/* arminit.c -- ARMulator initialization: ARM6 Instruction Emulator. Copyright (C) 1994 Advanced RISC Machines Ltd. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, see . */ #include #include "armdefs.h" #include "armemu.h" #include "dbg_rdi.h" /***************************************************************************\ * Definitions for the emulator architecture * \***************************************************************************/ void ARMul_EmulateInit (void); ARMul_State *ARMul_NewState (void); void ARMul_Reset (ARMul_State * state); ARMword ARMul_DoCycle (ARMul_State * state); unsigned ARMul_DoCoPro (ARMul_State * state); ARMword ARMul_DoProg (ARMul_State * state); ARMword ARMul_DoInstr (ARMul_State * state); void ARMul_Abort (ARMul_State * state, ARMword address); unsigned ARMul_MultTable[32] = { 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 16 }; ARMword ARMul_ImmedTable[4096]; /* immediate DP LHS values */ char ARMul_BitList[256]; /* number of bits in a byte table */ /* The PC pipeline value depends on whether ARM or Thumb instructions are being executed. */ ARMword isize; /***************************************************************************\ * Call this routine once to set up the emulator's tables. * \***************************************************************************/ void ARMul_EmulateInit (void) { unsigned long i, j; for (i = 0; i < 4096; i++) { /* the values of 12 bit dp rhs's */ ARMul_ImmedTable[i] = ROTATER (i & 0xffL, (i >> 7L) & 0x1eL); } for (i = 0; i < 256; ARMul_BitList[i++] = 0); /* how many bits in LSM */ for (j = 1; j < 256; j <<= 1) for (i = 0; i < 256; i++) if ((i & j) > 0) ARMul_BitList[i]++; for (i = 0; i < 256; i++) ARMul_BitList[i] *= 4; /* you always need 4 times these values */ } /***************************************************************************\ * Returns a new instantiation of the ARMulator's state * \***************************************************************************/ ARMul_State * ARMul_NewState (void) { ARMul_State *state; unsigned i, j; state = (ARMul_State *) malloc (sizeof (ARMul_State)); memset (state, 0, sizeof (ARMul_State)); state->Emulate = RUN; for (i = 0; i < 16; i++) { state->Reg[i] = 0; for (j = 0; j < 7; j++) state->RegBank[j][i] = 0; } for (i = 0; i < 7; i++) state->Spsr[i] = 0; /* state->Mode = USER26MODE; */ state->Mode = USER32MODE; state->CallDebug = FALSE; state->Debug = FALSE; state->VectorCatch = 0; state->Aborted = FALSE; state->Reseted = FALSE; state->Inted = 3; state->LastInted = 3; state->MemDataPtr = NULL; state->MemInPtr = NULL; state->MemOutPtr = NULL; state->MemSparePtr = NULL; state->MemSize = 0; state->OSptr = NULL; state->CommandLine = NULL; state->CP14R0_CCD = -1; state->LastTime = 0; state->EventSet = 0; state->Now = 0; state->EventPtr = (struct EventNode **) malloc ((unsigned) EVENTLISTSIZE * sizeof (struct EventNode *)); for (i = 0; i < EVENTLISTSIZE; i++) *(state->EventPtr + i) = NULL; state->prog32Sig = HIGH; state->data32Sig = HIGH; state->lateabtSig = LOW; state->bigendSig = LOW; state->is_v4 = LOW; state->is_v5 = LOW; state->is_v5e = LOW; state->is_XScale = LOW; state->is_iWMMXt = LOW; state->is_v6 = LOW; ARMul_Reset (state); return state; } /***************************************************************************\ Call this routine to set ARMulator to model certain processor properities \***************************************************************************/ void ARMul_SelectProcessor (ARMul_State * state, unsigned properties) { if (properties & ARM_Fix26_Prop) { state->prog32Sig = LOW; state->data32Sig = LOW; } else { state->prog32Sig = HIGH; state->data32Sig = HIGH; } state->lateabtSig = LOW; state->is_v4 = (properties & (ARM_v4_Prop | ARM_v5_Prop)) ? HIGH : LOW; state->is_v5 = (properties & ARM_v5_Prop) ? HIGH : LOW; state->is_v5e = (properties & ARM_v5e_Prop) ? HIGH : LOW; state->is_XScale = (properties & ARM_XScale_Prop) ? HIGH : LOW; state->is_iWMMXt = (properties & ARM_iWMMXt_Prop) ? HIGH : LOW; state->is_ep9312 = (properties & ARM_ep9312_Prop) ? HIGH : LOW; state->is_v6 = (properties & ARM_v6_Prop) ? HIGH : LOW; /* Only initialse the coprocessor support once we know what kind of chip we are dealing with. */ ARMul_CoProInit (state); } /***************************************************************************\ * Call this routine to set up the initial machine state (or perform a RESET * \***************************************************************************/ void ARMul_Reset (ARMul_State * state) { state->NextInstr = 0; if (state->prog32Sig) { state->Reg[15] = 0; state->Cpsr = INTBITS | SVC32MODE; state->Mode = SVC32MODE; } else { state->Reg[15] = R15INTBITS | SVC26MODE; state->Cpsr = INTBITS | SVC26MODE; state->Mode = SVC26MODE; } ARMul_CPSRAltered (state); state->Bank = SVCBANK; FLUSHPIPE; state->EndCondition = 0; state->Exception = FALSE; state->NresetSig = HIGH; state->NfiqSig = HIGH; state->NirqSig = HIGH; state->NtransSig = (state->Mode & 3) ? HIGH : LOW; state->abortSig = LOW; state->AbortAddr = 1; state->NumInstrs = 0; state->NumNcycles = 0; state->NumScycles = 0; state->NumIcycles = 0; state->NumCcycles = 0; state->NumFcycles = 0; #ifdef ASIM (void) ARMul_MemoryInit (); ARMul_OSInit (state); #endif } /***************************************************************************\ * Emulate the execution of an entire program. Start the correct emulator * * (Emulate26 for a 26 bit ARM and Emulate32 for a 32 bit ARM), return the * * address of the last instruction that is executed. * \***************************************************************************/ ARMword ARMul_DoProg (ARMul_State * state) { ARMword pc = 0; state->Emulate = RUN; while (state->Emulate != STOP) { state->Emulate = RUN; if (state->prog32Sig && ARMul_MODE32BIT) pc = ARMul_Emulate32 (state); else pc = ARMul_Emulate26 (state); } return (pc); } /***************************************************************************\ * Emulate the execution of one instruction. Start the correct emulator * * (Emulate26 for a 26 bit ARM and Emulate32 for a 32 bit ARM), return the * * address of the instruction that is executed. * \***************************************************************************/ ARMword ARMul_DoInstr (ARMul_State * state) { ARMword pc = 0; state->Emulate = ONCE; if (state->prog32Sig && ARMul_MODE32BIT) pc = ARMul_Emulate32 (state); else pc = ARMul_Emulate26 (state); return (pc); } /***************************************************************************\ * This routine causes an Abort to occur, including selecting the correct * * mode, register bank, and the saving of registers. Call with the * * appropriate vector's memory address (0,4,8 ....) * \***************************************************************************/ void ARMul_Abort (ARMul_State * state, ARMword vector) { ARMword temp; int isize = INSN_SIZE; int esize = (TFLAG ? 0 : 4); int e2size = (TFLAG ? -4 : 0); state->Aborted = FALSE; if (state->prog32Sig) if (ARMul_MODE26BIT) temp = R15PC; else temp = state->Reg[15]; else temp = R15PC | ECC | ER15INT | EMODE; switch (vector) { case ARMul_ResetV: /* RESET */ SETABORT (INTBITS, state->prog32Sig ? SVC32MODE : SVC26MODE, 0); break; case ARMul_UndefinedInstrV: /* Undefined Instruction */ SETABORT (IBIT, state->prog32Sig ? UNDEF32MODE : SVC26MODE, isize); break; case ARMul_SWIV: /* Software Interrupt */ SETABORT (IBIT, state->prog32Sig ? SVC32MODE : SVC26MODE, isize); break; case ARMul_PrefetchAbortV: /* Prefetch Abort */ state->AbortAddr = 1; SETABORT (IBIT, state->prog32Sig ? ABORT32MODE : SVC26MODE, esize); break; case ARMul_DataAbortV: /* Data Abort */ SETABORT (IBIT, state->prog32Sig ? ABORT32MODE : SVC26MODE, e2size); break; case ARMul_AddrExceptnV: /* Address Exception */ SETABORT (IBIT, SVC26MODE, isize); break; case ARMul_IRQV: /* IRQ */ if ( ! state->is_XScale || ! state->CPRead[13] (state, 0, & temp) || (temp & ARMul_CP13_R0_IRQ)) SETABORT (IBIT, state->prog32Sig ? IRQ32MODE : IRQ26MODE, esize); break; case ARMul_FIQV: /* FIQ */ if ( ! state->is_XScale || ! state->CPRead[13] (state, 0, & temp) || (temp & ARMul_CP13_R0_FIQ)) SETABORT (INTBITS, state->prog32Sig ? FIQ32MODE : FIQ26MODE, esize); break; } if (ARMul_MODE32BIT) ARMul_SetR15 (state, vector); else ARMul_SetR15 (state, R15CCINTMODE | vector); if (ARMul_ReadWord (state, ARMul_GetPC (state)) == 0) { /* No vector has been installed. Rather than simulating whatever random bits might happen to be at address 0x20 onwards we elect to stop. */ switch (vector) { case ARMul_ResetV: state->EndCondition = RDIError_Reset; break; case ARMul_UndefinedInstrV: state->EndCondition = RDIError_UndefinedInstruction; break; case ARMul_SWIV: state->EndCondition = RDIError_SoftwareInterrupt; break; case ARMul_PrefetchAbortV: state->EndCondition = RDIError_PrefetchAbort; break; case ARMul_DataAbortV: state->EndCondition = RDIError_DataAbort; break; case ARMul_AddrExceptnV: state->EndCondition = RDIError_AddressException; break; case ARMul_IRQV: state->EndCondition = RDIError_IRQ; break; case ARMul_FIQV: state->EndCondition = RDIError_FIQ; break; default: break; } state->Emulate = FALSE; } }