The to_detach target_ops method implementations are currently expected
to work on current_inferior/inferior_ptid. In order to make things more
explicit, and remove some "shadow" parameter passing through globals,
this patch adds an "inferior" parameter to to_detach. Implementations
will be expected to use this instead of relying on the global. However,
to keep things simple, this patch only does the minimum that is
necessary to add the parameter. The following patch gives an example of
how one such implementation would be adapted. If the approach is deemed
good, we can then look into adapting more implementations. Until then,
they'll continue to work as they do currently.
gdb/ChangeLog:
* target.h (struct target_ops) <to_detach>: Add inferior
parameter.
(target_detach): Likewise.
* target.c (dispose_inferior): Pass inferior down.
(target_detach): Pass inferior down. Assert that it is equal to
the current inferior.
* aix-thread.c (aix_thread_detach): Pass inferior down.
* corefile.c (core_file_command): Pass current_inferior() down.
* corelow.c (core_detach): Add inferior parameter.
* darwin-nat.c (darwin_detach): Likewise.
* gnu-nat.c (gnu_detach): Likewise.
* inf-ptrace.c (inf_ptrace_detach): Likewise.
* infcmd.c (detach_command): Pass current_inferior() down to
target_detach.
* infrun.c (follow_fork_inferior): Pass parent_inf to
target_detach.
(handle_vfork_child_exec_or_exit): Pass inf->vfork_parent to
target_detach.
* linux-nat.c (linux_nat_detach): Add inferior parameter.
* linux-thread-db.c (thread_db_detach): Likewise.
* nto-procfs.c (procfs_detach): Likewise.
* procfs.c (procfs_detach): Likewise.
* record.c (record_detach): Likewise.
* record.h (struct inferior): Forward-declare.
(record_detach): Add inferior parameter.
* remote-sim.c (gdbsim_detach): Likewise.
* remote.c (remote_detach_1): Likewise.
(remote_detach): Likewise.
(extended_remote_detach): Likewise.
* sol-thread.c (sol_thread_detach): Likewise.
* target-debug.h (target_debug_print_inferior_p): New macro.
* target-delegates.c: Re-generate.
* top.c (kill_or_detach): Pass inferior down to target_detach.
* windows-nat.c (windows_detach): Add inferior parameter.
I was looking into adding a parameter to target_detach, and was
wondering what the args parameter was. It seems like in the distant
past, it was possible to specify a signal number when detaching. That
signal was injected in the process before it was detached. There is an
example of code handling this in linux_nat_detach. With today's GDB, I
can't get this to work. Doing "detach 15" (15 == SIGTERM) doesn't work,
because detach is a prefix command and doesn't recognize the sub-command
15. Doing "detach inferiors 15" doesn't work because it expects a list
of inferior id to detach. Therefore, I don't think there's a way of
invoking detach_command with a non-NULL args. I also didn't find any
documentation related to this feature.
I assume that this feature stopped working when detach was made a prefix
command, which is in f73adfeb8b (sorry,
there's no commit title) from 2006. Given that this feature was broken
for such a long time and we haven't heard anything (AFAIK, I did not
find any related bug), I think it's safe to remove it, as well as the
args parameter to target_detach. If someone wants to re-introduce it, I
would suggest rethinking the user interface, and in particular would
suggest using signal name instead of numbers.
I tried to fix all the impacted code, but I might have forgotten some
spots. It shouldn't be hard to fix if that's the case. I also couldn't
build-test everything I changed, especially the nto and solaris stuff.
gdb/ChangeLog:
* target.h (struct target_ops) <to_detach>: Remove args
parameter.
(target_detach): Likewise.
* target.c (dispose_inferior): Adjust.
(target_detach): Remove args parameter, adjust.
* aix-thread.c (aix_thread_detach): Adjust.
* corefile.c (core_file_command): Adjust.
* corelow.c (core_detach): Adjust.
* darwin-nat.c (darwin_detach): Adjust.
* gnu-nat.c (gnu_detach): Adjust.
* inf-ptrace.c (inf_ptrace_detach): Adjust.
* infcmd.c (detach_command): Adjust
* infrun.c (follow_fork_inferior): Adjust.
(handle_vfork_child_exec_or_exit): Adjust.
* linux-fork.c (linux_fork_detach): Remove args parameter.
* linux-fork.h (linux_fork_detach): Likewise.
* linux-nat.c (linux_nat_detach): Likewise, and adjust.
* linux-thread-db.c (thread_db_detach): Likewise.
* nto-procfs.c (procfs_detach): Likewise.
* procfs.c (procfs_detach): Likewise.
(do_detach): Remove signo parameter.
* record.c (record_detach): Remove args parameter.
* record.h (record_detach): Likewise.
* remote-sim.c (gdbsim_detach): Likewise.
* remote.c (remote_detach_1): Likewise.
(remote_detach): Likewise.
(extended_remote_detach): Likewise.
* sol-thread.c (sol_thread_detach): Likewise.
* target-delegates.c: Re-generate.
* top.c (struct qt_args) <args>: Remove field.
(kill_or_detach): Don't pass args.
(quit_force): Don't set args.
* windows-nat.c (windows_detach): Remove args parameter.
This patch changes most sites calling tilde_expand to use
gdb::unique_xmalloc_ptr, rather than a cleanup. It also changes
scan_expression_with_cleanup to return a unique pointer, because the
patch was already touching code in that area.
Regression tested on the buildbot.
ChangeLog
2017-08-05 Tom Tromey <tom@tromey.com>
* compile/compile-object-load.c (compile_object_load): Use
gdb::unique_xmalloc_ptr.
* cli/cli-dump.c (scan_filename): Rename from
scan_filename_with_cleanup. Change return type.
(scan_expression): Rename from scan_expression_with_cleanup.
Change return type.
(dump_memory_to_file, dump_value_to_file, restore_command):
Use gdb::unique_xmalloc_ptr. Update.
* cli/cli-cmds.c (find_and_open_script): Use
gdb::unique_xmalloc_ptr.
* tracefile-tfile.c (tfile_open): Use gdb::unique_xmalloc_ptr.
* symmisc.c (maintenance_print_symbols)
(maintenance_print_msymbols): Use gdb::unique_xmalloc_ptr.
* symfile.c (symfile_bfd_open, generic_load)
(add_symbol_file_command, remove_symbol_file_command): Use
gdb::unique_xmalloc_ptr.
* source.c (openp): Use gdb::unique_xmalloc_ptr.
* psymtab.c (maintenance_print_psymbols): Use
gdb::unique_xmalloc_ptr.
* corelow.c (core_open): Use gdb::unique_xmalloc_ptr.
* breakpoint.c (save_breakpoints): Use gdb::unique_xmalloc_ptr.
* solib.c (solib_map_sections): Use gdb::unique_xmalloc_ptr.
(reload_shared_libraries_1): Likewise.
Previously the core_xfer_partial method used core_get_siginfo to handle
TARGET_OBJECT_SIGNAL_INFO requests. However, core_get_siginfo looked for
Linux-specific sections in the core file. To support fetching siginfo
from cores on other systems, add a new gdbarch method (`core_xfer_siginfo`)
and move the body of the existing core_get_siginfo into a
linux_core_xfer_siginfo implementation of this method in linux-tdep.c.
gdb/ChangeLog:
* corelow.c (get_core_siginfo): Remove.
(core_xfer_partial): Use the gdbarch "core_xfer_siginfo" method
instead of get_core_siginfo.
* gdbarch.sh (core_xfer_siginfo): New gdbarch callback.
* gdbarch.h: Re-generate.
* gdbarch.c: Re-generate.
* linux-tdep.c (linux_core_xfer_siginfo): New.
(linux_init_abi): Install gdbarch "core_xfer_siginfo" method.
This plugs a leak introduced in the previous change to
get_core_register_section, which removed an xfree call that is
actually necessary because the 'section_name' local is static.
From [1] it looks like the reason the variable was made static to
begin with, was just "laziness" to avoid having to think about freeing
it on every function return path:
https://sourceware.org/ml/gdb-patches/2005-03/msg00237.html
The easiest to fix that nowadays is to use a std::string.
I don't see a need to xstrdup the section name in the single-threaded
case though, and also there's more than one place that computes a
multi-threaded section name in the same way. So put the section name
computation in a wrapper class with state.
gdb/ChangeLog:
2017-05-04 Pedro Alves <palves@redhat.com>
* corelow.c (thread_section_name): New class.
(get_core_register_section, get_core_siginfo): Use it.
In corelow.c I stumbled upon an extra semicolon and an xfree of a NULL
pointer. Remove them.
gdb/ChangeLog:
* corelow.c (sniff_core_bfd): Remove extra semicolon.
(get_core_register_section): Remove xfree of NULL pointer.
When loading a core without an executable like so:
$ gdb --core core
for example often the gdbarch won't contain the
iterate_over_regset_sections method. For example on ARM.
This will generate a call to get_core_register_section with a NULL regset
like at corelow.c:628
get_core_register_section (regcache, NULL, ".reg", 0, 0, "general-purpose", 1);
However a check for REGSET_VARIABLE_SIZE in get_core_register_section
assumes that regset is != NULL thus leading to a crash with this backtrace:
(gdb) bt
#0 0x000000000065907b in get_core_register_section
(regcache=regcache@entry=0x2c26260, regset=regset@entry=0x0,
name=name@entry=0xdbf7b2 ".reg", min_size=min_size@entry=0,
which=which@entry=0, human_name=human_name@entry=0xdbac28
"general-purpose", required=1)
at ../../gdb/corelow.c:542
#1 0x0000000000659b70 in get_core_registers (ops=<optimized out>,
regcache=0x2c26260, regno=<optimized out>) at ../../gdb/corelow.c:628
#2 0x000000000076e5fb in target_fetch_registers
(regcache=regcache@entry=0x2c26260, regno=regno@entry=15)
at ../../gdb/target.c:3590
Note that commit: f962539ad2 ("Warn if core file register
section is larger than expected") introduced this issue.
Thus releases > 7.8.2 are affected.
Also, this would have been caught by gdb.base/corefile.exp but the
problem is that this triggers only if the core dump is missing some data
so that it's not recognized as a linux core dump, or it's not a linux core
dump and the core file register section is larger than expected.
So if you just create a core and read it on linux with ARM the osabi is
detected properly and iterate_over_regset_sections is present and so the
problem is not triggered.
Thus creating a linux test for this with a crafted core that meets the
problem requirements is non-trivial.
This patch fixes this crash by adding a check for regset existence before
running the condition.
gdb/ChangeLog:
* corelow.c (get_core_register_section): Check for regset
existence before checking for REGSET_VARIABLE_SIZE.
This introduces a new specialization of gdb::ref_ptr that can be used
to manage BFD reference counts. Then it changes most places in gdb to
use this new class, rather than explicit reference-counting or
cleanups. This patch removes make_cleanup_bfd_unref.
If you look you will see a couple of spots using "release" where a use
of gdb_bfd_ref_ptr would be cleaner. These will be fixed in the next
patch.
I think this patch fixes some latent bugs. For example, it seems to
me that previously objfpy_add_separate_debug_file leaked a BFD.
I'm not 100% certain that the macho_symfile_read_all_oso change is
correct. The existing code here is hard for me to follow. One goal
of this sort of automated reference counting, though, is to make it
more difficult to make logic errors; so hopefully the code is clear
now.
2017-01-10 Tom Tromey <tom@tromey.com>
* windows-tdep.c (windows_xfer_shared_library): Update.
* windows-nat.c (windows_make_so): Update.
* utils.h (make_cleanup_bfd_unref): Remove.
* utils.c (do_bfd_close_cleanup, make_cleanup_bfd_unref): Remove.
* symfile.h (symfile_bfd_open)
(find_separate_debug_file_in_section): Return gdb_bfd_ref_ptr.
* symfile.c (read_symbols, symbol_file_add)
(separate_debug_file_exists): Update.
(symfile_bfd_open): Return gdb_bfd_ref_ptr.
(generic_load, reread_symbols): Update.
* symfile-mem.c (symbol_file_add_from_memory): Update.
* spu-linux-nat.c (spu_bfd_open): Return gdb_bfd_ref_ptr.
(spu_symbol_file_add_from_memory): Update.
* solist.h (struct target_so_ops) <bfd_open>: Return
gdb_bfd_ref_ptr.
(solib_bfd_fopen, solib_bfd_open): Return gdb_bfd_ref_ptr.
* solib.c (solib_bfd_fopen, solib_bfd_open): Return
gdb_bfd_ref_ptr.
(solib_map_sections, reload_shared_libraries_1): Update.
* solib-svr4.c (enable_break): Update.
* solib-spu.c (spu_bfd_fopen): Return gdb_bfd_ref_ptr.
* solib-frv.c (enable_break2): Update.
* solib-dsbt.c (enable_break): Update.
* solib-darwin.c (gdb_bfd_mach_o_fat_extract): Return
gdb_bfd_ref_ptr.
(darwin_solib_get_all_image_info_addr_at_init): Update.
(darwin_bfd_open): Return gdb_bfd_ref_ptr.
* solib-aix.c (solib_aix_bfd_open): Return gdb_bfd_ref_ptr.
* record-full.c (record_full_save): Update.
* python/py-objfile.c (objfpy_add_separate_debug_file): Update.
* procfs.c (insert_dbx_link_bpt_in_file): Update.
* minidebug.c (find_separate_debug_file_in_section): Return
gdb_bfd_ref_ptr.
* machoread.c (macho_add_oso_symfile): Change abfd to
gdb_bfd_ref_ptr.
(macho_symfile_read_all_oso): Update.
(macho_check_dsym): Return gdb_bfd_ref_ptr.
(macho_symfile_read): Update.
* jit.c (bfd_open_from_target_memory): Return gdb_bfd_ref_ptr.
(jit_bfd_try_read_symtab): Update.
* gdb_bfd.h (gdb_bfd_open, gdb_bfd_fopen, gdb_bfd_openr)
(gdb_bfd_openw, gdb_bfd_openr_iovec)
(gdb_bfd_openr_next_archived_file, gdb_bfd_fdopenr): Return
gdb_bfd_ref_ptr.
(gdb_bfd_ref_policy): New struct.
(gdb_bfd_ref_ptr): New typedef.
* gdb_bfd.c (gdb_bfd_open, gdb_bfd_fopen, gdb_bfd_openr)
(gdb_bfd_openw, gdb_bfd_openr_iovec)
(gdb_bfd_openr_next_archived_file, gdb_bfd_fdopenr): Return
gdb_bfd_ref_ptr.
* gcore.h (create_gcore_bfd): Return gdb_bfd_ref_ptr.
* gcore.c (create_gcore_bfd): Return gdb_bfd_ref_ptr.
(gcore_command): Update.
* exec.c (exec_file_attach): Update.
* elfread.c (elf_symfile_read): Update.
* dwarf2read.c (dwarf2_get_dwz_file): Update.
(try_open_dwop_file, open_dwo_file): Return gdb_bfd_ref_ptr.
(open_and_init_dwo_file): Update.
(open_dwp_file): Return gdb_bfd_ref_ptr.
(open_and_init_dwp_file): Update.
* corelow.c (core_open): Update.
* compile/compile-object-load.c (compile_object_load): Update.
* common/gdb_ref_ptr.h (ref_ptr::operator->): New operator.
* coffread.c (coff_symfile_read): Update.
* cli/cli-dump.c (bfd_openr_or_error, bfd_openw_or_error): Return
gdb_bfd_ref_ptr. Rename.
(dump_bfd_file, restore_command): Update.
* build-id.h (build_id_to_debug_bfd): Return gdb_bfd_ref_ptr.
* build-id.c (build_id_to_debug_bfd): Return gdb_bfd_ref_ptr.
(find_separate_debug_file_by_buildid): Update.
This applies the second part of GDB's End of Year Procedure, which
updates the copyright year range in all of GDB's files.
gdb/ChangeLog:
Update copyright year range in all GDB files.
Add a new gdbarch method to extract a thread name from a core for a
given thread. Use this new method in core_thread_name to implement the
to_thread_name target op.
gdb/ChangeLog:
* corelow.c (core_thread_name): New function.
(init_core_ops): Use "core_thread_name" for the "to_thread_name"
target op.
* gdbarch.sh (core_thread_name): New gdbarch callback.
* gdbarch.h: Re-generate.
* gdbarch.c: Re-generate.
This patch splits the TRY_CATCH macro into three, so that we go from
this:
~~~
volatile gdb_exception ex;
TRY_CATCH (ex, RETURN_MASK_ERROR)
{
}
if (ex.reason < 0)
{
}
~~~
to this:
~~~
TRY
{
}
CATCH (ex, RETURN_MASK_ERROR)
{
}
END_CATCH
~~~
Thus, we'll be getting rid of the local volatile exception object, and
declaring the caught exception in the catch block.
This allows reimplementing TRY/CATCH in terms of C++ exceptions when
building in C++ mode, while still allowing to build GDB in C mode
(using setjmp/longjmp), as a transition step.
TBC, after this patch, is it _not_ valid to have code between the TRY
and the CATCH blocks, like:
TRY
{
}
// some code here.
CATCH (ex, RETURN_MASK_ERROR)
{
}
END_CATCH
Just like it isn't valid to do that with C++'s native try/catch.
By switching to creating the exception object inside the CATCH block
scope, we can get rid of all the explicitly allocated volatile
exception objects all over the tree, and map the CATCH block more
directly to C++'s catch blocks.
The majority of the TRY_CATCH -> TRY+CATCH+END_CATCH conversion was
done with a script, rerun from scratch at every rebase, no manual
editing involved. After the mechanical conversion, a few places
needed manual intervention, to fix preexisting cases where we were
using the exception object outside of the TRY_CATCH block, and cases
where we were using "else" after a 'if (ex.reason) < 0)' [a CATCH
after this patch]. The result was folded into this patch so that GDB
still builds at each incremental step.
END_CATCH is necessary for two reasons:
First, because we name the exception object in the CATCH block, which
requires creating a scope, which in turn must be closed somewhere.
Declaring the exception variable in the initializer field of a for
block, like:
#define CATCH(EXCEPTION, mask) \
for (struct gdb_exception EXCEPTION; \
exceptions_state_mc_catch (&EXCEPTION, MASK); \
EXCEPTION = exception_none)
would avoid needing END_CATCH, but alas, in C mode, we build with C90,
which doesn't allow mixed declarations and code.
Second, because when TRY/CATCH are wired to real C++ try/catch, as
long as we need to handle cleanup chains, even if there's no CATCH
block that wants to catch the exception, we need for stop at every
frame in the unwind chain and run cleanups, then rethrow. That will
be done in END_CATCH.
After we require C++, we'll still need TRY/CATCH/END_CATCH until
cleanups are completely phased out -- TRY/CATCH in C++ mode will
save/restore the current cleanup chain, like in C mode, and END_CATCH
catches otherwise uncaugh exceptions, runs cleanups and rethrows, so
that C++ cleanups and exceptions can coexist.
IMO, this still makes the TRY/CATCH code look a bit more like a
newcomer would expect, so IMO worth it even if we weren't considering
C++.
gdb/ChangeLog.
2015-03-07 Pedro Alves <palves@redhat.com>
* common/common-exceptions.c (struct catcher) <exception>: No
longer a pointer to volatile exception. Now an exception value.
<mask>: Delete field.
(exceptions_state_mc_init): Remove all parameters. Adjust.
(exceptions_state_mc): No longer pop the catcher here.
(exceptions_state_mc_catch): New function.
(throw_exception): Adjust.
* common/common-exceptions.h (exceptions_state_mc_init): Remove
all parameters.
(exceptions_state_mc_catch): Declare.
(TRY_CATCH): Rename to ...
(TRY): ... this. Remove EXCEPTION and MASK parameters.
(CATCH, END_CATCH): New.
All callers adjusted.
gdb/gdbserver/ChangeLog:
2015-03-07 Pedro Alves <palves@redhat.com>
Adjust all callers of TRY_CATCH to use TRY/CATCH/END_CATCH
instead.
This commit introduces a new inline common function "startswith"
which takes two string arguments and returns nonzero if the first
string starts with the second. It also updates the 295 places
where this logic was written out longhand to use the new function.
gdb/ChangeLog:
* common/common-utils.h (startswith): New inline function.
All places where this logic was used updated to use the above.
When reading a core file register section which is larger than
expected, emit a warning. Assume that a register section usually has
exactly the size specified by the regset section iterator. In some
special cases this assumption is wrong, or at least does not match the
regset supply function's logic. Thus also add a way to suppress the
warning in those cases, using a new flag REGSET_VARIABLE_SIZE.
gdb/ChangeLog:
* regset.h (struct regset): Add flags field.
(REGSET_VARIABLE_SIZE): New value for a regset's flags field.
* corelow.c (get_core_register_section): Add warning if the size
exceeds the requested size and the regset does not have the
REGSET_VARIABLE_SIZE flag set.
* alphanbsd-tdep.c (alphanbsd_gregset): Add REGSET_VARIABLE_SIZE
flag.
* armbsd-tdep.c (armbsd_gregset): Likewise.
* hppa-hpux-tdep.c (hppa_hpux_regset): Likewise.
* hppaobsd-tdep.c (hppaobsd_gregset): Likewise.
* m68kbsd-tdep.c (m68kbsd_gregset): Likewise.
* mipsnbsd-tdep.c (mipsnbsd_gregset): Likewise.
downstream Fedora request:
Please make it easier to find the backtrace of the crashing thread
https://bugzilla.redhat.com/show_bug.cgi?id=1024504
Currently after loading a core file GDB prints:
Core was generated by `./threadcrash1'.
Program terminated with signal SIGSEGV, Segmentation fault.
8 *(volatile int *)0=0;
(gdb) _
there is nowhere seen which of the threads had crashed. In reality GDB always
numbers that thread as #1 and it is the current thread that time. But after
dumping all the info into a file for later analysis it is no longer obvious.
'thread apply all bt' even puts the thread #1 to the _end_ of the output!!!
Should GDB always print after loading a core file what "thread" command would
print?
[Current thread is 1 (Thread 0x7fcbe28fe700 (LWP 15453))]
BTW I think it will print the thread even when loading single/non-threaded
core file when other inferior(s) exist. But that currently crashes
[Bug threads/12074] multi-inferior internal error
https://sourceware.org/bugzilla/show_bug.cgi?id=12074
plus I think that would be a correct behavior anyway.
gdb/ChangeLog
2015-01-22 Jan Kratochvil <jan.kratochvil@redhat.com>
* corelow.c (core_open): Call also thread_command.
* gdbthread.h (thread_command): New prototype moved from ...
* thread.c (thread_command): ... here.
(thread_command): Make it global.
This patch introduces find_inferior_ptid to replace the common idiom
find_inferior_pid (ptid_get_pid (...));
It replaces all the instances of that idiom that I found with the new
function.
No significant changes before/after the patch in the regression suite
on amd64 linux.
gdb/ChangeLog:
* inferior.c (find_inferior_ptid): New function.
* inferior.h (find_inferior_ptid): New declaration.
* ada-tasks.c (ada_get_task_number): Use find_inferior_ptid.
* corelow.c (core_pid_to_str): Same.
* darwin-nat.c (darwin_resume): Same.
* infrun.c (fetch_inferior_event): Same.
(get_inferior_stop_soon): Same.
(handle_inferior_event): Same.
(handle_signal_stop): Same.
* linux-nat.c (resume_lwp): Same.
(stop_wait_callback): Same.
* mi/mi-interp.c (mi_new_thread): Same.
(mi_thread_exit): Same.
* proc-service.c (ps_pglobal_lookup): Same.
* record-btrace.c (record_btrace_step_thread): Same.
* remote-sim.c (gdbsim_close_inferior): Same.
(gdbsim_resume): Same.
(gdbsim_stop): Same.
* sol2-tdep.c (sol2_core_pid_to_str): Same.
* target.c (memory_xfer_partial_1): Same.
(default_thread_address_space): Same.
* thread.c (thread_change_ptid): Same.
(switch_to_thread): Same.
(do_restore_current_thread_cleanup): Same.
When GDB wants to sync the thread list with the target's (e.g., due to
"info threads"), it calls update_thread_list:
update_thread_list (void)
{
prune_threads ();
target_find_new_threads ();
update_threads_executing ();
}
And then prune_threads does:
prune_threads (void)
{
struct thread_info *tp, *next;
for (tp = thread_list; tp; tp = next)
{
next = tp->next;
if (!thread_alive (tp))
delete_thread (tp->ptid);
}
}
Calling thread_live on each thread one by one is expensive.
E.g., on Linux, it ends up doing kill(SIG0) once for each thread. Not
a big deal, but still a bunch of syscalls...
With the remote target, it's cumbersome. That thread_alive call ends
up generating one T packet per thread:
Sending packet: $Tp2141.2150#82...Packet received: OK
Sending packet: $Tp2141.214f#b7...Packet received: OK
Sending packet: $Tp2141.2141#82...Packet received: OK
Sending packet: $qXfer:threads:read::0,fff#03...Packet received: l<threads>\n<thread id="p2141.2141" core="2"/>\n<thread id="p2141.214f" core="1"/>\n<thread id="p2141.2150" core="2"/>\n</threads>\n
That seems a bit silly when target_find_new_threads method
implementations will always fetch the whole current set of target
threads, and then add those that are not in GDB's thread list, to
GDB's thread list.
This patch thus pushes down the responsibility of pruning dead threads
to the target_find_new_threads method instead, so a target may
implement pruning dead threads however it wants.
Once we do that, target_find_new_threads becomes a misnomer, so the
patch renames it to target_update_thread_list.
The patch doesn't attempt to do any optimization to any target yet.
It simply exports prune_threads, and makes all implementations of
target_update_thread_list call that. It's meant to be a no-op.
gdb/
2014-10-15 Pedro Alves <palves@redhat.com>
* ada-tasks.c (print_ada_task_info, task_command_1): Adjust.
* bsd-uthread.c (bsd_uthread_find_new_threads): Rename to ...
(bsd_uthread_update_thread_list): ... this. Call prune_threads.
(bsd_uthread_target): Adjust.
* corelow.c (core_open): Adjust.
* dec-thread.c (dec_thread_find_new_threads): Update comment.
(dec_thread_update_thread_list): New function.
(init_dec_thread_ops): Adjust.
* gdbthread.h (prune_threads): New declaration.
* linux-thread-db.c (thread_db_find_new_threads): Rename to ...
(thread_db_update_thread_list): ... this. Call prune_threads.
(init_thread_db_ops): Adjust.
* nto-procfs.c (procfs_find_new_threads): Rename to ...
(procfs_update_thread_list): ... this. Call prune_threads.
(procfs_attach, procfs_create_inferior, init_procfs_targets):
Adjust.
* obsd-nat.c (obsd_find_new_threads): Rename to ...
(obsd_update_thread_list): ... this. Call prune_threads.
(obsd_add_target): Adjust.
* procfs.c (procfs_target): Adjust.
(procfs_notice_thread): Update comment.
(procfs_find_new_threads): Rename to ...
(procfs_update_thread_list): ... this. Call prune_threads.
* ravenscar-thread.c (ravenscar_update_inferior_ptid): Update
comment.
(ravenscar_wait): Adjust.
(ravenscar_find_new_threads): Rename to ...
(ravenscar_update_thread_list): ... this. Call prune_threads.
(init_ravenscar_thread_ops): Adjust.
* record-btrace.c (record_btrace_find_new_threads): Rename to ...
(record_btrace_update_thread_list): ... this. Adjust comment.
(init_record_btrace_ops): Adjust.
* remote.c (remote_threads_info): Rename to ...
(remote_update_thread_list): ... this. Call prune_threads.
(remote_start_remote, extended_remote_attach_1, init_remote_ops):
Adjust.
* sol-thread.c (check_for_thread_db): Adjust.
(sol_find_new_threads_callback): Rename to ...
(sol_update_thread_list_callback): ... this.
(sol_find_new_threads): Rename to ...
(sol_update_thread_list): ... this. Call prune_threads. Adjust.
(sol_get_ada_task_ptid, init_sol_thread_ops): Adjust.
* target-delegates.c: Regenerate.
* target.c (target_find_new_threads): Rename to ...
(target_update_thread_list): ... this.
* target.h (struct target_ops): Rename to_find_new_threads field
to to_update_thread_list.
(target_find_new_threads): Rename to ...
(target_update_thread_list): ... this.
* thread.c (prune_threads): Make extern.
(update_thread_list): Adjust.
Now that all instances of the regset_from_core_section gdbarch method
have been replaced by the new iterator method, delete the obsolete
method from the gdbarch interface. Adjust all invocations and
references to it.
gdb/ChangeLog:
* gdbarch.sh (regset_from_core_section): Remove gdbarch method.
* gdbarch.c: Regenerate.
* gdbarch.h: Likewise.
* corelow.c (sniff_core_bfd): Drop presence check for deleted
gdbarch method 'regset_from_core_section'.
(get_core_register_section): Remove handling for the case that
regset == NULL and regset_from_core_section is defined.
(get_core_registers): Drop check for deleted method.
* procfs.c (procfs_do_thread_registers): Adjust comment.
This adds the 'regset' parameter to the iterator callback.
Consequently the 'regset_from_core_section' method is dropped for all
targets that provide the iterator method.
This change prepares for replacing regset_from_core_section
everywhere, thereby eliminating one gdbarch interface. Since the
iterator is usually no more complex than regset_from_core_section
alone, targets that previously didn't define core_regset_sections will
then gain multi-arch capable core file generation support without
increased complexity.
gdb/ChangeLog:
* gdbarch.sh (iterate_over_regset_sections_cb): Add regset
parameter.
* gdbarch.h: Regenerate.
* corelow.c (sniff_core_bfd): Don't sniff if gdbarch has a regset
iterator.
(get_core_register_section): Add parameter 'regset' and use it, if
set. Add parameter 'min_size' and verify the bfd section size
against it.
(get_core_registers_cb): Add parameter 'regset' and pass it to
get_core_register section. For the "standard" register sections
".reg" and ".reg2", set an appropriate default for human_name.
(get_core_registers): Don't abort when the gdbarch has an iterator
but no regset_from_core_section. Add NULL/0 for parameters
'regset'/'min_size' in calls to get_core_register_section.
* linux-tdep.c (linux_collect_regset_section_cb): Add parameter
'regset' and use it instead of calling the
regset_from_core_section gdbarch method.
* i386-tdep.h (struct gdbarch_tdep): Add field 'fpregset'.
* i386-tdep.c (i386_supply_xstateregset)
(i386_collect_xstateregset, i386_xstateregset): Moved to
i386-linux-tdep.c.
(i386_regset_from_core_section): Drop handling for .reg-xfp and
.reg-xstate.
(i386_gdbarch_init): Set tdep field 'fpregset'. Enable generic
core file support only if the regset iterator hasn't been set.
* i386-linux-tdep.c (i386_linux_supply_xstateregset)
(i386_linux_collect_xstateregset, i386_linux_xstateregset): New.
Moved from i386-tdep.c and renamed to *_linux*.
(i386_linux_iterate_over_regset_sections): Add regset parameter to
each callback invocation. Allow any .reg-xstate size when reading
from a core file.
* amd64-tdep.c (amd64_supply_xstateregset)
(amd64_collect_xstateregset, amd64_xstateregset): Moved to
amd64-linux-tdep.c.
(amd64_regset_from_core_section): Remove.
(amd64_init_abi): Set new tdep field 'fpregset'. No longer
install an amd64-specific regset_from_core_section gdbarch method.
* amd64-linux-tdep.c (amd64_linux_supply_xstateregset)
(amd64_linux_collect_xstateregset, amd64_linux_xstateregset): New.
Moved from amd64-tdep.c and renamed to *_linux*.
(amd64_linux_iterate_over_regset_sections): Add regset parameter
to each callback invocation. Allow any .reg-xstate size when
reading from a core file.
* arm-linux-tdep.c (arm_linux_regset_from_core_section): Remove.
(arm_linux_iterate_over_regset_sections): Add regset parameter to
each callback invocation.
(arm_linux_init_abi): No longer set the regset_from_core_section
gdbarch method.
* ppc-linux-tdep.c (ppc_linux_regset_from_core_section): Remove.
(ppc_linux_iterate_over_regset_sections): Add regset parameter to
each callback invocation.
(ppc_linux_init_abi): No longer set the regset_from_core_section
gdbarch method.
* s390-linux-tdep.c (struct gdbarch_tdep): Remove the fields
gregset, sizeof_gregset, fpregset, and sizeof_fpregset.
(s390_regset_from_core_section): Remove.
(s390_iterate_over_regset_sections): Add regset parameter to each
callback invocation.
(s390_gdbarch_init): No longer set the regset_from_core_section
gdbarch method. Drop initialization of deleted tdep fields.
The core_regset_sections list in gdbarch (needed for multi-arch
capable core file generation support) is replaced by an iterator
method. Overall, this reduces the code a bit, and it allows for more
flexibility.
gdb/ChangeLog:
* amd64-linux-tdep.c (amd64_linux_regset_sections): Remove.
(amd64_linux_iterate_over_regset_sections): New.
(amd64_linux_init_abi_common): Don't install the regset section
list, but the new iterator in gdbarch.
* arm-linux-tdep.c (arm_linux_fpa_regset_sections)
(arm_linux_vfp_regset_sections): Remove. Move combined logic...
(arm_linux_iterate_over_regset_sections): ...here. New function.
(arm_linux_init_abi): Set iterator instead of section list.
* corelow.c (get_core_registers_cb): New function, logic moved
from...
(get_core_registers): ...loop body here. Use new iterator method
instead of walking through the regset section list.
* gdbarch.sh: Remove 'core_regset_sections'. New method
'iterate_over_regset_sections'. New typedef
'iterate_over_regset_sections_cb'.
* gdbarch.c: Regenerate.
* gdbarch.h: Likewise.
* i386-linux-tdep.c (i386_linux_regset_sections)
(i386_linux_sse_regset_sections, i386_linux_avx_regset_sections):
Remove.
(i386_linux_iterate_over_regset_sections): New.
(i386_linux_init_abi): Don't choose a regset section list, but
install new iterator in gdbarch.
* linux-tdep.c (struct linux_collect_regset_section_cb_data): New.
(linux_collect_regset_section_cb): New function, logic moved
from...
(linux_collect_thread_registers): ...loop body here. Use iterator
method instead of walking through list.
(linux_make_corefile_notes_1): Check for presence of iterator
method instead of regset section list.
* ppc-linux-tdep.c (ppc_linux_vsx_regset_sections)
(ppc_linux_vmx_regset_sections, ppc_linux_fp_regset_sections)
(ppc64_linux_vsx_regset_sections, ppc64_linux_vmx_regset_sections)
(ppc64_linux_fp_regset_sections): Remove. Move combined logic...
(ppc_linux_iterate_over_regset_sections): ...here. New function.
(ppc_linux_init_abi): Don't choose from above regset section
lists, but install new iterator in gdbarch.
* regset.h (struct core_regset_section): Remove.
* s390-linux-tdep.c (struct gdbarch_tdep): Add new fields
have_linux_v1, have_linux_v2, and have_tdb.
(s390_linux32_regset_sections, s390_linux32v1_regset_sections)
(s390_linux32v2_regset_sections, s390_linux64_regset_sections)
(s390_linux64v1_regset_sections, s390_linux64v2_regset_sections)
(s390x_linux64_regset_sections, s390x_linux64v1_regset_sections)
(s390x_linux64v2_regset_sections): Remove. Move combined logic...
(s390_iterate_over_regset_sections): ...here. New function. Use
new tdep fields.
(s390_gdbarch_init): Set new tdep fields. Don't choose from above
regset section lists, but install new iterator.
I run splint in gdb source and get the following warnings:
../../../git/gdb/corelow.c:740: Return value type int does not match declared type enum target_xfer_status: 0
'TARGET_XFER_EOF' (enum target_xfer_status) is expected to be returned,
but 0 is returned. This patch is to replace 0 with TARGET_XFER_EOF
in the implementations of to_xfer_partial.
gdb:
2014-08-07 Yao Qi <yao@codesourcery.com>
* corelow.c (core_xfer_partial): Replace 0 with TARGET_XFER_EOF.
* remote-m32r-sdi.c (m32r_xfer_memory): Likewise.
* remote.c (remote_read_bytes): Likewise.
This commit moves the inclusion of errno.h to common-defs.h and
removes all other inclusions. Note that prior to this commit
server.h included errno.h protected by "#ifdef HAVE_ERRNO_H".
This protection was added with the Windows CE port, which is
currently broken. Since no other platform needs this, I have
removed the protection and the configury to support it.
gdb/
2014-08-07 Gary Benson <gbenson@redhat.com>
* common/common-defs.h: Include errno.h.
* defs.h: Do not include errno.h.
* ada-typeprint.c: Likewise.
* c-typeprint.c: Likewise.
* core-regset.c: Likewise.
* corefile.c: Likewise.
* corelow.c: Likewise.
* event-loop.c: Likewise.
* f-typeprint.c: Likewise.
* gnu-nat.c: Likewise.
* go32-nat.c: Likewise.
* i386gnu-nat.c: Likewise.
* m2-typeprint.c: Likewise.
* nat/linux-btrace.c: Likewise.
* p-typeprint.c: Likewise.
* procfs.c: Likewise.
* remote-sim.c: Likewise.
* rs6000-nat.c: Likewise.
* target.c: Likewise.
* typeprint.c: Likewise.
* ui-file.c: Likewise.
* valops.c: Likewise.
* valprint.c: Likewise.
gdb/gdbserver/
2014-08-07 Gary Benson <gbenson@redhat.com>
* configure.ac (AC_CHECK_HEADERS): Remove errno.h.
* configure: Regenerate.
* config.in: Likewise.
* server.h: Do not include errno.h.
* event-loop.c: Likewise.
* hostio-errno.c: Likewise.
* linux-low.c: Likewise.
* remote-utils.c: Likewise.
* spu-low.c: Likewise.
* utils.c: Likewise.
* gdbreplay.c: Unconditionally include errno.h.
This makes target_ops::to_open take a const string and then fixes the
fallout.
There were a few of these I could not build. However I eyeballed it
and in any case the fixes should generally be trivial.
This is based on the patch to fix up the target debugging for to_open,
because that changes gdb to not directly install to_open as the target
command
2014-07-30 Tom Tromey <tromey@redhat.com>
* bsd-kvm.c (bsd_kvm_open): Constify.
* corelow.c (core_open): Constify.
* ctf.c (ctf_open): Constify.
* dbug-rom.c (dbug_open): Constify.
* exec.c (exec_open): Constify.
* m32r-rom.c (m32r_open, mon2000_open): Constify.
* microblaze-rom.c (picobug_open): Constify.
* nto-procfs.c (procfs_open_1, procfs_open, procfs_native_open):
Constify.
* ppcbug-rom.c (ppcbug_open0, ppcbug_open1): Constify.
* record-btrace.c (record_btrace_open): Constify.
* record-full.c (record_full_core_open_1, record_full_open_1)
(record_full_open): Constify.
* remote-m32r-sdi.c (m32r_open): Constify.
* remote-mips.c (common_open, mips_open, pmon_open, ddb_open)
(rockhopper_open, lsi_open): Constify.
* remote-sim.c (gdbsim_open): Constify.
* remote.c (remote_open, extended_remote_open, remote_open_1):
Constify.
* target.h (struct target_ops) <to_open>: Make "arg" const.
* tracefile-tfile.c (tfile_open): Constify.
This patch cleans up some minor inconsistencies in target delegation.
It's primary purpose is to avoid confusion in the code. A few spots
were checking the "beneath" target; however this can only be NULL for
the dummy target, so such tests are not needed. Some other spots were
iterating over the beneath targets, looking for a method
implementation. This is not needed for methods handled by
make-target-delegates, as there is always an implementation.
2014-07-18 Tom Tromey <tromey@redhat.com>
PR gdb/17130:
* spu-multiarch.c (spu_region_ok_for_hw_watchpoint)
(spu_fetch_registers, spu_store_registers, spu_xfer_partial)
(spu_search_memory, spu_mourn_inferior): Simplify delegation.
* linux-thread-db.c (thread_db_pid_to_str): Always delegate.
* windows-nat.c (windows_xfer_partial): Always delegate.
* record-btrace.c (record_btrace_xfer_partial): Simplify
delegation.
(record_btrace_fetch_registers, record_btrace_store_registers)
(record_btrace_prepare_to_store, record_btrace_resume)
(record_btrace_wait, record_btrace_find_new_threads)
(record_btrace_thread_alive): Likewise.
* procfs.c (procfs_xfer_partial): Always delegate.
* corelow.c (core_xfer_partial): Always delegate.
* sol-thread.c (sol_find_new_threads): Simplify delegation.
This makes a parameter of to_info_proc const and then fixes up some
fallout, including parameters in a couple of gdbarch methods.
I could not test the procfs.c change. I verified it by inspection.
If this causes an error here, it will be trivial to fix.
2014-06-16 Tom Tromey <tromey@redhat.com>
* target.h (struct target_ops) <to_info_proc>: Make parameter
const.
(target_info_proc): Update.
* target.c (target_info_proc): Make "args" const.
* procfs.c (procfs_info_proc): Update.
* linux-tdep.c (linux_info_proc): Update.
(linux_core_info_proc_mappings): Make "args" const.
(linux_core_info_proc): Update.
* gdbarch.sh (info_proc, core_info_proc): Make "args" const.
* gdbarch.c: Rebuild.
* gdbarch.h: Rebuild.
* corelow.c (core_info_proc): Update.
Move infrun.c declarations out of inferior.h to a new infrun.h file.
Tested by building on:
i686-w64-mingw32, enable-targets=all
x86_64-linux, enable-targets=all
i586-pc-msdosdjgpp
And also grepped the whole tree for each symbol moved to find where
infrun.h might be necessary.
gdb/
2014-05-22 Pedro Alves <palves@redhat.com>
* inferior.h (debug_infrun, debug_displaced, stop_on_solib_events)
(sync_execution, sched_multi, step_stop_if_no_debug, non_stop)
(disable_randomization, enum exec_direction_kind)
(execution_direction, stop_registers, start_remote)
(clear_proceed_status, proceed, resume, user_visible_resume_ptid)
(wait_for_inferior, normal_stop, get_last_target_status)
(prepare_for_detach, fetch_inferior_event, init_wait_for_inferior)
(insert_step_resume_breakpoint_at_sal)
(follow_inferior_reset_breakpoints, stepping_past_instruction_at)
(set_step_info, print_stop_event, signal_stop_state)
(signal_print_state, signal_pass_state, signal_stop_update)
(signal_print_update, signal_pass_update)
(update_signals_program_target, clear_exit_convenience_vars)
(displaced_step_dump_bytes, update_observer_mode)
(signal_catch_update, gdb_signal_from_command): Move
declarations ...
* infrun.h: ... to this new file.
* amd64-tdep.c: Include infrun.h.
* annotate.c: Include infrun.h.
* arch-utils.c: Include infrun.h.
* arm-linux-tdep.c: Include infrun.h.
* arm-tdep.c: Include infrun.h.
* break-catch-sig.c: Include infrun.h.
* breakpoint.c: Include infrun.h.
* common/agent.c: Include infrun.h instead of inferior.h.
* corelow.c: Include infrun.h.
* event-top.c: Include infrun.h.
* go32-nat.c: Include infrun.h.
* i386-tdep.c: Include infrun.h.
* inf-loop.c: Include infrun.h.
* infcall.c: Include infrun.h.
* infcmd.c: Include infrun.h.
* infrun.c: Include infrun.h.
* linux-fork.c: Include infrun.h.
* linux-nat.c: Include infrun.h.
* linux-thread-db.c: Include infrun.h.
* monitor.c: Include infrun.h.
* nto-tdep.c: Include infrun.h.
* procfs.c: Include infrun.h.
* record-btrace.c: Include infrun.h.
* record-full.c: Include infrun.h.
* remote-m32r-sdi.c: Include infrun.h.
* remote-mips.c: Include infrun.h.
* remote-notif.c: Include infrun.h.
* remote-sim.c: Include infrun.h.
* remote.c: Include infrun.h.
* reverse.c: Include infrun.h.
* rs6000-tdep.c: Include infrun.h.
* s390-linux-tdep.c: Include infrun.h.
* solib-irix.c: Include infrun.h.
* solib-osf.c: Include infrun.h.
* solib-svr4.c: Include infrun.h.
* target.c: Include infrun.h.
* top.c: Include infrun.h.
* windows-nat.c: Include infrun.h.
* mi/mi-interp.c: Include infrun.h.
* mi/mi-main.c: Include infrun.h.
* python/py-threadevent.c: Include infrun.h.
A patch in the target cleanup series caused a regression when using
record with target-async. Version 4 of the patch is here:
https://sourceware.org/ml/gdb-patches/2014-03/msg00159.html
The immediate problem is that record supplies to_can_async_p and
to_is_async_p methods, but does not supply a to_async method. So,
when target-async is set, record claims to support async -- but if the
underlying target does not support async, then the to_async method
call will end up in that method's default implementation, namely
tcomplain.
This worked previously because the record target used to provide a
to_async method; one that (erroneously, only at push time) checked the
other members of the target stack, and then simply dropped to_async
calls in the "does not implement async" case.
My first thought was to simply drop tcomplain as the default for
to_async. This works, but Pedro pointed out that the only reason
record has to supply to_can_async_p and to_is_async_p is that these
default to using the find_default_run_target machinery -- and these
defaults are only needed by "run" and "attach".
So, a nicer solution presents itself: change run and attach to
explicitly call into the default run target when needed; and change
to_is_async_p and to_can_async_p to default to "return 0". This makes
the target stack simpler to use and lets us remove the method
implementations from record. This is also in harmony with other plans
for the target stack; namely trying to reduce the impact of
find_default_run_target. This approach makes it clear that
find_default_is_async_p is not needed -- it is asking whether a target
that may not even be pushed is actually async, which seems like a
nonsensical question.
While an improvement, this approach proved to introduce the same bug
when using the core target. Looking a bit deeper, the issue is that
code in "attach" and "run" may need to use either the current target
stack or the default run target -- but different calls into the target
API in those functions could wind up querying different targets.
This new patch makes the target to use more explicit in "run" and
"attach". Then these commands explicitly make the needed calls
against that target. This ensures that a single target is used for
all relevant operations. This lets us remove a couple find_default_*
functions from various targets, including the dummy target. I think
this is a decent understandability improvement.
One issue I see with this patch is that the new calls in "run" and
"attach" are not very much like the rest of the target API. I think
fundamentally this is due to bad factoring in the target API, which
may need to be fixed for multi-target. Tackling that seemed ambitious
for a regression fix.
While working on this I noticed that there don't seem to be any test
cases that involve both target-async and record, so this patch changes
break-precsave.exp to add some. It also changes corefile.exp to add
some target-async tests; these pass with current trunk and with this
patch applied, but fail with the v1 patch.
This patch differs from v4 in that it moves initialization of
to_can_async_p and to_supports_non_stop into inf-child, adds some
assertions to complete_target_initialization, and adds some comments
to target.h.
Built and regtested on x86-64 Fedora 20.
2014-03-12 Tom Tromey <tromey@redhat.com>
* inf-child.c (return_zero): New function.
(inf_child_target): Set to_can_async_p, to_supports_non_stop.
* aix-thread.c (aix_thread_inferior_created): New function.
(aix_thread_attach): Remove.
(init_aix_thread_ops): Don't set to_attach.
(_initialize_aix_thread): Register inferior_created observer.
* corelow.c (init_core_ops): Don't set to_attach or
to_create_inferior.
* exec.c (init_exec_ops): Don't set to_attach or
to_create_inferior.
* infcmd.c (run_command_1): Use find_run_target. Make direct
target calls.
(attach_command): Use find_attach_target. Make direct target
calls.
* record-btrace.c (init_record_btrace_ops): Don't set
to_create_inferior.
* record-full.c (record_full_can_async_p, record_full_is_async_p):
Remove.
(init_record_full_ops, init_record_full_core_ops): Update. Don't
set to_create_inferior.
* target.c (complete_target_initialization): Add assertion.
(target_create_inferior): Remove.
(find_default_attach, find_default_create_inferior): Remove.
(find_attach_target, find_run_target): New functions.
(find_default_is_async_p, find_default_can_async_p)
(target_supports_non_stop, target_attach): Remove.
(init_dummy_target): Don't set to_create_inferior or
to_supports_non_stop.
* target.h (struct target_ops) <to_attach>: Add comment. Remove
TARGET_DEFAULT_FUNC.
<to_create_inferior>: Add comment.
<to_can_async_p, to_is_async_p, to_supports_non_stop>: Use
TARGET_DEFAULT_RETURN.
<to_can_async_p, to_supports_non_stop, to_can_run>: Add comments.
(find_attach_target, find_run_target): Declare.
(target_create_inferior): Remove.
(target_has_execution_1): Update comment.
(target_supports_non_stop): Remove.
* target-delegates.c: Rebuild.
2014-03-12 Tom Tromey <tromey@redhat.com>
* gdb.base/corefile.exp (corefile_test_run, corefile_test_attach):
New procs. Add target-async tests.
* gdb.reverse/break-precsave.exp (precsave_tests): New proc.
Add target-async tests.
This switches to_read_description to the "new normal" delegation
scheme. This one was a bit trickier than the other changes due to the
way that target_read_description handled delegation. I examined all
the target implementations of to_read_description and changed the ones
returning NULL to instead delegate.
2014-02-19 Tom Tromey <tromey@redhat.com>
* arm-linux-nat.c (arm_linux_read_description): Delegate when
needed.
* corelow.c (core_read_description): Delegate when needed.
* remote.c (remote_read_description): Delegate when needed.
* target-delegates.c: Rebuild.
* target.c (target_read_description): Rewrite.
* target.h (struct target_ops) <to_read_description>: Update
comment. Use TARGET_DEFAULT_RETURN.
This patch does the conversion of to_xfer_partial from
LONGEST (*to_xfer_partial) (struct target_ops *ops,
enum target_object object, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len);
to
enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
enum target_object object, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len, ULONGEST *xfered_len);
It changes to_xfer_partial return the transfer status and the transfered
length by *XFERED_LEN. Generally, the return status has three stats,
- TARGET_XFER_OK,
- TARGET_XFER_EOF,
- TARGET_XFER_E_XXXX,
See the comments to them in 'enum target_xfer_status'. Note that
Pedro suggested not name TARGET_XFER_DONE, as it is confusing,
compared with "TARGET_XFER_OK". We finally name it TARGET_XFER_EOF.
With this change, GDB core can handle unavailable data in a convenient
way.
The rationale behind this change was mentioned here
https://sourceware.org/ml/gdb-patches/2013-10/msg00761.html
Consider an object/value like this:
0 100 150 200 512
DDDDDDDDDDDxxxxxxxxxDDDDDD...DDIIIIIIIIIIII..III
where D is valid data, and xxx is unavailable data, and I is beyond
the end of the object (Invalid). Currently, if we start the
xfer at 0, requesting, say 512 bytes, we'll first get back 100 bytes.
The xfer machinery then retries fetching [100,512), and gets back
TARGET_XFER_E_UNAVAILABLE. That's sufficient when you're either
interested in either having the whole of the 512 bytes available,
or erroring out. But, in this scenario, we're interested in
the data at [150,512). The problem is that the last
TARGET_XFER_E_UNAVAILABLE gives us no indication where to
start the read next. We'd need something like:
get me [0,512) >>>
<<< here's [0,100), *xfered_len is 100, returns TARGET_XFER_OK
get me [100,512) >>> (**1)
<<< [100,150) is unavailable, *xfered_len is 50, return TARGET_XFER_E_UNAVAILABLE.
get me [150,512) >>>
<<< here's [150,200), *xfered_len is 50, return TARGET_XFER_OK.
get me [200,512) >>>
<<< no more data, return TARGET_XFER_EOF.
This naturally implies pushing down the decision of whether
to return TARGET_XFER_E_UNAVAILABLE or something else
down to the target. (Which kinds of leads back to tfile
itself reading from RO memory from file (though we could
export a function in exec.c for that that tfile delegates to,
instead of re-adding the old code).
Beside this change, we also add a macro TARGET_XFER_STATUS_ERROR_P to
check whether a status is an error or not, to stop using "status < 0".
This patch also eliminates the comparison between status and 0.
No target implementations to to_xfer_partial adapts this new
interface. The interface still behaves as before.
gdb:
2014-02-11 Yao Qi <yao@codesourcery.com>
* target.h (enum target_xfer_error): Rename to ...
(enum target_xfer_status): ... it. New. All users updated.
(enum target_xfer_status) <TARGET_XFER_OK>, <TARGET_XFER_EOF>:
New.
(TARGET_XFER_STATUS_ERROR_P): New macro.
(target_xfer_error_to_string): Remove declaration.
(target_xfer_status_to_string): Declare.
(target_xfer_partial_ftype): Adjust it.
(struct target_ops) <to_xfer_partial>: Return
target_xfer_status. Add argument xfered_len. Update
comments.
* target.c (target_xfer_error_to_string): Rename to ...
(target_xfer_status_to_string): ... it. New. All callers
updated.
(target_read_live_memory): Likewise. Call target_xfer_partial
instead of target_read.
(memory_xfer_live_readonly_partial): Return
target_xfer_status. Add argument xfered_len.
(raw_memory_xfer_partial): Likewise.
(memory_xfer_partial_1): Likewise.
(memory_xfer_partial): Likewise.
(target_xfer_partial): Likewise. Check *XFERED_LEN is set
properly. Update debug message.
(default_xfer_partial, current_xfer_partial): Likewise.
(target_write_partial): Likewise.
(target_read_partial): Likewise. All callers updated.
(read_whatever_is_readable): Likewise.
(target_write_with_progress): Likewise.
(target_read_alloc_1): Likewise.
* aix-thread.c (aix_thread_xfer_partial): Likewise.
* auxv.c (procfs_xfer_auxv): Likewise.
(ld_so_xfer_auxv, memory_xfer_auxv): Likewise.
* bfd-target.c (target_bfd_xfer_partial): Likewise.
* bsd-kvm.c (bsd_kvm_xfer_partial): Likewise.
* bsd-uthread.c (bsd_uthread_xfer_partia): Likewise.
* corefile.c (read_memory): Adjust.
* corelow.c (core_xfer_partial): Likewise.
* ctf.c (ctf_xfer_partial): Likewise.
* darwin-nat.c (darwin_read_dyld_info): Likewise. All callers
updated.
(darwin_xfer_partial): Likewise.
* exec.c (section_table_xfer_memory_partial): Likewise. All
callers updated.
(exec_xfer_partial): Likewise.
* exec.h (section_table_xfer_memory_partial): Update
declaration.
* gnu-nat.c (gnu_xfer_memory): Likewise. Assert 'res' is not
negative.
(gnu_xfer_partial): Likewise.
* ia64-hpux-nat.c (ia64_hpux_xfer_memory_no_bs): Likewise.
(ia64_hpux_xfer_memory, ia64_hpux_xfer_uregs): Likewise.
(ia64_hpux_xfer_solib_got): Likewise.
* inf-ptrace.c (inf_ptrace_xfer_partial): Likewise. Change
type of 'partial_len' to ULONGEST.
* inf-ttrace.c (inf_ttrace_xfer_partial): Likewise.
* linux-nat.c (linux_xfer_siginfo ): Likewise.
(linux_nat_xfer_partial): Likewise.
(linux_proc_xfer_partial, linux_xfer_partial): Likewise.
(linux_proc_xfer_spu, linux_nat_xfer_osdata): Likewise.
* monitor.c (monitor_xfer_memory): Likewise.
(monitor_xfer_partial): Likewise.
* procfs.c (procfs_xfer_partial): Likewise.
* record-btrace.c (record_btrace_xfer_partial): Likewise.
* record-full.c (record_full_xfer_partial): Likewise.
(record_full_core_xfer_partial): Likewise.
* remote-sim.c (gdbsim_xfer_memory): Likewise.
(gdbsim_xfer_partial): Likewise.
* remote.c (remote_write_bytes_aux): Likewise. All callers
updated.
(remote_write_bytes, remote_read_bytes): Likewise. All
callers updated.
(remote_flash_erase): Likewise. All callers updated.
(remote_write_qxfer): Likewise. All callers updated.
(remote_read_qxfer): Likewise. All callers updated.
(remote_xfer_partial): Likewise.
* rs6000-nat.c (rs6000_xfer_partial): Likewise.
(rs6000_xfer_shared_libraries): Likewise.
* sol-thread.c (sol_thread_xfer_partial): Likewise.
(sol_thread_xfer_partial): Likewise.
* sparc-nat.c (sparc_xfer_wcookie): Likewise.
(sparc_xfer_partial): Likewise.
* spu-linux-nat.c (spu_proc_xfer_spu): Likewise. All callers
updated.
(spu_xfer_partial): Likewise.
* spu-multiarch.c (spu_xfer_partial): Likewise.
* tracepoint.c (tfile_xfer_partial): Likewise.
* windows-nat.c (windows_xfer_memory): Likewise.
(windows_xfer_shared_libraries): Likewise.
(windows_xfer_partial): Likewise.
* valprint.c: Replace 'target_xfer_error' with
'target_xfer_status' in comments.
Functions remote_read_bytes and get_core_siginfo are the callees of
target to_xfer_partial interface, so argument 'len' should be changed
to type ULONGEST.
gdb:
2014-01-24 Yao Qi <yao@codesourcery.com>
* remote.c (remote_read_bytes): Change type of len to ULONGEST.
* corelow.c (get_core_siginfo): Likewise.