/* Disassemble support for GDB.
Copyright (C) 2000-2013 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see . */
#include "defs.h"
#include "target.h"
#include "value.h"
#include "ui-out.h"
#include
#include "disasm.h"
#include "gdbcore.h"
#include "dis-asm.h"
/* Disassemble functions.
FIXME: We should get rid of all the duplicate code in gdb that does
the same thing: disassemble_command() and the gdbtk variation. */
/* This Structure is used to store line number information.
We need a different sort of line table from the normal one cuz we can't
depend upon implicit line-end pc's for lines to do the
reordering in this function. */
struct dis_line_entry
{
int line;
CORE_ADDR start_pc;
CORE_ADDR end_pc;
};
/* Like target_read_memory, but slightly different parameters. */
static int
dis_asm_read_memory (bfd_vma memaddr, gdb_byte *myaddr, unsigned int len,
struct disassemble_info *info)
{
return target_read_code (memaddr, myaddr, len);
}
/* Like memory_error with slightly different parameters. */
static void
dis_asm_memory_error (int status, bfd_vma memaddr,
struct disassemble_info *info)
{
memory_error (status, memaddr);
}
/* Like print_address with slightly different parameters. */
static void
dis_asm_print_address (bfd_vma addr, struct disassemble_info *info)
{
struct gdbarch *gdbarch = info->application_data;
print_address (gdbarch, addr, info->stream);
}
static int
compare_lines (const void *mle1p, const void *mle2p)
{
struct dis_line_entry *mle1, *mle2;
int val;
mle1 = (struct dis_line_entry *) mle1p;
mle2 = (struct dis_line_entry *) mle2p;
/* End of sequence markers have a line number of 0 but don't want to
be sorted to the head of the list, instead sort by PC. */
if (mle1->line == 0 || mle2->line == 0)
{
val = mle1->start_pc - mle2->start_pc;
if (val == 0)
val = mle1->line - mle2->line;
}
else
{
val = mle1->line - mle2->line;
if (val == 0)
val = mle1->start_pc - mle2->start_pc;
}
return val;
}
static int
dump_insns (struct gdbarch *gdbarch, struct ui_out *uiout,
struct disassemble_info * di,
CORE_ADDR low, CORE_ADDR high,
int how_many, int flags, struct ui_file *stb)
{
int num_displayed = 0;
CORE_ADDR pc;
/* parts of the symbolic representation of the address */
int unmapped;
int offset;
int line;
struct cleanup *ui_out_chain;
for (pc = low; pc < high;)
{
char *filename = NULL;
char *name = NULL;
QUIT;
if (how_many >= 0)
{
if (num_displayed >= how_many)
break;
else
num_displayed++;
}
ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
if ((flags & DISASSEMBLY_OMIT_PC) == 0)
ui_out_text (uiout, pc_prefix (pc));
ui_out_field_core_addr (uiout, "address", gdbarch, pc);
if (!build_address_symbolic (gdbarch, pc, 0, &name, &offset, &filename,
&line, &unmapped))
{
/* We don't care now about line, filename and
unmapped. But we might in the future. */
ui_out_text (uiout, " <");
if ((flags & DISASSEMBLY_OMIT_FNAME) == 0)
ui_out_field_string (uiout, "func-name", name);
ui_out_text (uiout, "+");
ui_out_field_int (uiout, "offset", offset);
ui_out_text (uiout, ">:\t");
}
else
ui_out_text (uiout, ":\t");
if (filename != NULL)
xfree (filename);
if (name != NULL)
xfree (name);
ui_file_rewind (stb);
if (flags & DISASSEMBLY_RAW_INSN)
{
CORE_ADDR old_pc = pc;
bfd_byte data;
int status;
const char *spacer = "";
/* Build the opcodes using a temporary stream so we can
write them out in a single go for the MI. */
struct ui_file *opcode_stream = mem_fileopen ();
struct cleanup *cleanups =
make_cleanup_ui_file_delete (opcode_stream);
pc += gdbarch_print_insn (gdbarch, pc, di);
for (;old_pc < pc; old_pc++)
{
status = (*di->read_memory_func) (old_pc, &data, 1, di);
if (status != 0)
(*di->memory_error_func) (status, old_pc, di);
fprintf_filtered (opcode_stream, "%s%02x",
spacer, (unsigned) data);
spacer = " ";
}
ui_out_field_stream (uiout, "opcodes", opcode_stream);
ui_out_text (uiout, "\t");
do_cleanups (cleanups);
}
else
pc += gdbarch_print_insn (gdbarch, pc, di);
ui_out_field_stream (uiout, "inst", stb);
ui_file_rewind (stb);
do_cleanups (ui_out_chain);
ui_out_text (uiout, "\n");
}
return num_displayed;
}
/* The idea here is to present a source-O-centric view of a
function to the user. This means that things are presented
in source order, with (possibly) out of order assembly
immediately following. */
static void
do_mixed_source_and_assembly (struct gdbarch *gdbarch, struct ui_out *uiout,
struct disassemble_info *di, int nlines,
struct linetable_entry *le,
CORE_ADDR low, CORE_ADDR high,
struct symtab *symtab,
int how_many, int flags, struct ui_file *stb)
{
int newlines = 0;
struct dis_line_entry *mle;
struct symtab_and_line sal;
int i;
int out_of_order = 0;
int next_line = 0;
int num_displayed = 0;
enum print_source_lines_flags psl_flags = 0;
struct cleanup *ui_out_chain;
struct cleanup *ui_out_tuple_chain = make_cleanup (null_cleanup, 0);
struct cleanup *ui_out_list_chain = make_cleanup (null_cleanup, 0);
if (flags & DISASSEMBLY_FILENAME)
psl_flags |= PRINT_SOURCE_LINES_FILENAME;
mle = (struct dis_line_entry *) alloca (nlines
* sizeof (struct dis_line_entry));
/* Copy linetable entries for this function into our data
structure, creating end_pc's and setting out_of_order as
appropriate. */
/* First, skip all the preceding functions. */
for (i = 0; i < nlines - 1 && le[i].pc < low; i++);
/* Now, copy all entries before the end of this function. */
for (; i < nlines - 1 && le[i].pc < high; i++)
{
if (le[i].line == le[i + 1].line && le[i].pc == le[i + 1].pc)
continue; /* Ignore duplicates. */
/* Skip any end-of-function markers. */
if (le[i].line == 0)
continue;
mle[newlines].line = le[i].line;
if (le[i].line > le[i + 1].line)
out_of_order = 1;
mle[newlines].start_pc = le[i].pc;
mle[newlines].end_pc = le[i + 1].pc;
newlines++;
}
/* If we're on the last line, and it's part of the function,
then we need to get the end pc in a special way. */
if (i == nlines - 1 && le[i].pc < high)
{
mle[newlines].line = le[i].line;
mle[newlines].start_pc = le[i].pc;
sal = find_pc_line (le[i].pc, 0);
mle[newlines].end_pc = sal.end;
newlines++;
}
/* Now, sort mle by line #s (and, then by addresses within
lines). */
if (out_of_order)
qsort (mle, newlines, sizeof (struct dis_line_entry), compare_lines);
/* Now, for each line entry, emit the specified lines (unless
they have been emitted before), followed by the assembly code
for that line. */
ui_out_chain = make_cleanup_ui_out_list_begin_end (uiout, "asm_insns");
for (i = 0; i < newlines; i++)
{
/* Print out everything from next_line to the current line. */
if (mle[i].line >= next_line)
{
if (next_line != 0)
{
/* Just one line to print. */
if (next_line == mle[i].line)
{
ui_out_tuple_chain
= make_cleanup_ui_out_tuple_begin_end (uiout,
"src_and_asm_line");
print_source_lines (symtab, next_line, mle[i].line + 1, psl_flags);
}
else
{
/* Several source lines w/o asm instructions associated. */
for (; next_line < mle[i].line; next_line++)
{
struct cleanup *ui_out_list_chain_line;
struct cleanup *ui_out_tuple_chain_line;
ui_out_tuple_chain_line
= make_cleanup_ui_out_tuple_begin_end (uiout,
"src_and_asm_line");
print_source_lines (symtab, next_line, next_line + 1,
psl_flags);
ui_out_list_chain_line
= make_cleanup_ui_out_list_begin_end (uiout,
"line_asm_insn");
do_cleanups (ui_out_list_chain_line);
do_cleanups (ui_out_tuple_chain_line);
}
/* Print the last line and leave list open for
asm instructions to be added. */
ui_out_tuple_chain
= make_cleanup_ui_out_tuple_begin_end (uiout,
"src_and_asm_line");
print_source_lines (symtab, next_line, mle[i].line + 1, psl_flags);
}
}
else
{
ui_out_tuple_chain
= make_cleanup_ui_out_tuple_begin_end (uiout,
"src_and_asm_line");
print_source_lines (symtab, mle[i].line, mle[i].line + 1, psl_flags);
}
next_line = mle[i].line + 1;
ui_out_list_chain
= make_cleanup_ui_out_list_begin_end (uiout, "line_asm_insn");
}
num_displayed += dump_insns (gdbarch, uiout, di,
mle[i].start_pc, mle[i].end_pc,
how_many, flags, stb);
/* When we've reached the end of the mle array, or we've seen the last
assembly range for this source line, close out the list/tuple. */
if (i == (newlines - 1) || mle[i + 1].line > mle[i].line)
{
do_cleanups (ui_out_list_chain);
do_cleanups (ui_out_tuple_chain);
ui_out_tuple_chain = make_cleanup (null_cleanup, 0);
ui_out_list_chain = make_cleanup (null_cleanup, 0);
ui_out_text (uiout, "\n");
}
if (how_many >= 0 && num_displayed >= how_many)
break;
}
do_cleanups (ui_out_chain);
}
static void
do_assembly_only (struct gdbarch *gdbarch, struct ui_out *uiout,
struct disassemble_info * di,
CORE_ADDR low, CORE_ADDR high,
int how_many, int flags, struct ui_file *stb)
{
int num_displayed = 0;
struct cleanup *ui_out_chain;
ui_out_chain = make_cleanup_ui_out_list_begin_end (uiout, "asm_insns");
num_displayed = dump_insns (gdbarch, uiout, di, low, high, how_many,
flags, stb);
do_cleanups (ui_out_chain);
}
/* Initialize the disassemble info struct ready for the specified
stream. */
static int ATTRIBUTE_PRINTF (2, 3)
fprintf_disasm (void *stream, const char *format, ...)
{
va_list args;
va_start (args, format);
vfprintf_filtered (stream, format, args);
va_end (args);
/* Something non -ve. */
return 0;
}
static struct disassemble_info
gdb_disassemble_info (struct gdbarch *gdbarch, struct ui_file *file)
{
struct disassemble_info di;
init_disassemble_info (&di, file, fprintf_disasm);
di.flavour = bfd_target_unknown_flavour;
di.memory_error_func = dis_asm_memory_error;
di.print_address_func = dis_asm_print_address;
/* NOTE: cagney/2003-04-28: The original code, from the old Insight
disassembler had a local optomization here. By default it would
access the executable file, instead of the target memory (there
was a growing list of exceptions though). Unfortunately, the
heuristic was flawed. Commands like "disassemble &variable"
didn't work as they relied on the access going to the target.
Further, it has been supperseeded by trust-read-only-sections
(although that should be superseeded by target_trust..._p()). */
di.read_memory_func = dis_asm_read_memory;
di.arch = gdbarch_bfd_arch_info (gdbarch)->arch;
di.mach = gdbarch_bfd_arch_info (gdbarch)->mach;
di.endian = gdbarch_byte_order (gdbarch);
di.endian_code = gdbarch_byte_order_for_code (gdbarch);
di.application_data = gdbarch;
disassemble_init_for_target (&di);
return di;
}
void
gdb_disassembly (struct gdbarch *gdbarch, struct ui_out *uiout,
char *file_string, int flags, int how_many,
CORE_ADDR low, CORE_ADDR high)
{
struct ui_file *stb = mem_fileopen ();
struct cleanup *cleanups = make_cleanup_ui_file_delete (stb);
struct disassemble_info di = gdb_disassemble_info (gdbarch, stb);
/* To collect the instruction outputted from opcodes. */
struct symtab *symtab = NULL;
struct linetable_entry *le = NULL;
int nlines = -1;
/* Assume symtab is valid for whole PC range. */
symtab = find_pc_symtab (low);
if (symtab != NULL && symtab->linetable != NULL)
{
/* Convert the linetable to a bunch of my_line_entry's. */
le = symtab->linetable->item;
nlines = symtab->linetable->nitems;
}
if (!(flags & DISASSEMBLY_SOURCE) || nlines <= 0
|| symtab == NULL || symtab->linetable == NULL)
do_assembly_only (gdbarch, uiout, &di, low, high, how_many, flags, stb);
else if (flags & DISASSEMBLY_SOURCE)
do_mixed_source_and_assembly (gdbarch, uiout, &di, nlines, le, low,
high, symtab, how_many, flags, stb);
do_cleanups (cleanups);
gdb_flush (gdb_stdout);
}
/* Print the instruction at address MEMADDR in debugged memory,
on STREAM. Returns the length of the instruction, in bytes,
and, if requested, the number of branch delay slot instructions. */
int
gdb_print_insn (struct gdbarch *gdbarch, CORE_ADDR memaddr,
struct ui_file *stream, int *branch_delay_insns)
{
struct disassemble_info di;
int length;
di = gdb_disassemble_info (gdbarch, stream);
length = gdbarch_print_insn (gdbarch, memaddr, &di);
if (branch_delay_insns)
{
if (di.insn_info_valid)
*branch_delay_insns = di.branch_delay_insns;
else
*branch_delay_insns = 0;
}
return length;
}
static void
do_ui_file_delete (void *arg)
{
ui_file_delete (arg);
}
/* Return the length in bytes of the instruction at address MEMADDR in
debugged memory. */
int
gdb_insn_length (struct gdbarch *gdbarch, CORE_ADDR addr)
{
static struct ui_file *null_stream = NULL;
/* Dummy file descriptor for the disassembler. */
if (!null_stream)
{
null_stream = ui_file_new ();
make_final_cleanup (do_ui_file_delete, null_stream);
}
return gdb_print_insn (gdbarch, addr, null_stream, NULL);
}
/* fprintf-function for gdb_buffered_insn_length. This function is a
nop, we don't want to print anything, we just want to compute the
length of the insn. */
static int ATTRIBUTE_PRINTF (2, 3)
gdb_buffered_insn_length_fprintf (void *stream, const char *format, ...)
{
return 0;
}
/* Initialize a struct disassemble_info for gdb_buffered_insn_length. */
static void
gdb_buffered_insn_length_init_dis (struct gdbarch *gdbarch,
struct disassemble_info *di,
const gdb_byte *insn, int max_len,
CORE_ADDR addr)
{
init_disassemble_info (di, NULL, gdb_buffered_insn_length_fprintf);
/* init_disassemble_info installs buffer_read_memory, etc.
so we don't need to do that here.
The cast is necessary until disassemble_info is const-ified. */
di->buffer = (gdb_byte *) insn;
di->buffer_length = max_len;
di->buffer_vma = addr;
di->arch = gdbarch_bfd_arch_info (gdbarch)->arch;
di->mach = gdbarch_bfd_arch_info (gdbarch)->mach;
di->endian = gdbarch_byte_order (gdbarch);
di->endian_code = gdbarch_byte_order_for_code (gdbarch);
disassemble_init_for_target (di);
}
/* Return the length in bytes of INSN. MAX_LEN is the size of the
buffer containing INSN. */
int
gdb_buffered_insn_length (struct gdbarch *gdbarch,
const gdb_byte *insn, int max_len, CORE_ADDR addr)
{
struct disassemble_info di;
gdb_buffered_insn_length_init_dis (gdbarch, &di, insn, max_len, addr);
return gdbarch_print_insn (gdbarch, addr, &di);
}