The object_p (and archive_p, core_file_p) functions are not supposed
to have any target specific malloc'd memory attached to the bfd on
their return. This should be obvious on a failure return, but it's
also true for a successful return. The reason is that even though the
object_p recognises the file, that particular target may not be used
and thus the bfd won't be closed calling close_and_cleanup for the
target that allocated the memory.
It turns out that the object_p bfd_target* return value isn't needed.
In all cases except ld/plugin.c the target is abfd->xvec and with
ld/plugin.c the target isn't used. So this patch returns a cleanup
function from object_p instead, called in bfd_check_format_matches to
tidy the bfd before trying a different target match. The only cleanup
that does anything at this stage is the alpha-vms one.
bfd/
* targets.c (bfd_cleanup): New typedef.
(struct bfd <_bfd_check_format>): Return a bfd_cleanup.
* libbfd-in.h (_bfd_no_cleanup): Define.
* format.c (bfd_reinit): Add cleanup parameter, call it.
(bfd_check_format_matches): Set cleanup from _bfd_check_format
call and pass to bfd_reinit. Delete temp, use abfd->xvec instead.
* aout-target.h (callback, object_p): Return bfd_cleanup.
* aout-tic30.c (tic30_aout_callback, tic30_aout_object_p): Likewise.
* archive.c (bfd_generic_archive_p): Likewise.
* binary.c (binary_object_p): Likewise.
* coff-alpha.c (alpha_ecoff_object_p): Likewise.
* coff-ia64.c (ia64coff_object_p): Likewise.
* coff-rs6000.c (_bfd_xcoff_archive_p, rs6000coff_core_p): Likewise.
* coff-sh.c (coff_small_object_p): Likewise.
* coff-stgo32.c (go32_check_format): Likewise.
* coff64-rs6000.c (xcoff64_archive_p, rs6000coff_core_p),
(xcoff64_core_p): Likewise.
* coffgen.c (coff_real_object_p, coff_object_p): Likewise.
* elf-bfd.h (bfd_elf32_object_p, bfd_elf32_core_file_p),
(bfd_elf64_object_p, bfd_elf64_core_file_p): Likewise.
* elfcode.h (elf_object_p): Likewise.
* elfcore.h (elf_core_file_p): Likewise.
* i386msdos.c (msdos_object_p): Likewise.
* ihex.c (ihex_object_p): Likewise.
* libaout.h (some_aout_object_p): Likewise.
* libbfd-in.h (bfd_generic_archive_p, _bfd_dummy_target),
(_bfd_vms_lib_alpha_archive_p, _bfd_vms_lib_ia64_archive_p): Likewise.
* libbfd.c (_bfd_dummy_target): Likewise.
* libcoff-in.h (coff_object_p): Likewise.
* mach-o-aarch64.c (bfd_mach_o_arm64_object_p),
(bfd_mach_o_arm64_core_p): Likewise.
* mach-o-arm.c (bfd_mach_o_arm_object_p),
(bfd_mach_o_arm_core_p): Likewise.
* mach-o-i386.c (bfd_mach_o_i386_object_p),
(bfd_mach_o_i386_core_p): Likewise.
* mach-o-x86-64.c (bfd_mach_o_x86_64_object_p),
(bfd_mach_o_x86_64_core_p): Likewise.
* mach-o.c (bfd_mach_o_header_p, bfd_mach_o_gen_object_p),
(bfd_mach_o_gen_core_p, bfd_mach_o_fat_archive_p): Likewise.
* mach-o.h (bfd_mach_o_object_p, bfd_mach_o_core_p),
(bfd_mach_o_fat_archive_p, bfd_mach_o_header_p): Likewise.
* mmo.c (mmo_object_p): Likewise.
* pef.c (bfd_pef_object_p, bfd_pef_xlib_object_p): Likewise.
* peicode.h (coff_real_object_p, pe_ILF_object_p),
(pe_bfd_object_p): Likewise.
* plugin.c (ld_plugin_object_p, bfd_plugin_object_p): Likewise.
* ppcboot.c (ppcboot_object_p): Likewise.
* rs6000-core.c (rs6000coff_core_p): Likewise.
* som.c (som_object_setup, som_object_p): Likewise.
* srec.c (srec_object_p, symbolsrec_object_p): Likewise.
* tekhex.c (tekhex_object_p): Likewise.
* vms-alpha.c (alpha_vms_object_p): Likewise.
* vms-lib.c (_bfd_vms_lib_archive_p, _bfd_vms_lib_alpha_archive_p),
(_bfd_vms_lib_ia64_archive_p, _bfd_vms_lib_txt_archive_p): Likewise.
* wasm-module.c (wasm_object_p): Likewise.
* xsym.c (bfd_sym_object_p): Likewise.
* xsym.h (bfd_sym_object_p): Likewise.
* aoutx.h (some_aout_object_p): Likewise, and callback parameter
return type.
* pdp11.c (some_aout_object_p): Likewise.
* plugin.c (register_ld_plugin_object_p): Update object_p
parameter type.
* plugin.h (register_ld_plugin_object_p): Likewise.
* bfd-in2.h: Regenerate.
* libbfd.h: Regenerate.
* libcoff.h: Regenerate.
ld/
* plugin.c (plugin_object_p): Return a bfd_cleanup.
(plugin_cleanup): New function.
Since ar and ranlib don't need to know symbol types to work properly,
we should avoid calling lto-wrapper for them to speed them up.
bfd/
PR binutils/25584
* plugin.c (need_lto_wrapper_p): New.
(bfd_plugin_set_program_name): Add an int argument to set
need_lto_wrapper_p.
(get_lto_wrapper): Return FALSE if need_lto_wrapper_p isn't
set.
* plugin.h (bfd_plugin_set_program_name): Add an int argument.
binutils/
PR binutils/25584
* ar.c (main): Pass 0 to bfd_plugin_set_program_name.
* nm.c (main): Pass 1 to bfd_plugin_set_program_name.
GCC LTO wrapper is needed to extract real symbols from LTO IR objects.
This patch does the following:
1. Set up GCC LTO wrapper for each LTO IR object.
2. Run GCC LTO wrapper to get the real object.
3. Extract symbol info from the real object.
4. Cleanup afterwards.
bfd/
PR binutils/25355
* configure.ac (HAVE_EXECUTABLE_SUFFIX): New AC_DEFINE.
(EXECUTABLE_SUFFIX): Likewise.
* config.in: Regenerated.
* configure: Likewise.
* plugin.c (bfd_plugin_close_and_cleanup): Removed.
(plugin_list_entry): Add all_symbols_read, cleanup_handler,
gcc, lto_wrapper, resolution_file, resolution_option, gcc_env,
real_bfd, real_nsyms, real_syms, lto_nsyms and lto_syms.
(get_lto_wrapper): New.
(setup_lto_wrapper_env): Likewise.
(current_plugin): Likewise.
(register_all_symbols_read): Likewise.
(register_cleanup): Likewise.
(get_symbols): Likewise.
(add_input_file): Likewise.
(bfd_plugin_close_and_cleanup): Likewise.
(claim_file): Removed.
(register_claim_file): Set current_plugin->claim_file.
(add_symbols): Make a copy of LTO symbols. Set lto_nsyms and
lto_syms in current_plugin.
(try_claim): Use current_plugin->claim_file. Call LTO plugin
all_symbols_read handler. Copy real symbols to plugin_data.
Call LTO plugin cleanup handler. Clean up for LTO wrapper.
(try_load_plugin): Don't reuse the previous plugin for LTO
wrapper. Set up GCC LTO wrapper if possible. Don't set
plugin_list_iter->claim_file.
(bfd_plugin_canonicalize_symtab): Use real LTO symbols if
possible.
* plugin.h (plugin_data_struct): Add real_bfd, real_nsyms and
real_syms.
ld/
PR binutils/25355
* testsuite/ld-plugin/lto.exp: Run PR binutils/25355 test.
* testsuite/ld-plugin/pr25355.c: New file.
* testsuite/ld-plugin/pr25355.d: Likewise.
* testsuite/lib/ld-lib.exp (run_cc_link_tests): Support compile
only dump.
Some messing with plugin code in order to not need arelt_size in
ld code. File descriptor handling in ld/plugin.c is tidied too,
simply duping the open fd rather than opening the file again.
bfd/
* elflink.c: Include plugin-api.h.
* plugin.c (bfd_plugin_open_input): New function, extracted from..
(try_claim): ..here.
* plugin.h: Don't include bfd.h.
(bfd_plugin_open_input): Declare.
binutils/
* ar.c: Include plugin-api.h.
* nm.c: Likewise.
ld/
* plugin.c: Don't include libbfd.h. Include plugin-api.h
before bfd/plugin.h.
(plugin_object_p): Use bfd_plugin_open_input.
ELF linker shouldn't skip the IR object when searching the symbol table
of an archive element. If linker doesn't know if the object file is an
IR object, it should give LTO plugin a chance to get the correct symbol
table and use the IR symbol table if the input is an IR object.
bfd/
PR ld/18250
PR ld/20267
* elflink.c: Include plugin.h if BFD_SUPPORTS_PLUGINS is
defined.
(elf_link_is_defined_archive_symbol): Call
bfd_link_plugin_object_p on unknown plugin object and use the
IR symbol table if the input is an IR object.
* plugin.c (bfd_link_plugin_object_p): New function.
* plugin.h (bfd_link_plugin_object_p): New prototype.
ld/
PR ld/20267
* testsuite/ld-plugin/lto.exp (lto_link_tests): Add test for
PR ld/20267.
(lto_run_tests): Likewise.
* testsuite/ld-plugin/pr20267a.c: New file.
* testsuite/ld-plugin/pr20267b.c: Likewise.
Linker plugin_maybe_claim is the interface of linker plugin support.
This patch extracts linker plugin_maybe_claim into plugin_object_p and
makes it available to BFD via a new function:
void register_ld_plugin_object_p (const bfd_target *(*) (bfd *));
bfd_plugin_object_p calls plugin_object_p registered by linker first. It
adds an enum bfd_plugin_format field and a pointer to plugin dummy BFD so
that plugin_object_p stores plugin dummy BFD to allow plugin_maybe_claim
to retrieve it later.
bfd/
PR ld/17878
* bfd.c (bfd_plugin_format): New.
(bfd): Add plugin_format and plugin_dummy_bfd.
* plugin.c (try_load_plugin): Take a pointer to bfd_boolean
argument to return TRUE if any plugin is found. Set plugin_format.
(has_plugin): New.
(bfd_plugin_target_p): New.
(bfd_plugin_specified_p): Likewise.
(bfd_plugin_target_p): Likewise.
(register_ld_plugin_object_p): Likewise.
(bfd_plugin_set_plugin): Set has_plugin.
(load_plugin): Cache try_load_plugin result.
(bfd_plugin_object_p): Try ld_plugin_object_p first. Check
plugin_format.
* plugin.h (bfd_plugin_target_p): New.
(bfd_plugin_specified_p): Likewise.
(register_ld_plugin_object_p): Likewise.
* bfd-in2.h: Regenerated.
ld/
PR ld/17878
* plugin.c: Include ../bfd/plugin.h.
(plugin_get_ir_dummy_bfd): Call bfd_create with
link_info.output_bfd instead of srctemplate. Copy BFD info
from srctemplate only if it doesn't use BFD plugin target
vector.
(plugin_load_plugins): Call register_ld_plugin_object_p with
(plugin_object_p)
(plugin_maybe_claim): Renamed to ...
(plugin_object_p): This. Return dummy BFD target vector if
input is calimed by plugin library, otherwise return NULL.
Update plugin_format and plugin_dummy_bfd.
(plugin_maybe_claim): New. Use plugin_object_p.
xx