// symtab.cc -- the gold symbol table #include "gold.h" #include #include #include #include #include "object.h" #include "symtab.h" namespace gold { // Class Symbol. // Initialize the fields in the base class Symbol. template void Symbol::init_base(const char* name, const char* version, Object* object, const elfcpp::Sym& sym) { this->name_ = name; this->version_ = version; this->object_ = object; this->shnum_ = sym.get_st_shndx(); // FIXME: Handle SHN_XINDEX. this->type_ = sym.get_st_type(); this->binding_ = sym.get_st_bind(); this->visibility_ = sym.get_st_visibility(); this->other_ = sym.get_st_nonvis(); this->is_special_ = false; this->is_def_ = false; this->is_forwarder_ = false; this->in_dyn_ = object->is_dynamic(); } // Initialize the fields in Sized_symbol. template template void Sized_symbol::init(const char* name, const char* version, Object* object, const elfcpp::Sym& sym) { this->init_base(name, version, object, sym); this->value_ = sym.get_st_value(); this->size_ = sym.get_st_size(); } // Class Symbol_table. Symbol_table::Symbol_table() : size_(0), table_(), namepool_(), forwarders_() { } Symbol_table::~Symbol_table() { } // The hash function. The key is always canonicalized, so we use a // simple combination of the pointers. size_t Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const { return (reinterpret_cast(key.first) ^ reinterpret_cast(key.second)); } // The symbol table key equality function. This is only called with // canonicalized name and version strings, so we can use pointer // comparison. bool Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1, const Symbol_table_key& k2) const { return k1.first == k2.first && k1.second == k2.second; } // Make TO a symbol which forwards to FROM. void Symbol_table::make_forwarder(Symbol* from, Symbol* to) { assert(!from->is_forwarder() && !to->is_forwarder()); this->forwarders_[from] = to; from->set_forwarder(); } Symbol* Symbol_table::resolve_forwards(Symbol* from) const { assert(from->is_forwarder()); Unordered_map::const_iterator p = this->forwarders_.find(from); assert(p != this->forwarders_.end()); return p->second; } // Resolve a Symbol with another Symbol. This is only used in the // unusual case where there are references to both an unversioned // symbol and a symbol with a version, and we then discover that that // version is the default version. Because this is unusual, we do // this the slow way, by converting back to an ELF symbol. template void Symbol_table::resolve(Sized_symbol* to, const Sized_symbol* from) { unsigned char buf[elfcpp::Elf_sizes::sym_size]; elfcpp::Sym_write esym(buf); // We don't bother to set the st_name field. esym.put_st_value(from->value()); esym.put_st_size(from->symsize()); esym.put_st_info(from->binding(), from->type()); esym.put_st_other(from->visibility(), from->other()); esym.put_st_shndx(from->shnum()); Symbol_table::resolve(to, esym.sym(), from->object()); } // Add one symbol from OBJECT to the symbol table. NAME is symbol // name and VERSION is the version; both are canonicalized. DEF is // whether this is the default version. // If DEF is true, then this is the definition of a default version of // a symbol. That means that any lookup of NAME/NULL and any lookup // of NAME/VERSION should always return the same symbol. This is // obvious for references, but in particular we want to do this for // definitions: overriding NAME/NULL should also override // NAME/VERSION. If we don't do that, it would be very hard to // override functions in a shared library which uses versioning. // We implement this by simply making both entries in the hash table // point to the same Symbol structure. That is easy enough if this is // the first time we see NAME/NULL or NAME/VERSION, but it is possible // that we have seen both already, in which case they will both have // independent entries in the symbol table. We can't simply change // the symbol table entry, because we have pointers to the entries // attached to the object files. So we mark the entry attached to the // object file as a forwarder, and record it in the forwarders_ map. // Note that entries in the hash table will never be marked as // forwarders. template Symbol* Symbol_table::add_from_object(Sized_object* object, const char *name, const char *version, bool def, const elfcpp::Sym& sym) { Symbol* const snull = NULL; std::pair ins = this->table_.insert(std::make_pair(std::make_pair(name, version), snull)); std::pair insdef = std::make_pair(this->table_.end(), false); if (def) { const char* const vnull = NULL; insdef = this->table_.insert(std::make_pair(std::make_pair(name, vnull), snull)); } // ins.first: an iterator, which is a pointer to a pair. // ins.first->first: the key (a pair of name and version). // ins.first->second: the value (Symbol*). // ins.second: true if new entry was inserted, false if not. Sized_symbol* ret; if (!ins.second) { // We already have an entry for NAME/VERSION. ret = this->get_sized_symbol(ins.first->second); assert(ret != NULL); Symbol_table::resolve(ret, sym, object); if (def) { if (insdef.second) { // This is the first time we have seen NAME/NULL. Make // NAME/NULL point to NAME/VERSION. insdef.first->second = ret; } else { // This is the unfortunate case where we already have // entries for both NAME/VERSION and NAME/NULL. const Sized_symbol* sym2 = this->get_sized_symbol(insdef.first->second); Symbol_table::resolve(ret, sym2); this->make_forwarder(insdef.first->second, ret); insdef.first->second = ret; } } } else { // This is the first time we have seen NAME/VERSION. assert(ins.first->second == NULL); if (def && !insdef.second) { // We already have an entry for NAME/NULL. Make // NAME/VERSION point to it. ret = this->get_sized_symbol(insdef.first->second); Symbol_table::resolve(ret, sym, object); ins.first->second = ret; } else { Sized_target* target = object->sized_target(); if (!target->has_make_symbol()) ret = new Sized_symbol(); else { ret = target->make_symbol(); if (ret == NULL) { // This means that we don't want a symbol table // entry after all. if (!def) this->table_.erase(ins.first); else { this->table_.erase(insdef.first); // Inserting insdef invalidated ins. this->table_.erase(std::make_pair(name, version)); } return NULL; } } ret->init(name, version, object, sym); ins.first->second = ret; if (def) { // This is the first time we have seen NAME/NULL. Point // it at the new entry for NAME/VERSION. assert(insdef.second); insdef.first->second = ret; } } } return ret; } // Add all the symbols in an object to the hash table. template void Symbol_table::add_from_object( Sized_object* object, const elfcpp::Sym* syms, size_t count, const char* sym_names, size_t sym_name_size, Symbol** sympointers) { // We take the size from the first object we see. if (this->get_size() == 0) this->set_size(size); if (size != this->get_size() || size != object->target()->get_size()) { fprintf(stderr, _("%s: %s: mixing 32-bit and 64-bit ELF objects\n"), program_name, object->name().c_str()); gold_exit(false); } const unsigned char* p = reinterpret_cast(syms); for (size_t i = 0; i < count; ++i) { elfcpp::Sym sym(p); unsigned int st_name = sym.get_st_name(); if (st_name >= sym_name_size) { fprintf(stderr, _("%s: %s: bad symbol name offset %u at %lu\n"), program_name, object->name().c_str(), st_name, static_cast(i)); gold_exit(false); } const char* name = sym_names + st_name; // In an object file, an '@' in the name separates the symbol // name from the version name. If there are two '@' characters, // this is the default version. const char* ver = strchr(name, '@'); Symbol* res; if (ver == NULL) { name = this->namepool_.add(name); res = this->add_from_object(object, name, NULL, false, sym); } else { name = this->namepool_.add(name, ver - name); bool def = false; ++ver; if (*ver == '@') { def = true; ++ver; } ver = this->namepool_.add(ver); res = this->add_from_object(object, name, ver, def, sym); } *sympointers++ = res; p += elfcpp::Elf_sizes::sym_size; } } // Instantiate the templates we need. We could use the configure // script to restrict this to only the ones needed for implemented // targets. template void Symbol_table::add_from_object<32, true>( Sized_object<32, true>* object, const elfcpp::Sym<32, true>* syms, size_t count, const char* sym_names, size_t sym_name_size, Symbol** sympointers); template void Symbol_table::add_from_object<32, false>( Sized_object<32, false>* object, const elfcpp::Sym<32, false>* syms, size_t count, const char* sym_names, size_t sym_name_size, Symbol** sympointers); template void Symbol_table::add_from_object<64, true>( Sized_object<64, true>* object, const elfcpp::Sym<64, true>* syms, size_t count, const char* sym_names, size_t sym_name_size, Symbol** sympointers); template void Symbol_table::add_from_object<64, false>( Sized_object<64, false>* object, const elfcpp::Sym<64, false>* syms, size_t count, const char* sym_names, size_t sym_name_size, Symbol** sympointers); } // End namespace gold.