/* Native-dependent code for Sparc running LynxOS. Copyright (C) 1989, 1992, Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "defs.h" #include "inferior.h" #include "target.h" #include #include #include #if 0 #include #endif /* We don't store all registers immediately when requested, since they get sent over in large chunks anyway. Instead, we accumulate most of the changes and send them over once. "deferred_stores" keeps track of which sets of registers we have locally-changed copies of, so we only need send the groups that have changed. */ #define INT_REGS 1 #define STACK_REGS 2 #define FP_REGS 4 /* Fetch one or more registers from the inferior. REGNO == -1 to get them all. We actually fetch more than requested, when convenient, marking them as valid so we won't fetch them again. */ void fetch_inferior_registers (regno) int regno; { #if 0 struct regs inferior_registers; struct fp_status inferior_fp_registers; int i; /* We should never be called with deferred stores, because a prerequisite for writing regs is to have fetched them all (PREPARE_TO_STORE), sigh. */ if (deferred_stores) abort(); DO_DEFERRED_STORES; /* Global and Out regs are fetched directly, as well as the control registers. If we're getting one of the in or local regs, and the stack pointer has not yet been fetched, we have to do that first, since they're found in memory relative to the stack pointer. */ if (regno < O7_REGNUM /* including -1 */ || regno >= Y_REGNUM || (!register_valid[SP_REGNUM] && regno < I7_REGNUM)) { if (0 != ptrace (PTRACE_GETREGS, inferior_pid, (PTRACE_ARG3_TYPE) &inferior_registers, 0)) perror("ptrace_getregs"); registers[REGISTER_BYTE (0)] = 0; memcpy (®isters[REGISTER_BYTE (1)], &inferior_registers.r_g1, 15 * REGISTER_RAW_SIZE (G0_REGNUM)); *(int *)®isters[REGISTER_BYTE (PS_REGNUM)] = inferior_registers.r_ps; *(int *)®isters[REGISTER_BYTE (PC_REGNUM)] = inferior_registers.r_pc; *(int *)®isters[REGISTER_BYTE (NPC_REGNUM)] = inferior_registers.r_npc; *(int *)®isters[REGISTER_BYTE (Y_REGNUM)] = inferior_registers.r_y; for (i = G0_REGNUM; i <= O7_REGNUM; i++) register_valid[i] = 1; register_valid[Y_REGNUM] = 1; register_valid[PS_REGNUM] = 1; register_valid[PC_REGNUM] = 1; register_valid[NPC_REGNUM] = 1; /* If we don't set these valid, read_register_bytes() rereads all the regs every time it is called! FIXME. */ register_valid[WIM_REGNUM] = 1; /* Not true yet, FIXME */ register_valid[TBR_REGNUM] = 1; /* Not true yet, FIXME */ register_valid[FPS_REGNUM] = 1; /* Not true yet, FIXME */ register_valid[CPS_REGNUM] = 1; /* Not true yet, FIXME */ } /* Floating point registers */ if (regno == -1 || (regno >= FP0_REGNUM && regno <= FP0_REGNUM + 31)) { if (0 != ptrace (PTRACE_GETFPREGS, inferior_pid, (PTRACE_ARG3_TYPE) &inferior_fp_registers, 0)) perror("ptrace_getfpregs"); memcpy (®isters[REGISTER_BYTE (FP0_REGNUM)], &inferior_fp_registers, sizeof inferior_fp_registers.fpu_fr); /* memcpy (®isters[REGISTER_BYTE (FPS_REGNUM)], &inferior_fp_registers.Fpu_fsr, sizeof (FPU_FSR_TYPE)); FIXME??? -- gnu@cyg */ for (i = FP0_REGNUM; i <= FP0_REGNUM+31; i++) register_valid[i] = 1; register_valid[FPS_REGNUM] = 1; } /* These regs are saved on the stack by the kernel. Only read them all (16 ptrace calls!) if we really need them. */ if (regno == -1) { target_xfer_memory (*(CORE_ADDR*)®isters[REGISTER_BYTE (SP_REGNUM)], ®isters[REGISTER_BYTE (L0_REGNUM)], 16*REGISTER_RAW_SIZE (L0_REGNUM), 0); for (i = L0_REGNUM; i <= I7_REGNUM; i++) register_valid[i] = 1; } else if (regno >= L0_REGNUM && regno <= I7_REGNUM) { CORE_ADDR sp = *(CORE_ADDR*)®isters[REGISTER_BYTE (SP_REGNUM)]; i = REGISTER_BYTE (regno); if (register_valid[regno]) printf("register %d valid and read\n", regno); target_xfer_memory (sp + i - REGISTER_BYTE (L0_REGNUM), ®isters[i], REGISTER_RAW_SIZE (regno), 0); register_valid[regno] = 1; } #endif } /* Store our register values back into the inferior. If REGNO is -1, do this for all registers. Otherwise, REGNO specifies which register (so we can save time). */ void store_inferior_registers (regno) int regno; { #if 0 struct regs inferior_registers; struct fp_status inferior_fp_registers; int wanna_store = INT_REGS + STACK_REGS + FP_REGS; /* First decide which pieces of machine-state we need to modify. Default for regno == -1 case is all pieces. */ if (regno >= 0) if (FP0_REGNUM <= regno && regno < FP0_REGNUM + 32) { wanna_store = FP_REGS; } else { if (regno == SP_REGNUM) wanna_store = INT_REGS + STACK_REGS; else if (regno < L0_REGNUM || regno > I7_REGNUM) wanna_store = INT_REGS; else wanna_store = STACK_REGS; } /* See if we're forcing the stores to happen now, or deferring. */ if (regno == -2) { wanna_store = deferred_stores; deferred_stores = 0; } else { if (wanna_store == STACK_REGS) { /* Fall through and just store one stack reg. If we deferred it, we'd have to store them all, or remember more info. */ } else { deferred_stores |= wanna_store; return; } } if (wanna_store & STACK_REGS) { CORE_ADDR sp = *(CORE_ADDR *)®isters[REGISTER_BYTE (SP_REGNUM)]; if (regno < 0 || regno == SP_REGNUM) { if (!register_valid[L0_REGNUM+5]) abort(); target_xfer_memory (sp, ®isters[REGISTER_BYTE (L0_REGNUM)], 16*REGISTER_RAW_SIZE (L0_REGNUM), 1); } else { if (!register_valid[regno]) abort(); target_xfer_memory (sp + REGISTER_BYTE (regno) - REGISTER_BYTE (L0_REGNUM), ®isters[REGISTER_BYTE (regno)], REGISTER_RAW_SIZE (regno), 1); } } if (wanna_store & INT_REGS) { if (!register_valid[G1_REGNUM]) abort(); memcpy (&inferior_registers.r_g1, ®isters[REGISTER_BYTE (G1_REGNUM)], 15 * REGISTER_RAW_SIZE (G1_REGNUM)); inferior_registers.r_ps = *(int *)®isters[REGISTER_BYTE (PS_REGNUM)]; inferior_registers.r_pc = *(int *)®isters[REGISTER_BYTE (PC_REGNUM)]; inferior_registers.r_npc = *(int *)®isters[REGISTER_BYTE (NPC_REGNUM)]; inferior_registers.r_y = *(int *)®isters[REGISTER_BYTE (Y_REGNUM)]; if (0 != ptrace (PTRACE_SETREGS, inferior_pid, (PTRACE_ARG3_TYPE) &inferior_registers, 0)) perror("ptrace_setregs"); } if (wanna_store & FP_REGS) { if (!register_valid[FP0_REGNUM+9]) abort(); /* Initialize inferior_fp_registers members that gdb doesn't set by reading them from the inferior. */ if (0 != ptrace (PTRACE_GETFPREGS, inferior_pid, (PTRACE_ARG3_TYPE) &inferior_fp_registers, 0)) perror("ptrace_getfpregs"); memcpy (&inferior_fp_registers, ®isters[REGISTER_BYTE (FP0_REGNUM)], sizeof inferior_fp_registers.fpu_fr); /* memcpy (&inferior_fp_registers.Fpu_fsr, ®isters[REGISTER_BYTE (FPS_REGNUM)], sizeof (FPU_FSR_TYPE)); ****/ if (0 != ptrace (PTRACE_SETFPREGS, inferior_pid, (PTRACE_ARG3_TYPE) &inferior_fp_registers, 0)) perror("ptrace_setfpregs"); } #endif } void fetch_core_registers (core_reg_sect, core_reg_size, which, ignore) char *core_reg_sect; unsigned core_reg_size; int which; unsigned int ignore; /* reg addr, unused in this version */ { #if 0 if (which == 0) { /* Integer registers */ #define gregs ((struct regs *)core_reg_sect) /* G0 *always* holds 0. */ *(int *)®isters[REGISTER_BYTE (0)] = 0; /* The globals and output registers. */ memcpy (®isters[REGISTER_BYTE (G1_REGNUM)], &gregs->r_g1, 15 * REGISTER_RAW_SIZE (G1_REGNUM)); *(int *)®isters[REGISTER_BYTE (PS_REGNUM)] = gregs->r_ps; *(int *)®isters[REGISTER_BYTE (PC_REGNUM)] = gregs->r_pc; *(int *)®isters[REGISTER_BYTE (NPC_REGNUM)] = gregs->r_npc; *(int *)®isters[REGISTER_BYTE (Y_REGNUM)] = gregs->r_y; /* My best guess at where to get the locals and input registers is exactly where they usually are, right above the stack pointer. If the core dump was caused by a bus error from blowing away the stack pointer (as is possible) then this won't work, but it's worth the try. */ { int sp; sp = *(int *)®isters[REGISTER_BYTE (SP_REGNUM)]; if (0 != target_read_memory (sp, ®isters[REGISTER_BYTE (L0_REGNUM)], 16 * REGISTER_RAW_SIZE (L0_REGNUM))) { /* fprintf so user can still use gdb */ fprintf (stderr, "Couldn't read input and local registers from core file\n"); } } } else if (which == 2) { /* Floating point registers */ #define fpuregs ((struct fpu *) core_reg_sect) if (core_reg_size >= sizeof (struct fpu)) { memcpy (®isters[REGISTER_BYTE (FP0_REGNUM)], fpuregs->fpu_regs, sizeof (fpuregs->fpu_regs)); memcpy (®isters[REGISTER_BYTE (FPS_REGNUM)], &fpuregs->fpu_fsr, sizeof (FPU_FSR_TYPE)); } else fprintf (stderr, "Couldn't read float regs from core file\n"); } #endif } /* Wait for child to do something. Return pid of child, or -1 in case of error; store status through argument pointer STATUS. */ /* FIXME: Not sparc-specific. Should be using lynx-nat.c instead; the child_wait's are identical. */ int child_wait (pid, status) int pid; struct target_waitstatus *ourstatus; { int save_errno; int thread; while (1) { int sig; if (attach_flag) set_sigint_trap(); /* Causes SIGINT to be passed on to the attached process. */ pid = wait (status); save_errno = errno; if (attach_flag) clear_sigint_trap(); if (pid == -1) { if (save_errno == EINTR) continue; fprintf_unfiltered (gdb_stderr, "Child process unexpectedly missing: %s.\n", safe_strerror (save_errno)); /* Claim it exited with unknown signal. */ ourstatus->kind = TARGET_WAITKIND_SIGNALLED; ourstatus->value.sig = TARGET_SIGNAL_UNKNOWN; return -1; } if (pid != PIDGET (inferior_pid)) /* Some other process?!? */ continue; /* thread = WIFTID (*status);*/ thread = *status >> 16; /* Initial thread value can only be acquired via wait, so we have to resort to this hack. */ if (TIDGET (inferior_pid) == 0) { inferior_pid = BUILDPID (inferior_pid, thread); add_thread (inferior_pid); } pid = BUILDPID (pid, thread); store_waitstatus (ourstatus, status); return pid; } }