/* mem.c --- memory for RL78 simulator. Copyright (C) 2011-2020 Free Software Foundation, Inc. Contributed by Red Hat, Inc. This file is part of the GNU simulators. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "config.h" #include #include #include #include "opcode/rl78.h" #include "mem.h" #include "cpu.h" #define ILLEGAL_OPCODE 0xff int rom_limit = 0x100000; int ram_base = 0xf8000; unsigned char memory[MEM_SIZE]; #define MASK 0xfffff unsigned char initted[MEM_SIZE]; int skip_init = 0; #define tprintf if (trace) printf void init_mem (void) { memset (memory, ILLEGAL_OPCODE, sizeof (memory)); memset (memory + 0xf0000, 0x33, 0x10000); memset (initted, 0, sizeof (initted)); memset (initted + 0xffee0, 1, 0x00120); memset (initted + 0xf0000, 1, 0x01000); } void mem_ram_size (int ram_bytes) { ram_base = 0x100000 - ram_bytes; } void mem_rom_size (int rom_bytes) { rom_limit = rom_bytes; } int mirror_rom_base = 0x01000; int mirror_ram_base = 0xf1000; int mirror_length = 0x7000; void mem_set_mirror (int rom_base, int ram_base, int length) { mirror_rom_base = rom_base; mirror_ram_base = ram_base; mirror_length = length; } /* ---------------------------------------------------------------------- */ /* Note: the RL78 memory map has a few surprises. For starters, part of the first 64k is mapped to the last 64k, depending on an SFR bit and how much RAM the chip has. This is simulated here, as are a few peripherals. */ /* This is stdout. We only care about the data byte, not the upper byte. */ #define SDR00 0xfff10 #define SSR00 0xf0100 #define TS0 0xf01b2 /* RL78/G13 multiply/divide peripheral. */ #define MDUC 0xf00e8 #define MDAL 0xffff0 #define MDAH 0xffff2 #define MDBL 0xffff6 #define MDBH 0xffff4 #define MDCL 0xf00e0 #define MDCH 0xf00e2 static long long mduc_clock = 0; static int mda_set = 0; #define MDA_SET 15 static int last_addr_was_mirror; static int address_mapping (int address) { address &= MASK; if (address >= mirror_ram_base && address < mirror_ram_base + mirror_length) { address = address - mirror_ram_base + mirror_rom_base; if (memory[RL78_SFR_PMC] & 1) { address |= 0x10000; } last_addr_was_mirror = 1; } else last_addr_was_mirror = 0; return address; } static void mem_put_byte (int address, unsigned char value) { address = address_mapping (address); memory [address] = value; initted [address] = 1; if (address == SDR00) { putchar (value); fflush (stdout); } if (address == TS0) { if (timer_enabled == 2) { total_clocks = 0; pending_clocks = 0; memset (counts_per_insn, 0, sizeof (counts_per_insn)); memory[0xf0180] = 0xff; memory[0xf0181] = 0xff; } if (value & 1) timer_enabled = 1; else timer_enabled = 0; } if (address == RL78_SFR_SP && value & 1) { printf ("Warning: SP value 0x%04x truncated at pc=0x%05x\n", value, pc); value &= ~1; } if (! g13_multiply) return; if (address == MDUC) { if ((value & 0x81) == 0x81) { /* division */ mduc_clock = total_clocks; } } if ((address & ~3) == MDAL) { mda_set |= (1 << (address & 3)); if (mda_set == MDA_SET) { long als, ahs; unsigned long alu, ahu; long rvs; long mdc; unsigned long rvu; mda_set = 0; switch (memory [MDUC] & 0xc8) { case 0x00: alu = mem_get_hi (MDAL); ahu = mem_get_hi (MDAH); rvu = alu * ahu; tprintf ("MDUC: %lu * %lu = %lu\n", alu, ahu, rvu); mem_put_hi (MDBL, rvu & 0xffff); mem_put_hi (MDBH, rvu >> 16); break; case 0x08: als = sign_ext (mem_get_hi (MDAL), 16); ahs = sign_ext (mem_get_hi (MDAH), 16); rvs = als * ahs; tprintf ("MDUC: %ld * %ld = %ld\n", als, ahs, rvs); mem_put_hi (MDBL, rvs & 0xffff); mem_put_hi (MDBH, rvs >> 16); break; case 0x40: alu = mem_get_hi (MDAL); ahu = mem_get_hi (MDAH); rvu = alu * ahu; mem_put_hi (MDBL, rvu & 0xffff); mem_put_hi (MDBH, rvu >> 16); mdc = mem_get_si (MDCL); tprintf ("MDUC: %lu * %lu + %lu = ", alu, ahu, mdc); mdc += (long) rvu; tprintf ("%lu\n", mdc); mem_put_si (MDCL, mdc); break; case 0x48: als = sign_ext (mem_get_hi (MDAL), 16); ahs = sign_ext (mem_get_hi (MDAH), 16); rvs = als * ahs; mem_put_hi (MDBL, rvs & 0xffff); mem_put_hi (MDBH, rvs >> 16); mdc = mem_get_si (MDCL); tprintf ("MDUC: %ld * %ld + %ld = ", als, ahs, mdc); tprintf ("%ld\n", mdc); mdc += rvs; mem_put_si (MDCL, mdc); break; } } } } extern long long total_clocks; static unsigned char mem_get_byte (int address) { address = address_mapping (address); switch (address) { case SSR00: case SSR00 + 1: return 0x00; case 0xf00f0: return 0; case 0xf0180: case 0xf0181: return memory[address]; case MDUC: { unsigned char mduc = memory [MDUC]; if ((mduc & 0x81) == 0x81 && total_clocks > mduc_clock + 16) { unsigned long a, b, q, r; memory [MDUC] &= 0xfe; a = mem_get_si (MDAL); b = mem_get_hi (MDBL) | (mem_get_hi (MDBH) << 16); if (b == 0) { q = ~0; r = ~0; } else { q = a / b; r = a % b; } tprintf ("MDUC: %lu / %lu = q %lu, r %lu\n", a, b, q, r); mem_put_si (MDAL, q); mem_put_si (MDCL, r); } return memory[address]; } case MDCL: case MDCL + 1: case MDCH: case MDCH + 1: return memory[address]; } if (address < 0xf1000 && address >= 0xf0000) { #if 1 /* Note: comment out this return to trap the invalid access instead of returning an "undefined" value. */ return 0x11; #else fprintf (stderr, "SFR access error: addr 0x%05x pc 0x%05x\n", address, pc); exit (1); #endif } #if 0 /* Uncomment this block if you want to trap on reads from unwritten memory. */ if (!skip_init && !initted [address]) { static int uninit_count = 0; fprintf (stderr, "\033[31mwarning :read from uninit addr %05x pc %05x\033[0m\n", address, pc); uninit_count ++; if (uninit_count > 5) exit (1); } #endif return memory [address]; } extern jmp_buf decode_jmp_buf; #define DO_RETURN(x) longjmp (decode_jmp_buf, x) #define CHECK_ALIGNMENT(a,v,m) \ if (a & m) { printf ("Misalignment addr 0x%05x val 0x%04x pc %05x\n", (int)a, (int)v, (int)pc); \ DO_RETURN (RL78_MAKE_HIT_BREAK ()); } /* ---------------------------------------------------------------------- */ #define SPECIAL_ADDR(a) (0xffff0 <= a || (0xffee0 <= a && a < 0xfff00)) void mem_put_qi (int address, unsigned char value) { if (!SPECIAL_ADDR (address)) tprintf ("\033[34m([%05X]<-%02X)\033[0m", address, value); mem_put_byte (address, value); } void mem_put_hi (int address, unsigned short value) { if (!SPECIAL_ADDR (address)) tprintf ("\033[34m([%05X]<-%04X)\033[0m", address, value); CHECK_ALIGNMENT (address, value, 1); if (address > 0xffff8 && address != RL78_SFR_SP) { tprintf ("Word access to 0x%05x!!\n", address); DO_RETURN (RL78_MAKE_HIT_BREAK ()); } mem_put_byte (address, value); mem_put_byte (address + 1, value >> 8); } void mem_put_psi (int address, unsigned long value) { tprintf ("\033[34m([%05X]<-%06lX)\033[0m", address, value); mem_put_byte (address, value); mem_put_byte (address + 1, value >> 8); mem_put_byte (address + 2, value >> 16); } void mem_put_si (int address, unsigned long value) { tprintf ("\033[34m([%05X]<-%08lX)\033[0m", address, value); CHECK_ALIGNMENT (address, value, 3); mem_put_byte (address, value); mem_put_byte (address + 1, value >> 8); mem_put_byte (address + 2, value >> 16); mem_put_byte (address + 3, value >> 24); } void mem_put_blk (int address, const void *bufptr, int nbytes) { const unsigned char *bp = (unsigned char *)bufptr; while (nbytes --) mem_put_byte (address ++, *bp ++); } unsigned char mem_get_pc (int address) { /* Catch obvious problems. */ if (address >= rom_limit && address < 0xf0000) return 0xff; /* This does NOT go through the flash mirror area; you cannot execute out of the mirror. */ return memory [address & MASK]; } unsigned char mem_get_qi (int address) { int v; v = mem_get_byte (address); if (!SPECIAL_ADDR (address)) tprintf ("\033[35m([%05X]->%04X)\033[0m", address, v); if (last_addr_was_mirror) { pending_clocks += 3; tprintf ("ROM read\n"); } return v; } unsigned short mem_get_hi (int address) { int v; v = mem_get_byte (address) | mem_get_byte (address + 1) * 256; CHECK_ALIGNMENT (address, v, 1); if (!SPECIAL_ADDR (address)) tprintf ("\033[35m([%05X]->%04X)\033[0m", address, v); if (last_addr_was_mirror) { pending_clocks += 3; tprintf ("ROM read\n"); } return v; } unsigned long mem_get_psi (int address) { int v; v = mem_get_byte (address) | mem_get_byte (address + 1) * 256 | mem_get_byte (address + 2) * 65536; tprintf ("\033[35m([%05X]->%04X)\033[0m", address, v); return v; } unsigned long mem_get_si (int address) { int v; v = mem_get_byte (address) | mem_get_byte (address + 1) * 256 | mem_get_byte (address + 2) * 65536 | mem_get_byte (address + 2) * 16777216; CHECK_ALIGNMENT (address, v, 3); tprintf ("(\033[35m[%05X]->%04X)\033[0m", address, v); return v; } void mem_get_blk (int address, void *bufptr, int nbytes) { unsigned char *bp = (unsigned char *)bufptr; while (nbytes --) *bp ++ = mem_get_byte (address ++); } int sign_ext (int v, int bits) { if (bits < 8 * sizeof (int)) { v &= (1 << bits) - 1; if (v & (1 << (bits - 1))) v -= (1 << bits); } return v; }