/* armsupp.c -- ARMulator support code: ARM6 Instruction Emulator. Copyright (C) 1994 Advanced RISC Machines Ltd. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, see . */ #include "armdefs.h" #include "armemu.h" #include "ansidecl.h" #include "libiberty.h" #include /* Definitions for the support routines. */ static ARMword ModeToBank (ARMword); static void EnvokeList (ARMul_State *, unsigned long, unsigned long); struct EventNode { /* An event list node. */ unsigned (*func) (ARMul_State *); /* The function to call. */ struct EventNode *next; }; /* This routine returns the value of a register from a mode. */ ARMword ARMul_GetReg (ARMul_State * state, unsigned mode, unsigned reg) { mode &= MODEBITS; if (mode != state->Mode) return (state->RegBank[ModeToBank ((ARMword) mode)][reg]); else return (state->Reg[reg]); } /* This routine sets the value of a register for a mode. */ void ARMul_SetReg (ARMul_State * state, unsigned mode, unsigned reg, ARMword value) { mode &= MODEBITS; if (mode != state->Mode) state->RegBank[ModeToBank ((ARMword) mode)][reg] = value; else state->Reg[reg] = value; } /* This routine returns the value of the PC, mode independently. */ ARMword ARMul_GetPC (ARMul_State * state) { if (state->Mode > SVC26MODE) return state->Reg[15]; else return R15PC; } /* This routine returns the value of the PC, mode independently. */ ARMword ARMul_GetNextPC (ARMul_State * state) { if (state->Mode > SVC26MODE) return state->Reg[15] + isize; else return (state->Reg[15] + isize) & R15PCBITS; } /* This routine sets the value of the PC. */ void ARMul_SetPC (ARMul_State * state, ARMword value) { if (ARMul_MODE32BIT) state->Reg[15] = value & PCBITS; else state->Reg[15] = R15CCINTMODE | (value & R15PCBITS); FLUSHPIPE; } /* This routine returns the value of register 15, mode independently. */ ARMword ARMul_GetR15 (ARMul_State * state) { if (state->Mode > SVC26MODE) return (state->Reg[15]); else return (R15PC | ECC | ER15INT | EMODE); } /* This routine sets the value of Register 15. */ void ARMul_SetR15 (ARMul_State * state, ARMword value) { if (ARMul_MODE32BIT) state->Reg[15] = value & PCBITS; else { state->Reg[15] = value; ARMul_R15Altered (state); } FLUSHPIPE; } /* This routine returns the value of the CPSR. */ ARMword ARMul_GetCPSR (ARMul_State * state) { return (CPSR | state->Cpsr); } /* This routine sets the value of the CPSR. */ void ARMul_SetCPSR (ARMul_State * state, ARMword value) { state->Cpsr = value; ARMul_CPSRAltered (state); } /* This routine does all the nasty bits involved in a write to the CPSR, including updating the register bank, given a MSR instruction. */ void ARMul_FixCPSR (ARMul_State * state, ARMword instr, ARMword rhs) { state->Cpsr = ARMul_GetCPSR (state); if (state->Mode != USER26MODE && state->Mode != USER32MODE) { /* In user mode, only write flags. */ if (BIT (16)) SETPSR_C (state->Cpsr, rhs); if (BIT (17)) SETPSR_X (state->Cpsr, rhs); if (BIT (18)) SETPSR_S (state->Cpsr, rhs); } if (BIT (19)) SETPSR_F (state->Cpsr, rhs); ARMul_CPSRAltered (state); } /* Get an SPSR from the specified mode. */ ARMword ARMul_GetSPSR (ARMul_State * state, ARMword mode) { ARMword bank = ModeToBank (mode & MODEBITS); if (! BANK_CAN_ACCESS_SPSR (bank)) return ARMul_GetCPSR (state); return state->Spsr[bank]; } /* This routine does a write to an SPSR. */ void ARMul_SetSPSR (ARMul_State * state, ARMword mode, ARMword value) { ARMword bank = ModeToBank (mode & MODEBITS); if (BANK_CAN_ACCESS_SPSR (bank)) state->Spsr[bank] = value; } /* This routine does a write to the current SPSR, given an MSR instruction. */ void ARMul_FixSPSR (ARMul_State * state, ARMword instr, ARMword rhs) { if (BANK_CAN_ACCESS_SPSR (state->Bank)) { if (BIT (16)) SETPSR_C (state->Spsr[state->Bank], rhs); if (BIT (17)) SETPSR_X (state->Spsr[state->Bank], rhs); if (BIT (18)) SETPSR_S (state->Spsr[state->Bank], rhs); if (BIT (19)) SETPSR_F (state->Spsr[state->Bank], rhs); } } /* This routine updates the state of the emulator after the Cpsr has been changed. Both the processor flags and register bank are updated. */ void ARMul_CPSRAltered (ARMul_State * state) { ARMword oldmode; if (state->prog32Sig == LOW) state->Cpsr &= (CCBITS | INTBITS | R15MODEBITS); oldmode = state->Mode; if (state->Mode != (state->Cpsr & MODEBITS)) { state->Mode = ARMul_SwitchMode (state, state->Mode, state->Cpsr & MODEBITS); state->NtransSig = (state->Mode & 3) ? HIGH : LOW; } state->Cpsr &= ~MODEBITS; ASSIGNINT (state->Cpsr & INTBITS); state->Cpsr &= ~INTBITS; ASSIGNN ((state->Cpsr & NBIT) != 0); state->Cpsr &= ~NBIT; ASSIGNZ ((state->Cpsr & ZBIT) != 0); state->Cpsr &= ~ZBIT; ASSIGNC ((state->Cpsr & CBIT) != 0); state->Cpsr &= ~CBIT; ASSIGNV ((state->Cpsr & VBIT) != 0); state->Cpsr &= ~VBIT; ASSIGNS ((state->Cpsr & SBIT) != 0); state->Cpsr &= ~SBIT; #ifdef MODET ASSIGNT ((state->Cpsr & TBIT) != 0); state->Cpsr &= ~TBIT; #endif if (oldmode > SVC26MODE) { if (state->Mode <= SVC26MODE) { state->Emulate = CHANGEMODE; state->Reg[15] = ECC | ER15INT | EMODE | R15PC; } } else { if (state->Mode > SVC26MODE) { state->Emulate = CHANGEMODE; state->Reg[15] = R15PC; } else state->Reg[15] = ECC | ER15INT | EMODE | R15PC; } } /* This routine updates the state of the emulator after register 15 has been changed. Both the processor flags and register bank are updated. This routine should only be called from a 26 bit mode. */ void ARMul_R15Altered (ARMul_State * state) { if (state->Mode != R15MODE) { state->Mode = ARMul_SwitchMode (state, state->Mode, R15MODE); state->NtransSig = (state->Mode & 3) ? HIGH : LOW; } if (state->Mode > SVC26MODE) state->Emulate = CHANGEMODE; ASSIGNR15INT (R15INT); ASSIGNN ((state->Reg[15] & NBIT) != 0); ASSIGNZ ((state->Reg[15] & ZBIT) != 0); ASSIGNC ((state->Reg[15] & CBIT) != 0); ASSIGNV ((state->Reg[15] & VBIT) != 0); } /* This routine controls the saving and restoring of registers across mode changes. The regbank matrix is largely unused, only rows 13 and 14 are used across all modes, 8 to 14 are used for FIQ, all others use the USER column. It's easier this way. old and new parameter are modes numbers. Notice the side effect of changing the Bank variable. */ ARMword ARMul_SwitchMode (ARMul_State * state, ARMword oldmode, ARMword newmode) { unsigned i; ARMword oldbank; ARMword newbank; oldbank = ModeToBank (oldmode); newbank = state->Bank = ModeToBank (newmode); /* Do we really need to do it? */ if (oldbank != newbank) { /* Save away the old registers. */ switch (oldbank) { case USERBANK: case IRQBANK: case SVCBANK: case ABORTBANK: case UNDEFBANK: if (newbank == FIQBANK) for (i = 8; i < 13; i++) state->RegBank[USERBANK][i] = state->Reg[i]; state->RegBank[oldbank][13] = state->Reg[13]; state->RegBank[oldbank][14] = state->Reg[14]; break; case FIQBANK: for (i = 8; i < 15; i++) state->RegBank[FIQBANK][i] = state->Reg[i]; break; case DUMMYBANK: for (i = 8; i < 15; i++) state->RegBank[DUMMYBANK][i] = 0; break; default: abort (); } /* Restore the new registers. */ switch (newbank) { case USERBANK: case IRQBANK: case SVCBANK: case ABORTBANK: case UNDEFBANK: if (oldbank == FIQBANK) for (i = 8; i < 13; i++) state->Reg[i] = state->RegBank[USERBANK][i]; state->Reg[13] = state->RegBank[newbank][13]; state->Reg[14] = state->RegBank[newbank][14]; break; case FIQBANK: for (i = 8; i < 15; i++) state->Reg[i] = state->RegBank[FIQBANK][i]; break; case DUMMYBANK: for (i = 8; i < 15; i++) state->Reg[i] = 0; break; default: abort (); } } return newmode; } /* Given a processor mode, this routine returns the register bank that will be accessed in that mode. */ static ARMword ModeToBank (ARMword mode) { static ARMword bankofmode[] = { USERBANK, FIQBANK, IRQBANK, SVCBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK, USERBANK, FIQBANK, IRQBANK, SVCBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK, ABORTBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK, UNDEFBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK, SYSTEMBANK }; if (mode >= ARRAY_SIZE (bankofmode)) return DUMMYBANK; return bankofmode[mode]; } /* Returns the register number of the nth register in a reg list. */ unsigned ARMul_NthReg (ARMword instr, unsigned number) { unsigned bit, upto; for (bit = 0, upto = 0; upto <= number; bit ++) if (BIT (bit)) upto ++; return (bit - 1); } /* Assigns the N and Z flags depending on the value of result. */ void ARMul_NegZero (ARMul_State * state, ARMword result) { if (NEG (result)) { SETN; CLEARZ; } else if (result == 0) { CLEARN; SETZ; } else { CLEARN; CLEARZ; } } /* Compute whether an addition of A and B, giving RESULT, overflowed. */ int AddOverflow (ARMword a, ARMword b, ARMword result) { return ((NEG (a) && NEG (b) && POS (result)) || (POS (a) && POS (b) && NEG (result))); } /* Compute whether a subtraction of A and B, giving RESULT, overflowed. */ int SubOverflow (ARMword a, ARMword b, ARMword result) { return ((NEG (a) && POS (b) && POS (result)) || (POS (a) && NEG (b) && NEG (result))); } /* Assigns the C flag after an addition of a and b to give result. */ void ARMul_AddCarry (ARMul_State * state, ARMword a, ARMword b, ARMword result) { ASSIGNC ((NEG (a) && NEG (b)) || (NEG (a) && POS (result)) || (NEG (b) && POS (result))); } /* Assigns the V flag after an addition of a and b to give result. */ void ARMul_AddOverflow (ARMul_State * state, ARMword a, ARMword b, ARMword result) { ASSIGNV (AddOverflow (a, b, result)); } /* Assigns the C flag after an subtraction of a and b to give result. */ void ARMul_SubCarry (ARMul_State * state, ARMword a, ARMword b, ARMword result) { ASSIGNC ((NEG (a) && POS (b)) || (NEG (a) && POS (result)) || (POS (b) && POS (result))); } /* Assigns the V flag after an subtraction of a and b to give result. */ void ARMul_SubOverflow (ARMul_State * state, ARMword a, ARMword b, ARMword result) { ASSIGNV (SubOverflow (a, b, result)); } static void handle_VFP_xfer (ARMul_State * state, ARMword instr) { if (TOPBITS (28) == NV) { fprintf (stderr, "SIM: UNDEFINED VFP instruction\n"); return; } if (BITS (25, 27) != 0x6) { fprintf (stderr, "SIM: ISE: VFP handler called incorrectly\n"); return; } switch (BITS (20, 24)) { case 0x04: case 0x05: { /* VMOV double precision to/from two ARM registers. */ int vm = BITS (0, 3); int rt1 = BITS (12, 15); int rt2 = BITS (16, 19); /* FIXME: UNPREDICTABLE if rt1 == 15 or rt2 == 15. */ if (BIT (20)) { /* Transfer to ARM. */ /* FIXME: UPPREDICTABLE if rt1 == rt2. */ state->Reg[rt1] = VFP_dword (vm) & 0xffffffff; state->Reg[rt2] = VFP_dword (vm) >> 32; } else { VFP_dword (vm) = state->Reg[rt2]; VFP_dword (vm) <<= 32; VFP_dword (vm) |= (state->Reg[rt1] & 0xffffffff); } return; } case 0x08: case 0x0A: case 0x0C: case 0x0E: { /* VSTM with PUW=011 or PUW=010. */ int n = BITS (16, 19); int imm8 = BITS (0, 7); ARMword address = state->Reg[n]; if (BIT (21)) state->Reg[n] = address + (imm8 << 2); if (BIT (8)) { int src = (BIT (22) << 4) | BITS (12, 15); imm8 >>= 1; while (imm8--) { if (state->bigendSig) { ARMul_StoreWordN (state, address, VFP_dword (src) >> 32); ARMul_StoreWordN (state, address + 4, VFP_dword (src)); } else { ARMul_StoreWordN (state, address, VFP_dword (src)); ARMul_StoreWordN (state, address + 4, VFP_dword (src) >> 32); } address += 8; src += 1; } } else { int src = (BITS (12, 15) << 1) | BIT (22); while (imm8--) { ARMul_StoreWordN (state, address, VFP_uword (src)); address += 4; src += 1; } } } return; case 0x10: case 0x14: case 0x18: case 0x1C: { /* VSTR */ ARMword imm32 = BITS (0, 7) << 2; int base = state->Reg[LHSReg]; ARMword address; int dest; if (LHSReg == 15) base = (base + 3) & ~3; address = base + (BIT (23) ? imm32 : - imm32); if (CPNum == 10) { dest = (DESTReg << 1) + BIT (22); ARMul_StoreWordN (state, address, VFP_uword (dest)); } else { dest = (BIT (22) << 4) + DESTReg; if (state->bigendSig) { ARMul_StoreWordN (state, address, VFP_dword (dest) >> 32); ARMul_StoreWordN (state, address + 4, VFP_dword (dest)); } else { ARMul_StoreWordN (state, address, VFP_dword (dest)); ARMul_StoreWordN (state, address + 4, VFP_dword (dest) >> 32); } } } return; case 0x12: case 0x16: if (BITS (16, 19) == 13) { /* VPUSH */ ARMword address = state->Reg[13] - (BITS (0, 7) << 2); state->Reg[13] = address; if (BIT (8)) { int dreg = (BIT (22) << 4) | BITS (12, 15); int num = BITS (0, 7) >> 1; while (num--) { if (state->bigendSig) { ARMul_StoreWordN (state, address, VFP_dword (dreg) >> 32); ARMul_StoreWordN (state, address + 4, VFP_dword (dreg)); } else { ARMul_StoreWordN (state, address, VFP_dword (dreg)); ARMul_StoreWordN (state, address + 4, VFP_dword (dreg) >> 32); } address += 8; dreg += 1; } } else { int sreg = (BITS (12, 15) << 1) | BIT (22); int num = BITS (0, 7); while (num--) { ARMul_StoreWordN (state, address, VFP_uword (sreg)); address += 4; sreg += 1; } } } else if (BITS (9, 11) != 0x5) break; else { /* VSTM PUW=101 */ int n = BITS (16, 19); int imm8 = BITS (0, 7); ARMword address = state->Reg[n] - (imm8 << 2); state->Reg[n] = address; if (BIT (8)) { int src = (BIT (22) << 4) | BITS (12, 15); imm8 >>= 1; while (imm8--) { if (state->bigendSig) { ARMul_StoreWordN (state, address, VFP_dword (src) >> 32); ARMul_StoreWordN (state, address + 4, VFP_dword (src)); } else { ARMul_StoreWordN (state, address, VFP_dword (src)); ARMul_StoreWordN (state, address + 4, VFP_dword (src) >> 32); } address += 8; src += 1; } } else { int src = (BITS (12, 15) << 1) | BIT (22); while (imm8--) { ARMul_StoreWordN (state, address, VFP_uword (src)); address += 4; src += 1; } } } return; case 0x13: case 0x17: /* VLDM PUW=101 */ case 0x09: case 0x0D: /* VLDM PUW=010 */ { int n = BITS (16, 19); int imm8 = BITS (0, 7); ARMword address = state->Reg[n]; if (BIT (23) == 0) address -= imm8 << 2; if (BIT (21)) state->Reg[n] = BIT (23) ? address + (imm8 << 2) : address; if (BIT (8)) { int dest = (BIT (22) << 4) | BITS (12, 15); imm8 >>= 1; while (imm8--) { if (state->bigendSig) { VFP_dword (dest) = ARMul_LoadWordN (state, address); VFP_dword (dest) <<= 32; VFP_dword (dest) |= ARMul_LoadWordN (state, address + 4); } else { VFP_dword (dest) = ARMul_LoadWordN (state, address + 4); VFP_dword (dest) <<= 32; VFP_dword (dest) |= ARMul_LoadWordN (state, address); } if (trace) fprintf (stderr, " VFP: VLDM: D%d = %g\n", dest, VFP_dval (dest)); address += 8; dest += 1; } } else { int dest = (BITS (12, 15) << 1) | BIT (22); while (imm8--) { VFP_uword (dest) = ARMul_LoadWordN (state, address); address += 4; dest += 1; } } } return; case 0x0B: case 0x0F: if (BITS (16, 19) == 13) { /* VPOP */ ARMword address = state->Reg[13]; state->Reg[13] = address + (BITS (0, 7) << 2); if (BIT (8)) { int dest = (BIT (22) << 4) | BITS (12, 15); int num = BITS (0, 7) >> 1; while (num--) { if (state->bigendSig) { VFP_dword (dest) = ARMul_LoadWordN (state, address); VFP_dword (dest) <<= 32; VFP_dword (dest) |= ARMul_LoadWordN (state, address + 4); } else { VFP_dword (dest) = ARMul_LoadWordN (state, address + 4); VFP_dword (dest) <<= 32; VFP_dword (dest) |= ARMul_LoadWordN (state, address); } if (trace) fprintf (stderr, " VFP: VPOP: D%d = %g\n", dest, VFP_dval (dest)); address += 8; dest += 1; } } else { int sreg = (BITS (12, 15) << 1) | BIT (22); int num = BITS (0, 7); while (num--) { VFP_uword (sreg) = ARMul_LoadWordN (state, address); address += 4; sreg += 1; } } } else if (BITS (9, 11) != 0x5) break; else { /* VLDM PUW=011 */ int n = BITS (16, 19); int imm8 = BITS (0, 7); ARMword address = state->Reg[n]; state->Reg[n] += imm8 << 2; if (BIT (8)) { int dest = (BIT (22) << 4) | BITS (12, 15); imm8 >>= 1; while (imm8--) { if (state->bigendSig) { VFP_dword (dest) = ARMul_LoadWordN (state, address); VFP_dword (dest) <<= 32; VFP_dword (dest) |= ARMul_LoadWordN (state, address + 4); } else { VFP_dword (dest) = ARMul_LoadWordN (state, address + 4); VFP_dword (dest) <<= 32; VFP_dword (dest) |= ARMul_LoadWordN (state, address); } if (trace) fprintf (stderr, " VFP: VLDM: D%d = %g\n", dest, VFP_dval (dest)); address += 8; dest += 1; } } else { int dest = (BITS (12, 15) << 1) | BIT (22); while (imm8--) { VFP_uword (dest) = ARMul_LoadWordN (state, address); address += 4; dest += 1; } } } return; case 0x11: case 0x15: case 0x19: case 0x1D: { /* VLDR */ ARMword imm32 = BITS (0, 7) << 2; int base = state->Reg[LHSReg]; ARMword address; int dest; if (LHSReg == 15) base = (base + 3) & ~3; address = base + (BIT (23) ? imm32 : - imm32); if (CPNum == 10) { dest = (DESTReg << 1) + BIT (22); VFP_uword (dest) = ARMul_LoadWordN (state, address); } else { dest = (BIT (22) << 4) + DESTReg; if (state->bigendSig) { VFP_dword (dest) = ARMul_LoadWordN (state, address); VFP_dword (dest) <<= 32; VFP_dword (dest) |= ARMul_LoadWordN (state, address + 4); } else { VFP_dword (dest) = ARMul_LoadWordN (state, address + 4); VFP_dword (dest) <<= 32; VFP_dword (dest) |= ARMul_LoadWordN (state, address); } if (trace) fprintf (stderr, " VFP: VLDR: D%d = %g\n", dest, VFP_dval (dest)); } } return; } fprintf (stderr, "SIM: VFP: Unimplemented: %0x\n", BITS (20, 24)); } /* This function does the work of generating the addresses used in an LDC instruction. The code here is always post-indexed, it's up to the caller to get the input address correct and to handle base register modification. It also handles the Busy-Waiting. */ void ARMul_LDC (ARMul_State * state, ARMword instr, ARMword address) { unsigned cpab; ARMword data; if (CPNum == 10 || CPNum == 11) { handle_VFP_xfer (state, instr); return; } UNDEF_LSCPCBaseWb; if (! CP_ACCESS_ALLOWED (state, CPNum)) { ARMul_UndefInstr (state, instr); return; } if (ADDREXCEPT (address)) INTERNALABORT (address); cpab = (state->LDC[CPNum]) (state, ARMul_FIRST, instr, 0); while (cpab == ARMul_BUSY) { ARMul_Icycles (state, 1, 0); if (IntPending (state)) { cpab = (state->LDC[CPNum]) (state, ARMul_INTERRUPT, instr, 0); return; } else cpab = (state->LDC[CPNum]) (state, ARMul_BUSY, instr, 0); } if (cpab == ARMul_CANT) { CPTAKEABORT; return; } cpab = (state->LDC[CPNum]) (state, ARMul_TRANSFER, instr, 0); data = ARMul_LoadWordN (state, address); BUSUSEDINCPCN; if (BIT (21)) LSBase = state->Base; cpab = (state->LDC[CPNum]) (state, ARMul_DATA, instr, data); while (cpab == ARMul_INC) { address += 4; data = ARMul_LoadWordN (state, address); cpab = (state->LDC[CPNum]) (state, ARMul_DATA, instr, data); } if (state->abortSig || state->Aborted) TAKEABORT; } /* This function does the work of generating the addresses used in an STC instruction. The code here is always post-indexed, it's up to the caller to get the input address correct and to handle base register modification. It also handles the Busy-Waiting. */ void ARMul_STC (ARMul_State * state, ARMword instr, ARMword address) { unsigned cpab; ARMword data; if (CPNum == 10 || CPNum == 11) { handle_VFP_xfer (state, instr); return; } UNDEF_LSCPCBaseWb; if (! CP_ACCESS_ALLOWED (state, CPNum)) { ARMul_UndefInstr (state, instr); return; } if (ADDREXCEPT (address) || VECTORACCESS (address)) INTERNALABORT (address); cpab = (state->STC[CPNum]) (state, ARMul_FIRST, instr, &data); while (cpab == ARMul_BUSY) { ARMul_Icycles (state, 1, 0); if (IntPending (state)) { cpab = (state->STC[CPNum]) (state, ARMul_INTERRUPT, instr, 0); return; } else cpab = (state->STC[CPNum]) (state, ARMul_BUSY, instr, &data); } if (cpab == ARMul_CANT) { CPTAKEABORT; return; } #ifndef MODE32 if (ADDREXCEPT (address) || VECTORACCESS (address)) INTERNALABORT (address); #endif BUSUSEDINCPCN; if (BIT (21)) LSBase = state->Base; cpab = (state->STC[CPNum]) (state, ARMul_DATA, instr, &data); ARMul_StoreWordN (state, address, data); while (cpab == ARMul_INC) { address += 4; cpab = (state->STC[CPNum]) (state, ARMul_DATA, instr, &data); ARMul_StoreWordN (state, address, data); } if (state->abortSig || state->Aborted) TAKEABORT; } /* This function does the Busy-Waiting for an MCR instruction. */ void ARMul_MCR (ARMul_State * state, ARMword instr, ARMword source) { unsigned cpab; if (! CP_ACCESS_ALLOWED (state, CPNum)) { ARMul_UndefInstr (state, instr); return; } cpab = (state->MCR[CPNum]) (state, ARMul_FIRST, instr, source); while (cpab == ARMul_BUSY) { ARMul_Icycles (state, 1, 0); if (IntPending (state)) { cpab = (state->MCR[CPNum]) (state, ARMul_INTERRUPT, instr, 0); return; } else cpab = (state->MCR[CPNum]) (state, ARMul_BUSY, instr, source); } if (cpab == ARMul_CANT) ARMul_Abort (state, ARMul_UndefinedInstrV); else { BUSUSEDINCPCN; ARMul_Ccycles (state, 1, 0); } } /* This function does the Busy-Waiting for an MRC instruction. */ ARMword ARMul_MRC (ARMul_State * state, ARMword instr) { unsigned cpab; ARMword result = 0; if (! CP_ACCESS_ALLOWED (state, CPNum)) { ARMul_UndefInstr (state, instr); return result; } cpab = (state->MRC[CPNum]) (state, ARMul_FIRST, instr, &result); while (cpab == ARMul_BUSY) { ARMul_Icycles (state, 1, 0); if (IntPending (state)) { cpab = (state->MRC[CPNum]) (state, ARMul_INTERRUPT, instr, 0); return (0); } else cpab = (state->MRC[CPNum]) (state, ARMul_BUSY, instr, &result); } if (cpab == ARMul_CANT) { ARMul_Abort (state, ARMul_UndefinedInstrV); /* Parent will destroy the flags otherwise. */ result = ECC; } else { BUSUSEDINCPCN; ARMul_Ccycles (state, 1, 0); ARMul_Icycles (state, 1, 0); } return result; } static void handle_VFP_op (ARMul_State * state, ARMword instr) { int dest; int srcN; int srcM; if (BITS (9, 11) != 0x5 || BIT (4) != 0) { fprintf (stderr, "SIM: VFP: Unimplemented: Float op: %08x\n", BITS (0,31)); return; } if (BIT (8)) { dest = BITS(12,15) + (BIT (22) << 4); srcN = LHSReg + (BIT (7) << 4); srcM = BITS (0,3) + (BIT (5) << 4); } else { dest = (BITS(12,15) << 1) + BIT (22); srcN = (LHSReg << 1) + BIT (7); srcM = (BITS (0,3) << 1) + BIT (5); } switch (BITS (20, 27)) { case 0xE0: case 0xE4: /* VMLA VMLS */ if (BIT (8)) { ARMdval val = VFP_dval (srcN) * VFP_dval (srcM); if (BIT (6)) { if (trace) fprintf (stderr, " VFP: VMLS: %g = %g - %g * %g\n", VFP_dval (dest) - val, VFP_dval (dest), VFP_dval (srcN), VFP_dval (srcM)); VFP_dval (dest) -= val; } else { if (trace) fprintf (stderr, " VFP: VMLA: %g = %g + %g * %g\n", VFP_dval (dest) + val, VFP_dval (dest), VFP_dval (srcN), VFP_dval (srcM)); VFP_dval (dest) += val; } } else { ARMfval val = VFP_fval (srcN) * VFP_fval (srcM); if (BIT (6)) { if (trace) fprintf (stderr, " VFP: VMLS: %g = %g - %g * %g\n", VFP_fval (dest) - val, VFP_fval (dest), VFP_fval (srcN), VFP_fval (srcM)); VFP_fval (dest) -= val; } else { if (trace) fprintf (stderr, " VFP: VMLA: %g = %g + %g * %g\n", VFP_fval (dest) + val, VFP_fval (dest), VFP_fval (srcN), VFP_fval (srcM)); VFP_fval (dest) += val; } } return; case 0xE1: case 0xE5: if (BIT (8)) { ARMdval product = VFP_dval (srcN) * VFP_dval (srcM); if (BIT (6)) { /* VNMLA */ if (trace) fprintf (stderr, " VFP: VNMLA: %g = -(%g + (%g * %g))\n", -(VFP_dval (dest) + product), VFP_dval (dest), VFP_dval (srcN), VFP_dval (srcM)); VFP_dval (dest) = -(product + VFP_dval (dest)); } else { /* VNMLS */ if (trace) fprintf (stderr, " VFP: VNMLS: %g = -(%g + (%g * %g))\n", -(VFP_dval (dest) + product), VFP_dval (dest), VFP_dval (srcN), VFP_dval (srcM)); VFP_dval (dest) = product - VFP_dval (dest); } } else { ARMfval product = VFP_fval (srcN) * VFP_fval (srcM); if (BIT (6)) /* VNMLA */ VFP_fval (dest) = -(product + VFP_fval (dest)); else /* VNMLS */ VFP_fval (dest) = product - VFP_fval (dest); } return; case 0xE2: case 0xE6: if (BIT (8)) { ARMdval product = VFP_dval (srcN) * VFP_dval (srcM); if (BIT (6)) { if (trace) fprintf (stderr, " VFP: VMUL: %g = %g * %g\n", - product, VFP_dval (srcN), VFP_dval (srcM)); /* VNMUL */ VFP_dval (dest) = - product; } else { if (trace) fprintf (stderr, " VFP: VMUL: %g = %g * %g\n", product, VFP_dval (srcN), VFP_dval (srcM)); /* VMUL */ VFP_dval (dest) = product; } } else { ARMfval product = VFP_fval (srcN) * VFP_fval (srcM); if (BIT (6)) { if (trace) fprintf (stderr, " VFP: VNMUL: %g = %g * %g\n", - product, VFP_fval (srcN), VFP_fval (srcM)); VFP_fval (dest) = - product; } else { if (trace) fprintf (stderr, " VFP: VMUL: %g = %g * %g\n", product, VFP_fval (srcN), VFP_fval (srcM)); VFP_fval (dest) = product; } } return; case 0xE3: case 0xE7: if (BIT (6) == 0) { /* VADD */ if (BIT(8)) { if (trace) fprintf (stderr, " VFP: VADD %g = %g + %g\n", VFP_dval (srcN) + VFP_dval (srcM), VFP_dval (srcN), VFP_dval (srcM)); VFP_dval (dest) = VFP_dval (srcN) + VFP_dval (srcM); } else VFP_fval (dest) = VFP_fval (srcN) + VFP_fval (srcM); } else { /* VSUB */ if (BIT(8)) { if (trace) fprintf (stderr, " VFP: VSUB %g = %g - %g\n", VFP_dval (srcN) - VFP_dval (srcM), VFP_dval (srcN), VFP_dval (srcM)); VFP_dval (dest) = VFP_dval (srcN) - VFP_dval (srcM); } else VFP_fval (dest) = VFP_fval (srcN) - VFP_fval (srcM); } return; case 0xE8: case 0xEC: if (BIT (6) == 1) break; /* VDIV */ if (BIT (8)) { ARMdval res = VFP_dval (srcN) / VFP_dval (srcM); if (trace) fprintf (stderr, " VFP: VDIV (64bit): %g = %g / %g\n", res, VFP_dval (srcN), VFP_dval (srcM)); VFP_dval (dest) = res; } else { if (trace) fprintf (stderr, " VFP: VDIV: %g = %g / %g\n", VFP_fval (srcN) / VFP_fval (srcM), VFP_fval (srcN), VFP_fval (srcM)); VFP_fval (dest) = VFP_fval (srcN) / VFP_fval (srcM); } return; case 0xEB: case 0xEF: if (BIT (6) != 1) break; switch (BITS (16, 19)) { case 0x0: if (BIT (7) == 0) { if (BIT (8)) { /* VMOV.F64
, . */ VFP_dval (dest) = VFP_dval (srcM); if (trace) fprintf (stderr, " VFP: VMOV d%d, d%d: %g\n", dest, srcM, VFP_dval (srcM)); } else { /* VMOV.F32 , . */ VFP_fval (dest) = VFP_fval (srcM); if (trace) fprintf (stderr, " VFP: VMOV s%d, s%d: %g\n", dest, srcM, VFP_fval (srcM)); } } else { /* VABS */ if (BIT (8)) { ARMdval src = VFP_dval (srcM); VFP_dval (dest) = fabs (src); if (trace) fprintf (stderr, " VFP: VABS (%g) = %g\n", src, VFP_dval (dest)); } else { ARMfval src = VFP_fval (srcM); VFP_fval (dest) = fabsf (src); if (trace) fprintf (stderr, " VFP: VABS (%g) = %g\n", src, VFP_fval (dest)); } } return; case 0x1: if (BIT (7) == 0) { /* VNEG */ if (BIT (8)) VFP_dval (dest) = - VFP_dval (srcM); else VFP_fval (dest) = - VFP_fval (srcM); } else { /* VSQRT */ if (BIT (8)) { if (trace) fprintf (stderr, " VFP: %g = root(%g)\n", sqrt (VFP_dval (srcM)), VFP_dval (srcM)); VFP_dval (dest) = sqrt (VFP_dval (srcM)); } else { if (trace) fprintf (stderr, " VFP: %g = root(%g)\n", sqrtf (VFP_fval (srcM)), VFP_fval (srcM)); VFP_fval (dest) = sqrtf (VFP_fval (srcM)); } } return; case 0x4: case 0x5: /* VCMP, VCMPE */ if (BIT(8)) { ARMdval res = VFP_dval (dest); if (BIT (16) == 0) { ARMdval src = VFP_dval (srcM); if (isinf (res) && isinf (src)) { if (res > 0.0 && src > 0.0) res = 0.0; else if (res < 0.0 && src < 0.0) res = 0.0; /* else leave res alone. */ } else res -= src; } /* FIXME: Add handling of signalling NaNs and the E bit. */ state->FPSCR &= 0x0FFFFFFF; if (res < 0.0) state->FPSCR |= NBIT; else state->FPSCR |= CBIT; if (res == 0.0) state->FPSCR |= ZBIT; if (isnan (res)) state->FPSCR |= VBIT; if (trace) fprintf (stderr, " VFP: VCMP (64bit) %g vs %g res %g, flags: %c%c%c%c\n", VFP_dval (dest), BIT (16) ? 0.0 : VFP_dval (srcM), res, state->FPSCR & NBIT ? 'N' : '-', state->FPSCR & ZBIT ? 'Z' : '-', state->FPSCR & CBIT ? 'C' : '-', state->FPSCR & VBIT ? 'V' : '-'); } else { ARMfval res = VFP_fval (dest); if (BIT (16) == 0) { ARMfval src = VFP_fval (srcM); if (isinf (res) && isinf (src)) { if (res > 0.0 && src > 0.0) res = 0.0; else if (res < 0.0 && src < 0.0) res = 0.0; /* else leave res alone. */ } else res -= src; } /* FIXME: Add handling of signalling NaNs and the E bit. */ state->FPSCR &= 0x0FFFFFFF; if (res < 0.0) state->FPSCR |= NBIT; else state->FPSCR |= CBIT; if (res == 0.0) state->FPSCR |= ZBIT; if (isnan (res)) state->FPSCR |= VBIT; if (trace) fprintf (stderr, " VFP: VCMP (32bit) %g vs %g res %g, flags: %c%c%c%c\n", VFP_fval (dest), BIT (16) ? 0.0 : VFP_fval (srcM), res, state->FPSCR & NBIT ? 'N' : '-', state->FPSCR & ZBIT ? 'Z' : '-', state->FPSCR & CBIT ? 'C' : '-', state->FPSCR & VBIT ? 'V' : '-'); } return; case 0x7: if (BIT (8)) { dest = (DESTReg << 1) + BIT (22); VFP_fval (dest) = VFP_dval (srcM); } else { dest = DESTReg + (BIT (22) << 4); VFP_dval (dest) = VFP_fval (srcM); } return; case 0x8: case 0xC: case 0xD: /* VCVT integer <-> FP */ if (BIT (18)) { /* To integer. */ if (BIT (8)) { dest = (BITS(12,15) << 1) + BIT (22); if (BIT (16)) VFP_sword (dest) = VFP_dval (srcM); else VFP_uword (dest) = VFP_dval (srcM); } else { if (BIT (16)) VFP_sword (dest) = VFP_fval (srcM); else VFP_uword (dest) = VFP_fval (srcM); } } else { /* From integer. */ if (BIT (8)) { srcM = (BITS (0,3) << 1) + BIT (5); if (BIT (7)) VFP_dval (dest) = VFP_sword (srcM); else VFP_dval (dest) = VFP_uword (srcM); } else { if (BIT (7)) VFP_fval (dest) = VFP_sword (srcM); else VFP_fval (dest) = VFP_uword (srcM); } } return; } fprintf (stderr, "SIM: VFP: Unimplemented: Float op3: %03x\n", BITS (16,27)); return; } fprintf (stderr, "SIM: VFP: Unimplemented: Float op2: %02x\n", BITS (20, 27)); return; } /* This function does the Busy-Waiting for an CDP instruction. */ void ARMul_CDP (ARMul_State * state, ARMword instr) { unsigned cpab; if (CPNum == 10 || CPNum == 11) { handle_VFP_op (state, instr); return; } if (! CP_ACCESS_ALLOWED (state, CPNum)) { ARMul_UndefInstr (state, instr); return; } cpab = (state->CDP[CPNum]) (state, ARMul_FIRST, instr); while (cpab == ARMul_BUSY) { ARMul_Icycles (state, 1, 0); if (IntPending (state)) { cpab = (state->CDP[CPNum]) (state, ARMul_INTERRUPT, instr); return; } else cpab = (state->CDP[CPNum]) (state, ARMul_BUSY, instr); } if (cpab == ARMul_CANT) ARMul_Abort (state, ARMul_UndefinedInstrV); else BUSUSEDN; } /* This function handles Undefined instructions, as CP isntruction. */ void ARMul_UndefInstr (ARMul_State * state, ARMword instr ATTRIBUTE_UNUSED) { ARMul_Abort (state, ARMul_UndefinedInstrV); } /* Return TRUE if an interrupt is pending, FALSE otherwise. */ unsigned IntPending (ARMul_State * state) { if (state->Exception) { /* Any exceptions. */ if (state->NresetSig == LOW) { ARMul_Abort (state, ARMul_ResetV); return TRUE; } else if (!state->NfiqSig && !FFLAG) { ARMul_Abort (state, ARMul_FIQV); return TRUE; } else if (!state->NirqSig && !IFLAG) { ARMul_Abort (state, ARMul_IRQV); return TRUE; } } return FALSE; } /* Align a word access to a non word boundary. */ ARMword ARMul_Align (ARMul_State *state ATTRIBUTE_UNUSED, ARMword address, ARMword data) { /* This code assumes the address is really unaligned, as a shift by 32 is undefined in C. */ address = (address & 3) << 3; /* Get the word address. */ return ((data >> address) | (data << (32 - address))); /* rot right */ } /* This routine is used to call another routine after a certain number of cycles have been executed. The first parameter is the number of cycles delay before the function is called, the second argument is a pointer to the function. A delay of zero doesn't work, just call the function. */ void ARMul_ScheduleEvent (ARMul_State * state, unsigned long delay, unsigned (*what) (ARMul_State *)) { unsigned long when; struct EventNode *event; if (state->EventSet++ == 0) state->Now = ARMul_Time (state); when = (state->Now + delay) % EVENTLISTSIZE; event = (struct EventNode *) malloc (sizeof (struct EventNode)); event->func = what; event->next = *(state->EventPtr + when); *(state->EventPtr + when) = event; } /* This routine is called at the beginning of every cycle, to envoke scheduled events. */ void ARMul_EnvokeEvent (ARMul_State * state) { static unsigned long then; then = state->Now; state->Now = ARMul_Time (state) % EVENTLISTSIZE; if (then < state->Now) /* Schedule events. */ EnvokeList (state, then, state->Now); else if (then > state->Now) { /* Need to wrap around the list. */ EnvokeList (state, then, EVENTLISTSIZE - 1L); EnvokeList (state, 0L, state->Now); } } /* Envokes all the entries in a range. */ static void EnvokeList (ARMul_State * state, unsigned long from, unsigned long to) { for (; from <= to; from++) { struct EventNode *anevent; anevent = *(state->EventPtr + from); while (anevent) { (anevent->func) (state); state->EventSet--; anevent = anevent->next; } *(state->EventPtr + from) = NULL; } } /* This routine is returns the number of clock ticks since the last reset. */ unsigned long ARMul_Time (ARMul_State * state) { return (state->NumScycles + state->NumNcycles + state->NumIcycles + state->NumCcycles + state->NumFcycles); }