current_thread_cleanup_chain list.
(_initialize_thread): Install restore_current_thread_ptid_changed
as thread_ptid_changed observer.
gdb/testsuite/ChangeLog:
2015-08-07 Pedro Alves <palves@redhat.com>
* gdb.base/checkpoint-ns.exp: New file.
* gdb.base/checkpoint.exp: Pass explicit "checkpoint.c" to
standard_testfile.
Pedro Alves:
The commands that enables aren't even documented in the manual.
Judging from that, I assume that only wdb users would ever really
be using the --xdb switch.
I think it's time to drop "support" for the --xdb switch too. I
looked through the commands that that exposes, the only that looked
potentially interesting was "go", but then it's just an alias
for "tbreak+jump", which can easily be done with "define go...end".
I'd rather free up the "go" name for something potentially
more interesting (either run control, or maybe even unrelated,
e.g., for golang).
gdb/ChangeLog
2015-04-11 Jan Kratochvil <jan.kratochvil@redhat.com>
* NEWS (Changes since GDB 7.9): Add removed -xdb.
* breakpoint.c (command_line_is_silent): Remove xdb_commands
conditional.
(_initialize_breakpoint): Remove xdb_commands for bc, ab, sb, db, ba
and lb.
* cli/cli-cmds.c (_initialize_cli_cmds): Remove xdb_commands for v and
va.
* cli/cli-decode.c (find_command_name_length): Remove xdb_commands
conditional.
* defs.h (xdb_commands): Remove declaration.
* f-valprint.c (_initialize_f_valprint): Remove xdb_commands for lc.
* guile/scm-cmd.c (command_classes): Remove xdb from comment.
* infcmd.c (run_no_args_command, go_command): Remove.
(_initialize_infcmd): Remove xdb_commands for S, go, g, R and lr.
* infrun.c (xdb_handle_command): Remove.
(_initialize_infrun): Remove xdb_commands for lz and z.
* main.c (xdb_commands): Remove variable.
(captured_main): Remove "xdb" from long_options.
(print_gdb_help): Remove --xdb from help.
* python/py-cmd.c (gdbpy_initialize_commands): Remove xdb from comment.
* source.c (_initialize_source): Remove xdb_commands for D, ld, / and ?.
* stack.c (backtrace_full_command, args_plus_locals_info)
(current_frame_command): Remove.
(_initialize_stack): Remove xdb_commands for t, T and l.
* symtab.c (_initialize_symtab): Remove xdb_commands for lf and lg.
* thread.c (_initialize_thread): Remove xdb_commands condition.
* tui/tui-layout.c (tui_toggle_layout_command)
(tui_toggle_split_layout_command, tui_handle_xdb_layout): Remove.
(_initialize_tui_layout): Remove xdb_commands for td and ts.
* tui/tui-regs.c (tui_scroll_regs_forward_command)
(tui_scroll_regs_backward_command): Remove.
(_initialize_tui_regs): Remove xdb_commands for fr, gr, sr, +r and -r.
* tui/tui-win.c (tui_xdb_set_win_height_command): Remove.
(_initialize_tui_win): Remove xdb_commands for U and w.
* utils.c (pagination_on_command, pagination_off_command): Remove.
(initialize_utils): Remove xdb_commands for am and sm.
gdb/doc/ChangeLog
2015-04-11 Jan Kratochvil <jan.kratochvil@redhat.com>
* gdb.texinfo (Mode Options): Remove -xdb.
On GNU/Linux, if the running kernel supports clone events, then
linux-thread-db.c defers thread listing to the target beneath:
static void
thread_db_update_thread_list (struct target_ops *ops)
{
...
if (target_has_execution && !thread_db_use_events ())
ops->beneath->to_update_thread_list (ops->beneath);
else
thread_db_update_thread_list_td_ta_thr_iter (ops);
...
}
However, when live debugging, the target beneath, linux-nat.c, does
not implement the to_update_thread_list method. The result is that if
a thread is marked exited (because it can't be deleted right now,
e.g., it was the selected thread), then it won't ever be deleted,
until the process exits or is killed/detached.
A similar thing happens with the remote.c target. Because its
target_update_thread_list implementation skips exited threads when it
walks the current thread list looking for threads that no longer exits
on the target side, using ALL_NON_EXITED_THREADS_SAFE, stale exited
threads are never deleted.
This is not a big deal -- I can't think of any way this might be user
visible, other than gdb's memory growing a tiny bit whenever a thread
gets stuck in exited state. Still, might as well clean things up
properly.
All other targets use prune_threads, so are unaffected.
The fix adds a ALL_THREADS_SAFE macro, that like
ALL_NON_EXITED_THREADS_SAFE, walks the thread list and allows deleting
the iterated thread, and uses that in places that are walking the
thread list in order to delete threads. Actually, after converting
linux-nat.c and remote.c to use this, we find the only other user of
ALL_NON_EXITED_THREADS_SAFE is also walking the list to delete
threads. So we convert that too, and end up deleting
ALL_NON_EXITED_THREADS_SAFE.
Tested on x86_64 Fedora 20, native and gdbserver.
gdb/ChangeLog
2015-04-07 Pedro Alves <palves@redhat.com>
* gdbthread.h (ALL_NON_EXITED_THREADS_SAFE): Rename to ...
(ALL_THREADS_SAFE): ... this, and don't skip exited threads.
(delete_exited_threads): New declaration.
* infrun.c (follow_exec): Use ALL_THREADS_SAFE.
* linux-nat.c (linux_nat_update_thread_list): New function.
(linux_nat_add_target): Install it.
* remote.c (remote_update_thread_list): Use ALL_THREADS_SAFE.
* thread.c (prune_threads): Use ALL_THREADS_SAFE.
(delete_exited_threads): New function.
I noticed that "thread apply all" sometimes crashes.
The problem is that thread_apply_all_command doesn take exited threads
into account, and we qsort and then walk more elements than there
really ever were put in the array. Valgrind shows:
The current thread <Thread ID 3> has terminated. See `help thread'.
(gdb) thread apply all p 1
Thread 1 (Thread 0x7ffff7fc2740 (LWP 29579)):
$1 = 1
==29576== Use of uninitialised value of size 8
==29576== at 0x639CA8: set_thread_refcount (thread.c:1337)
==29576== by 0x5C2C7B: do_my_cleanups (cleanups.c:155)
==29576== by 0x5C2CE8: do_cleanups (cleanups.c:177)
==29576== by 0x63A191: thread_apply_all_command (thread.c:1477)
==29576== by 0x50374D: do_cfunc (cli-decode.c:105)
==29576== by 0x506865: cmd_func (cli-decode.c:1893)
==29576== by 0x7562CB: execute_command (top.c:476)
==29576== by 0x647DA4: command_handler (event-top.c:494)
==29576== by 0x648367: command_line_handler (event-top.c:692)
==29576== by 0x7BF7C9: rl_callback_read_char (callback.c:220)
==29576== by 0x64784C: rl_callback_read_char_wrapper (event-top.c:171)
==29576== by 0x647CB5: stdin_event_handler (event-top.c:432)
==29576==
...
This can happen easily today as linux-nat.c/linux-thread-db.c are
forgetting to purge non-current exited threads. But even with that
fixed, we can always do "thread apply all" with an exited thread
selected, which won't be deleted until the user switches to another
thread. That's what the test added by this commit exercises.
Tested on x86_64 Fedora 20.
gdb/ChangeLog:
2015-03-24 Pedro Alves <palves@redhat.com>
* thread.c (thread_apply_all_command): Take exited threads into
account.
gdb/testsuite/ChangeLog:
2015-03-24 Pedro Alves <palves@redhat.com>
* gdb.threads/no-unwaited-for-left.exp: Test "thread apply all".
This patch renames symbols that happen to have names which are
reserved keywords in C++.
Most of this was generated with Tromey's cxx-conversion.el script.
Some places where later hand massaged a bit, to fix formatting, etc.
And this was rebased several times meanwhile, along with re-running
the script, so re-running the script from scratch probably does not
result in the exact same output. I don't think that matters anyway.
gdb/
2015-02-27 Tom Tromey <tromey@redhat.com>
Pedro Alves <palves@redhat.com>
Rename symbols whose names are reserved C++ keywords throughout.
gdb/gdbserver/
2015-02-27 Tom Tromey <tromey@redhat.com>
Pedro Alves <palves@redhat.com>
Rename symbols whose names are reserved C++ keywords throughout.
downstream Fedora request:
Please make it easier to find the backtrace of the crashing thread
https://bugzilla.redhat.com/show_bug.cgi?id=1024504
Currently after loading a core file GDB prints:
Core was generated by `./threadcrash1'.
Program terminated with signal SIGSEGV, Segmentation fault.
8 *(volatile int *)0=0;
(gdb) _
there is nowhere seen which of the threads had crashed. In reality GDB always
numbers that thread as #1 and it is the current thread that time. But after
dumping all the info into a file for later analysis it is no longer obvious.
'thread apply all bt' even puts the thread #1 to the _end_ of the output!!!
I find maybe as good enough and with no risk of UI change flamewar to just
sort the threads by their number. Currently they are printed as they happen
in the internal GDB list which has no advantage. Printing thread #1 as the
first one with assumed 'thread apply all bt' (after the core file is loaded)
should make the complaint resolved I guess.
On Thu, 15 Jan 2015 20:29:07 +0100, Doug Evans wrote:
No objection to sorting the list, but if thread #1 is the important one,
then a concern could be it'll have scrolled off the screen (such a
concern has been voiced in another thread in another context),
and if not lost (say it's in an emacs buffer) one would still have
to scroll back to see it.
So one *could* still want #1 to be last.
Do we want an option to choose the sort direction?
gdb/ChangeLog
2015-01-22 Jan Kratochvil <jan.kratochvil@redhat.com>
* NEWS (Changes since GDB 7.9): Add 'thread apply all' option
'-ascending'.
* thread.c (tp_array_compar_ascending, tp_array_compar): New.
(thread_apply_all_command): Parse CMD for tp_array_compar_ascending.
Sort tp_array using tp_array_compar.
(_initialize_thread): Extend thread_apply_all_command help.
gdb/doc/ChangeLog
2015-01-22 Jan Kratochvil <jan.kratochvil@redhat.com>
* gdb.texinfo (Threads): Describe -ascending for thread apply all.
downstream Fedora request:
Please make it easier to find the backtrace of the crashing thread
https://bugzilla.redhat.com/show_bug.cgi?id=1024504
Currently after loading a core file GDB prints:
Core was generated by `./threadcrash1'.
Program terminated with signal SIGSEGV, Segmentation fault.
8 *(volatile int *)0=0;
(gdb) _
there is nowhere seen which of the threads had crashed. In reality GDB always
numbers that thread as #1 and it is the current thread that time. But after
dumping all the info into a file for later analysis it is no longer obvious.
'thread apply all bt' even puts the thread #1 to the _end_ of the output!!!
Should GDB always print after loading a core file what "thread" command would
print?
[Current thread is 1 (Thread 0x7fcbe28fe700 (LWP 15453))]
BTW I think it will print the thread even when loading single/non-threaded
core file when other inferior(s) exist. But that currently crashes
[Bug threads/12074] multi-inferior internal error
https://sourceware.org/bugzilla/show_bug.cgi?id=12074
plus I think that would be a correct behavior anyway.
gdb/ChangeLog
2015-01-22 Jan Kratochvil <jan.kratochvil@redhat.com>
* corelow.c (core_open): Call also thread_command.
* gdbthread.h (thread_command): New prototype moved from ...
* thread.c (thread_command): ... here.
(thread_command): Make it global.
This patch introduces find_inferior_ptid to replace the common idiom
find_inferior_pid (ptid_get_pid (...));
It replaces all the instances of that idiom that I found with the new
function.
No significant changes before/after the patch in the regression suite
on amd64 linux.
gdb/ChangeLog:
* inferior.c (find_inferior_ptid): New function.
* inferior.h (find_inferior_ptid): New declaration.
* ada-tasks.c (ada_get_task_number): Use find_inferior_ptid.
* corelow.c (core_pid_to_str): Same.
* darwin-nat.c (darwin_resume): Same.
* infrun.c (fetch_inferior_event): Same.
(get_inferior_stop_soon): Same.
(handle_inferior_event): Same.
(handle_signal_stop): Same.
* linux-nat.c (resume_lwp): Same.
(stop_wait_callback): Same.
* mi/mi-interp.c (mi_new_thread): Same.
(mi_thread_exit): Same.
* proc-service.c (ps_pglobal_lookup): Same.
* record-btrace.c (record_btrace_step_thread): Same.
* remote-sim.c (gdbsim_close_inferior): Same.
(gdbsim_resume): Same.
(gdbsim_stop): Same.
* sol2-tdep.c (sol2_core_pid_to_str): Same.
* target.c (memory_xfer_partial_1): Same.
(default_thread_address_space): Same.
* thread.c (thread_change_ptid): Same.
(switch_to_thread): Same.
(do_restore_current_thread_cleanup): Same.
gdb/ChangeLog:
* eval.c: Include gdbthread.h.
(evaluate_subexp): Enable thread stack temporaries before
evaluating a complete expression and clean them up after the
evaluation is complete.
* gdbthread.h: Include common/vec.h.
(value_ptr): New typedef.
(VEC (value_ptr)): New vector type.
(value_vec): New typedef.
(struct thread_info): Add new fields stack_temporaries_enabled
and stack_temporaries.
(enable_thread_stack_temporaries)
(thread_stack_temporaries_enabled_p, push_thread_stack_temporary)
(get_last_thread_stack_temporary)
(value_in_thread_stack_temporaries): Declare.
* gdbtypes.c (class_or_union_p): New function.
* gdbtypes.h (class_or_union_p): Declare.
* infcall.c (call_function_by_hand): Store return values of class
type as temporaries on stack.
* thread.c (enable_thread_stack_temporaries): New function.
(thread_stack_temporaries_enabled_p, push_thread_stack_temporary)
(get_last_thread_stack_temporary): Likewise.
(value_in_thread_stack_temporaries): Likewise.
* value.c (value_force_lval): New function.
* value.h (value_force_lval): Declare.
gdb/testsuite/ChangeLog:
* gdb.cp/chained-calls.cc: New file.
* gdb.cp/chained-calls.exp: New file.
* gdb.cp/smartp.exp: Remove KFAIL for "p c2->inta".
When GDB wants to sync the thread list with the target's (e.g., due to
"info threads"), it calls update_thread_list:
update_thread_list (void)
{
prune_threads ();
target_find_new_threads ();
update_threads_executing ();
}
And then prune_threads does:
prune_threads (void)
{
struct thread_info *tp, *next;
for (tp = thread_list; tp; tp = next)
{
next = tp->next;
if (!thread_alive (tp))
delete_thread (tp->ptid);
}
}
Calling thread_live on each thread one by one is expensive.
E.g., on Linux, it ends up doing kill(SIG0) once for each thread. Not
a big deal, but still a bunch of syscalls...
With the remote target, it's cumbersome. That thread_alive call ends
up generating one T packet per thread:
Sending packet: $Tp2141.2150#82...Packet received: OK
Sending packet: $Tp2141.214f#b7...Packet received: OK
Sending packet: $Tp2141.2141#82...Packet received: OK
Sending packet: $qXfer:threads:read::0,fff#03...Packet received: l<threads>\n<thread id="p2141.2141" core="2"/>\n<thread id="p2141.214f" core="1"/>\n<thread id="p2141.2150" core="2"/>\n</threads>\n
That seems a bit silly when target_find_new_threads method
implementations will always fetch the whole current set of target
threads, and then add those that are not in GDB's thread list, to
GDB's thread list.
This patch thus pushes down the responsibility of pruning dead threads
to the target_find_new_threads method instead, so a target may
implement pruning dead threads however it wants.
Once we do that, target_find_new_threads becomes a misnomer, so the
patch renames it to target_update_thread_list.
The patch doesn't attempt to do any optimization to any target yet.
It simply exports prune_threads, and makes all implementations of
target_update_thread_list call that. It's meant to be a no-op.
gdb/
2014-10-15 Pedro Alves <palves@redhat.com>
* ada-tasks.c (print_ada_task_info, task_command_1): Adjust.
* bsd-uthread.c (bsd_uthread_find_new_threads): Rename to ...
(bsd_uthread_update_thread_list): ... this. Call prune_threads.
(bsd_uthread_target): Adjust.
* corelow.c (core_open): Adjust.
* dec-thread.c (dec_thread_find_new_threads): Update comment.
(dec_thread_update_thread_list): New function.
(init_dec_thread_ops): Adjust.
* gdbthread.h (prune_threads): New declaration.
* linux-thread-db.c (thread_db_find_new_threads): Rename to ...
(thread_db_update_thread_list): ... this. Call prune_threads.
(init_thread_db_ops): Adjust.
* nto-procfs.c (procfs_find_new_threads): Rename to ...
(procfs_update_thread_list): ... this. Call prune_threads.
(procfs_attach, procfs_create_inferior, init_procfs_targets):
Adjust.
* obsd-nat.c (obsd_find_new_threads): Rename to ...
(obsd_update_thread_list): ... this. Call prune_threads.
(obsd_add_target): Adjust.
* procfs.c (procfs_target): Adjust.
(procfs_notice_thread): Update comment.
(procfs_find_new_threads): Rename to ...
(procfs_update_thread_list): ... this. Call prune_threads.
* ravenscar-thread.c (ravenscar_update_inferior_ptid): Update
comment.
(ravenscar_wait): Adjust.
(ravenscar_find_new_threads): Rename to ...
(ravenscar_update_thread_list): ... this. Call prune_threads.
(init_ravenscar_thread_ops): Adjust.
* record-btrace.c (record_btrace_find_new_threads): Rename to ...
(record_btrace_update_thread_list): ... this. Adjust comment.
(init_record_btrace_ops): Adjust.
* remote.c (remote_threads_info): Rename to ...
(remote_update_thread_list): ... this. Call prune_threads.
(remote_start_remote, extended_remote_attach_1, init_remote_ops):
Adjust.
* sol-thread.c (check_for_thread_db): Adjust.
(sol_find_new_threads_callback): Rename to ...
(sol_update_thread_list_callback): ... this.
(sol_find_new_threads): Rename to ...
(sol_update_thread_list): ... this. Call prune_threads. Adjust.
(sol_get_ada_task_ptid, init_sol_thread_ops): Adjust.
* target-delegates.c: Regenerate.
* target.c (target_find_new_threads): Rename to ...
(target_update_thread_list): ... this.
* target.h (struct target_ops): Rename to_find_new_threads field
to to_update_thread_list.
(target_find_new_threads): Rename to ...
(target_update_thread_list): ... this.
* thread.c (prune_threads): Make extern.
(update_thread_list): Adjust.
This patch finally makes each thread have its own set of single-step
breakpoints. This paves the way to have multiple threads software
single-stepping, though this patch doesn't flip that switch on yet.
That'll be done on a subsequent patch.
gdb/
2014-10-15 Pedro Alves <palves@redhat.com>
* breakpoint.c (single_step_breakpoints): Delete global.
(insert_single_step_breakpoint): Adjust to store the breakpoint
pointer in the current thread.
(single_step_breakpoints_inserted, remove_single_step_breakpoints)
(cancel_single_step_breakpoints): Delete functions.
(breakpoint_has_location_inserted_here): Make extern.
(single_step_breakpoint_inserted_here_p): Adjust to walk the
breakpoint list.
* breakpoint.h (breakpoint_has_location_inserted_here): New
declaration.
(single_step_breakpoints_inserted, remove_single_step_breakpoints)
(cancel_single_step_breakpoints): Remove declarations.
* gdbthread.h (struct thread_control_state)
<single_step_breakpoints>: New field.
(delete_single_step_breakpoints)
(thread_has_single_step_breakpoints_set)
(thread_has_single_step_breakpoint_here): New declarations.
* infrun.c (follow_exec): Also clear the single-step breakpoints.
(singlestep_breakpoints_inserted_p, singlestep_ptid)
(singlestep_pc): Delete globals.
(infrun_thread_ptid_changed): Remove references to removed
globals.
(resume_cleanups): Delete the current thread's single-step
breakpoints.
(maybe_software_singlestep): Remove references to removed globals.
(resume): Adjust to use thread_has_single_step_breakpoints_set and
delete_single_step_breakpoints.
(init_wait_for_inferior): Remove references to removed globals.
(delete_thread_infrun_breakpoints): Delete the thread's
single-step breakpoints too.
(delete_just_stopped_threads_infrun_breakpoints): Don't delete
single-step breakpoints here.
(delete_stopped_threads_single_step_breakpoints): New function.
(adjust_pc_after_break): Adjust to use
thread_has_single_step_breakpoints_set.
(handle_inferior_event): Remove references to removed globals.
Use delete_stopped_threads_single_step_breakpoints.
(handle_signal_stop): Adjust to per-thread single-step
breakpoints. Swap test order to do cheaper tests first.
(switch_back_to_stepped_thread): Extend debug output. Remove
references to removed globals.
* record-full.c (record_full_wait_1): Adjust to per-thread
single-step breakpoints.
* thread.c (delete_single_step_breakpoints)
(thread_has_single_step_breakpoints_set)
(thread_has_single_step_breakpoint_here): New functions.
(clear_thread_inferior_resources): Also delete the thread's
single-step breakpoints.
A little refactoring to reduce duplicate code.
gdb/
2014-10-15 Pedro Alves <palves@redhat.com>
* thread.c (delete_thread_breakpoint): New function.
(delete_step_resume_breakpoint)
(delete_exception_resume_breakpoint): Use it.
(delete_at_next_stop): New function.
(clear_thread_inferior_resources): Use delete_at_next_stop.
Commit a25a5a45 (Fix "breakpoint always-inserted off"; remove
"breakpoint always-inserted auto") regressed non-stop remote
debugging.
This was exposed by mi-nsintrall.exp intermittently failing with a
spurious SIGTRAP.
The problem is that when debugging with "target remote", new threads
the target has spawned but have never reported a stop aren't visible
to GDB until it explicitly resyncs its thread list with the target's.
For example, in a program like this:
int
main (void)
{
pthread_t child_thread;
pthread_create (&child_thread, NULL, child_function, NULL);
return 0; <<<< set breakpoint here
}
If the user sets a breakpoint at the "return" statement, and runs the
program, when that breakpoint hit is reported, GDB is only aware of
the main thread. So if we base the decision to remove or insert
breakpoints from the target based on whether all the threads we know
about are stopped, we'll miss that child_thread is running, and thus
we'll remove breakpoints from the target, even through they should
still remain inserted, otherwise child_thread will miss them.
The break-while-running.exp test actually should also be exposing this
thread-list-out-of-synch problem. That test sets a breakpoint while
the main thread is stopped, but other threads are running. Because
other threads are running, the breakpoint is supposed to be inserted
immediately. But, unless something forces a refetch of the thread
list, like, e.g., "info threads", GDB won't be aware of the other
threads that had been spawned by the main thread, and so won't insert
new or old breakpoints in the target. And it turns out that the test
is exactly doing an explicit "info threads", masking out the
problem... This commit adjust the test to exercise the case of not
issuing "info threads". The test then fails without the GDB fix.
In the ni-nsintrall.exp case, what happens is that several threads hit
the same breakpoint, and when the first thread reports the stop,
because GDB wasn't aware other threads exist, all threads known to GDB
are found stopped, so GDB removes the breakpoints from the target.
The other threads follow up with SIGTRAPs too for that same
breakpoint, which has already been removed. For the first few
threads, the moribund breakpoints machinery suppresses the SIGTRAPs,
but after a few events (precisely '3 * thread_count () + 1' at the
time the breakpoint was removed, see update_global_location_list), the
moribund breakpoint machinery is no longer aware of the removed
breakpoint, and the SIGTRAP is reported as a spurious stop.
The fix is naturally then to stop assuming that if no thread in the
list is executing, then the target is fully stopped. We can't know
that until we fully sync the thread list. Because updating the thread
list on every stop would be too much RSP traffic, I chose instead to
update it whenever we're about to present a stop to the user.
Actually updating the thread list at that point happens to be an item
I had added to the local/remote parity wiki page a while ago:
Native GNU/Linux debugging adds new threads to the thread list as
the program creates them "The [New Thread foo] messages". Remote
debugging can't do that, and it's arguable whether we shouldn't even
stop native debugging from doing that, as it hinders inferior
performance. However, a related issue is that with remote targets
(and gdbserver), even after the program stops, the user still needs
to do "info threads" to pull an updated thread list. This, should
most likely be addressed, so that GDB pulls the list itself, perhaps
just before presenting a stop to the user.
With that in place, the need to delay "Program received signal FOO"
was actually caught by the manythreads.exp test. Without that bit, I
was getting:
[Thread 0x7ffff7f13700 (LWP 4499) exited]
[New Thread 0x7ffff7f0b700 (LWP 4500)]
^C
Program received signal SIGINT, Interrupt.
[New Thread 0x7ffff7f03700 (LWP 4501)] <<< new output
[Switching to Thread 0x7ffff7f0b700 (LWP 4500)]
__GI___nptl_death_event () at events.c:31
31 {
(gdb) FAIL: gdb.threads/manythreads.exp: stop threads 1
That is, I was now getting "New Thread" lines after the "Program
received signal" line, and the test doesn't expect them. As the
number of new threads discovered before and after the "Program
received signal" output is unbounded, it's much nicer to defer
"Program received signal" until after synching the thread list, thus
close to the "switching to thread" output and "current frame/source"
info:
[Thread 0x7ffff7863700 (LWP 7647) exited]
^C[New Thread 0x7ffff786b700 (LWP 7648)]
Program received signal SIGINT, Interrupt.
[Switching to Thread 0x7ffff7fc4740 (LWP 6243)]
__GI___nptl_create_event () at events.c:25
25 {
(gdb) PASS: gdb.threads/manythreads.exp: stop threads 1
Tested on x86_64 Fedora 20, native and gdbserver.
gdb/
2014-10-02 Pedro Alves <palves@redhat.com>
* breakpoint.c (breakpoints_should_be_inserted_now): Use
threads_are_executing.
* breakpoint.h (breakpoints_should_be_inserted_now): Add
describing comment.
* gdbthread.h (threads_are_executing): Declare.
(handle_signal_stop) <random signals>: Don't print about the
signal here if stopping.
(end_stepping_range): Don't notify observers here.
(normal_stop): Update the thread list. If stopped by a random
signal or a stepping range ended, notify observers.
* thread.c (threads_executing): New global.
(init_thread_list): Clear 'threads_executing'.
(set_executing): Set or clear 'threads_executing'.
(threads_are_executing): New function.
(update_threads_executing): New function.
(update_thread_list): Use it.
gdb/testsuite/
2014-10-02 Pedro Alves <palves@redhat.com>
* gdb.threads/break-while-running.exp (test): Add new
'update_thread_list' argument. Skip "info threads" if false.
(top level): Add new 'update_thread_list' axis.
A patch I wrote made GDB pull the thread list sooner when debugging
with target remote, and I noticed an intended consequence. GDB
started bouncing around the currently selected remote/general thread
more frequently. E.g.:
Sending packet: $qTMinFTPILen#3b...Packet received: 5
+Sending packet: $Hgp726d.726d#53...Packet received: OK
Sending packet: $m400680,40#2f...Packet received: 85c0741455bff00d60004889e5ffd05de97bffffff0f1f00e973ffffff0f1f00554889e5c745fc00000000c745fc01000000e900000000c745fc02000000b800
+Sending packet: $Hgp726d.7278#28...Packet received: OK
Sending packet: $m4006b2,1#28...Packet received: e9
Fast tracepoint 2 at 0x4006b2: file gdb/testsuite/gdb.trace/range-stepping.c, line 53.
Sending packet: $qTStatus#49...Packet received: T0;tnotrun:0;tframes:0;tcreated:0;tfree:500000;tsize:500000;circular:0;disconn:0;starttime:0;stoptime:0;username:;notes::
This ended up breaking "tstart" when one has fast tracepoints set,
because gdbserver isn't expecting an Hg packet in response to
qRelocInsn:
(gdb) ftrace *set_point
Fast tracepoint 3 at 0x4006b2: file gdb/testsuite/gdb.trace/range-stepping.c, line 53.
(gdb) PASS: gdb.trace/range-stepping.exp: ftrace: ftrace *set_point
tstart
gdbserver: Malformed response to qRelocInsn, ignoring: Hgp2783.2783
Target does not support this command.
(gdb) FAIL: gdb.trace/range-stepping.exp: ftrace: tstart
remote_trace_start should probably start by making sure the remote
current thread matches inferior_ptid (calling set_general_thread), but
still, reducing unnecessary bouncing is a good idea. It happens
because the memory/symbol/breakpoint routines use
switch_to_program_space_and_thread to do something in the right
context and then revert back to the previously current thread.
The fix is to simply make any_thread_of_process,
find_inferior_for_program_space, etc. give preference to the current
thread/inferior it if matches.
gdb/
2014-10-02 Pedro Alves <palves@redhat.com>
* gdbthread.h (any_thread_of_process, any_live_thread_of_process):
Adjust comments.
* inferior.c (find_inferior_for_program_space): Give preference to
the current inferior.
* inferior.h (find_inferior_for_program_space): Update comment.
* progspace.c (switch_to_program_space_and_thread): Prefer the
current inferior if it's bound to the program space requested. If
the inferior found doesn't have a PID yet, don't bother looking up
a thread.
* progspace.h (switch_to_program_space_and_thread): Adjust
comment.
* thread.c (any_thread_of_process, any_live_thread_of_process):
Give preference to the current thread.
Function any_running isn't used. This patch is to remove it.
Rebuild GDB for linux and mingw.
gdb:
2014-06-19 Yao Qi <yao@codesourcery.com>
* gdbthread.h (any_running): Remove the declaration.
* thread.c (any_running): Remove.
Running gdb.threads/thread-execl.exp with scheduler-locking set to
"step" reveals a problem:
(gdb) next^M
[Thread 0x7ffff7fda700 (LWP 27168) exited]^M
[New LWP 27168]^M
[Thread 0x7ffff74ee700 (LWP 27174) exited]^M
process 27168 is executing new program: /home/jkratoch/redhat/gdb-clean/gdb/testsuite/gdb.threads/thread-execl^M
[Thread debugging using libthread_db enabled]^M
Using host libthread_db library "/lib64/libthread_db.so.1".^M
infrun.c:5225: internal-error: switch_back_to_stepped_thread: Assertion `!schedlock_applies (1)' failed.^M
A problem internal to GDB has been detected,^M
further debugging may prove unreliable.^M
Quit this debugging session? (y or n) FAIL: gdb.threads/thread-execl.exp: schedlock step: get to main in new image (GDB internal error)
The assertion is correct. The issue is that GDB is mistakenly trying
to switch back to an exited thread, that was previously stepping when
it exited. This is exactly the sort of thing the test wants to make
sure doesn't happen:
# Now set a breakpoint at `main', and step over the execl call. The
# breakpoint at main should be reached. GDB should not try to revert
# back to the old thread from the old image and resume stepping it
We don't see this bug with schedlock off only because a different
sequence of events makes GDB manage to delete the thread instead of
marking it exited.
This particular internal error can be fixed by making the loop over
all threads in switch_back_to_stepped_thread skip exited threads.
But, looking over other ALL_THREADS users, all either can or should be
skipping exited threads too. So for simplicity, this patch replaces
ALL_THREADS with a new macro that skips exited threads itself, and
updates everything to use it.
Tested on x86_64 Fedora 20.
gdb/
2014-06-19 Pedro Alves <palves@redhat.com>
* gdbthread.h (ALL_THREADS): Delete.
(ALL_NON_EXITED_THREADS): New macro.
* btrace.c (btrace_free_objfile): Use ALL_NON_EXITED_THREADS
instead of ALL_THREADS.
* infrun.c (find_thread_needs_step_over)
(switch_back_to_stepped_thread): Use ALL_NON_EXITED_THREADS
instead of ALL_THREADS.
* record-btrace.c (record_btrace_open)
(record_btrace_stop_recording, record_btrace_close)
(record_btrace_is_replaying, record_btrace_resume)
(record_btrace_find_thread_to_move, record_btrace_wait): Likewise.
* remote.c (append_pending_thread_resumptions): Likewise.
* thread.c (thread_apply_all_command): Likewise.
gdb/testsuite/
2014-06-19 Pedro Alves <palves@redhat.com>
* gdb.threads/thread-execl.exp (do_test): New procedure, factored
out from ...
(top level): ... here. Iterate running tests under different
scheduler-locking settings.
This removes gdb_string.h. This patch is purely mechanical. I
created it by running the two commands:
git rm common/gdb_string.h
perl -pi -e's/"gdb_string.h"/<string.h>/;' *.[chyl] */*.[chyl]
2013-11-18 Tom Tromey <tromey@redhat.com>
* common/gdb_string.h: Remove.
* aarch64-tdep.c: Use string.h, not gdb_string.h.
* ada-exp.y: Use string.h, not gdb_string.h.
* ada-lang.c: Use string.h, not gdb_string.h.
* ada-lex.l: Use string.h, not gdb_string.h.
* ada-typeprint.c: Use string.h, not gdb_string.h.
* ada-valprint.c: Use string.h, not gdb_string.h.
* aix-thread.c: Use string.h, not gdb_string.h.
* alpha-linux-tdep.c: Use string.h, not gdb_string.h.
* alpha-mdebug-tdep.c: Use string.h, not gdb_string.h.
* alpha-nat.c: Use string.h, not gdb_string.h.
* alpha-osf1-tdep.c: Use string.h, not gdb_string.h.
* alpha-tdep.c: Use string.h, not gdb_string.h.
* alphanbsd-tdep.c: Use string.h, not gdb_string.h.
* amd64-dicos-tdep.c: Use string.h, not gdb_string.h.
* amd64-linux-nat.c: Use string.h, not gdb_string.h.
* amd64-linux-tdep.c: Use string.h, not gdb_string.h.
* amd64-nat.c: Use string.h, not gdb_string.h.
* amd64-sol2-tdep.c: Use string.h, not gdb_string.h.
* amd64fbsd-tdep.c: Use string.h, not gdb_string.h.
* amd64obsd-tdep.c: Use string.h, not gdb_string.h.
* arch-utils.c: Use string.h, not gdb_string.h.
* arm-linux-nat.c: Use string.h, not gdb_string.h.
* arm-linux-tdep.c: Use string.h, not gdb_string.h.
* arm-tdep.c: Use string.h, not gdb_string.h.
* arm-wince-tdep.c: Use string.h, not gdb_string.h.
* armbsd-tdep.c: Use string.h, not gdb_string.h.
* armnbsd-nat.c: Use string.h, not gdb_string.h.
* armnbsd-tdep.c: Use string.h, not gdb_string.h.
* armobsd-tdep.c: Use string.h, not gdb_string.h.
* avr-tdep.c: Use string.h, not gdb_string.h.
* ax-gdb.c: Use string.h, not gdb_string.h.
* ax-general.c: Use string.h, not gdb_string.h.
* bcache.c: Use string.h, not gdb_string.h.
* bfin-tdep.c: Use string.h, not gdb_string.h.
* breakpoint.c: Use string.h, not gdb_string.h.
* build-id.c: Use string.h, not gdb_string.h.
* buildsym.c: Use string.h, not gdb_string.h.
* c-exp.y: Use string.h, not gdb_string.h.
* c-lang.c: Use string.h, not gdb_string.h.
* c-typeprint.c: Use string.h, not gdb_string.h.
* c-valprint.c: Use string.h, not gdb_string.h.
* charset.c: Use string.h, not gdb_string.h.
* cli-out.c: Use string.h, not gdb_string.h.
* cli/cli-cmds.c: Use string.h, not gdb_string.h.
* cli/cli-decode.c: Use string.h, not gdb_string.h.
* cli/cli-dump.c: Use string.h, not gdb_string.h.
* cli/cli-interp.c: Use string.h, not gdb_string.h.
* cli/cli-logging.c: Use string.h, not gdb_string.h.
* cli/cli-script.c: Use string.h, not gdb_string.h.
* cli/cli-setshow.c: Use string.h, not gdb_string.h.
* cli/cli-utils.c: Use string.h, not gdb_string.h.
* coffread.c: Use string.h, not gdb_string.h.
* common/common-utils.c: Use string.h, not gdb_string.h.
* common/filestuff.c: Use string.h, not gdb_string.h.
* common/linux-procfs.c: Use string.h, not gdb_string.h.
* common/linux-ptrace.c: Use string.h, not gdb_string.h.
* common/signals.c: Use string.h, not gdb_string.h.
* common/vec.h: Use string.h, not gdb_string.h.
* core-regset.c: Use string.h, not gdb_string.h.
* corefile.c: Use string.h, not gdb_string.h.
* corelow.c: Use string.h, not gdb_string.h.
* cp-abi.c: Use string.h, not gdb_string.h.
* cp-support.c: Use string.h, not gdb_string.h.
* cp-valprint.c: Use string.h, not gdb_string.h.
* cris-tdep.c: Use string.h, not gdb_string.h.
* d-lang.c: Use string.h, not gdb_string.h.
* dbxread.c: Use string.h, not gdb_string.h.
* dcache.c: Use string.h, not gdb_string.h.
* demangle.c: Use string.h, not gdb_string.h.
* dicos-tdep.c: Use string.h, not gdb_string.h.
* disasm.c: Use string.h, not gdb_string.h.
* doublest.c: Use string.h, not gdb_string.h.
* dsrec.c: Use string.h, not gdb_string.h.
* dummy-frame.c: Use string.h, not gdb_string.h.
* dwarf2-frame.c: Use string.h, not gdb_string.h.
* dwarf2loc.c: Use string.h, not gdb_string.h.
* dwarf2read.c: Use string.h, not gdb_string.h.
* elfread.c: Use string.h, not gdb_string.h.
* environ.c: Use string.h, not gdb_string.h.
* eval.c: Use string.h, not gdb_string.h.
* event-loop.c: Use string.h, not gdb_string.h.
* exceptions.c: Use string.h, not gdb_string.h.
* exec.c: Use string.h, not gdb_string.h.
* expprint.c: Use string.h, not gdb_string.h.
* f-exp.y: Use string.h, not gdb_string.h.
* f-lang.c: Use string.h, not gdb_string.h.
* f-typeprint.c: Use string.h, not gdb_string.h.
* f-valprint.c: Use string.h, not gdb_string.h.
* fbsd-nat.c: Use string.h, not gdb_string.h.
* findcmd.c: Use string.h, not gdb_string.h.
* findvar.c: Use string.h, not gdb_string.h.
* fork-child.c: Use string.h, not gdb_string.h.
* frame.c: Use string.h, not gdb_string.h.
* frv-linux-tdep.c: Use string.h, not gdb_string.h.
* frv-tdep.c: Use string.h, not gdb_string.h.
* gdb.c: Use string.h, not gdb_string.h.
* gdb_bfd.c: Use string.h, not gdb_string.h.
* gdbarch.c: Use string.h, not gdb_string.h.
* gdbtypes.c: Use string.h, not gdb_string.h.
* gnu-nat.c: Use string.h, not gdb_string.h.
* gnu-v2-abi.c: Use string.h, not gdb_string.h.
* gnu-v3-abi.c: Use string.h, not gdb_string.h.
* go-exp.y: Use string.h, not gdb_string.h.
* go-lang.c: Use string.h, not gdb_string.h.
* go32-nat.c: Use string.h, not gdb_string.h.
* hppa-hpux-tdep.c: Use string.h, not gdb_string.h.
* hppa-linux-nat.c: Use string.h, not gdb_string.h.
* hppanbsd-tdep.c: Use string.h, not gdb_string.h.
* hppaobsd-tdep.c: Use string.h, not gdb_string.h.
* i386-cygwin-tdep.c: Use string.h, not gdb_string.h.
* i386-dicos-tdep.c: Use string.h, not gdb_string.h.
* i386-linux-nat.c: Use string.h, not gdb_string.h.
* i386-linux-tdep.c: Use string.h, not gdb_string.h.
* i386-nto-tdep.c: Use string.h, not gdb_string.h.
* i386-sol2-tdep.c: Use string.h, not gdb_string.h.
* i386-tdep.c: Use string.h, not gdb_string.h.
* i386bsd-tdep.c: Use string.h, not gdb_string.h.
* i386gnu-nat.c: Use string.h, not gdb_string.h.
* i386nbsd-tdep.c: Use string.h, not gdb_string.h.
* i386obsd-tdep.c: Use string.h, not gdb_string.h.
* i387-tdep.c: Use string.h, not gdb_string.h.
* ia64-libunwind-tdep.c: Use string.h, not gdb_string.h.
* ia64-linux-nat.c: Use string.h, not gdb_string.h.
* inf-child.c: Use string.h, not gdb_string.h.
* inf-ptrace.c: Use string.h, not gdb_string.h.
* inf-ttrace.c: Use string.h, not gdb_string.h.
* infcall.c: Use string.h, not gdb_string.h.
* infcmd.c: Use string.h, not gdb_string.h.
* inflow.c: Use string.h, not gdb_string.h.
* infrun.c: Use string.h, not gdb_string.h.
* interps.c: Use string.h, not gdb_string.h.
* iq2000-tdep.c: Use string.h, not gdb_string.h.
* irix5-nat.c: Use string.h, not gdb_string.h.
* jv-exp.y: Use string.h, not gdb_string.h.
* jv-lang.c: Use string.h, not gdb_string.h.
* jv-typeprint.c: Use string.h, not gdb_string.h.
* jv-valprint.c: Use string.h, not gdb_string.h.
* language.c: Use string.h, not gdb_string.h.
* linux-fork.c: Use string.h, not gdb_string.h.
* linux-nat.c: Use string.h, not gdb_string.h.
* lm32-tdep.c: Use string.h, not gdb_string.h.
* m2-exp.y: Use string.h, not gdb_string.h.
* m2-typeprint.c: Use string.h, not gdb_string.h.
* m32c-tdep.c: Use string.h, not gdb_string.h.
* m32r-linux-nat.c: Use string.h, not gdb_string.h.
* m32r-linux-tdep.c: Use string.h, not gdb_string.h.
* m32r-rom.c: Use string.h, not gdb_string.h.
* m32r-tdep.c: Use string.h, not gdb_string.h.
* m68hc11-tdep.c: Use string.h, not gdb_string.h.
* m68k-tdep.c: Use string.h, not gdb_string.h.
* m68kbsd-tdep.c: Use string.h, not gdb_string.h.
* m68klinux-nat.c: Use string.h, not gdb_string.h.
* m68klinux-tdep.c: Use string.h, not gdb_string.h.
* m88k-tdep.c: Use string.h, not gdb_string.h.
* macrocmd.c: Use string.h, not gdb_string.h.
* main.c: Use string.h, not gdb_string.h.
* mdebugread.c: Use string.h, not gdb_string.h.
* mem-break.c: Use string.h, not gdb_string.h.
* memattr.c: Use string.h, not gdb_string.h.
* memory-map.c: Use string.h, not gdb_string.h.
* mep-tdep.c: Use string.h, not gdb_string.h.
* mi/mi-cmd-break.c: Use string.h, not gdb_string.h.
* mi/mi-cmd-disas.c: Use string.h, not gdb_string.h.
* mi/mi-cmd-env.c: Use string.h, not gdb_string.h.
* mi/mi-cmd-stack.c: Use string.h, not gdb_string.h.
* mi/mi-cmd-var.c: Use string.h, not gdb_string.h.
* mi/mi-cmds.c: Use string.h, not gdb_string.h.
* mi/mi-console.c: Use string.h, not gdb_string.h.
* mi/mi-getopt.c: Use string.h, not gdb_string.h.
* mi/mi-interp.c: Use string.h, not gdb_string.h.
* mi/mi-main.c: Use string.h, not gdb_string.h.
* mi/mi-parse.c: Use string.h, not gdb_string.h.
* microblaze-rom.c: Use string.h, not gdb_string.h.
* microblaze-tdep.c: Use string.h, not gdb_string.h.
* mingw-hdep.c: Use string.h, not gdb_string.h.
* minidebug.c: Use string.h, not gdb_string.h.
* minsyms.c: Use string.h, not gdb_string.h.
* mips-irix-tdep.c: Use string.h, not gdb_string.h.
* mips-linux-tdep.c: Use string.h, not gdb_string.h.
* mips-tdep.c: Use string.h, not gdb_string.h.
* mips64obsd-tdep.c: Use string.h, not gdb_string.h.
* mipsnbsd-tdep.c: Use string.h, not gdb_string.h.
* mipsread.c: Use string.h, not gdb_string.h.
* mn10300-linux-tdep.c: Use string.h, not gdb_string.h.
* mn10300-tdep.c: Use string.h, not gdb_string.h.
* monitor.c: Use string.h, not gdb_string.h.
* moxie-tdep.c: Use string.h, not gdb_string.h.
* mt-tdep.c: Use string.h, not gdb_string.h.
* nbsd-tdep.c: Use string.h, not gdb_string.h.
* nios2-linux-tdep.c: Use string.h, not gdb_string.h.
* nto-procfs.c: Use string.h, not gdb_string.h.
* nto-tdep.c: Use string.h, not gdb_string.h.
* objc-lang.c: Use string.h, not gdb_string.h.
* objfiles.c: Use string.h, not gdb_string.h.
* opencl-lang.c: Use string.h, not gdb_string.h.
* osabi.c: Use string.h, not gdb_string.h.
* osdata.c: Use string.h, not gdb_string.h.
* p-exp.y: Use string.h, not gdb_string.h.
* p-lang.c: Use string.h, not gdb_string.h.
* p-typeprint.c: Use string.h, not gdb_string.h.
* parse.c: Use string.h, not gdb_string.h.
* posix-hdep.c: Use string.h, not gdb_string.h.
* ppc-linux-nat.c: Use string.h, not gdb_string.h.
* ppc-sysv-tdep.c: Use string.h, not gdb_string.h.
* ppcfbsd-tdep.c: Use string.h, not gdb_string.h.
* ppcnbsd-tdep.c: Use string.h, not gdb_string.h.
* ppcobsd-tdep.c: Use string.h, not gdb_string.h.
* printcmd.c: Use string.h, not gdb_string.h.
* procfs.c: Use string.h, not gdb_string.h.
* prologue-value.c: Use string.h, not gdb_string.h.
* python/py-auto-load.c: Use string.h, not gdb_string.h.
* python/py-gdb-readline.c: Use string.h, not gdb_string.h.
* ravenscar-thread.c: Use string.h, not gdb_string.h.
* regcache.c: Use string.h, not gdb_string.h.
* registry.c: Use string.h, not gdb_string.h.
* remote-fileio.c: Use string.h, not gdb_string.h.
* remote-m32r-sdi.c: Use string.h, not gdb_string.h.
* remote-mips.c: Use string.h, not gdb_string.h.
* remote-sim.c: Use string.h, not gdb_string.h.
* remote.c: Use string.h, not gdb_string.h.
* reverse.c: Use string.h, not gdb_string.h.
* rs6000-aix-tdep.c: Use string.h, not gdb_string.h.
* ser-base.c: Use string.h, not gdb_string.h.
* ser-go32.c: Use string.h, not gdb_string.h.
* ser-mingw.c: Use string.h, not gdb_string.h.
* ser-pipe.c: Use string.h, not gdb_string.h.
* ser-tcp.c: Use string.h, not gdb_string.h.
* ser-unix.c: Use string.h, not gdb_string.h.
* serial.c: Use string.h, not gdb_string.h.
* sh-tdep.c: Use string.h, not gdb_string.h.
* sh64-tdep.c: Use string.h, not gdb_string.h.
* shnbsd-tdep.c: Use string.h, not gdb_string.h.
* skip.c: Use string.h, not gdb_string.h.
* sol-thread.c: Use string.h, not gdb_string.h.
* solib-dsbt.c: Use string.h, not gdb_string.h.
* solib-frv.c: Use string.h, not gdb_string.h.
* solib-osf.c: Use string.h, not gdb_string.h.
* solib-spu.c: Use string.h, not gdb_string.h.
* solib-target.c: Use string.h, not gdb_string.h.
* solib.c: Use string.h, not gdb_string.h.
* somread.c: Use string.h, not gdb_string.h.
* source.c: Use string.h, not gdb_string.h.
* sparc-nat.c: Use string.h, not gdb_string.h.
* sparc-sol2-tdep.c: Use string.h, not gdb_string.h.
* sparc-tdep.c: Use string.h, not gdb_string.h.
* sparc64-tdep.c: Use string.h, not gdb_string.h.
* sparc64fbsd-tdep.c: Use string.h, not gdb_string.h.
* sparc64nbsd-tdep.c: Use string.h, not gdb_string.h.
* sparcnbsd-tdep.c: Use string.h, not gdb_string.h.
* spu-linux-nat.c: Use string.h, not gdb_string.h.
* spu-multiarch.c: Use string.h, not gdb_string.h.
* spu-tdep.c: Use string.h, not gdb_string.h.
* stabsread.c: Use string.h, not gdb_string.h.
* stack.c: Use string.h, not gdb_string.h.
* std-regs.c: Use string.h, not gdb_string.h.
* symfile.c: Use string.h, not gdb_string.h.
* symmisc.c: Use string.h, not gdb_string.h.
* symtab.c: Use string.h, not gdb_string.h.
* target.c: Use string.h, not gdb_string.h.
* thread.c: Use string.h, not gdb_string.h.
* tilegx-linux-nat.c: Use string.h, not gdb_string.h.
* tilegx-tdep.c: Use string.h, not gdb_string.h.
* top.c: Use string.h, not gdb_string.h.
* tracepoint.c: Use string.h, not gdb_string.h.
* tui/tui-command.c: Use string.h, not gdb_string.h.
* tui/tui-data.c: Use string.h, not gdb_string.h.
* tui/tui-disasm.c: Use string.h, not gdb_string.h.
* tui/tui-file.c: Use string.h, not gdb_string.h.
* tui/tui-layout.c: Use string.h, not gdb_string.h.
* tui/tui-out.c: Use string.h, not gdb_string.h.
* tui/tui-regs.c: Use string.h, not gdb_string.h.
* tui/tui-source.c: Use string.h, not gdb_string.h.
* tui/tui-stack.c: Use string.h, not gdb_string.h.
* tui/tui-win.c: Use string.h, not gdb_string.h.
* tui/tui-windata.c: Use string.h, not gdb_string.h.
* tui/tui-winsource.c: Use string.h, not gdb_string.h.
* typeprint.c: Use string.h, not gdb_string.h.
* ui-file.c: Use string.h, not gdb_string.h.
* ui-out.c: Use string.h, not gdb_string.h.
* user-regs.c: Use string.h, not gdb_string.h.
* utils.c: Use string.h, not gdb_string.h.
* v850-tdep.c: Use string.h, not gdb_string.h.
* valarith.c: Use string.h, not gdb_string.h.
* valops.c: Use string.h, not gdb_string.h.
* valprint.c: Use string.h, not gdb_string.h.
* value.c: Use string.h, not gdb_string.h.
* varobj.c: Use string.h, not gdb_string.h.
* vax-tdep.c: Use string.h, not gdb_string.h.
* vaxnbsd-tdep.c: Use string.h, not gdb_string.h.
* vaxobsd-tdep.c: Use string.h, not gdb_string.h.
* windows-nat.c: Use string.h, not gdb_string.h.
* xcoffread.c: Use string.h, not gdb_string.h.
* xml-support.c: Use string.h, not gdb_string.h.
* xstormy16-tdep.c: Use string.h, not gdb_string.h.
* xtensa-linux-nat.c: Use string.h, not gdb_string.h.
"info threads" changes the default source for "break" and "list", to
whatever the location of the first/bottom thread in the thread list
is...
(gdb) b start
(gdb) c
...
(gdb) list
*lists "start"*
(gdb) b 23
Breakpoint 3 at 0x400614: file test.c, line 23.
(gdb) info threads
Id Target Id Frame
* 2 Thread 0x7ffff7fcb700 (LWP 1760) "test" start (arg=0x0) at test.c:23
1 Thread 0x7ffff7fcc740 (LWP 1748) "test" 0x000000323dc08e60 in pthread_join (threadid=140737353922304, thread_return=0x0) at pthread_join.c:93
(gdb) b 23
Breakpoint 4 at 0x323dc08d90: file pthread_join.c, line 23.
^^^^^^^^^^^^^^^
(gdb) list
93 lll_wait_tid (pd->tid);
94
95
96 /* Restore cancellation mode. */
97 CANCEL_RESET (oldtype);
98
99 /* Remove the handler. */
100 pthread_cleanup_pop (0);
101
102
The issue is that print_stack_frame always sets the current sal to the
frame's sal. print_frame_info (which print_stack_frame calls to do
most of the work) also sets the last displayed sal, but only if
print_what isn't LOCATION. Now the call in question, from within
thread.c:print_thread_info, does pass in LOCATION as print_what, but
print_stack_frame doesn't have the same check print_frame_info has.
We could consider adding it, but setting these globals depending on
print_what isn't very clean, IMO. What we have is two logically
distinct operations mixed in the same function(s):
#1 - print frame, in the format specified by {print_what,
print_level and print_args}.
#2 - We're displaying a frame to the user, and I want the default
sal to point here, because the program stopped here, or the user
did some context-changing command (up, down, etc.).
So I added a new parameter to print_stack_frame & friends for point
#2, and went through all calls in the tree adjusting as necessary.
Tested on x86_64 Fedora 17.
gdb/
2013-09-17 Pedro Alves <palves@redhat.com>
PR gdb/15911
* ada-tasks.c (task_command_1): Adjust call to print_stack_frame.
* bsd-kvm.c (bsd_kvm_open, bsd_kvm_proc_cmd, bsd_kvm_pcb_cmd):
* corelow.c (core_open):
* frame.h (print_stack_frame, print_frame_info): New
'set_current_sal' parameter.
* infcmd.c (finish_command, kill_command): Adjust call to
print_stack_frame.
* inferior.c (inferior_command): Likewise.
* infrun.c (normal_stop): Likewise.
* linux-fork.c (linux_fork_context): Likewise.
* record-full.c (record_full_goto_entry, record_full_restore):
Likewise.
* remote-mips.c (common_open): Likewise.
* stack.c (print_stack_frame): New 'set_current_sal' parameter.
Use it.
(print_frame_info): New 'set_current_sal' parameter. Set the last
displayed sal depending on the new paremeter instead of looking at
print_what.
(backtrace_command_1, select_and_print_frame, frame_command)
(current_frame_command, up_command, down_command): Adjust call to
print_stack_frame.
* thread.c (print_thread_info, restore_selected_frame)
(do_captured_thread_select): Adjust call to print_stack_frame.
* tracepoint.c (tfind_1): Likewise.
* mi/mi-cmd-stack.c (mi_cmd_stack_list_frames)
(mi_cmd_stack_info_frame): Likewise.
* mi/mi-interp.c (mi_on_normal_stop): Likewise.
* mi/mi-main.c (mi_cmd_exec_return, mi_cmd_trace_find): Likewise.
gdb/testsuite/
* gdb.threads/info-threads-cur-sal-2.c: New file.
* gdb.threads/info-threads-cur-sal.c: New file.
* gdb.threads/info-threads-cur-sal.exp: New file.
I noticed SRC_LINE has special handling within print_stack_frame (mid
statement handling), so I audited all uses, and noticed the one in
restore_selected_frame. I actually added this warning myself back in
2008, but reading back, I think we can do better. "reparsed frame" is
probably confusing to users.
Old:
warning: Couldn't restore frame #2 in current thread, at reparsed frame #0
45 w = 0;
(gdb)
New:
warning: Couldn't restore frame #2 in current thread. Bottom (innermost) frame selected:
#0 foo () at foo.c:45
45 w = 0;
(gdb)
Tested on x86_64 Fedora 17.
gdb/
2013-08-30 Pedro Alves <palves@redhat.com>
* thread.c (restore_selected_frame): Use SRC_AND_LOC, and change
warning text.
PR threads/13217
* thread.c (thread_apply_all_command): Check for valid threads
and thread count.
(thread_array_cleanup): New struct.
(set_thread_refcount): New function.
This adds a function for doing within-thread's-stepping-range checks,
and converts a couple spots to use it. Following patches will add
more uses.
gdb/
2013-05-23 Yao Qi <yao@codesourcery.com>
Pedro Alves <palves@redhat.com>
* gdbthread.h (pc_in_thread_step_range): New declaration.
* thread.c (pc_in_thread_step_range): New function.
* infrun.c (handle_inferior_event): Use it.
(trace_pass_command): Likewise.
* cli/cli-cmds.c: Include cli/cli-utils.h.
(source_command): Use skip-spaces.
(disassemble_command): Likewise.
* findcmd.c: Include cli/cli-utils.h.
(parse_find_args): Use skip_spaces.
* go32-nat.c: Include cli/cli-utils.h.
(go32_sldt): Use skip_spaces.
(go32_sgdt): Likewise.
(go32_sidt): Likewise.
(go32_pde): Likewise.
(go32_pte): Likewise.
(go32_pte_for_address): Likewise.
* infcmd.c: Include cli/cli-utils.h.
(registers_info): Use skip_spaces.
* linux-tdep.c (read_mapping): Use skip_spaces_const.
(linux_info_proc): Likewise.
* linux-thread-db.c: Include cli/cli-utils.h.
(info_auto_load_libthread_db): Use skip_spaces_const.
* m32r-rom.c: Include cli/cli-utils.h.
(m32r_upload_command): Use skip_spaces.
* maint.c: Include cli/cli-utils.h.
(maintenance_translate_address): Use skip_spaces.
* mi/mi-parse.c: Include cli/cli-utils.h.
(mi_parse_argv): Use skip_spaces.
(mi_parse): Likewise.
* minsyms.c: Include cli/cli-utils.h.
(msymbol_hash_iw): Use skip_spaces_const.
* objc-lang.c: Include cli/cli-utils.h.
(parse_selector): Use skip_spaces.
(parse_method): Likewise.
* python/python.c: Include cli/cli-utils.h.
(python_interactive_command)[HAVE_PYTHON]: Use skip_spaces.
(python_command)[HAVE_PYTHON]: Likewise.
(python_interactive_command)[!HAVE_PYTHON]: Likewise.
* remote-m32r-sdi.c: Include cli/cli-utils.h.
(m32r_load): Use skip_spaces.
* serial.c: Include cli/cli-utils.h.
(serial_open): Use skip_spaces_const.
* stack.c: Include cli/cli-utils.h.
(parse_frame_specification_1): Use skip_spaces_const.
* symfile.c: Include cli/cli-utils.h.
(set_ext_lang_command): Use skip_spaces.
* symtab.c: Include cli/cli-utils.h.
(rbreak_command): Use skip_spaces.
* thread.c (thread_name_command): Use skip_spaces.
* tracepoint.c (validate_actionline): Use skip_spaces.
(encode_actions_1): Likewise.
(trace_find_range_command): Likewise.
(trace_find_outside_command): Likewise.
(trace_dump_actions): Likewise.
Two modifications:
1. The addition of 2013 to the copyright year range for every file;
2. The use of a single year range, instead of potentially multiple
year ranges, as approved by the FSF.
2012-06-28 Jan Kratochvil <jan.kratochvil@redhat.com>
Pedro Alves <palves@redhat.com>
* gdbthread.h (ALL_THREADS): New macro.
(thread_list): Declare.
* infrun.c (handle_inferior_event) <spurious signal>: Don't keep
going, but instead fall through to the stepping handling.
* linux-nat.c (resume_lwp): New parameter 'signo'. Resume with
the passed in signal. Adjust debug output.
(resume_callback): Rename to ...
(linux_nat_resume_callback): ... this. Pass the thread's last
stop signal, if in "pass" state.
(linux_nat_resume): Adjust to rename.
(stop_wait_callback): New assertion. Don't respawn signals;
instead let the LWP remain with SIGNALLED set.
(linux_nat_wait_1): Remove flushing of pending SIGSTOPs.
* remote.c (append_pending_thread_resumptions): New.
(remote_vcont_resume): Call it.
* target.h (target_resume): Extend comment.
gdb/testsuite/
2012-06-28 Jan Kratochvil <jan.kratochvil@redhat.com>
Pedro Alves <palves@redhat.com>
* gdb.threads/siginfo-threads.exp: New file.
* gdb.threads/siginfo-threads.c: New file.
* gdb.threads/sigstep-threads.exp: New file.
* gdb.threads/sigstep-threads.c: New file.
Tom Tromey <tromey@redhat.com>
* ax-gdb.c (gen_expr): Clean up code to handle internal variables
and to compile agent expressions.
* infrun.c (siginfo_make_value): New argument `ignore'.
(siginfo_funcs): New struct.
(_initialize_infrun): New argument when calling
`create_internalvar_type_lazy'.
* thread.c (thread_id_make_value): New argument `ignore'.
(thread_funcs): New struct.
(_initialize_thread): New argument when calling
`create_internalvar_type_lazy'.
* tracepoint.c (sdata_make_value): New argument `ignore'.
(sdata_funcs): New struct.
(_initialize_tracepoint): New argument when calling
`create_internalvar_type_lazy'.
* value.c (make_value): New struct.
(create_internalvar_type_lazy): New argument `data'.
(compile_internalvar_to_ax): New function.
(value_of_internalvar): Properly handling `make_value' case.
(clear_internalvar): Likewise.
(show_convenience): Adding `TRY_CATCH' block.
* value.h (internalvar_make_value): Delete, replace by...
(struct internalvar_funcs): ... this.
(create_internalvar_type_lazy) <fun>: Delete argument.
(create_internalvar_type_lazy) <funcs>, <data>: New arguments.
(compile_internalvar_to_ax): New function.
* windows-tdep.c (tlb_make_value): New argument `ignore'.
(tlb_funcs): New struct.
(_initialize_windows_tdep): New argument when calling
`create_internalvar_type_lazy'.
Pedro Alves <palves@redhat.com>
PR breakpoints/13776:
* breakpoint.c (breakpoint_init_inferior): Delete step-resume
breakpoints.
(delete_longjmp_breakpoint_at_next_stop): New.
* breakpoint.h (delete_longjmp_breakpoint_at_next_stop): Declare.
* target.c (generic_mourn_inferior): Call mark_breakpoints_out
before deleting the inferior. Add comments.
* thread.c (clear_thread_inferior_resources): Don't delete lonjmp
breakpoints immediately, but only on next stop. Move that code
next to where we mark other breakpoints for deletion.