/* ELF executable support for BFD. Copyright 1993, 1994, 1995, 1996 Free Software Foundation, Inc. This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* SECTION ELF backends BFD support for ELF formats is being worked on. Currently, the best supported back ends are for sparc and i386 (running svr4 or Solaris 2). Documentation of the internals of the support code still needs to be written. The code is changing quickly enough that we haven't bothered yet. */ #include "bfd.h" #include "sysdep.h" #include "bfdlink.h" #include "libbfd.h" #define ARCH_SIZE 0 #include "elf-bfd.h" static INLINE struct elf_segment_map *make_mapping PARAMS ((bfd *, asection **, unsigned int, unsigned int, boolean)); static boolean map_sections_to_segments PARAMS ((bfd *)); static int elf_sort_sections PARAMS ((const PTR, const PTR)); static boolean assign_file_positions_for_segments PARAMS ((bfd *)); static boolean assign_file_positions_except_relocs PARAMS ((bfd *)); static boolean prep_headers PARAMS ((bfd *)); static boolean swap_out_syms PARAMS ((bfd *, struct bfd_strtab_hash **)); static boolean copy_private_bfd_data PARAMS ((bfd *, bfd *)); /* Standard ELF hash function. Do not change this function; you will cause invalid hash tables to be generated. (Well, you would if this were being used yet.) */ unsigned long bfd_elf_hash (name) CONST unsigned char *name; { unsigned long h = 0; unsigned long g; int ch; while ((ch = *name++) != '\0') { h = (h << 4) + ch; if ((g = (h & 0xf0000000)) != 0) { h ^= g >> 24; h &= ~g; } } return h; } /* Read a specified number of bytes at a specified offset in an ELF file, into a newly allocated buffer, and return a pointer to the buffer. */ static char * elf_read (abfd, offset, size) bfd * abfd; long offset; unsigned int size; { char *buf; if ((buf = bfd_alloc (abfd, size)) == NULL) return NULL; if (bfd_seek (abfd, offset, SEEK_SET) == -1) return NULL; if (bfd_read ((PTR) buf, size, 1, abfd) != size) { if (bfd_get_error () != bfd_error_system_call) bfd_set_error (bfd_error_file_truncated); return NULL; } return buf; } boolean elf_mkobject (abfd) bfd * abfd; { /* this just does initialization */ /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */ elf_tdata (abfd) = (struct elf_obj_tdata *) bfd_zalloc (abfd, sizeof (struct elf_obj_tdata)); if (elf_tdata (abfd) == 0) return false; /* since everything is done at close time, do we need any initialization? */ return true; } char * bfd_elf_get_str_section (abfd, shindex) bfd * abfd; unsigned int shindex; { Elf_Internal_Shdr **i_shdrp; char *shstrtab = NULL; unsigned int offset; unsigned int shstrtabsize; i_shdrp = elf_elfsections (abfd); if (i_shdrp == 0 || i_shdrp[shindex] == 0) return 0; shstrtab = (char *) i_shdrp[shindex]->contents; if (shstrtab == NULL) { /* No cached one, attempt to read, and cache what we read. */ offset = i_shdrp[shindex]->sh_offset; shstrtabsize = i_shdrp[shindex]->sh_size; shstrtab = elf_read (abfd, offset, shstrtabsize); i_shdrp[shindex]->contents = (PTR) shstrtab; } return shstrtab; } char * bfd_elf_string_from_elf_section (abfd, shindex, strindex) bfd * abfd; unsigned int shindex; unsigned int strindex; { Elf_Internal_Shdr *hdr; if (strindex == 0) return ""; hdr = elf_elfsections (abfd)[shindex]; if (hdr->contents == NULL && bfd_elf_get_str_section (abfd, shindex) == NULL) return NULL; return ((char *) hdr->contents) + strindex; } /* Make a BFD section from an ELF section. We store a pointer to the BFD section in the bfd_section field of the header. */ boolean _bfd_elf_make_section_from_shdr (abfd, hdr, name) bfd *abfd; Elf_Internal_Shdr *hdr; const char *name; { asection *newsect; flagword flags; if (hdr->bfd_section != NULL) { BFD_ASSERT (strcmp (name, bfd_get_section_name (abfd, hdr->bfd_section)) == 0); return true; } newsect = bfd_make_section_anyway (abfd, name); if (newsect == NULL) return false; newsect->filepos = hdr->sh_offset; if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr) || ! bfd_set_section_size (abfd, newsect, hdr->sh_size) || ! bfd_set_section_alignment (abfd, newsect, bfd_log2 (hdr->sh_addralign))) return false; flags = SEC_NO_FLAGS; if (hdr->sh_type != SHT_NOBITS) flags |= SEC_HAS_CONTENTS; if ((hdr->sh_flags & SHF_ALLOC) != 0) { flags |= SEC_ALLOC; if (hdr->sh_type != SHT_NOBITS) flags |= SEC_LOAD; } if ((hdr->sh_flags & SHF_WRITE) == 0) flags |= SEC_READONLY; if ((hdr->sh_flags & SHF_EXECINSTR) != 0) flags |= SEC_CODE; else if ((flags & SEC_LOAD) != 0) flags |= SEC_DATA; /* The debugging sections appear to be recognized only by name, not any sort of flag. */ if (strncmp (name, ".debug", sizeof ".debug" - 1) == 0 || strncmp (name, ".line", sizeof ".line" - 1) == 0 || strncmp (name, ".stab", sizeof ".stab" - 1) == 0) flags |= SEC_DEBUGGING; /* As a GNU extension, if the name begins with .gnu.linkonce, we only link a single copy of the section. This is used to support g++. g++ will emit each template expansion in its own section. The symbols will be defined as weak, so that multiple definitions are permitted. The GNU linker extension is to actually discard all but one of the sections. */ if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0) flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD; if (! bfd_set_section_flags (abfd, newsect, flags)) return false; if ((flags & SEC_ALLOC) != 0) { Elf_Internal_Phdr *phdr; unsigned int i; /* Look through the phdrs to see if we need to adjust the lma. */ phdr = elf_tdata (abfd)->phdr; for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++) { if (phdr->p_type == PT_LOAD && phdr->p_paddr != 0 && phdr->p_vaddr != phdr->p_paddr && phdr->p_vaddr <= hdr->sh_addr && phdr->p_vaddr + phdr->p_memsz >= hdr->sh_addr + hdr->sh_size && ((flags & SEC_LOAD) == 0 || (phdr->p_offset <= hdr->sh_offset && (phdr->p_offset + phdr->p_filesz >= hdr->sh_offset + hdr->sh_size)))) { newsect->lma += phdr->p_paddr - phdr->p_vaddr; break; } } } hdr->bfd_section = newsect; elf_section_data (newsect)->this_hdr = *hdr; return true; } /* INTERNAL_FUNCTION bfd_elf_find_section SYNOPSIS struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name); DESCRIPTION Helper functions for GDB to locate the string tables. Since BFD hides string tables from callers, GDB needs to use an internal hook to find them. Sun's .stabstr, in particular, isn't even pointed to by the .stab section, so ordinary mechanisms wouldn't work to find it, even if we had some. */ struct elf_internal_shdr * bfd_elf_find_section (abfd, name) bfd * abfd; char *name; { Elf_Internal_Shdr **i_shdrp; char *shstrtab; unsigned int max; unsigned int i; i_shdrp = elf_elfsections (abfd); if (i_shdrp != NULL) { shstrtab = bfd_elf_get_str_section (abfd, elf_elfheader (abfd)->e_shstrndx); if (shstrtab != NULL) { max = elf_elfheader (abfd)->e_shnum; for (i = 1; i < max; i++) if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name)) return i_shdrp[i]; } } return 0; } const char *const bfd_elf_section_type_names[] = { "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB", "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE", "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM", }; /* ELF relocs are against symbols. If we are producing relocateable output, and the reloc is against an external symbol, and nothing has given us any additional addend, the resulting reloc will also be against the same symbol. In such a case, we don't want to change anything about the way the reloc is handled, since it will all be done at final link time. Rather than put special case code into bfd_perform_relocation, all the reloc types use this howto function. It just short circuits the reloc if producing relocateable output against an external symbol. */ /*ARGSUSED*/ bfd_reloc_status_type bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message) bfd *abfd; arelent *reloc_entry; asymbol *symbol; PTR data; asection *input_section; bfd *output_bfd; char **error_message; { if (output_bfd != (bfd *) NULL && (symbol->flags & BSF_SECTION_SYM) == 0 && (! reloc_entry->howto->partial_inplace || reloc_entry->addend == 0)) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } return bfd_reloc_continue; } /* Print out the program headers. */ boolean _bfd_elf_print_private_bfd_data (abfd, farg) bfd *abfd; PTR farg; { FILE *f = (FILE *) farg; Elf_Internal_Phdr *p; asection *s; bfd_byte *dynbuf = NULL; p = elf_tdata (abfd)->phdr; if (p != NULL) { unsigned int i, c; fprintf (f, "\nProgram Header:\n"); c = elf_elfheader (abfd)->e_phnum; for (i = 0; i < c; i++, p++) { const char *s; char buf[20]; switch (p->p_type) { case PT_NULL: s = "NULL"; break; case PT_LOAD: s = "LOAD"; break; case PT_DYNAMIC: s = "DYNAMIC"; break; case PT_INTERP: s = "INTERP"; break; case PT_NOTE: s = "NOTE"; break; case PT_SHLIB: s = "SHLIB"; break; case PT_PHDR: s = "PHDR"; break; default: sprintf (buf, "0x%lx", p->p_type); s = buf; break; } fprintf (f, "%8s off 0x", s); fprintf_vma (f, p->p_offset); fprintf (f, " vaddr 0x"); fprintf_vma (f, p->p_vaddr); fprintf (f, " paddr 0x"); fprintf_vma (f, p->p_paddr); fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align)); fprintf (f, " filesz 0x"); fprintf_vma (f, p->p_filesz); fprintf (f, " memsz 0x"); fprintf_vma (f, p->p_memsz); fprintf (f, " flags %c%c%c", (p->p_flags & PF_R) != 0 ? 'r' : '-', (p->p_flags & PF_W) != 0 ? 'w' : '-', (p->p_flags & PF_X) != 0 ? 'x' : '-'); if ((p->p_flags &~ (PF_R | PF_W | PF_X)) != 0) fprintf (f, " %lx", p->p_flags &~ (PF_R | PF_W | PF_X)); fprintf (f, "\n"); } } s = bfd_get_section_by_name (abfd, ".dynamic"); if (s != NULL) { int elfsec; unsigned long link; bfd_byte *extdyn, *extdynend; size_t extdynsize; void (*swap_dyn_in) PARAMS ((bfd *, const PTR, Elf_Internal_Dyn *)); fprintf (f, "\nDynamic Section:\n"); dynbuf = (bfd_byte *) bfd_malloc (s->_raw_size); if (dynbuf == NULL) goto error_return; if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf, (file_ptr) 0, s->_raw_size)) goto error_return; elfsec = _bfd_elf_section_from_bfd_section (abfd, s); if (elfsec == -1) goto error_return; link = elf_elfsections (abfd)[elfsec]->sh_link; extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn; swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in; extdyn = dynbuf; extdynend = extdyn + s->_raw_size; for (; extdyn < extdynend; extdyn += extdynsize) { Elf_Internal_Dyn dyn; const char *name; char ab[20]; boolean stringp; (*swap_dyn_in) (abfd, (PTR) extdyn, &dyn); if (dyn.d_tag == DT_NULL) break; stringp = false; switch (dyn.d_tag) { default: sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag); name = ab; break; case DT_NEEDED: name = "NEEDED"; stringp = true; break; case DT_PLTRELSZ: name = "PLTRELSZ"; break; case DT_PLTGOT: name = "PLTGOT"; break; case DT_HASH: name = "HASH"; break; case DT_STRTAB: name = "STRTAB"; break; case DT_SYMTAB: name = "SYMTAB"; break; case DT_RELA: name = "RELA"; break; case DT_RELASZ: name = "RELASZ"; break; case DT_RELAENT: name = "RELAENT"; break; case DT_STRSZ: name = "STRSZ"; break; case DT_SYMENT: name = "SYMENT"; break; case DT_INIT: name = "INIT"; break; case DT_FINI: name = "FINI"; break; case DT_SONAME: name = "SONAME"; stringp = true; break; case DT_RPATH: name = "RPATH"; stringp = true; break; case DT_SYMBOLIC: name = "SYMBOLIC"; break; case DT_REL: name = "REL"; break; case DT_RELSZ: name = "RELSZ"; break; case DT_RELENT: name = "RELENT"; break; case DT_PLTREL: name = "PLTREL"; break; case DT_DEBUG: name = "DEBUG"; break; case DT_TEXTREL: name = "TEXTREL"; break; case DT_JMPREL: name = "JMPREL"; break; } fprintf (f, " %-11s ", name); if (! stringp) fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val); else { const char *string; string = bfd_elf_string_from_elf_section (abfd, link, dyn.d_un.d_val); if (string == NULL) goto error_return; fprintf (f, "%s", string); } fprintf (f, "\n"); } free (dynbuf); dynbuf = NULL; } return true; error_return: if (dynbuf != NULL) free (dynbuf); return false; } /* Display ELF-specific fields of a symbol. */ void bfd_elf_print_symbol (ignore_abfd, filep, symbol, how) bfd *ignore_abfd; PTR filep; asymbol *symbol; bfd_print_symbol_type how; { FILE *file = (FILE *) filep; switch (how) { case bfd_print_symbol_name: fprintf (file, "%s", symbol->name); break; case bfd_print_symbol_more: fprintf (file, "elf "); fprintf_vma (file, symbol->value); fprintf (file, " %lx", (long) symbol->flags); break; case bfd_print_symbol_all: { CONST char *section_name; section_name = symbol->section ? symbol->section->name : "(*none*)"; bfd_print_symbol_vandf ((PTR) file, symbol); fprintf (file, " %s\t", section_name); /* Print the "other" value for a symbol. For common symbols, we've already printed the size; now print the alignment. For other symbols, we have no specified alignment, and we've printed the address; now print the size. */ fprintf_vma (file, (bfd_is_com_section (symbol->section) ? ((elf_symbol_type *) symbol)->internal_elf_sym.st_value : ((elf_symbol_type *) symbol)->internal_elf_sym.st_size)); fprintf (file, " %s", symbol->name); } break; } } /* Create an entry in an ELF linker hash table. */ struct bfd_hash_entry * _bfd_elf_link_hash_newfunc (entry, table, string) struct bfd_hash_entry *entry; struct bfd_hash_table *table; const char *string; { struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry; /* Allocate the structure if it has not already been allocated by a subclass. */ if (ret == (struct elf_link_hash_entry *) NULL) ret = ((struct elf_link_hash_entry *) bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry))); if (ret == (struct elf_link_hash_entry *) NULL) return (struct bfd_hash_entry *) ret; /* Call the allocation method of the superclass. */ ret = ((struct elf_link_hash_entry *) _bfd_link_hash_newfunc ((struct bfd_hash_entry *) ret, table, string)); if (ret != (struct elf_link_hash_entry *) NULL) { /* Set local fields. */ ret->indx = -1; ret->size = 0; ret->dynindx = -1; ret->dynstr_index = 0; ret->weakdef = NULL; ret->got_offset = (bfd_vma) -1; ret->plt_offset = (bfd_vma) -1; ret->linker_section_pointer = (elf_linker_section_pointers_t *)0; ret->type = STT_NOTYPE; /* Assume that we have been called by a non-ELF symbol reader. This flag is then reset by the code which reads an ELF input file. This ensures that a symbol created by a non-ELF symbol reader will have the flag set correctly. */ ret->elf_link_hash_flags = ELF_LINK_NON_ELF; } return (struct bfd_hash_entry *) ret; } /* Initialize an ELF linker hash table. */ boolean _bfd_elf_link_hash_table_init (table, abfd, newfunc) struct elf_link_hash_table *table; bfd *abfd; struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *)); { table->dynamic_sections_created = false; table->dynobj = NULL; /* The first dynamic symbol is a dummy. */ table->dynsymcount = 1; table->dynstr = NULL; table->bucketcount = 0; table->needed = NULL; table->hgot = NULL; table->stab_info = NULL; return _bfd_link_hash_table_init (&table->root, abfd, newfunc); } /* Create an ELF linker hash table. */ struct bfd_link_hash_table * _bfd_elf_link_hash_table_create (abfd) bfd *abfd; { struct elf_link_hash_table *ret; ret = ((struct elf_link_hash_table *) bfd_alloc (abfd, sizeof (struct elf_link_hash_table))); if (ret == (struct elf_link_hash_table *) NULL) return NULL; if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc)) { bfd_release (abfd, ret); return NULL; } return &ret->root; } /* This is a hook for the ELF emulation code in the generic linker to tell the backend linker what file name to use for the DT_NEEDED entry for a dynamic object. The generic linker passes name as an empty string to indicate that no DT_NEEDED entry should be made. */ void bfd_elf_set_dt_needed_name (abfd, name) bfd *abfd; const char *name; { if (bfd_get_flavour (abfd) == bfd_target_elf_flavour && bfd_get_format (abfd) == bfd_object) elf_dt_name (abfd) = name; } /* Get the list of DT_NEEDED entries for a link. This is a hook for the ELF emulation code. */ struct bfd_link_needed_list * bfd_elf_get_needed_list (abfd, info) bfd *abfd; struct bfd_link_info *info; { if (info->hash->creator->flavour != bfd_target_elf_flavour) return NULL; return elf_hash_table (info)->needed; } /* Get the name actually used for a dynamic object for a link. This is the SONAME entry if there is one. Otherwise, it is the string passed to bfd_elf_set_dt_needed_name, or it is the filename. */ const char * bfd_elf_get_dt_soname (abfd) bfd *abfd; { if (bfd_get_flavour (abfd) == bfd_target_elf_flavour && bfd_get_format (abfd) == bfd_object) return elf_dt_name (abfd); return NULL; } /* Allocate an ELF string table--force the first byte to be zero. */ struct bfd_strtab_hash * _bfd_elf_stringtab_init () { struct bfd_strtab_hash *ret; ret = _bfd_stringtab_init (); if (ret != NULL) { bfd_size_type loc; loc = _bfd_stringtab_add (ret, "", true, false); BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1); if (loc == (bfd_size_type) -1) { _bfd_stringtab_free (ret); ret = NULL; } } return ret; } /* ELF .o/exec file reading */ /* Create a new bfd section from an ELF section header. */ boolean bfd_section_from_shdr (abfd, shindex) bfd *abfd; unsigned int shindex; { Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex]; Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd); struct elf_backend_data *bed = get_elf_backend_data (abfd); char *name; name = elf_string_from_elf_strtab (abfd, hdr->sh_name); switch (hdr->sh_type) { case SHT_NULL: /* Inactive section. Throw it away. */ return true; case SHT_PROGBITS: /* Normal section with contents. */ case SHT_DYNAMIC: /* Dynamic linking information. */ case SHT_NOBITS: /* .bss section. */ case SHT_HASH: /* .hash section. */ case SHT_NOTE: /* .note section. */ return _bfd_elf_make_section_from_shdr (abfd, hdr, name); case SHT_SYMTAB: /* A symbol table */ if (elf_onesymtab (abfd) == shindex) return true; BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym); BFD_ASSERT (elf_onesymtab (abfd) == 0); elf_onesymtab (abfd) = shindex; elf_tdata (abfd)->symtab_hdr = *hdr; elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr; abfd->flags |= HAS_SYMS; /* Sometimes a shared object will map in the symbol table. If SHF_ALLOC is set, and this is a shared object, then we also treat this section as a BFD section. We can not base the decision purely on SHF_ALLOC, because that flag is sometimes set in a relocateable object file, which would confuse the linker. */ if ((hdr->sh_flags & SHF_ALLOC) != 0 && (abfd->flags & DYNAMIC) != 0 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name)) return false; return true; case SHT_DYNSYM: /* A dynamic symbol table */ if (elf_dynsymtab (abfd) == shindex) return true; BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym); BFD_ASSERT (elf_dynsymtab (abfd) == 0); elf_dynsymtab (abfd) = shindex; elf_tdata (abfd)->dynsymtab_hdr = *hdr; elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr; abfd->flags |= HAS_SYMS; /* Besides being a symbol table, we also treat this as a regular section, so that objcopy can handle it. */ return _bfd_elf_make_section_from_shdr (abfd, hdr, name); case SHT_STRTAB: /* A string table */ if (hdr->bfd_section != NULL) return true; if (ehdr->e_shstrndx == shindex) { elf_tdata (abfd)->shstrtab_hdr = *hdr; elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr; return true; } { unsigned int i; for (i = 1; i < ehdr->e_shnum; i++) { Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i]; if (hdr2->sh_link == shindex) { if (! bfd_section_from_shdr (abfd, i)) return false; if (elf_onesymtab (abfd) == i) { elf_tdata (abfd)->strtab_hdr = *hdr; elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr; return true; } if (elf_dynsymtab (abfd) == i) { elf_tdata (abfd)->dynstrtab_hdr = *hdr; elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynstrtab_hdr; /* We also treat this as a regular section, so that objcopy can handle it. */ break; } #if 0 /* Not handling other string tables specially right now. */ hdr2 = elf_elfsections (abfd)[i]; /* in case it moved */ /* We have a strtab for some random other section. */ newsect = (asection *) hdr2->bfd_section; if (!newsect) break; hdr->bfd_section = newsect; hdr2 = &elf_section_data (newsect)->str_hdr; *hdr2 = *hdr; elf_elfsections (abfd)[shindex] = hdr2; #endif } } } return _bfd_elf_make_section_from_shdr (abfd, hdr, name); case SHT_REL: case SHT_RELA: /* *These* do a lot of work -- but build no sections! */ { asection *target_sect; Elf_Internal_Shdr *hdr2; /* For some incomprehensible reason Oracle distributes libraries for Solaris in which some of the objects have bogus sh_link fields. It would be nice if we could just reject them, but, unfortunately, some people need to use them. We scan through the section headers; if we find only one suitable symbol table, we clobber the sh_link to point to it. I hope this doesn't break anything. */ if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM) { int scan; int found; found = 0; for (scan = 1; scan < ehdr->e_shnum; scan++) { if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM) { if (found != 0) { found = 0; break; } found = scan; } } if (found != 0) hdr->sh_link = found; } /* Get the symbol table. */ if (elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB && ! bfd_section_from_shdr (abfd, hdr->sh_link)) return false; /* If this reloc section does not use the main symbol table we don't treat it as a reloc section. BFD can't adequately represent such a section, so at least for now, we don't try. We just present it as a normal section. */ if (hdr->sh_link != elf_onesymtab (abfd)) return _bfd_elf_make_section_from_shdr (abfd, hdr, name); if (! bfd_section_from_shdr (abfd, hdr->sh_info)) return false; target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info); if (target_sect == NULL) return false; if ((target_sect->flags & SEC_RELOC) == 0 || target_sect->reloc_count == 0) hdr2 = &elf_section_data (target_sect)->rel_hdr; else { BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL); hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2)); elf_section_data (target_sect)->rel_hdr2 = hdr2; } *hdr2 = *hdr; elf_elfsections (abfd)[shindex] = hdr2; target_sect->reloc_count += hdr->sh_size / hdr->sh_entsize; target_sect->flags |= SEC_RELOC; target_sect->relocation = NULL; target_sect->rel_filepos = hdr->sh_offset; abfd->flags |= HAS_RELOC; return true; } break; case SHT_SHLIB: return true; default: /* Check for any processor-specific section types. */ { if (bed->elf_backend_section_from_shdr) (*bed->elf_backend_section_from_shdr) (abfd, hdr, name); } break; } return true; } /* Given an ELF section number, retrieve the corresponding BFD section. */ asection * bfd_section_from_elf_index (abfd, index) bfd *abfd; unsigned int index; { BFD_ASSERT (index > 0 && index < SHN_LORESERVE); if (index >= elf_elfheader (abfd)->e_shnum) return NULL; return elf_elfsections (abfd)[index]->bfd_section; } boolean _bfd_elf_new_section_hook (abfd, sec) bfd *abfd; asection *sec; { struct bfd_elf_section_data *sdata; sdata = (struct bfd_elf_section_data *) bfd_alloc (abfd, sizeof (*sdata)); if (!sdata) return false; sec->used_by_bfd = (PTR) sdata; memset (sdata, 0, sizeof (*sdata)); return true; } /* Create a new bfd section from an ELF program header. Since program segments have no names, we generate a synthetic name of the form segment, where NUM is generally the index in the program header table. For segments that are split (see below) we generate the names segmenta and segmentb. Note that some program segments may have a file size that is different than (less than) the memory size. All this means is that at execution the system must allocate the amount of memory specified by the memory size, but only initialize it with the first "file size" bytes read from the file. This would occur for example, with program segments consisting of combined data+bss. To handle the above situation, this routine generates TWO bfd sections for the single program segment. The first has the length specified by the file size of the segment, and the second has the length specified by the difference between the two sizes. In effect, the segment is split into it's initialized and uninitialized parts. */ boolean bfd_section_from_phdr (abfd, hdr, index) bfd *abfd; Elf_Internal_Phdr *hdr; int index; { asection *newsect; char *name; char namebuf[64]; int split; split = ((hdr->p_memsz > 0) && (hdr->p_filesz > 0) && (hdr->p_memsz > hdr->p_filesz)); sprintf (namebuf, split ? "segment%da" : "segment%d", index); name = bfd_alloc (abfd, strlen (namebuf) + 1); if (!name) return false; strcpy (name, namebuf); newsect = bfd_make_section (abfd, name); if (newsect == NULL) return false; newsect->vma = hdr->p_vaddr; newsect->lma = hdr->p_paddr; newsect->_raw_size = hdr->p_filesz; newsect->filepos = hdr->p_offset; newsect->flags |= SEC_HAS_CONTENTS; if (hdr->p_type == PT_LOAD) { newsect->flags |= SEC_ALLOC; newsect->flags |= SEC_LOAD; if (hdr->p_flags & PF_X) { /* FIXME: all we known is that it has execute PERMISSION, may be data. */ newsect->flags |= SEC_CODE; } } if (!(hdr->p_flags & PF_W)) { newsect->flags |= SEC_READONLY; } if (split) { sprintf (namebuf, "segment%db", index); name = bfd_alloc (abfd, strlen (namebuf) + 1); if (!name) return false; strcpy (name, namebuf); newsect = bfd_make_section (abfd, name); if (newsect == NULL) return false; newsect->vma = hdr->p_vaddr + hdr->p_filesz; newsect->lma = hdr->p_paddr + hdr->p_filesz; newsect->_raw_size = hdr->p_memsz - hdr->p_filesz; if (hdr->p_type == PT_LOAD) { newsect->flags |= SEC_ALLOC; if (hdr->p_flags & PF_X) newsect->flags |= SEC_CODE; } if (!(hdr->p_flags & PF_W)) newsect->flags |= SEC_READONLY; } return true; } /* Set up an ELF internal section header for a section. */ /*ARGSUSED*/ static void elf_fake_sections (abfd, asect, failedptrarg) bfd *abfd; asection *asect; PTR failedptrarg; { struct elf_backend_data *bed = get_elf_backend_data (abfd); boolean *failedptr = (boolean *) failedptrarg; Elf_Internal_Shdr *this_hdr; if (*failedptr) { /* We already failed; just get out of the bfd_map_over_sections loop. */ return; } this_hdr = &elf_section_data (asect)->this_hdr; this_hdr->sh_name = (unsigned long) _bfd_stringtab_add (elf_shstrtab (abfd), asect->name, true, false); if (this_hdr->sh_name == (unsigned long) -1) { *failedptr = true; return; } this_hdr->sh_flags = 0; if ((asect->flags & SEC_ALLOC) != 0 || asect->user_set_vma) this_hdr->sh_addr = asect->vma; else this_hdr->sh_addr = 0; this_hdr->sh_offset = 0; this_hdr->sh_size = asect->_raw_size; this_hdr->sh_link = 0; this_hdr->sh_addralign = 1 << asect->alignment_power; /* The sh_entsize and sh_info fields may have been set already by copy_private_section_data. */ this_hdr->bfd_section = asect; this_hdr->contents = NULL; /* FIXME: This should not be based on section names. */ if (strcmp (asect->name, ".dynstr") == 0) this_hdr->sh_type = SHT_STRTAB; else if (strcmp (asect->name, ".hash") == 0) { this_hdr->sh_type = SHT_HASH; this_hdr->sh_entsize = bed->s->arch_size / 8; } else if (strcmp (asect->name, ".dynsym") == 0) { this_hdr->sh_type = SHT_DYNSYM; this_hdr->sh_entsize = bed->s->sizeof_sym; } else if (strcmp (asect->name, ".dynamic") == 0) { this_hdr->sh_type = SHT_DYNAMIC; this_hdr->sh_entsize = bed->s->sizeof_dyn; } else if (strncmp (asect->name, ".rela", 5) == 0 && get_elf_backend_data (abfd)->use_rela_p) { this_hdr->sh_type = SHT_RELA; this_hdr->sh_entsize = bed->s->sizeof_rela; } else if (strncmp (asect->name, ".rel", 4) == 0 && ! get_elf_backend_data (abfd)->use_rela_p) { this_hdr->sh_type = SHT_REL; this_hdr->sh_entsize = bed->s->sizeof_rel; } else if (strcmp (asect->name, ".note") == 0) this_hdr->sh_type = SHT_NOTE; else if (strncmp (asect->name, ".stab", 5) == 0 && strcmp (asect->name + strlen (asect->name) - 3, "str") == 0) this_hdr->sh_type = SHT_STRTAB; else if ((asect->flags & SEC_ALLOC) != 0 && (asect->flags & SEC_LOAD) != 0) this_hdr->sh_type = SHT_PROGBITS; else if ((asect->flags & SEC_ALLOC) != 0 && ((asect->flags & SEC_LOAD) == 0)) this_hdr->sh_type = SHT_NOBITS; else { /* Who knows? */ this_hdr->sh_type = SHT_PROGBITS; } if ((asect->flags & SEC_ALLOC) != 0) this_hdr->sh_flags |= SHF_ALLOC; if ((asect->flags & SEC_READONLY) == 0) this_hdr->sh_flags |= SHF_WRITE; if ((asect->flags & SEC_CODE) != 0) this_hdr->sh_flags |= SHF_EXECINSTR; /* Check for processor-specific section types. */ { struct elf_backend_data *bed = get_elf_backend_data (abfd); if (bed->elf_backend_fake_sections) (*bed->elf_backend_fake_sections) (abfd, this_hdr, asect); } /* If the section has relocs, set up a section header for the SHT_REL[A] section. */ if ((asect->flags & SEC_RELOC) != 0) { Elf_Internal_Shdr *rela_hdr; int use_rela_p = get_elf_backend_data (abfd)->use_rela_p; char *name; rela_hdr = &elf_section_data (asect)->rel_hdr; name = bfd_alloc (abfd, sizeof ".rela" + strlen (asect->name)); if (name == NULL) { *failedptr = true; return; } sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name); rela_hdr->sh_name = (unsigned int) _bfd_stringtab_add (elf_shstrtab (abfd), name, true, false); if (rela_hdr->sh_name == (unsigned int) -1) { *failedptr = true; return; } rela_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL; rela_hdr->sh_entsize = (use_rela_p ? bed->s->sizeof_rela : bed->s->sizeof_rel); rela_hdr->sh_addralign = bed->s->file_align; rela_hdr->sh_flags = 0; rela_hdr->sh_addr = 0; rela_hdr->sh_size = 0; rela_hdr->sh_offset = 0; } } /* Assign all ELF section numbers. The dummy first section is handled here too. The link/info pointers for the standard section types are filled in here too, while we're at it. */ static boolean assign_section_numbers (abfd) bfd *abfd; { struct elf_obj_tdata *t = elf_tdata (abfd); asection *sec; unsigned int section_number; Elf_Internal_Shdr **i_shdrp; struct elf_backend_data *bed = get_elf_backend_data (abfd); section_number = 1; for (sec = abfd->sections; sec; sec = sec->next) { struct bfd_elf_section_data *d = elf_section_data (sec); d->this_idx = section_number++; if ((sec->flags & SEC_RELOC) == 0) d->rel_idx = 0; else d->rel_idx = section_number++; } t->shstrtab_section = section_number++; elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section; t->shstrtab_hdr.sh_size = _bfd_stringtab_size (elf_shstrtab (abfd)); if (abfd->symcount > 0) { t->symtab_section = section_number++; t->strtab_section = section_number++; } elf_elfheader (abfd)->e_shnum = section_number; /* Set up the list of section header pointers, in agreement with the indices. */ i_shdrp = ((Elf_Internal_Shdr **) bfd_alloc (abfd, section_number * sizeof (Elf_Internal_Shdr *))); if (i_shdrp == NULL) return false; i_shdrp[0] = ((Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (Elf_Internal_Shdr))); if (i_shdrp[0] == NULL) { bfd_release (abfd, i_shdrp); return false; } memset (i_shdrp[0], 0, sizeof (Elf_Internal_Shdr)); elf_elfsections (abfd) = i_shdrp; i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr; if (abfd->symcount > 0) { i_shdrp[t->symtab_section] = &t->symtab_hdr; i_shdrp[t->strtab_section] = &t->strtab_hdr; t->symtab_hdr.sh_link = t->strtab_section; } for (sec = abfd->sections; sec; sec = sec->next) { struct bfd_elf_section_data *d = elf_section_data (sec); asection *s; const char *name; i_shdrp[d->this_idx] = &d->this_hdr; if (d->rel_idx != 0) i_shdrp[d->rel_idx] = &d->rel_hdr; /* Fill in the sh_link and sh_info fields while we're at it. */ /* sh_link of a reloc section is the section index of the symbol table. sh_info is the section index of the section to which the relocation entries apply. */ if (d->rel_idx != 0) { d->rel_hdr.sh_link = t->symtab_section; d->rel_hdr.sh_info = d->this_idx; } switch (d->this_hdr.sh_type) { case SHT_REL: case SHT_RELA: /* A reloc section which we are treating as a normal BFD section. sh_link is the section index of the symbol table. sh_info is the section index of the section to which the relocation entries apply. We assume that an allocated reloc section uses the dynamic symbol table. FIXME: How can we be sure? */ s = bfd_get_section_by_name (abfd, ".dynsym"); if (s != NULL) d->this_hdr.sh_link = elf_section_data (s)->this_idx; /* We look up the section the relocs apply to by name. */ name = sec->name; if (d->this_hdr.sh_type == SHT_REL) name += 4; else name += 5; s = bfd_get_section_by_name (abfd, name); if (s != NULL) d->this_hdr.sh_info = elf_section_data (s)->this_idx; break; case SHT_STRTAB: /* We assume that a section named .stab*str is a stabs string section. We look for a section with the same name but without the trailing ``str'', and set its sh_link field to point to this section. */ if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0) { size_t len; char *alc; len = strlen (sec->name); alc = (char *) bfd_malloc (len - 2); if (alc == NULL) return false; strncpy (alc, sec->name, len - 3); alc[len - 3] = '\0'; s = bfd_get_section_by_name (abfd, alc); free (alc); if (s != NULL) { elf_section_data (s)->this_hdr.sh_link = d->this_idx; /* This is a .stab section. */ elf_section_data (s)->this_hdr.sh_entsize = 4 + 2 * (bed->s->arch_size / 8); } } break; case SHT_DYNAMIC: case SHT_DYNSYM: /* sh_link is the section header index of the string table used for the dynamic entries or symbol table. */ s = bfd_get_section_by_name (abfd, ".dynstr"); if (s != NULL) d->this_hdr.sh_link = elf_section_data (s)->this_idx; break; case SHT_HASH: /* sh_link is the section header index of the symbol table this hash table is for. */ s = bfd_get_section_by_name (abfd, ".dynsym"); if (s != NULL) d->this_hdr.sh_link = elf_section_data (s)->this_idx; break; } } return true; } /* Map symbol from it's internal number to the external number, moving all local symbols to be at the head of the list. */ static INLINE int sym_is_global (abfd, sym) bfd *abfd; asymbol *sym; { /* If the backend has a special mapping, use it. */ if (get_elf_backend_data (abfd)->elf_backend_sym_is_global) return ((*get_elf_backend_data (abfd)->elf_backend_sym_is_global) (abfd, sym)); return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0 || bfd_is_und_section (bfd_get_section (sym)) || bfd_is_com_section (bfd_get_section (sym))); } static boolean elf_map_symbols (abfd) bfd *abfd; { int symcount = bfd_get_symcount (abfd); asymbol **syms = bfd_get_outsymbols (abfd); asymbol **sect_syms; int num_locals = 0; int num_globals = 0; int num_locals2 = 0; int num_globals2 = 0; int max_index = 0; int num_sections = 0; int idx; asection *asect; asymbol **new_syms; #ifdef DEBUG fprintf (stderr, "elf_map_symbols\n"); fflush (stderr); #endif /* Add a section symbol for each BFD section. FIXME: Is this really necessary? */ for (asect = abfd->sections; asect; asect = asect->next) { if (max_index < asect->index) max_index = asect->index; } max_index++; sect_syms = (asymbol **) bfd_zalloc (abfd, max_index * sizeof (asymbol *)); if (sect_syms == NULL) return false; elf_section_syms (abfd) = sect_syms; for (idx = 0; idx < symcount; idx++) { if ((syms[idx]->flags & BSF_SECTION_SYM) != 0 && (syms[idx]->value + syms[idx]->section->vma) == 0) { asection *sec; sec = syms[idx]->section; if (sec->owner != NULL) { if (sec->owner != abfd) { if (sec->output_offset != 0) continue; sec = sec->output_section; BFD_ASSERT (sec->owner == abfd); } sect_syms[sec->index] = syms[idx]; } } } for (asect = abfd->sections; asect; asect = asect->next) { asymbol *sym; if (sect_syms[asect->index] != NULL) continue; sym = bfd_make_empty_symbol (abfd); if (sym == NULL) return false; sym->the_bfd = abfd; sym->name = asect->name; sym->value = 0; /* Set the flags to 0 to indicate that this one was newly added. */ sym->flags = 0; sym->section = asect; sect_syms[asect->index] = sym; num_sections++; #ifdef DEBUG fprintf (stderr, "creating section symbol, name = %s, value = 0x%.8lx, index = %d, section = 0x%.8lx\n", asect->name, (long) asect->vma, asect->index, (long) asect); #endif } /* Classify all of the symbols. */ for (idx = 0; idx < symcount; idx++) { if (!sym_is_global (abfd, syms[idx])) num_locals++; else num_globals++; } for (asect = abfd->sections; asect; asect = asect->next) { if (sect_syms[asect->index] != NULL && sect_syms[asect->index]->flags == 0) { sect_syms[asect->index]->flags = BSF_SECTION_SYM; if (!sym_is_global (abfd, sect_syms[asect->index])) num_locals++; else num_globals++; sect_syms[asect->index]->flags = 0; } } /* Now sort the symbols so the local symbols are first. */ new_syms = ((asymbol **) bfd_alloc (abfd, (num_locals + num_globals) * sizeof (asymbol *))); if (new_syms == NULL) return false; for (idx = 0; idx < symcount; idx++) { asymbol *sym = syms[idx]; int i; if (!sym_is_global (abfd, sym)) i = num_locals2++; else i = num_locals + num_globals2++; new_syms[i] = sym; sym->udata.i = i + 1; } for (asect = abfd->sections; asect; asect = asect->next) { if (sect_syms[asect->index] != NULL && sect_syms[asect->index]->flags == 0) { asymbol *sym = sect_syms[asect->index]; int i; sym->flags = BSF_SECTION_SYM; if (!sym_is_global (abfd, sym)) i = num_locals2++; else i = num_locals + num_globals2++; new_syms[i] = sym; sym->udata.i = i + 1; } } bfd_set_symtab (abfd, new_syms, num_locals + num_globals); elf_num_locals (abfd) = num_locals; elf_num_globals (abfd) = num_globals; return true; } /* Align to the maximum file alignment that could be required for any ELF data structure. */ static INLINE file_ptr align_file_position PARAMS ((file_ptr, int)); static INLINE file_ptr align_file_position (off, align) file_ptr off; int align; { return (off + align - 1) & ~(align - 1); } /* Assign a file position to a section, optionally aligning to the required section alignment. */ INLINE file_ptr _bfd_elf_assign_file_position_for_section (i_shdrp, offset, align) Elf_Internal_Shdr *i_shdrp; file_ptr offset; boolean align; { if (align) { unsigned int al; al = i_shdrp->sh_addralign; if (al > 1) offset = BFD_ALIGN (offset, al); } i_shdrp->sh_offset = offset; if (i_shdrp->bfd_section != NULL) i_shdrp->bfd_section->filepos = offset; if (i_shdrp->sh_type != SHT_NOBITS) offset += i_shdrp->sh_size; return offset; } /* Compute the file positions we are going to put the sections at, and otherwise prepare to begin writing out the ELF file. If LINK_INFO is not NULL, this is being called by the ELF backend linker. */ boolean _bfd_elf_compute_section_file_positions (abfd, link_info) bfd *abfd; struct bfd_link_info *link_info; { struct elf_backend_data *bed = get_elf_backend_data (abfd); boolean failed; struct bfd_strtab_hash *strtab; Elf_Internal_Shdr *shstrtab_hdr; if (abfd->output_has_begun) return true; /* Do any elf backend specific processing first. */ if (bed->elf_backend_begin_write_processing) (*bed->elf_backend_begin_write_processing) (abfd, link_info); if (! prep_headers (abfd)) return false; failed = false; bfd_map_over_sections (abfd, elf_fake_sections, &failed); if (failed) return false; if (!assign_section_numbers (abfd)) return false; /* The backend linker builds symbol table information itself. */ if (link_info == NULL && abfd->symcount > 0) { if (! swap_out_syms (abfd, &strtab)) return false; } shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr; /* sh_name was set in prep_headers. */ shstrtab_hdr->sh_type = SHT_STRTAB; shstrtab_hdr->sh_flags = 0; shstrtab_hdr->sh_addr = 0; shstrtab_hdr->sh_size = _bfd_stringtab_size (elf_shstrtab (abfd)); shstrtab_hdr->sh_entsize = 0; shstrtab_hdr->sh_link = 0; shstrtab_hdr->sh_info = 0; /* sh_offset is set in assign_file_positions_except_relocs. */ shstrtab_hdr->sh_addralign = 1; if (!assign_file_positions_except_relocs (abfd)) return false; if (link_info == NULL && abfd->symcount > 0) { file_ptr off; Elf_Internal_Shdr *hdr; off = elf_tdata (abfd)->next_file_pos; hdr = &elf_tdata (abfd)->symtab_hdr; off = _bfd_elf_assign_file_position_for_section (hdr, off, true); hdr = &elf_tdata (abfd)->strtab_hdr; off = _bfd_elf_assign_file_position_for_section (hdr, off, true); elf_tdata (abfd)->next_file_pos = off; /* Now that we know where the .strtab section goes, write it out. */ if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0 || ! _bfd_stringtab_emit (abfd, strtab)) return false; _bfd_stringtab_free (strtab); } abfd->output_has_begun = true; return true; } /* Create a mapping from a set of sections to a program segment. */ static INLINE struct elf_segment_map * make_mapping (abfd, sections, from, to, phdr) bfd *abfd; asection **sections; unsigned int from; unsigned int to; boolean phdr; { struct elf_segment_map *m; unsigned int i; asection **hdrpp; m = ((struct elf_segment_map *) bfd_zalloc (abfd, (sizeof (struct elf_segment_map) + (to - from - 1) * sizeof (asection *)))); if (m == NULL) return NULL; m->next = NULL; m->p_type = PT_LOAD; for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++) m->sections[i - from] = *hdrpp; m->count = to - from; if (from == 0 && phdr) { /* Include the headers in the first PT_LOAD segment. */ m->includes_filehdr = 1; m->includes_phdrs = 1; } return m; } /* Set up a mapping from BFD sections to program segments. */ static boolean map_sections_to_segments (abfd) bfd *abfd; { asection **sections = NULL; asection *s; unsigned int i; unsigned int count; struct elf_segment_map *mfirst; struct elf_segment_map **pm; struct elf_segment_map *m; asection *last_hdr; unsigned int phdr_index; bfd_vma maxpagesize; asection **hdrpp; boolean phdr_in_section = true; boolean writable; asection *dynsec; if (elf_tdata (abfd)->segment_map != NULL) return true; if (bfd_count_sections (abfd) == 0) return true; /* Select the allocated sections, and sort them. */ sections = (asection **) bfd_malloc (bfd_count_sections (abfd) * sizeof (asection *)); if (sections == NULL) goto error_return; i = 0; for (s = abfd->sections; s != NULL; s = s->next) { if ((s->flags & SEC_ALLOC) != 0) { sections[i] = s; ++i; } } BFD_ASSERT (i <= bfd_count_sections (abfd)); count = i; qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections); /* Build the mapping. */ mfirst = NULL; pm = &mfirst; /* If we have a .interp section, then create a PT_PHDR segment for the program headers and a PT_INTERP segment for the .interp section. */ s = bfd_get_section_by_name (abfd, ".interp"); if (s != NULL && (s->flags & SEC_LOAD) != 0) { m = ((struct elf_segment_map *) bfd_zalloc (abfd, sizeof (struct elf_segment_map))); if (m == NULL) goto error_return; m->next = NULL; m->p_type = PT_PHDR; /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */ m->p_flags = PF_R | PF_X; m->p_flags_valid = 1; m->includes_phdrs = 1; *pm = m; pm = &m->next; m = ((struct elf_segment_map *) bfd_zalloc (abfd, sizeof (struct elf_segment_map))); if (m == NULL) goto error_return; m->next = NULL; m->p_type = PT_INTERP; m->count = 1; m->sections[0] = s; *pm = m; pm = &m->next; } /* Look through the sections. We put sections in the same program segment when the start of the second section can be placed within a few bytes of the end of the first section. */ last_hdr = NULL; phdr_index = 0; maxpagesize = get_elf_backend_data (abfd)->maxpagesize; writable = false; dynsec = bfd_get_section_by_name (abfd, ".dynamic"); if (dynsec != NULL && (dynsec->flags & SEC_LOAD) == 0) dynsec = NULL; /* Deal with -Ttext or something similar such that the first section is not adjacent to the program headers. This is an approximation, since at this point we don't know exactly how many program headers we will need. */ if (count > 0) { bfd_size_type phdr_size; phdr_size = elf_tdata (abfd)->program_header_size; if (phdr_size == 0) phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr; if ((abfd->flags & D_PAGED) == 0 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize) phdr_in_section = false; } for (i = 0, hdrpp = sections; i < count; i++, hdrpp++) { asection *hdr; boolean new_segment; hdr = *hdrpp; /* See if this section and the last one will fit in the same segment. */ if (last_hdr == NULL) { /* If we don't have a segment yet, then we don't need a new one (we build the last one after this loop). */ new_segment = false; } else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma) { /* If this section has a different relation between the virtual address and the load address, then we need a new segment. */ new_segment = true; } else if (BFD_ALIGN (last_hdr->lma + last_hdr->_raw_size, maxpagesize) < hdr->lma) { /* If putting this section in this segment would force us to skip a page in the segment, then we need a new segment. */ new_segment = true; } else if ((abfd->flags & D_PAGED) == 0) { /* If the file is not demand paged, which means that we don't require the sections to be correctly aligned in the file, then there is no other reason for a new segment. */ new_segment = false; } else if ((last_hdr->flags & SEC_LOAD) == 0 && (hdr->flags & SEC_LOAD) != 0) { /* We don't want to put a loadable section after a nonloadable section in the same segment. */ new_segment = true; } else if (! writable && (hdr->flags & SEC_READONLY) == 0 && (BFD_ALIGN (last_hdr->lma + last_hdr->_raw_size, maxpagesize) == hdr->lma)) { /* We don't want to put a writable section in a read only segment, unless they are on the same page in memory anyhow. We already know that the last section does not bring us past the current section on the page, so the only case in which the new section is not on the same page as the previous section is when the previous section ends precisely on a page boundary. */ new_segment = true; } else { /* Otherwise, we can use the same segment. */ new_segment = false; } if (! new_segment) { if ((hdr->flags & SEC_READONLY) == 0) writable = true; last_hdr = hdr; continue; } /* We need a new program segment. We must create a new program header holding all the sections from phdr_index until hdr. */ m = make_mapping (abfd, sections, phdr_index, i, phdr_in_section); if (m == NULL) goto error_return; *pm = m; pm = &m->next; if ((hdr->flags & SEC_READONLY) == 0) writable = true; else writable = false; last_hdr = hdr; phdr_index = i; phdr_in_section = false; } /* Create a final PT_LOAD program segment. */ if (last_hdr != NULL) { m = make_mapping (abfd, sections, phdr_index, i, phdr_in_section); if (m == NULL) goto error_return; *pm = m; pm = &m->next; } /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */ if (dynsec != NULL) { m = ((struct elf_segment_map *) bfd_zalloc (abfd, sizeof (struct elf_segment_map))); if (m == NULL) goto error_return; m->next = NULL; m->p_type = PT_DYNAMIC; m->count = 1; m->sections[0] = dynsec; *pm = m; pm = &m->next; } free (sections); sections = NULL; elf_tdata (abfd)->segment_map = mfirst; return true; error_return: if (sections != NULL) free (sections); return false; } /* Sort sections by VMA. */ static int elf_sort_sections (arg1, arg2) const PTR arg1; const PTR arg2; { const asection *sec1 = *(const asection **) arg1; const asection *sec2 = *(const asection **) arg2; if (sec1->vma < sec2->vma) return -1; else if (sec1->vma > sec2->vma) return 1; /* Sort by LMA. Normally the LMA and the VMA will be the same, and this will do nothing. */ if (sec1->lma < sec2->lma) return -1; else if (sec1->lma > sec2->lma) return 1; /* Put !SEC_LOAD sections after SEC_LOAD ones. */ #define TOEND(x) (((x)->flags & SEC_LOAD) == 0) if (TOEND (sec1)) if (TOEND (sec2)) return sec1->target_index - sec2->target_index; else return 1; if (TOEND (sec2)) return -1; #undef TOEND /* Sort by size, to put zero sized sections before others at the same address. */ if (sec1->_raw_size < sec2->_raw_size) return -1; if (sec1->_raw_size > sec2->_raw_size) return 1; return sec1->target_index - sec2->target_index; } /* Assign file positions to the sections based on the mapping from sections to segments. This function also sets up some fields in the file header, and writes out the program headers. */ static boolean assign_file_positions_for_segments (abfd) bfd *abfd; { const struct elf_backend_data *bed = get_elf_backend_data (abfd); unsigned int count; struct elf_segment_map *m; unsigned int alloc; Elf_Internal_Phdr *phdrs; file_ptr off, voff; bfd_vma filehdr_vaddr, filehdr_paddr; bfd_vma phdrs_vaddr, phdrs_paddr; Elf_Internal_Phdr *p; if (elf_tdata (abfd)->segment_map == NULL) { if (! map_sections_to_segments (abfd)) return false; } if (bed->elf_backend_modify_segment_map) { if (! (*bed->elf_backend_modify_segment_map) (abfd)) return false; } count = 0; for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) ++count; elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr; elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr; elf_elfheader (abfd)->e_phnum = count; if (count == 0) return true; /* If we already counted the number of program segments, make sure that we allocated enough space. This happens when SIZEOF_HEADERS is used in a linker script. */ alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr; if (alloc != 0 && count > alloc) { ((*_bfd_error_handler) ("%s: Not enough room for program headers (allocated %u, need %u)", bfd_get_filename (abfd), alloc, count)); bfd_set_error (bfd_error_bad_value); return false; } if (alloc == 0) alloc = count; phdrs = ((Elf_Internal_Phdr *) bfd_alloc (abfd, alloc * sizeof (Elf_Internal_Phdr))); if (phdrs == NULL) return false; off = bed->s->sizeof_ehdr; off += alloc * bed->s->sizeof_phdr; filehdr_vaddr = 0; filehdr_paddr = 0; phdrs_vaddr = 0; phdrs_paddr = 0; for (m = elf_tdata (abfd)->segment_map, p = phdrs; m != NULL; m = m->next, p++) { unsigned int i; asection **secpp; /* If elf_segment_map is not from map_sections_to_segments, the sections may not be correctly ordered. */ if (m->count > 0) qsort (m->sections, (size_t) m->count, sizeof (asection *), elf_sort_sections); p->p_type = m->p_type; if (m->p_flags_valid) p->p_flags = m->p_flags; else p->p_flags = 0; if (p->p_type == PT_LOAD && m->count > 0 && (m->sections[0]->flags & SEC_LOAD) != 0) { if ((abfd->flags & D_PAGED) != 0) off += (m->sections[0]->vma - off) % bed->maxpagesize; else off += ((m->sections[0]->vma - off) % (1 << bfd_get_section_alignment (abfd, m->sections[0]))); } if (m->count == 0) p->p_vaddr = 0; else p->p_vaddr = m->sections[0]->vma; if (m->p_paddr_valid) p->p_paddr = m->p_paddr; else if (m->count == 0) p->p_paddr = 0; else p->p_paddr = m->sections[0]->lma; if (p->p_type == PT_LOAD && (abfd->flags & D_PAGED) != 0) p->p_align = bed->maxpagesize; else if (m->count == 0) p->p_align = bed->s->file_align; else p->p_align = 0; p->p_offset = 0; p->p_filesz = 0; p->p_memsz = 0; if (m->includes_filehdr) { if (! m->p_flags_valid) p->p_flags |= PF_R; p->p_offset = 0; p->p_filesz = bed->s->sizeof_ehdr; p->p_memsz = bed->s->sizeof_ehdr; if (m->count > 0) { BFD_ASSERT (p->p_type == PT_LOAD); p->p_vaddr -= off; if (! m->p_paddr_valid) p->p_paddr -= off; } if (p->p_type == PT_LOAD) { filehdr_vaddr = p->p_vaddr; filehdr_paddr = p->p_paddr; } } if (m->includes_phdrs) { if (! m->p_flags_valid) p->p_flags |= PF_R; if (m->includes_filehdr) { if (p->p_type == PT_LOAD) { phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr; phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr; } } else { p->p_offset = bed->s->sizeof_ehdr; if (m->count > 0) { BFD_ASSERT (p->p_type == PT_LOAD); p->p_vaddr -= off - p->p_offset; if (! m->p_paddr_valid) p->p_paddr -= off - p->p_offset; } if (p->p_type == PT_LOAD) { phdrs_vaddr = p->p_vaddr; phdrs_paddr = p->p_paddr; } } p->p_filesz += alloc * bed->s->sizeof_phdr; p->p_memsz += alloc * bed->s->sizeof_phdr; } if (p->p_type == PT_LOAD) { if (! m->includes_filehdr && ! m->includes_phdrs) p->p_offset = off; else { file_ptr adjust; adjust = off - (p->p_offset + p->p_filesz); p->p_filesz += adjust; p->p_memsz += adjust; } } voff = off; for (i = 0, secpp = m->sections; i < m->count; i++, secpp++) { asection *sec; flagword flags; bfd_size_type align; sec = *secpp; flags = sec->flags; align = 1 << bfd_get_section_alignment (abfd, sec); if (p->p_type == PT_LOAD) { bfd_vma adjust; /* The section VMA must equal the file position modulo the page size. */ if ((flags & SEC_ALLOC) != 0) { if ((abfd->flags & D_PAGED) != 0) adjust = (sec->vma - voff) % bed->maxpagesize; else adjust = (sec->vma - voff) % align; if (adjust != 0) { if (i == 0) abort (); p->p_memsz += adjust; off += adjust; voff += adjust; if ((flags & SEC_LOAD) != 0) p->p_filesz += adjust; } } sec->filepos = off; if ((flags & SEC_LOAD) != 0) off += sec->_raw_size; if ((flags & SEC_ALLOC) != 0) voff += sec->_raw_size; } p->p_memsz += sec->_raw_size; if ((flags & SEC_LOAD) != 0) p->p_filesz += sec->_raw_size; if (align > p->p_align) p->p_align = align; if (! m->p_flags_valid) { p->p_flags |= PF_R; if ((flags & SEC_CODE) != 0) p->p_flags |= PF_X; if ((flags & SEC_READONLY) == 0) p->p_flags |= PF_W; } } } /* Now that we have set the section file positions, we can set up the file positions for the non PT_LOAD segments. */ for (m = elf_tdata (abfd)->segment_map, p = phdrs; m != NULL; m = m->next, p++) { if (p->p_type != PT_LOAD && m->count > 0) { BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs); p->p_offset = m->sections[0]->filepos; } if (m->count == 0) { if (m->includes_filehdr) { p->p_vaddr = filehdr_vaddr; if (! m->p_paddr_valid) p->p_paddr = filehdr_paddr; } else if (m->includes_phdrs) { p->p_vaddr = phdrs_vaddr; if (! m->p_paddr_valid) p->p_paddr = phdrs_paddr; } } } /* Clear out any program headers we allocated but did not use. */ for (; count < alloc; count++, p++) { memset (p, 0, sizeof *p); p->p_type = PT_NULL; } elf_tdata (abfd)->phdr = phdrs; elf_tdata (abfd)->next_file_pos = off; /* Write out the program headers. */ if (bfd_seek (abfd, bed->s->sizeof_ehdr, SEEK_SET) != 0 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0) return false; return true; } /* Get the size of the program header. If this is called by the linker before any of the section VMA's are set, it can't calculate the correct value for a strange memory layout. This only happens when SIZEOF_HEADERS is used in a linker script. In this case, SORTED_HDRS is NULL and we assume the normal scenario of one text and one data segment (exclusive of .interp and .dynamic). ??? User written scripts must either not use SIZEOF_HEADERS, or assume there will be two segments. */ static bfd_size_type get_program_header_size (abfd) bfd *abfd; { size_t segs; asection *s; struct elf_backend_data *bed = get_elf_backend_data (abfd); /* We can't return a different result each time we're called. */ if (elf_tdata (abfd)->program_header_size != 0) return elf_tdata (abfd)->program_header_size; if (elf_tdata (abfd)->segment_map != NULL) { struct elf_segment_map *m; segs = 0; for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) ++segs; elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr; return elf_tdata (abfd)->program_header_size; } /* Assume we will need exactly two PT_LOAD segments: one for text and one for data. */ segs = 2; s = bfd_get_section_by_name (abfd, ".interp"); if (s != NULL && (s->flags & SEC_LOAD) != 0) { /* If we have a loadable interpreter section, we need a PT_INTERP segment. In this case, assume we also need a PT_PHDR segment, although that may not be true for all targets. */ segs += 2; } if (bfd_get_section_by_name (abfd, ".dynamic") != NULL) { /* We need a PT_DYNAMIC segment. */ ++segs; } /* Let the backend count up any program headers it might need. */ if (bed->elf_backend_additional_program_headers) { int a; a = (*bed->elf_backend_additional_program_headers) (abfd); if (a == -1) abort (); segs += a; } elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr; return elf_tdata (abfd)->program_header_size; } /* Work out the file positions of all the sections. This is called by _bfd_elf_compute_section_file_positions. All the section sizes and VMAs must be known before this is called. We do not consider reloc sections at this point, unless they form part of the loadable image. Reloc sections are assigned file positions in assign_file_positions_for_relocs, which is called by write_object_contents and final_link. We also don't set the positions of the .symtab and .strtab here. */ static boolean assign_file_positions_except_relocs (abfd) bfd *abfd; { struct elf_obj_tdata * const tdata = elf_tdata (abfd); Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd); Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd); file_ptr off; struct elf_backend_data *bed = get_elf_backend_data (abfd); if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0) { Elf_Internal_Shdr **hdrpp; unsigned int i; /* Start after the ELF header. */ off = i_ehdrp->e_ehsize; /* We are not creating an executable, which means that we are not creating a program header, and that the actual order of the sections in the file is unimportant. */ for (i = 1, hdrpp = i_shdrpp + 1; i < i_ehdrp->e_shnum; i++, hdrpp++) { Elf_Internal_Shdr *hdr; hdr = *hdrpp; if (hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA) { hdr->sh_offset = -1; continue; } if (i == tdata->symtab_section || i == tdata->strtab_section) { hdr->sh_offset = -1; continue; } off = _bfd_elf_assign_file_position_for_section (hdr, off, true); } } else { unsigned int i; Elf_Internal_Shdr **hdrpp; /* Assign file positions for the loaded sections based on the assignment of sections to segments. */ if (! assign_file_positions_for_segments (abfd)) return false; /* Assign file positions for the other sections. */ off = elf_tdata (abfd)->next_file_pos; for (i = 1, hdrpp = i_shdrpp + 1; i < i_ehdrp->e_shnum; i++, hdrpp++) { Elf_Internal_Shdr *hdr; hdr = *hdrpp; if (hdr->bfd_section != NULL && hdr->bfd_section->filepos != 0) hdr->sh_offset = hdr->bfd_section->filepos; else if ((hdr->sh_flags & SHF_ALLOC) != 0) { ((*_bfd_error_handler) ("%s: warning: allocated section `%s' not in segment", bfd_get_filename (abfd), (hdr->bfd_section == NULL ? "*unknown*" : hdr->bfd_section->name))); if ((abfd->flags & D_PAGED) != 0) off += (hdr->sh_addr - off) % bed->maxpagesize; else off += (hdr->sh_addr - off) % hdr->sh_addralign; off = _bfd_elf_assign_file_position_for_section (hdr, off, false); } else if (hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA || hdr == i_shdrpp[tdata->symtab_section] || hdr == i_shdrpp[tdata->strtab_section]) hdr->sh_offset = -1; else off = _bfd_elf_assign_file_position_for_section (hdr, off, true); } } /* Place the section headers. */ off = align_file_position (off, bed->s->file_align); i_ehdrp->e_shoff = off; off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize; elf_tdata (abfd)->next_file_pos = off; return true; } static boolean prep_headers (abfd) bfd *abfd; { Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */ Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */ Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */ int count; struct bfd_strtab_hash *shstrtab; struct elf_backend_data *bed = get_elf_backend_data (abfd); i_ehdrp = elf_elfheader (abfd); i_shdrp = elf_elfsections (abfd); shstrtab = _bfd_elf_stringtab_init (); if (shstrtab == NULL) return false; elf_shstrtab (abfd) = shstrtab; i_ehdrp->e_ident[EI_MAG0] = ELFMAG0; i_ehdrp->e_ident[EI_MAG1] = ELFMAG1; i_ehdrp->e_ident[EI_MAG2] = ELFMAG2; i_ehdrp->e_ident[EI_MAG3] = ELFMAG3; i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass; i_ehdrp->e_ident[EI_DATA] = bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB; i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current; for (count = EI_PAD; count < EI_NIDENT; count++) i_ehdrp->e_ident[count] = 0; if ((abfd->flags & DYNAMIC) != 0) i_ehdrp->e_type = ET_DYN; else if ((abfd->flags & EXEC_P) != 0) i_ehdrp->e_type = ET_EXEC; else i_ehdrp->e_type = ET_REL; switch (bfd_get_arch (abfd)) { case bfd_arch_unknown: i_ehdrp->e_machine = EM_NONE; break; case bfd_arch_sparc: if (bed->s->arch_size == 64) i_ehdrp->e_machine = EM_SPARC64; else i_ehdrp->e_machine = EM_SPARC; break; case bfd_arch_i386: i_ehdrp->e_machine = EM_386; break; case bfd_arch_m68k: i_ehdrp->e_machine = EM_68K; break; case bfd_arch_m88k: i_ehdrp->e_machine = EM_88K; break; case bfd_arch_i860: i_ehdrp->e_machine = EM_860; break; case bfd_arch_mips: /* MIPS Rxxxx */ i_ehdrp->e_machine = EM_MIPS; /* only MIPS R3000 */ break; case bfd_arch_hppa: i_ehdrp->e_machine = EM_PARISC; break; case bfd_arch_powerpc: i_ehdrp->e_machine = EM_PPC; break; case bfd_arch_alpha: i_ehdrp->e_machine = EM_ALPHA; break; case bfd_arch_sh: i_ehdrp->e_machine = EM_SH; break; /* start-sanitize-d10v */ case bfd_arch_d10v: i_ehdrp->e_machine = EM_CYGNUS_D10V; break; /* end-sanitize-d10v */ /* start-sanitize-v850 */ case bfd_arch_v850: i_ehdrp->e_machine = EM_CYGNUS_V850; break; /* end-sanitize-v850 */ /* start-sanitize-arc */ case bfd_arch_arc: i_ehdrp->e_machine = EM_CYGNUS_ARC; break; /* end-sanitize-arc */ /* start-sanitize-m32r */ case bfd_arch_m32r: i_ehdrp->e_machine = EM_CYGNUS_M32R; break; /* end-sanitize-m32r */ /* also note that EM_M32, AT&T WE32100 is unknown to bfd */ default: i_ehdrp->e_machine = EM_NONE; } i_ehdrp->e_version = bed->s->ev_current; i_ehdrp->e_ehsize = bed->s->sizeof_ehdr; /* no program header, for now. */ i_ehdrp->e_phoff = 0; i_ehdrp->e_phentsize = 0; i_ehdrp->e_phnum = 0; /* each bfd section is section header entry */ i_ehdrp->e_entry = bfd_get_start_address (abfd); i_ehdrp->e_shentsize = bed->s->sizeof_shdr; /* if we're building an executable, we'll need a program header table */ if (abfd->flags & EXEC_P) { /* it all happens later */ #if 0 i_ehdrp->e_phentsize = sizeof (Elf_External_Phdr); /* elf_build_phdrs() returns a (NULL-terminated) array of Elf_Internal_Phdrs */ i_phdrp = elf_build_phdrs (abfd, i_ehdrp, i_shdrp, &i_ehdrp->e_phnum); i_ehdrp->e_phoff = outbase; outbase += i_ehdrp->e_phentsize * i_ehdrp->e_phnum; #endif } else { i_ehdrp->e_phentsize = 0; i_phdrp = 0; i_ehdrp->e_phoff = 0; } elf_tdata (abfd)->symtab_hdr.sh_name = (unsigned int) _bfd_stringtab_add (shstrtab, ".symtab", true, false); elf_tdata (abfd)->strtab_hdr.sh_name = (unsigned int) _bfd_stringtab_add (shstrtab, ".strtab", true, false); elf_tdata (abfd)->shstrtab_hdr.sh_name = (unsigned int) _bfd_stringtab_add (shstrtab, ".shstrtab", true, false); if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1) return false; return true; } /* Assign file positions for all the reloc sections which are not part of the loadable file image. */ void _bfd_elf_assign_file_positions_for_relocs (abfd) bfd *abfd; { file_ptr off; unsigned int i; Elf_Internal_Shdr **shdrpp; off = elf_tdata (abfd)->next_file_pos; for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < elf_elfheader (abfd)->e_shnum; i++, shdrpp++) { Elf_Internal_Shdr *shdrp; shdrp = *shdrpp; if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA) && shdrp->sh_offset == -1) off = _bfd_elf_assign_file_position_for_section (shdrp, off, true); } elf_tdata (abfd)->next_file_pos = off; } boolean _bfd_elf_write_object_contents (abfd) bfd *abfd; { struct elf_backend_data *bed = get_elf_backend_data (abfd); Elf_Internal_Ehdr *i_ehdrp; Elf_Internal_Shdr **i_shdrp; boolean failed; unsigned int count; if (! abfd->output_has_begun && ! _bfd_elf_compute_section_file_positions (abfd, (struct bfd_link_info *) NULL)) return false; i_shdrp = elf_elfsections (abfd); i_ehdrp = elf_elfheader (abfd); failed = false; bfd_map_over_sections (abfd, bed->s->write_relocs, &failed); if (failed) return false; _bfd_elf_assign_file_positions_for_relocs (abfd); /* After writing the headers, we need to write the sections too... */ for (count = 1; count < i_ehdrp->e_shnum; count++) { if (bed->elf_backend_section_processing) (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]); if (i_shdrp[count]->contents) { if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0 || (bfd_write (i_shdrp[count]->contents, i_shdrp[count]->sh_size, 1, abfd) != i_shdrp[count]->sh_size)) return false; } } /* Write out the section header names. */ if (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0 || ! _bfd_stringtab_emit (abfd, elf_shstrtab (abfd))) return false; if (bed->elf_backend_final_write_processing) (*bed->elf_backend_final_write_processing) (abfd, elf_tdata (abfd)->linker); return bed->s->write_shdrs_and_ehdr (abfd); } /* given a section, search the header to find them... */ int _bfd_elf_section_from_bfd_section (abfd, asect) bfd *abfd; struct sec *asect; { struct elf_backend_data *bed = get_elf_backend_data (abfd); Elf_Internal_Shdr **i_shdrp = elf_elfsections (abfd); int index; Elf_Internal_Shdr *hdr; int maxindex = elf_elfheader (abfd)->e_shnum; for (index = 0; index < maxindex; index++) { hdr = i_shdrp[index]; if (hdr->bfd_section == asect) return index; } if (bed->elf_backend_section_from_bfd_section) { for (index = 0; index < maxindex; index++) { int retval; hdr = i_shdrp[index]; retval = index; if ((*bed->elf_backend_section_from_bfd_section) (abfd, hdr, asect, &retval)) return retval; } } if (bfd_is_abs_section (asect)) return SHN_ABS; if (bfd_is_com_section (asect)) return SHN_COMMON; if (bfd_is_und_section (asect)) return SHN_UNDEF; return -1; } /* Given a BFD symbol, return the index in the ELF symbol table, or -1 on error. */ int _bfd_elf_symbol_from_bfd_symbol (abfd, asym_ptr_ptr) bfd *abfd; asymbol **asym_ptr_ptr; { asymbol *asym_ptr = *asym_ptr_ptr; int idx; flagword flags = asym_ptr->flags; /* When gas creates relocations against local labels, it creates its own symbol for the section, but does put the symbol into the symbol chain, so udata is 0. When the linker is generating relocatable output, this section symbol may be for one of the input sections rather than the output section. */ if (asym_ptr->udata.i == 0 && (flags & BSF_SECTION_SYM) && asym_ptr->section) { int indx; if (asym_ptr->section->output_section != NULL) indx = asym_ptr->section->output_section->index; else indx = asym_ptr->section->index; if (elf_section_syms (abfd)[indx]) asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i; } idx = asym_ptr->udata.i; if (idx == 0) { /* This case can occur when using --strip-symbol on a symbol which is used in a relocation entry. */ (*_bfd_error_handler) ("%s: symbol `%s' required but not present", bfd_get_filename (abfd), bfd_asymbol_name (asym_ptr)); bfd_set_error (bfd_error_no_symbols); return -1; } #if DEBUG & 4 { fprintf (stderr, "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n", (long) asym_ptr, asym_ptr->name, idx, flags, elf_symbol_flags (flags)); fflush (stderr); } #endif return idx; } /* Copy private BFD data. This copies any program header information. */ static boolean copy_private_bfd_data (ibfd, obfd) bfd *ibfd; bfd *obfd; { Elf_Internal_Ehdr *iehdr; struct elf_segment_map *mfirst; struct elf_segment_map **pm; Elf_Internal_Phdr *p; unsigned int i, c; if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour || bfd_get_flavour (obfd) != bfd_target_elf_flavour) return true; if (elf_tdata (ibfd)->phdr == NULL) return true; iehdr = elf_elfheader (ibfd); mfirst = NULL; pm = &mfirst; c = elf_elfheader (ibfd)->e_phnum; for (i = 0, p = elf_tdata (ibfd)->phdr; i < c; i++, p++) { unsigned int csecs; asection *s; struct elf_segment_map *m; unsigned int isec; csecs = 0; /* The complicated case when p_vaddr is 0 is to handle the Solaris linker, which generates a PT_INTERP section with p_vaddr and p_memsz set to 0. */ for (s = ibfd->sections; s != NULL; s = s->next) if (((s->vma >= p->p_vaddr && (s->vma + s->_raw_size <= p->p_vaddr + p->p_memsz || s->vma + s->_raw_size <= p->p_vaddr + p->p_filesz)) || (p->p_vaddr == 0 && p->p_filesz > 0 && (s->flags & SEC_HAS_CONTENTS) != 0 && (bfd_vma) s->filepos >= p->p_offset && ((bfd_vma) s->filepos + s->_raw_size <= p->p_offset + p->p_filesz))) && (s->flags & SEC_ALLOC) != 0 && s->output_section != NULL) ++csecs; m = ((struct elf_segment_map *) bfd_alloc (obfd, (sizeof (struct elf_segment_map) + (csecs - 1) * sizeof (asection *)))); if (m == NULL) return false; m->next = NULL; m->p_type = p->p_type; m->p_flags = p->p_flags; m->p_flags_valid = 1; m->p_paddr = p->p_paddr; m->p_paddr_valid = 1; m->includes_filehdr = (p->p_offset == 0 && p->p_filesz >= iehdr->e_ehsize); m->includes_phdrs = (p->p_offset <= (bfd_vma) iehdr->e_phoff && (p->p_offset + p->p_filesz >= ((bfd_vma) iehdr->e_phoff + iehdr->e_phnum * iehdr->e_phentsize))); isec = 0; for (s = ibfd->sections; s != NULL; s = s->next) { if (((s->vma >= p->p_vaddr && (s->vma + s->_raw_size <= p->p_vaddr + p->p_memsz || s->vma + s->_raw_size <= p->p_vaddr + p->p_filesz)) || (p->p_vaddr == 0 && p->p_filesz > 0 && (s->flags & SEC_HAS_CONTENTS) != 0 && (bfd_vma) s->filepos >= p->p_offset && ((bfd_vma) s->filepos + s->_raw_size <= p->p_offset + p->p_filesz))) && (s->flags & SEC_ALLOC) != 0 && s->output_section != NULL) { m->sections[isec] = s->output_section; ++isec; } } BFD_ASSERT (isec == csecs); m->count = csecs; *pm = m; pm = &m->next; } elf_tdata (obfd)->segment_map = mfirst; return true; } /* Copy private section information. This copies over the entsize field, and sometimes the info field. */ boolean _bfd_elf_copy_private_section_data (ibfd, isec, obfd, osec) bfd *ibfd; asection *isec; bfd *obfd; asection *osec; { Elf_Internal_Shdr *ihdr, *ohdr; if (ibfd->xvec->flavour != bfd_target_elf_flavour || obfd->xvec->flavour != bfd_target_elf_flavour) return true; /* Copy over private BFD data if it has not already been copied. This must be done here, rather than in the copy_private_bfd_data entry point, because the latter is called after the section contents have been set, which means that the program headers have already been worked out. */ if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL) { asection *s; /* Only set up the segments when all the sections have been set up. */ for (s = ibfd->sections; s != NULL; s = s->next) if (s->output_section == NULL) break; if (s == NULL) { if (! copy_private_bfd_data (ibfd, obfd)) return false; } } ihdr = &elf_section_data (isec)->this_hdr; ohdr = &elf_section_data (osec)->this_hdr; ohdr->sh_entsize = ihdr->sh_entsize; if (ihdr->sh_type == SHT_SYMTAB || ihdr->sh_type == SHT_DYNSYM) ohdr->sh_info = ihdr->sh_info; return true; } /* Copy private symbol information. If this symbol is in a section which we did not map into a BFD section, try to map the section index correctly. We use special macro definitions for the mapped section indices; these definitions are interpreted by the swap_out_syms function. */ #define MAP_ONESYMTAB (SHN_LORESERVE - 1) #define MAP_DYNSYMTAB (SHN_LORESERVE - 2) #define MAP_STRTAB (SHN_LORESERVE - 3) #define MAP_SHSTRTAB (SHN_LORESERVE - 4) boolean _bfd_elf_copy_private_symbol_data (ibfd, isymarg, obfd, osymarg) bfd *ibfd; asymbol *isymarg; bfd *obfd; asymbol *osymarg; { elf_symbol_type *isym, *osym; isym = elf_symbol_from (ibfd, isymarg); osym = elf_symbol_from (obfd, osymarg); if (isym != NULL && osym != NULL && bfd_is_abs_section (isym->symbol.section)) { unsigned int shndx; shndx = isym->internal_elf_sym.st_shndx; if (shndx == elf_onesymtab (ibfd)) shndx = MAP_ONESYMTAB; else if (shndx == elf_dynsymtab (ibfd)) shndx = MAP_DYNSYMTAB; else if (shndx == elf_tdata (ibfd)->strtab_section) shndx = MAP_STRTAB; else if (shndx == elf_tdata (ibfd)->shstrtab_section) shndx = MAP_SHSTRTAB; osym->internal_elf_sym.st_shndx = shndx; } return true; } /* Swap out the symbols. */ static boolean swap_out_syms (abfd, sttp) bfd *abfd; struct bfd_strtab_hash **sttp; { struct elf_backend_data *bed = get_elf_backend_data (abfd); if (!elf_map_symbols (abfd)) return false; /* Dump out the symtabs. */ { int symcount = bfd_get_symcount (abfd); asymbol **syms = bfd_get_outsymbols (abfd); struct bfd_strtab_hash *stt; Elf_Internal_Shdr *symtab_hdr; Elf_Internal_Shdr *symstrtab_hdr; char *outbound_syms; int idx; stt = _bfd_elf_stringtab_init (); if (stt == NULL) return false; symtab_hdr = &elf_tdata (abfd)->symtab_hdr; symtab_hdr->sh_type = SHT_SYMTAB; symtab_hdr->sh_entsize = bed->s->sizeof_sym; symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1); symtab_hdr->sh_info = elf_num_locals (abfd) + 1; symtab_hdr->sh_addralign = bed->s->file_align; symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr; symstrtab_hdr->sh_type = SHT_STRTAB; outbound_syms = bfd_alloc (abfd, (1 + symcount) * bed->s->sizeof_sym); if (outbound_syms == NULL) return false; symtab_hdr->contents = (PTR) outbound_syms; /* now generate the data (for "contents") */ { /* Fill in zeroth symbol and swap it out. */ Elf_Internal_Sym sym; sym.st_name = 0; sym.st_value = 0; sym.st_size = 0; sym.st_info = 0; sym.st_other = 0; sym.st_shndx = SHN_UNDEF; bed->s->swap_symbol_out (abfd, &sym, (PTR) outbound_syms); outbound_syms += bed->s->sizeof_sym; } for (idx = 0; idx < symcount; idx++) { Elf_Internal_Sym sym; bfd_vma value = syms[idx]->value; elf_symbol_type *type_ptr; flagword flags = syms[idx]->flags; int type; if (flags & BSF_SECTION_SYM) /* Section symbols have no names. */ sym.st_name = 0; else { sym.st_name = (unsigned long) _bfd_stringtab_add (stt, syms[idx]->name, true, false); if (sym.st_name == (unsigned long) -1) return false; } type_ptr = elf_symbol_from (abfd, syms[idx]); if (bfd_is_com_section (syms[idx]->section)) { /* ELF common symbols put the alignment into the `value' field, and the size into the `size' field. This is backwards from how BFD handles it, so reverse it here. */ sym.st_size = value; if (type_ptr == NULL || type_ptr->internal_elf_sym.st_value == 0) sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value)); else sym.st_value = type_ptr->internal_elf_sym.st_value; sym.st_shndx = _bfd_elf_section_from_bfd_section (abfd, syms[idx]->section); } else { asection *sec = syms[idx]->section; int shndx; if (sec->output_section) { value += sec->output_offset; sec = sec->output_section; } value += sec->vma; sym.st_value = value; sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0; if (bfd_is_abs_section (sec) && type_ptr != NULL && type_ptr->internal_elf_sym.st_shndx != 0) { /* This symbol is in a real ELF section which we did not create as a BFD section. Undo the mapping done by copy_private_symbol_data. */ shndx = type_ptr->internal_elf_sym.st_shndx; switch (shndx) { case MAP_ONESYMTAB: shndx = elf_onesymtab (abfd); break; case MAP_DYNSYMTAB: shndx = elf_dynsymtab (abfd); break; case MAP_STRTAB: shndx = elf_tdata (abfd)->strtab_section; break; case MAP_SHSTRTAB: shndx = elf_tdata (abfd)->shstrtab_section; break; default: break; } } else { shndx = _bfd_elf_section_from_bfd_section (abfd, sec); if (shndx == -1) { asection *sec2; /* Writing this would be a hell of a lot easier if we had some decent documentation on bfd, and knew what to expect of the library, and what to demand of applications. For example, it appears that `objcopy' might not set the section of a symbol to be a section that is actually in the output file. */ sec2 = bfd_get_section_by_name (abfd, sec->name); BFD_ASSERT (sec2 != 0); shndx = _bfd_elf_section_from_bfd_section (abfd, sec2); BFD_ASSERT (shndx != -1); } } sym.st_shndx = shndx; } if ((flags & BSF_FUNCTION) != 0) type = STT_FUNC; else if ((flags & BSF_OBJECT) != 0) type = STT_OBJECT; else type = STT_NOTYPE; if (bfd_is_com_section (syms[idx]->section)) sym.st_info = ELF_ST_INFO (STB_GLOBAL, type); else if (bfd_is_und_section (syms[idx]->section)) sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK) ? STB_WEAK : STB_GLOBAL), type); else if (flags & BSF_SECTION_SYM) sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); else if (flags & BSF_FILE) sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE); else { int bind = STB_LOCAL; if (flags & BSF_LOCAL) bind = STB_LOCAL; else if (flags & BSF_WEAK) bind = STB_WEAK; else if (flags & BSF_GLOBAL) bind = STB_GLOBAL; sym.st_info = ELF_ST_INFO (bind, type); } sym.st_other = 0; bed->s->swap_symbol_out (abfd, &sym, (PTR) outbound_syms); outbound_syms += bed->s->sizeof_sym; } *sttp = stt; symstrtab_hdr->sh_size = _bfd_stringtab_size (stt); symstrtab_hdr->sh_type = SHT_STRTAB; symstrtab_hdr->sh_flags = 0; symstrtab_hdr->sh_addr = 0; symstrtab_hdr->sh_entsize = 0; symstrtab_hdr->sh_link = 0; symstrtab_hdr->sh_info = 0; symstrtab_hdr->sh_addralign = 1; } return true; } /* Return the number of bytes required to hold the symtab vector. Note that we base it on the count plus 1, since we will null terminate the vector allocated based on this size. However, the ELF symbol table always has a dummy entry as symbol #0, so it ends up even. */ long _bfd_elf_get_symtab_upper_bound (abfd) bfd *abfd; { long symcount; long symtab_size; Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr; symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym; symtab_size = (symcount - 1 + 1) * (sizeof (asymbol *)); return symtab_size; } long _bfd_elf_get_dynamic_symtab_upper_bound (abfd) bfd *abfd; { long symcount; long symtab_size; Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr; if (elf_dynsymtab (abfd) == 0) { bfd_set_error (bfd_error_invalid_operation); return -1; } symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym; symtab_size = (symcount - 1 + 1) * (sizeof (asymbol *)); return symtab_size; } long _bfd_elf_get_reloc_upper_bound (abfd, asect) bfd *abfd; sec_ptr asect; { return (asect->reloc_count + 1) * sizeof (arelent *); } /* Canonicalize the relocs. */ long _bfd_elf_canonicalize_reloc (abfd, section, relptr, symbols) bfd *abfd; sec_ptr section; arelent **relptr; asymbol **symbols; { arelent *tblptr; unsigned int i; if (! get_elf_backend_data (abfd)->s->slurp_reloc_table (abfd, section, symbols)) return -1; tblptr = section->relocation; for (i = 0; i < section->reloc_count; i++) *relptr++ = tblptr++; *relptr = NULL; return section->reloc_count; } long _bfd_elf_get_symtab (abfd, alocation) bfd *abfd; asymbol **alocation; { long symcount = get_elf_backend_data (abfd)->s->slurp_symbol_table (abfd, alocation, false); if (symcount >= 0) bfd_get_symcount (abfd) = symcount; return symcount; } long _bfd_elf_canonicalize_dynamic_symtab (abfd, alocation) bfd *abfd; asymbol **alocation; { return get_elf_backend_data (abfd)->s->slurp_symbol_table (abfd, alocation, true); } asymbol * _bfd_elf_make_empty_symbol (abfd) bfd *abfd; { elf_symbol_type *newsym; newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof (elf_symbol_type)); if (!newsym) return NULL; else { newsym->symbol.the_bfd = abfd; return &newsym->symbol; } } void _bfd_elf_get_symbol_info (ignore_abfd, symbol, ret) bfd *ignore_abfd; asymbol *symbol; symbol_info *ret; { bfd_symbol_info (symbol, ret); } alent * _bfd_elf_get_lineno (ignore_abfd, symbol) bfd *ignore_abfd; asymbol *symbol; { abort (); return NULL; } boolean _bfd_elf_set_arch_mach (abfd, arch, machine) bfd *abfd; enum bfd_architecture arch; unsigned long machine; { /* If this isn't the right architecture for this backend, and this isn't the generic backend, fail. */ if (arch != get_elf_backend_data (abfd)->arch && arch != bfd_arch_unknown && get_elf_backend_data (abfd)->arch != bfd_arch_unknown) return false; return bfd_default_set_arch_mach (abfd, arch, machine); } /* Find the nearest line to a particular section and offset, for error reporting. */ boolean _bfd_elf_find_nearest_line (abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr) bfd *abfd; asection *section; asymbol **symbols; bfd_vma offset; CONST char **filename_ptr; CONST char **functionname_ptr; unsigned int *line_ptr; { boolean found; const char *filename; asymbol *func; bfd_vma low_func; asymbol **p; if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset, &found, filename_ptr, functionname_ptr, line_ptr, &elf_tdata (abfd)->line_info)) return false; if (found) return true; if (symbols == NULL) return false; filename = NULL; func = NULL; low_func = 0; for (p = symbols; *p != NULL; p++) { elf_symbol_type *q; q = (elf_symbol_type *) *p; if (bfd_get_section (&q->symbol) != section) continue; switch (ELF_ST_TYPE (q->internal_elf_sym.st_info)) { default: break; case STT_FILE: filename = bfd_asymbol_name (&q->symbol); break; case STT_FUNC: if (q->symbol.section == section && q->symbol.value >= low_func && q->symbol.value <= offset) { func = (asymbol *) q; low_func = q->symbol.value; } break; } } if (func == NULL) return false; *filename_ptr = filename; *functionname_ptr = bfd_asymbol_name (func); *line_ptr = 0; return true; } int _bfd_elf_sizeof_headers (abfd, reloc) bfd *abfd; boolean reloc; { int ret; ret = get_elf_backend_data (abfd)->s->sizeof_ehdr; if (! reloc) ret += get_program_header_size (abfd); return ret; } boolean _bfd_elf_set_section_contents (abfd, section, location, offset, count) bfd *abfd; sec_ptr section; PTR location; file_ptr offset; bfd_size_type count; { Elf_Internal_Shdr *hdr; if (! abfd->output_has_begun && ! _bfd_elf_compute_section_file_positions (abfd, (struct bfd_link_info *) NULL)) return false; hdr = &elf_section_data (section)->this_hdr; if (bfd_seek (abfd, hdr->sh_offset + offset, SEEK_SET) == -1) return false; if (bfd_write (location, 1, count, abfd) != count) return false; return true; } void _bfd_elf_no_info_to_howto (abfd, cache_ptr, dst) bfd *abfd; arelent *cache_ptr; Elf_Internal_Rela *dst; { abort (); } #if 0 void _bfd_elf_no_info_to_howto_rel (abfd, cache_ptr, dst) bfd *abfd; arelent *cache_ptr; Elf_Internal_Rel *dst; { abort (); } #endif /* Try to convert a non-ELF reloc into an ELF one. */ boolean _bfd_elf_validate_reloc (abfd, areloc) bfd *abfd; arelent *areloc; { /* Check whether we really have an ELF howto. */ if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec) { bfd_reloc_code_real_type code; reloc_howto_type *howto; /* Alien reloc: Try to determine its type to replace it with an equivalent ELF reloc. */ if (areloc->howto->pc_relative) { switch (areloc->howto->bitsize) { case 8: code = BFD_RELOC_8_PCREL; break; case 12: code = BFD_RELOC_12_PCREL; break; case 16: code = BFD_RELOC_16_PCREL; break; case 24: code = BFD_RELOC_24_PCREL; break; case 32: code = BFD_RELOC_32_PCREL; break; case 64: code = BFD_RELOC_64_PCREL; break; default: goto fail; } howto = bfd_reloc_type_lookup (abfd, code); if (areloc->howto->pcrel_offset != howto->pcrel_offset) { if (howto->pcrel_offset) areloc->addend += areloc->address; else areloc->addend -= areloc->address; /* addend is unsigned!! */ } } else { switch (areloc->howto->bitsize) { case 8: code = BFD_RELOC_8; break; case 14: code = BFD_RELOC_14; break; case 16: code = BFD_RELOC_16; break; case 26: code = BFD_RELOC_26; break; case 32: code = BFD_RELOC_32; break; case 64: code = BFD_RELOC_64; break; default: goto fail; } howto = bfd_reloc_type_lookup (abfd, code); } if (howto) areloc->howto = howto; else goto fail; } return true; fail: (*_bfd_error_handler) ("%s: unsupported relocation type %s", bfd_get_filename (abfd), areloc->howto->name); bfd_set_error (bfd_error_bad_value); return false; }