// symtab.cc -- the gold symbol table #include "gold.h" #include #include #include #include #include "object.h" #include "output.h" #include "target.h" #include "symtab.h" namespace gold { // Class Symbol. // Initialize the fields in the base class Symbol. template void Symbol::init_base(const char* name, const char* version, Object* object, const elfcpp::Sym& sym) { this->name_ = name; this->version_ = version; this->object_ = object; this->shnum_ = sym.get_st_shndx(); // FIXME: Handle SHN_XINDEX. this->type_ = sym.get_st_type(); this->binding_ = sym.get_st_bind(); this->visibility_ = sym.get_st_visibility(); this->other_ = sym.get_st_nonvis(); this->is_special_ = false; this->is_def_ = false; this->is_forwarder_ = false; this->in_dyn_ = object->is_dynamic(); } // Initialize the fields in Sized_symbol. template template void Sized_symbol::init(const char* name, const char* version, Object* object, const elfcpp::Sym& sym) { this->init_base(name, version, object, sym); this->value_ = sym.get_st_value(); this->size_ = sym.get_st_size(); } // Class Symbol_table. Symbol_table::Symbol_table() : size_(0), offset_(0), table_(), namepool_(), forwarders_() { } Symbol_table::~Symbol_table() { } // The hash function. The key is always canonicalized, so we use a // simple combination of the pointers. size_t Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const { return (reinterpret_cast(key.first) ^ reinterpret_cast(key.second)); } // The symbol table key equality function. This is only called with // canonicalized name and version strings, so we can use pointer // comparison. bool Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1, const Symbol_table_key& k2) const { return k1.first == k2.first && k1.second == k2.second; } // Make TO a symbol which forwards to FROM. void Symbol_table::make_forwarder(Symbol* from, Symbol* to) { assert(!from->is_forwarder() && !to->is_forwarder()); this->forwarders_[from] = to; from->set_forwarder(); } // Resolve the forwards from FROM, returning the real symbol. Symbol* Symbol_table::resolve_forwards(Symbol* from) const { assert(from->is_forwarder()); Unordered_map::const_iterator p = this->forwarders_.find(from); assert(p != this->forwarders_.end()); return p->second; } // Look up a symbol by name. Symbol* Symbol_table::lookup(const char* name, const char* version) const { name = this->namepool_.find(name); if (name == NULL) return NULL; if (version != NULL) { version = this->namepool_.find(version); if (version == NULL) return NULL; } Symbol_table_key key(name, version); Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key); if (p == this->table_.end()) return NULL; return p->second; } // Resolve a Symbol with another Symbol. This is only used in the // unusual case where there are references to both an unversioned // symbol and a symbol with a version, and we then discover that that // version is the default version. Because this is unusual, we do // this the slow way, by converting back to an ELF symbol. template void Symbol_table::resolve(Sized_symbol* to, const Sized_symbol* from ACCEPT_SIZE_ENDIAN) { unsigned char buf[elfcpp::Elf_sizes::sym_size]; elfcpp::Sym_write esym(buf); // We don't bother to set the st_name field. esym.put_st_value(from->value()); esym.put_st_size(from->symsize()); esym.put_st_info(from->binding(), from->type()); esym.put_st_other(from->visibility(), from->other()); esym.put_st_shndx(from->shnum()); Symbol_table::resolve(to, esym.sym(), from->object()); } // Add one symbol from OBJECT to the symbol table. NAME is symbol // name and VERSION is the version; both are canonicalized. DEF is // whether this is the default version. // If DEF is true, then this is the definition of a default version of // a symbol. That means that any lookup of NAME/NULL and any lookup // of NAME/VERSION should always return the same symbol. This is // obvious for references, but in particular we want to do this for // definitions: overriding NAME/NULL should also override // NAME/VERSION. If we don't do that, it would be very hard to // override functions in a shared library which uses versioning. // We implement this by simply making both entries in the hash table // point to the same Symbol structure. That is easy enough if this is // the first time we see NAME/NULL or NAME/VERSION, but it is possible // that we have seen both already, in which case they will both have // independent entries in the symbol table. We can't simply change // the symbol table entry, because we have pointers to the entries // attached to the object files. So we mark the entry attached to the // object file as a forwarder, and record it in the forwarders_ map. // Note that entries in the hash table will never be marked as // forwarders. template Symbol* Symbol_table::add_from_object(Sized_object* object, const char *name, const char *version, bool def, const elfcpp::Sym& sym) { Symbol* const snull = NULL; std::pair ins = this->table_.insert(std::make_pair(std::make_pair(name, version), snull)); std::pair insdef = std::make_pair(this->table_.end(), false); if (def) { const char* const vnull = NULL; insdef = this->table_.insert(std::make_pair(std::make_pair(name, vnull), snull)); } // ins.first: an iterator, which is a pointer to a pair. // ins.first->first: the key (a pair of name and version). // ins.first->second: the value (Symbol*). // ins.second: true if new entry was inserted, false if not. Sized_symbol* ret; if (!ins.second) { // We already have an entry for NAME/VERSION. ret = this->get_sized_symbol SELECT_SIZE_NAME (ins.first->second SELECT_SIZE(size)); assert(ret != NULL); Symbol_table::resolve(ret, sym, object); if (def) { if (insdef.second) { // This is the first time we have seen NAME/NULL. Make // NAME/NULL point to NAME/VERSION. insdef.first->second = ret; } else { // This is the unfortunate case where we already have // entries for both NAME/VERSION and NAME/NULL. const Sized_symbol* sym2; sym2 = this->get_sized_symbol SELECT_SIZE_NAME ( insdef.first->second SELECT_SIZE(size)); Symbol_table::resolve SELECT_SIZE_ENDIAN_NAME ( ret, sym2 SELECT_SIZE_ENDIAN(size, big_endian)); this->make_forwarder(insdef.first->second, ret); insdef.first->second = ret; } } } else { // This is the first time we have seen NAME/VERSION. assert(ins.first->second == NULL); if (def && !insdef.second) { // We already have an entry for NAME/NULL. Make // NAME/VERSION point to it. ret = this->get_sized_symbol SELECT_SIZE_NAME (insdef.first->second SELECT_SIZE(size)); Symbol_table::resolve(ret, sym, object); ins.first->second = ret; } else { Sized_target* target = object->sized_target(); if (!target->has_make_symbol()) ret = new Sized_symbol(); else { ret = target->make_symbol(); if (ret == NULL) { // This means that we don't want a symbol table // entry after all. if (!def) this->table_.erase(ins.first); else { this->table_.erase(insdef.first); // Inserting insdef invalidated ins. this->table_.erase(std::make_pair(name, version)); } return NULL; } } ret->init(name, version, object, sym); ins.first->second = ret; if (def) { // This is the first time we have seen NAME/NULL. Point // it at the new entry for NAME/VERSION. assert(insdef.second); insdef.first->second = ret; } } } return ret; } // Add all the symbols in an object to the hash table. template void Symbol_table::add_from_object( Sized_object* object, const elfcpp::Sym* syms, size_t count, const char* sym_names, size_t sym_name_size, Symbol** sympointers) { // We take the size from the first object we see. if (this->get_size() == 0) this->set_size(size); if (size != this->get_size() || size != object->target()->get_size()) { fprintf(stderr, _("%s: %s: mixing 32-bit and 64-bit ELF objects\n"), program_name, object->name().c_str()); gold_exit(false); } const int sym_size = elfcpp::Elf_sizes::sym_size; const unsigned char* p = reinterpret_cast(syms); for (size_t i = 0; i < count; ++i, p += sym_size) { elfcpp::Sym sym(p); elfcpp::Sym* psym = &sym; unsigned int st_name = psym->get_st_name(); if (st_name >= sym_name_size) { fprintf(stderr, _("%s: %s: bad global symbol name offset %u at %lu\n"), program_name, object->name().c_str(), st_name, static_cast(i)); gold_exit(false); } // A symbol defined in a section which we are not including must // be treated as an undefined symbol. unsigned char symbuf[sym_size]; elfcpp::Sym sym2(symbuf); unsigned int st_shndx = psym->get_st_shndx(); if (st_shndx != elfcpp::SHN_UNDEF && st_shndx < elfcpp::SHN_LORESERVE && !object->is_section_included(st_shndx)) { memcpy(symbuf, p, sym_size); elfcpp::Sym_write sw(symbuf); sw.put_st_shndx(elfcpp::SHN_UNDEF); psym = &sym2; } const char* name = sym_names + st_name; // In an object file, an '@' in the name separates the symbol // name from the version name. If there are two '@' characters, // this is the default version. const char* ver = strchr(name, '@'); Symbol* res; if (ver == NULL) { name = this->namepool_.add(name); res = this->add_from_object(object, name, NULL, false, *psym); } else { name = this->namepool_.add(name, ver - name); bool def = false; ++ver; if (*ver == '@') { def = true; ++ver; } ver = this->namepool_.add(ver); res = this->add_from_object(object, name, ver, def, *psym); } *sympointers++ = res; } } // Set the final values for all the symbols. Record the file offset // OFF. Add their names to POOL. Return the new file offset. off_t Symbol_table::finalize(off_t off, Stringpool* pool) { if (this->size_ == 32) return this->sized_finalize<32>(off, pool); else if (this->size_ == 64) return this->sized_finalize<64>(off, pool); else abort(); } // Set the final value for all the symbols. template off_t Symbol_table::sized_finalize(off_t off, Stringpool* pool) { off = (off + (size >> 3) - 1) & ~ ((size >> 3) - 1); this->offset_ = off; const int sym_size = elfcpp::Elf_sizes::sym_size; Symbol_table_type::iterator p = this->table_.begin(); size_t count = 0; while (p != this->table_.end()) { Sized_symbol* sym = static_cast*>(p->second); // FIXME: Here we need to decide which symbols should go into // the output file. // FIXME: This is wrong. if (sym->shnum() >= elfcpp::SHN_LORESERVE) { ++p; continue; } off_t secoff; Output_section* os = sym->object()->output_section(sym->shnum(), &secoff); if (os == NULL) { // We should be able to erase this symbol from the symbol // table, but at least with gcc 4.0.2 // std::unordered_map::erase doesn't appear to return the // new iterator. // p = this->table_.erase(p); ++p; } else { sym->set_value(sym->value() + os->address() + secoff); pool->add(sym->name()); ++p; ++count; off += sym_size; } } this->output_count_ = count; return off; } // Write out the global symbols. void Symbol_table::write_globals(const Target* target, const Stringpool* sympool, Output_file* of) const { if (this->size_ == 32) { if (target->is_big_endian()) this->sized_write_globals<32, true>(target, sympool, of); else this->sized_write_globals<32, false>(target, sympool, of); } else if (this->size_ == 64) { if (target->is_big_endian()) this->sized_write_globals<64, true>(target, sympool, of); else this->sized_write_globals<64, false>(target, sympool, of); } else abort(); } // Write out the global symbols. template void Symbol_table::sized_write_globals(const Target*, const Stringpool* sympool, Output_file* of) const { const int sym_size = elfcpp::Elf_sizes::sym_size; unsigned char* psyms = of->get_output_view(this->offset_, this->output_count_ * sym_size); unsigned char* ps = psyms; for (Symbol_table_type::const_iterator p = this->table_.begin(); p != this->table_.end(); ++p) { Sized_symbol* sym = static_cast*>(p->second); // FIXME: This repeats sized_finalize(). // FIXME: This is wrong. if (sym->shnum() >= elfcpp::SHN_LORESERVE) continue; off_t secoff; Output_section* os = sym->object()->output_section(sym->shnum(), &secoff); if (os == NULL) continue; elfcpp::Sym_write osym(ps); osym.put_st_name(sympool->get_offset(sym->name())); osym.put_st_value(sym->value()); osym.put_st_size(sym->symsize()); osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type())); osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->other())); osym.put_st_shndx(os->shndx()); ps += sym_size; } of->write_output_view(this->offset_, this->output_count_ * sym_size, psyms); } // Instantiate the templates we need. We could use the configure // script to restrict this to only the ones needed for implemented // targets. template void Symbol_table::add_from_object<32, true>( Sized_object<32, true>* object, const elfcpp::Sym<32, true>* syms, size_t count, const char* sym_names, size_t sym_name_size, Symbol** sympointers); template void Symbol_table::add_from_object<32, false>( Sized_object<32, false>* object, const elfcpp::Sym<32, false>* syms, size_t count, const char* sym_names, size_t sym_name_size, Symbol** sympointers); template void Symbol_table::add_from_object<64, true>( Sized_object<64, true>* object, const elfcpp::Sym<64, true>* syms, size_t count, const char* sym_names, size_t sym_name_size, Symbol** sympointers); template void Symbol_table::add_from_object<64, false>( Sized_object<64, false>* object, const elfcpp::Sym<64, false>* syms, size_t count, const char* sym_names, size_t sym_name_size, Symbol** sympointers); } // End namespace gold.