/* Remote target communications for serial-line targets in custom GDB protocol Copyright (C) 1988-2015 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* See the GDB User Guide for details of the GDB remote protocol. */ #include "defs.h" #include #include #include "inferior.h" #include "infrun.h" #include "bfd.h" #include "symfile.h" #include "target.h" /*#include "terminal.h" */ #include "gdbcmd.h" #include "objfiles.h" #include "gdb-stabs.h" #include "gdbthread.h" #include "remote.h" #include "remote-notif.h" #include "regcache.h" #include "value.h" #include "observer.h" #include "solib.h" #include "cli/cli-decode.h" #include "cli/cli-setshow.h" #include "target-descriptions.h" #include "gdb_bfd.h" #include "filestuff.h" #include "rsp-low.h" #include #include "event-loop.h" #include "event-top.h" #include "inf-loop.h" #include #include "serial.h" #include "gdbcore.h" /* for exec_bfd */ #include "remote-fileio.h" #include "gdb/fileio.h" #include #include "xml-support.h" #include "memory-map.h" #include "tracepoint.h" #include "ax.h" #include "ax-gdb.h" #include "agent.h" #include "btrace.h" /* Temp hacks for tracepoint encoding migration. */ static char *target_buf; static long target_buf_size; /* The size to align memory write packets, when practical. The protocol does not guarantee any alignment, and gdb will generate short writes and unaligned writes, but even as a best-effort attempt this can improve bulk transfers. For instance, if a write is misaligned relative to the target's data bus, the stub may need to make an extra round trip fetching data from the target. This doesn't make a huge difference, but it's easy to do, so we try to be helpful. The alignment chosen is arbitrary; usually data bus width is important here, not the possibly larger cache line size. */ enum { REMOTE_ALIGN_WRITES = 16 }; /* Prototypes for local functions. */ static void async_cleanup_sigint_signal_handler (void *dummy); static int getpkt_sane (char **buf, long *sizeof_buf, int forever); static int getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever, int *is_notif); static void async_handle_remote_sigint (int); static void async_handle_remote_sigint_twice (int); static void remote_files_info (struct target_ops *ignore); static void remote_prepare_to_store (struct target_ops *self, struct regcache *regcache); static void remote_open_1 (const char *, int, struct target_ops *, int extended_p); static void remote_close (struct target_ops *self); struct remote_state; static int remote_vkill (int pid, struct remote_state *rs); static void remote_mourn (struct target_ops *ops); static void extended_remote_restart (void); static void extended_remote_mourn (struct target_ops *); static void remote_send (char **buf, long *sizeof_buf_p); static int readchar (int timeout); static void remote_serial_write (const char *str, int len); static void remote_kill (struct target_ops *ops); static int remote_can_async_p (struct target_ops *); static int remote_is_async_p (struct target_ops *); static void remote_async (struct target_ops *ops, int enable); static void sync_remote_interrupt_twice (int signo); static void interrupt_query (void); static void set_general_thread (struct ptid ptid); static void set_continue_thread (struct ptid ptid); static void get_offsets (void); static void skip_frame (void); static long read_frame (char **buf_p, long *sizeof_buf); static int hexnumlen (ULONGEST num); static void init_remote_ops (void); static void init_extended_remote_ops (void); static void remote_stop (struct target_ops *self, ptid_t); static int stubhex (int ch); static int hexnumstr (char *, ULONGEST); static int hexnumnstr (char *, ULONGEST, int); static CORE_ADDR remote_address_masked (CORE_ADDR); static void print_packet (const char *); static void compare_sections_command (char *, int); static void packet_command (char *, int); static int stub_unpack_int (char *buff, int fieldlength); static ptid_t remote_current_thread (ptid_t oldptid); static int putpkt_binary (const char *buf, int cnt); static void check_binary_download (CORE_ADDR addr); struct packet_config; static void show_packet_config_cmd (struct packet_config *config); static void show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty, struct cmd_list_element *c, const char *value); static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid); static ptid_t read_ptid (char *buf, char **obuf); static void remote_set_permissions (struct target_ops *self); static int remote_get_trace_status (struct target_ops *self, struct trace_status *ts); static int remote_upload_tracepoints (struct target_ops *self, struct uploaded_tp **utpp); static int remote_upload_trace_state_variables (struct target_ops *self, struct uploaded_tsv **utsvp); static void remote_query_supported (void); static void remote_check_symbols (void); void _initialize_remote (void); struct stop_reply; static void stop_reply_xfree (struct stop_reply *); static void remote_parse_stop_reply (char *, struct stop_reply *); static void push_stop_reply (struct stop_reply *); static void discard_pending_stop_replies_in_queue (struct remote_state *); static int peek_stop_reply (ptid_t ptid); struct threads_listing_context; static void remove_new_fork_children (struct threads_listing_context *); static void remote_async_inferior_event_handler (gdb_client_data); static void remote_terminal_ours (struct target_ops *self); static int remote_read_description_p (struct target_ops *target); static void remote_console_output (char *msg); static int remote_supports_cond_breakpoints (struct target_ops *self); static int remote_can_run_breakpoint_commands (struct target_ops *self); static void remote_btrace_reset (void); /* For "remote". */ static struct cmd_list_element *remote_cmdlist; /* For "set remote" and "show remote". */ static struct cmd_list_element *remote_set_cmdlist; static struct cmd_list_element *remote_show_cmdlist; /* Stub vCont actions support. Each field is a boolean flag indicating whether the stub reports support for the corresponding action. */ struct vCont_action_support { /* vCont;t */ int t; /* vCont;r */ int r; }; /* Controls whether GDB is willing to use range stepping. */ static int use_range_stepping = 1; #define OPAQUETHREADBYTES 8 /* a 64 bit opaque identifier */ typedef unsigned char threadref[OPAQUETHREADBYTES]; /* About this many threadisds fit in a packet. */ #define MAXTHREADLISTRESULTS 32 /* Description of the remote protocol state for the currently connected target. This is per-target state, and independent of the selected architecture. */ struct remote_state { /* A buffer to use for incoming packets, and its current size. The buffer is grown dynamically for larger incoming packets. Outgoing packets may also be constructed in this buffer. BUF_SIZE is always at least REMOTE_PACKET_SIZE; REMOTE_PACKET_SIZE should be used to limit the length of outgoing packets. */ char *buf; long buf_size; /* True if we're going through initial connection setup (finding out about the remote side's threads, relocating symbols, etc.). */ int starting_up; /* If we negotiated packet size explicitly (and thus can bypass heuristics for the largest packet size that will not overflow a buffer in the stub), this will be set to that packet size. Otherwise zero, meaning to use the guessed size. */ long explicit_packet_size; /* remote_wait is normally called when the target is running and waits for a stop reply packet. But sometimes we need to call it when the target is already stopped. We can send a "?" packet and have remote_wait read the response. Or, if we already have the response, we can stash it in BUF and tell remote_wait to skip calling getpkt. This flag is set when BUF contains a stop reply packet and the target is not waiting. */ int cached_wait_status; /* True, if in no ack mode. That is, neither GDB nor the stub will expect acks from each other. The connection is assumed to be reliable. */ int noack_mode; /* True if we're connected in extended remote mode. */ int extended; /* True if we resumed the target and we're waiting for the target to stop. In the mean time, we can't start another command/query. The remote server wouldn't be ready to process it, so we'd timeout waiting for a reply that would never come and eventually we'd close the connection. This can happen in asynchronous mode because we allow GDB commands while the target is running. */ int waiting_for_stop_reply; /* The status of the stub support for the various vCont actions. */ struct vCont_action_support supports_vCont; /* Nonzero if the user has pressed Ctrl-C, but the target hasn't responded to that. */ int ctrlc_pending_p; /* Descriptor for I/O to remote machine. Initialize it to NULL so that remote_open knows that we don't have a file open when the program starts. */ struct serial *remote_desc; /* These are the threads which we last sent to the remote system. The TID member will be -1 for all or -2 for not sent yet. */ ptid_t general_thread; ptid_t continue_thread; /* This is the traceframe which we last selected on the remote system. It will be -1 if no traceframe is selected. */ int remote_traceframe_number; char *last_pass_packet; /* The last QProgramSignals packet sent to the target. We bypass sending a new program signals list down to the target if the new packet is exactly the same as the last we sent. IOW, we only let the target know about program signals list changes. */ char *last_program_signals_packet; enum gdb_signal last_sent_signal; int last_sent_step; char *finished_object; char *finished_annex; ULONGEST finished_offset; /* Should we try the 'ThreadInfo' query packet? This variable (NOT available to the user: auto-detect only!) determines whether GDB will use the new, simpler "ThreadInfo" query or the older, more complex syntax for thread queries. This is an auto-detect variable (set to true at each connect, and set to false when the target fails to recognize it). */ int use_threadinfo_query; int use_threadextra_query; /* This is set to the data address of the access causing the target to stop for a watchpoint. */ CORE_ADDR remote_watch_data_address; /* Whether the target stopped for a breakpoint/watchpoint. */ enum target_stop_reason stop_reason; threadref echo_nextthread; threadref nextthread; threadref resultthreadlist[MAXTHREADLISTRESULTS]; /* The state of remote notification. */ struct remote_notif_state *notif_state; /* The branch trace configuration. */ struct btrace_config btrace_config; /* The argument to the last "vFile:setfs:" packet we sent, used to avoid sending repeated unnecessary "vFile:setfs:" packets. Initialized to -1 to indicate that no "vFile:setfs:" packet has yet been sent. */ int fs_pid; }; /* Private data that we'll store in (struct thread_info)->private. */ struct private_thread_info { char *extra; int core; }; static void free_private_thread_info (struct private_thread_info *info) { xfree (info->extra); xfree (info); } /* This data could be associated with a target, but we do not always have access to the current target when we need it, so for now it is static. This will be fine for as long as only one target is in use at a time. */ static struct remote_state *remote_state; static struct remote_state * get_remote_state_raw (void) { return remote_state; } /* Allocate a new struct remote_state with xmalloc, initialize it, and return it. */ static struct remote_state * new_remote_state (void) { struct remote_state *result = XCNEW (struct remote_state); /* The default buffer size is unimportant; it will be expanded whenever a larger buffer is needed. */ result->buf_size = 400; result->buf = xmalloc (result->buf_size); result->remote_traceframe_number = -1; result->last_sent_signal = GDB_SIGNAL_0; result->fs_pid = -1; return result; } /* Description of the remote protocol for a given architecture. */ struct packet_reg { long offset; /* Offset into G packet. */ long regnum; /* GDB's internal register number. */ LONGEST pnum; /* Remote protocol register number. */ int in_g_packet; /* Always part of G packet. */ /* long size in bytes; == register_size (target_gdbarch (), regnum); at present. */ /* char *name; == gdbarch_register_name (target_gdbarch (), regnum); at present. */ }; struct remote_arch_state { /* Description of the remote protocol registers. */ long sizeof_g_packet; /* Description of the remote protocol registers indexed by REGNUM (making an array gdbarch_num_regs in size). */ struct packet_reg *regs; /* This is the size (in chars) of the first response to the ``g'' packet. It is used as a heuristic when determining the maximum size of memory-read and memory-write packets. A target will typically only reserve a buffer large enough to hold the ``g'' packet. The size does not include packet overhead (headers and trailers). */ long actual_register_packet_size; /* This is the maximum size (in chars) of a non read/write packet. It is also used as a cap on the size of read/write packets. */ long remote_packet_size; }; /* Utility: generate error from an incoming stub packet. */ static void trace_error (char *buf) { if (*buf++ != 'E') return; /* not an error msg */ switch (*buf) { case '1': /* malformed packet error */ if (*++buf == '0') /* general case: */ error (_("remote.c: error in outgoing packet.")); else error (_("remote.c: error in outgoing packet at field #%ld."), strtol (buf, NULL, 16)); default: error (_("Target returns error code '%s'."), buf); } } /* Utility: wait for reply from stub, while accepting "O" packets. */ static char * remote_get_noisy_reply (char **buf_p, long *sizeof_buf) { do /* Loop on reply from remote stub. */ { char *buf; QUIT; /* Allow user to bail out with ^C. */ getpkt (buf_p, sizeof_buf, 0); buf = *buf_p; if (buf[0] == 'E') trace_error (buf); else if (startswith (buf, "qRelocInsn:")) { ULONGEST ul; CORE_ADDR from, to, org_to; char *p, *pp; int adjusted_size = 0; int relocated = 0; p = buf + strlen ("qRelocInsn:"); pp = unpack_varlen_hex (p, &ul); if (*pp != ';') error (_("invalid qRelocInsn packet: %s"), buf); from = ul; p = pp + 1; unpack_varlen_hex (p, &ul); to = ul; org_to = to; TRY { gdbarch_relocate_instruction (target_gdbarch (), &to, from); relocated = 1; } CATCH (ex, RETURN_MASK_ALL) { if (ex.error == MEMORY_ERROR) { /* Propagate memory errors silently back to the target. The stub may have limited the range of addresses we can write to, for example. */ } else { /* Something unexpectedly bad happened. Be verbose so we can tell what, and propagate the error back to the stub, so it doesn't get stuck waiting for a response. */ exception_fprintf (gdb_stderr, ex, _("warning: relocating instruction: ")); } putpkt ("E01"); } END_CATCH if (relocated) { adjusted_size = to - org_to; xsnprintf (buf, *sizeof_buf, "qRelocInsn:%x", adjusted_size); putpkt (buf); } } else if (buf[0] == 'O' && buf[1] != 'K') remote_console_output (buf + 1); /* 'O' message from stub */ else return buf; /* Here's the actual reply. */ } while (1); } /* Handle for retreving the remote protocol data from gdbarch. */ static struct gdbarch_data *remote_gdbarch_data_handle; static struct remote_arch_state * get_remote_arch_state (void) { return gdbarch_data (target_gdbarch (), remote_gdbarch_data_handle); } /* Fetch the global remote target state. */ static struct remote_state * get_remote_state (void) { /* Make sure that the remote architecture state has been initialized, because doing so might reallocate rs->buf. Any function which calls getpkt also needs to be mindful of changes to rs->buf, but this call limits the number of places which run into trouble. */ get_remote_arch_state (); return get_remote_state_raw (); } static int compare_pnums (const void *lhs_, const void *rhs_) { const struct packet_reg * const *lhs = lhs_; const struct packet_reg * const *rhs = rhs_; if ((*lhs)->pnum < (*rhs)->pnum) return -1; else if ((*lhs)->pnum == (*rhs)->pnum) return 0; else return 1; } static int map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs) { int regnum, num_remote_regs, offset; struct packet_reg **remote_regs; for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++) { struct packet_reg *r = ®s[regnum]; if (register_size (gdbarch, regnum) == 0) /* Do not try to fetch zero-sized (placeholder) registers. */ r->pnum = -1; else r->pnum = gdbarch_remote_register_number (gdbarch, regnum); r->regnum = regnum; } /* Define the g/G packet format as the contents of each register with a remote protocol number, in order of ascending protocol number. */ remote_regs = alloca (gdbarch_num_regs (gdbarch) * sizeof (struct packet_reg *)); for (num_remote_regs = 0, regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++) if (regs[regnum].pnum != -1) remote_regs[num_remote_regs++] = ®s[regnum]; qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *), compare_pnums); for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++) { remote_regs[regnum]->in_g_packet = 1; remote_regs[regnum]->offset = offset; offset += register_size (gdbarch, remote_regs[regnum]->regnum); } return offset; } /* Given the architecture described by GDBARCH, return the remote protocol register's number and the register's offset in the g/G packets of GDB register REGNUM, in PNUM and POFFSET respectively. If the target does not have a mapping for REGNUM, return false, otherwise, return true. */ int remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum, int *pnum, int *poffset) { int sizeof_g_packet; struct packet_reg *regs; struct cleanup *old_chain; gdb_assert (regnum < gdbarch_num_regs (gdbarch)); regs = xcalloc (gdbarch_num_regs (gdbarch), sizeof (struct packet_reg)); old_chain = make_cleanup (xfree, regs); sizeof_g_packet = map_regcache_remote_table (gdbarch, regs); *pnum = regs[regnum].pnum; *poffset = regs[regnum].offset; do_cleanups (old_chain); return *pnum != -1; } static void * init_remote_state (struct gdbarch *gdbarch) { struct remote_state *rs = get_remote_state_raw (); struct remote_arch_state *rsa; rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state); /* Use the architecture to build a regnum<->pnum table, which will be 1:1 unless a feature set specifies otherwise. */ rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch_num_regs (gdbarch), struct packet_reg); /* Record the maximum possible size of the g packet - it may turn out to be smaller. */ rsa->sizeof_g_packet = map_regcache_remote_table (gdbarch, rsa->regs); /* Default maximum number of characters in a packet body. Many remote stubs have a hardwired buffer size of 400 bytes (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used as the maximum packet-size to ensure that the packet and an extra NUL character can always fit in the buffer. This stops GDB trashing stubs that try to squeeze an extra NUL into what is already a full buffer (As of 1999-12-04 that was most stubs). */ rsa->remote_packet_size = 400 - 1; /* This one is filled in when a ``g'' packet is received. */ rsa->actual_register_packet_size = 0; /* Should rsa->sizeof_g_packet needs more space than the default, adjust the size accordingly. Remember that each byte is encoded as two characters. 32 is the overhead for the packet header / footer. NOTE: cagney/1999-10-26: I suspect that 8 (``$NN:G...#NN'') is a better guess, the below has been padded a little. */ if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2)) rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32); /* Make sure that the packet buffer is plenty big enough for this architecture. */ if (rs->buf_size < rsa->remote_packet_size) { rs->buf_size = 2 * rsa->remote_packet_size; rs->buf = xrealloc (rs->buf, rs->buf_size); } return rsa; } /* Return the current allowed size of a remote packet. This is inferred from the current architecture, and should be used to limit the length of outgoing packets. */ static long get_remote_packet_size (void) { struct remote_state *rs = get_remote_state (); struct remote_arch_state *rsa = get_remote_arch_state (); if (rs->explicit_packet_size) return rs->explicit_packet_size; return rsa->remote_packet_size; } static struct packet_reg * packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum) { if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch ())) return NULL; else { struct packet_reg *r = &rsa->regs[regnum]; gdb_assert (r->regnum == regnum); return r; } } static struct packet_reg * packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum) { int i; for (i = 0; i < gdbarch_num_regs (target_gdbarch ()); i++) { struct packet_reg *r = &rsa->regs[i]; if (r->pnum == pnum) return r; } return NULL; } static struct target_ops remote_ops; static struct target_ops extended_remote_ops; /* FIXME: cagney/1999-09-23: Even though getpkt was called with ``forever'' still use the normal timeout mechanism. This is currently used by the ASYNC code to guarentee that target reads during the initial connect always time-out. Once getpkt has been modified to return a timeout indication and, in turn remote_wait()/wait_for_inferior() have gained a timeout parameter this can go away. */ static int wait_forever_enabled_p = 1; /* Allow the user to specify what sequence to send to the remote when he requests a program interruption: Although ^C is usually what remote systems expect (this is the default, here), it is sometimes preferable to send a break. On other systems such as the Linux kernel, a break followed by g, which is Magic SysRq g is required in order to interrupt the execution. */ const char interrupt_sequence_control_c[] = "Ctrl-C"; const char interrupt_sequence_break[] = "BREAK"; const char interrupt_sequence_break_g[] = "BREAK-g"; static const char *const interrupt_sequence_modes[] = { interrupt_sequence_control_c, interrupt_sequence_break, interrupt_sequence_break_g, NULL }; static const char *interrupt_sequence_mode = interrupt_sequence_control_c; static void show_interrupt_sequence (struct ui_file *file, int from_tty, struct cmd_list_element *c, const char *value) { if (interrupt_sequence_mode == interrupt_sequence_control_c) fprintf_filtered (file, _("Send the ASCII ETX character (Ctrl-c) " "to the remote target to interrupt the " "execution of the program.\n")); else if (interrupt_sequence_mode == interrupt_sequence_break) fprintf_filtered (file, _("send a break signal to the remote target " "to interrupt the execution of the program.\n")); else if (interrupt_sequence_mode == interrupt_sequence_break_g) fprintf_filtered (file, _("Send a break signal and 'g' a.k.a. Magic SysRq g to " "the remote target to interrupt the execution " "of Linux kernel.\n")); else internal_error (__FILE__, __LINE__, _("Invalid value for interrupt_sequence_mode: %s."), interrupt_sequence_mode); } /* This boolean variable specifies whether interrupt_sequence is sent to the remote target when gdb connects to it. This is mostly needed when you debug the Linux kernel: The Linux kernel expects BREAK g which is Magic SysRq g for connecting gdb. */ static int interrupt_on_connect = 0; /* This variable is used to implement the "set/show remotebreak" commands. Since these commands are now deprecated in favor of "set/show remote interrupt-sequence", it no longer has any effect on the code. */ static int remote_break; static void set_remotebreak (char *args, int from_tty, struct cmd_list_element *c) { if (remote_break) interrupt_sequence_mode = interrupt_sequence_break; else interrupt_sequence_mode = interrupt_sequence_control_c; } static void show_remotebreak (struct ui_file *file, int from_tty, struct cmd_list_element *c, const char *value) { } /* This variable sets the number of bits in an address that are to be sent in a memory ("M" or "m") packet. Normally, after stripping leading zeros, the entire address would be sent. This variable restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The initial implementation of remote.c restricted the address sent in memory packets to ``host::sizeof long'' bytes - (typically 32 bits). Consequently, for 64 bit targets, the upper 32 bits of an address was never sent. Since fixing this bug may cause a break in some remote targets this variable is principly provided to facilitate backward compatibility. */ static unsigned int remote_address_size; /* Temporary to track who currently owns the terminal. See remote_terminal_* for more details. */ static int remote_async_terminal_ours_p; /* The executable file to use for "run" on the remote side. */ static char *remote_exec_file = ""; /* User configurable variables for the number of characters in a memory read/write packet. MIN (rsa->remote_packet_size, rsa->sizeof_g_packet) is the default. Some targets need smaller values (fifo overruns, et.al.) and some users need larger values (speed up transfers). The variables ``preferred_*'' (the user request), ``current_*'' (what was actually set) and ``forced_*'' (Positive - a soft limit, negative - a hard limit). */ struct memory_packet_config { char *name; long size; int fixed_p; }; /* Compute the current size of a read/write packet. Since this makes use of ``actual_register_packet_size'' the computation is dynamic. */ static long get_memory_packet_size (struct memory_packet_config *config) { struct remote_state *rs = get_remote_state (); struct remote_arch_state *rsa = get_remote_arch_state (); /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk law?) that some hosts don't cope very well with large alloca() calls. Eventually the alloca() code will be replaced by calls to xmalloc() and make_cleanups() allowing this restriction to either be lifted or removed. */ #ifndef MAX_REMOTE_PACKET_SIZE #define MAX_REMOTE_PACKET_SIZE 16384 #endif /* NOTE: 20 ensures we can write at least one byte. */ #ifndef MIN_REMOTE_PACKET_SIZE #define MIN_REMOTE_PACKET_SIZE 20 #endif long what_they_get; if (config->fixed_p) { if (config->size <= 0) what_they_get = MAX_REMOTE_PACKET_SIZE; else what_they_get = config->size; } else { what_they_get = get_remote_packet_size (); /* Limit the packet to the size specified by the user. */ if (config->size > 0 && what_they_get > config->size) what_they_get = config->size; /* Limit it to the size of the targets ``g'' response unless we have permission from the stub to use a larger packet size. */ if (rs->explicit_packet_size == 0 && rsa->actual_register_packet_size > 0 && what_they_get > rsa->actual_register_packet_size) what_they_get = rsa->actual_register_packet_size; } if (what_they_get > MAX_REMOTE_PACKET_SIZE) what_they_get = MAX_REMOTE_PACKET_SIZE; if (what_they_get < MIN_REMOTE_PACKET_SIZE) what_they_get = MIN_REMOTE_PACKET_SIZE; /* Make sure there is room in the global buffer for this packet (including its trailing NUL byte). */ if (rs->buf_size < what_they_get + 1) { rs->buf_size = 2 * what_they_get; rs->buf = xrealloc (rs->buf, 2 * what_they_get); } return what_they_get; } /* Update the size of a read/write packet. If they user wants something really big then do a sanity check. */ static void set_memory_packet_size (char *args, struct memory_packet_config *config) { int fixed_p = config->fixed_p; long size = config->size; if (args == NULL) error (_("Argument required (integer, `fixed' or `limited').")); else if (strcmp (args, "hard") == 0 || strcmp (args, "fixed") == 0) fixed_p = 1; else if (strcmp (args, "soft") == 0 || strcmp (args, "limit") == 0) fixed_p = 0; else { char *end; size = strtoul (args, &end, 0); if (args == end) error (_("Invalid %s (bad syntax)."), config->name); #if 0 /* Instead of explicitly capping the size of a packet to MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is instead allowed to set the size to something arbitrarily large. */ if (size > MAX_REMOTE_PACKET_SIZE) error (_("Invalid %s (too large)."), config->name); #endif } /* Extra checks? */ if (fixed_p && !config->fixed_p) { if (! query (_("The target may not be able to correctly handle a %s\n" "of %ld bytes. Change the packet size? "), config->name, size)) error (_("Packet size not changed.")); } /* Update the config. */ config->fixed_p = fixed_p; config->size = size; } static void show_memory_packet_size (struct memory_packet_config *config) { printf_filtered (_("The %s is %ld. "), config->name, config->size); if (config->fixed_p) printf_filtered (_("Packets are fixed at %ld bytes.\n"), get_memory_packet_size (config)); else printf_filtered (_("Packets are limited to %ld bytes.\n"), get_memory_packet_size (config)); } static struct memory_packet_config memory_write_packet_config = { "memory-write-packet-size", }; static void set_memory_write_packet_size (char *args, int from_tty) { set_memory_packet_size (args, &memory_write_packet_config); } static void show_memory_write_packet_size (char *args, int from_tty) { show_memory_packet_size (&memory_write_packet_config); } static long get_memory_write_packet_size (void) { return get_memory_packet_size (&memory_write_packet_config); } static struct memory_packet_config memory_read_packet_config = { "memory-read-packet-size", }; static void set_memory_read_packet_size (char *args, int from_tty) { set_memory_packet_size (args, &memory_read_packet_config); } static void show_memory_read_packet_size (char *args, int from_tty) { show_memory_packet_size (&memory_read_packet_config); } static long get_memory_read_packet_size (void) { long size = get_memory_packet_size (&memory_read_packet_config); /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an extra buffer size argument before the memory read size can be increased beyond this. */ if (size > get_remote_packet_size ()) size = get_remote_packet_size (); return size; } /* Generic configuration support for packets the stub optionally supports. Allows the user to specify the use of the packet as well as allowing GDB to auto-detect support in the remote stub. */ enum packet_support { PACKET_SUPPORT_UNKNOWN = 0, PACKET_ENABLE, PACKET_DISABLE }; struct packet_config { const char *name; const char *title; /* If auto, GDB auto-detects support for this packet or feature, either through qSupported, or by trying the packet and looking at the response. If true, GDB assumes the target supports this packet. If false, the packet is disabled. Configs that don't have an associated command always have this set to auto. */ enum auto_boolean detect; /* Does the target support this packet? */ enum packet_support support; }; /* Analyze a packet's return value and update the packet config accordingly. */ enum packet_result { PACKET_ERROR, PACKET_OK, PACKET_UNKNOWN }; static enum packet_support packet_config_support (struct packet_config *config); static enum packet_support packet_support (int packet); static void show_packet_config_cmd (struct packet_config *config) { char *support = "internal-error"; switch (packet_config_support (config)) { case PACKET_ENABLE: support = "enabled"; break; case PACKET_DISABLE: support = "disabled"; break; case PACKET_SUPPORT_UNKNOWN: support = "unknown"; break; } switch (config->detect) { case AUTO_BOOLEAN_AUTO: printf_filtered (_("Support for the `%s' packet " "is auto-detected, currently %s.\n"), config->name, support); break; case AUTO_BOOLEAN_TRUE: case AUTO_BOOLEAN_FALSE: printf_filtered (_("Support for the `%s' packet is currently %s.\n"), config->name, support); break; } } static void add_packet_config_cmd (struct packet_config *config, const char *name, const char *title, int legacy) { char *set_doc; char *show_doc; char *cmd_name; config->name = name; config->title = title; set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet", name, title); show_doc = xstrprintf ("Show current use of remote " "protocol `%s' (%s) packet", name, title); /* set/show TITLE-packet {auto,on,off} */ cmd_name = xstrprintf ("%s-packet", title); add_setshow_auto_boolean_cmd (cmd_name, class_obscure, &config->detect, set_doc, show_doc, NULL, /* help_doc */ NULL, show_remote_protocol_packet_cmd, &remote_set_cmdlist, &remote_show_cmdlist); /* The command code copies the documentation strings. */ xfree (set_doc); xfree (show_doc); /* set/show remote NAME-packet {auto,on,off} -- legacy. */ if (legacy) { char *legacy_name; legacy_name = xstrprintf ("%s-packet", name); add_alias_cmd (legacy_name, cmd_name, class_obscure, 0, &remote_set_cmdlist); add_alias_cmd (legacy_name, cmd_name, class_obscure, 0, &remote_show_cmdlist); } } static enum packet_result packet_check_result (const char *buf) { if (buf[0] != '\0') { /* The stub recognized the packet request. Check that the operation succeeded. */ if (buf[0] == 'E' && isxdigit (buf[1]) && isxdigit (buf[2]) && buf[3] == '\0') /* "Enn" - definitly an error. */ return PACKET_ERROR; /* Always treat "E." as an error. This will be used for more verbose error messages, such as E.memtypes. */ if (buf[0] == 'E' && buf[1] == '.') return PACKET_ERROR; /* The packet may or may not be OK. Just assume it is. */ return PACKET_OK; } else /* The stub does not support the packet. */ return PACKET_UNKNOWN; } static enum packet_result packet_ok (const char *buf, struct packet_config *config) { enum packet_result result; if (config->detect != AUTO_BOOLEAN_TRUE && config->support == PACKET_DISABLE) internal_error (__FILE__, __LINE__, _("packet_ok: attempt to use a disabled packet")); result = packet_check_result (buf); switch (result) { case PACKET_OK: case PACKET_ERROR: /* The stub recognized the packet request. */ if (config->support == PACKET_SUPPORT_UNKNOWN) { if (remote_debug) fprintf_unfiltered (gdb_stdlog, "Packet %s (%s) is supported\n", config->name, config->title); config->support = PACKET_ENABLE; } break; case PACKET_UNKNOWN: /* The stub does not support the packet. */ if (config->detect == AUTO_BOOLEAN_AUTO && config->support == PACKET_ENABLE) { /* If the stub previously indicated that the packet was supported then there is a protocol error. */ error (_("Protocol error: %s (%s) conflicting enabled responses."), config->name, config->title); } else if (config->detect == AUTO_BOOLEAN_TRUE) { /* The user set it wrong. */ error (_("Enabled packet %s (%s) not recognized by stub"), config->name, config->title); } if (remote_debug) fprintf_unfiltered (gdb_stdlog, "Packet %s (%s) is NOT supported\n", config->name, config->title); config->support = PACKET_DISABLE; break; } return result; } enum { PACKET_vCont = 0, PACKET_X, PACKET_qSymbol, PACKET_P, PACKET_p, PACKET_Z0, PACKET_Z1, PACKET_Z2, PACKET_Z3, PACKET_Z4, PACKET_vFile_setfs, PACKET_vFile_open, PACKET_vFile_pread, PACKET_vFile_pwrite, PACKET_vFile_close, PACKET_vFile_unlink, PACKET_vFile_readlink, PACKET_vFile_fstat, PACKET_qXfer_auxv, PACKET_qXfer_features, PACKET_qXfer_exec_file, PACKET_qXfer_libraries, PACKET_qXfer_libraries_svr4, PACKET_qXfer_memory_map, PACKET_qXfer_spu_read, PACKET_qXfer_spu_write, PACKET_qXfer_osdata, PACKET_qXfer_threads, PACKET_qXfer_statictrace_read, PACKET_qXfer_traceframe_info, PACKET_qXfer_uib, PACKET_qGetTIBAddr, PACKET_qGetTLSAddr, PACKET_qSupported, PACKET_qTStatus, PACKET_QPassSignals, PACKET_QProgramSignals, PACKET_qCRC, PACKET_qSearch_memory, PACKET_vAttach, PACKET_vRun, PACKET_QStartNoAckMode, PACKET_vKill, PACKET_qXfer_siginfo_read, PACKET_qXfer_siginfo_write, PACKET_qAttached, /* Support for conditional tracepoints. */ PACKET_ConditionalTracepoints, /* Support for target-side breakpoint conditions. */ PACKET_ConditionalBreakpoints, /* Support for target-side breakpoint commands. */ PACKET_BreakpointCommands, /* Support for fast tracepoints. */ PACKET_FastTracepoints, /* Support for static tracepoints. */ PACKET_StaticTracepoints, /* Support for installing tracepoints while a trace experiment is running. */ PACKET_InstallInTrace, PACKET_bc, PACKET_bs, PACKET_TracepointSource, PACKET_QAllow, PACKET_qXfer_fdpic, PACKET_QDisableRandomization, PACKET_QAgent, PACKET_QTBuffer_size, PACKET_Qbtrace_off, PACKET_Qbtrace_bts, PACKET_qXfer_btrace, /* Support for the QNonStop packet. */ PACKET_QNonStop, /* Support for multi-process extensions. */ PACKET_multiprocess_feature, /* Support for enabling and disabling tracepoints while a trace experiment is running. */ PACKET_EnableDisableTracepoints_feature, /* Support for collecting strings using the tracenz bytecode. */ PACKET_tracenz_feature, /* Support for continuing to run a trace experiment while GDB is disconnected. */ PACKET_DisconnectedTracing_feature, /* Support for qXfer:libraries-svr4:read with a non-empty annex. */ PACKET_augmented_libraries_svr4_read_feature, /* Support for the qXfer:btrace-conf:read packet. */ PACKET_qXfer_btrace_conf, /* Support for the Qbtrace-conf:bts:size packet. */ PACKET_Qbtrace_conf_bts_size, /* Support for swbreak+ feature. */ PACKET_swbreak_feature, /* Support for hwbreak+ feature. */ PACKET_hwbreak_feature, /* Support for fork events. */ PACKET_fork_event_feature, /* Support for vfork events. */ PACKET_vfork_event_feature, PACKET_MAX }; static struct packet_config remote_protocol_packets[PACKET_MAX]; /* Returns the packet's corresponding "set remote foo-packet" command state. See struct packet_config for more details. */ static enum auto_boolean packet_set_cmd_state (int packet) { return remote_protocol_packets[packet].detect; } /* Returns whether a given packet or feature is supported. This takes into account the state of the corresponding "set remote foo-packet" command, which may be used to bypass auto-detection. */ static enum packet_support packet_config_support (struct packet_config *config) { switch (config->detect) { case AUTO_BOOLEAN_TRUE: return PACKET_ENABLE; case AUTO_BOOLEAN_FALSE: return PACKET_DISABLE; case AUTO_BOOLEAN_AUTO: return config->support; default: gdb_assert_not_reached (_("bad switch")); } } /* Same as packet_config_support, but takes the packet's enum value as argument. */ static enum packet_support packet_support (int packet) { struct packet_config *config = &remote_protocol_packets[packet]; return packet_config_support (config); } static void show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty, struct cmd_list_element *c, const char *value) { struct packet_config *packet; for (packet = remote_protocol_packets; packet < &remote_protocol_packets[PACKET_MAX]; packet++) { if (&packet->detect == c->var) { show_packet_config_cmd (packet); return; } } internal_error (__FILE__, __LINE__, _("Could not find config for %s"), c->name); } /* Should we try one of the 'Z' requests? */ enum Z_packet_type { Z_PACKET_SOFTWARE_BP, Z_PACKET_HARDWARE_BP, Z_PACKET_WRITE_WP, Z_PACKET_READ_WP, Z_PACKET_ACCESS_WP, NR_Z_PACKET_TYPES }; /* For compatibility with older distributions. Provide a ``set remote Z-packet ...'' command that updates all the Z packet types. */ static enum auto_boolean remote_Z_packet_detect; static void set_remote_protocol_Z_packet_cmd (char *args, int from_tty, struct cmd_list_element *c) { int i; for (i = 0; i < NR_Z_PACKET_TYPES; i++) remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect; } static void show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty, struct cmd_list_element *c, const char *value) { int i; for (i = 0; i < NR_Z_PACKET_TYPES; i++) { show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]); } } /* Returns true if the multi-process extensions are in effect. */ static int remote_multi_process_p (struct remote_state *rs) { return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE; } /* Returns true if fork events are supported. */ static int remote_fork_event_p (struct remote_state *rs) { return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE; } /* Returns true if vfork events are supported. */ static int remote_vfork_event_p (struct remote_state *rs) { return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE; } /* Insert fork catchpoint target routine. If fork events are enabled then return success, nothing more to do. */ static int remote_insert_fork_catchpoint (struct target_ops *ops, int pid) { struct remote_state *rs = get_remote_state (); return !remote_fork_event_p (rs); } /* Remove fork catchpoint target routine. Nothing to do, just return success. */ static int remote_remove_fork_catchpoint (struct target_ops *ops, int pid) { return 0; } /* Insert vfork catchpoint target routine. If vfork events are enabled then return success, nothing more to do. */ static int remote_insert_vfork_catchpoint (struct target_ops *ops, int pid) { struct remote_state *rs = get_remote_state (); return !remote_vfork_event_p (rs); } /* Remove vfork catchpoint target routine. Nothing to do, just return success. */ static int remote_remove_vfork_catchpoint (struct target_ops *ops, int pid) { return 0; } /* Tokens for use by the asynchronous signal handlers for SIGINT. */ static struct async_signal_handler *async_sigint_remote_twice_token; static struct async_signal_handler *async_sigint_remote_token; /* Asynchronous signal handle registered as event loop source for when we have pending events ready to be passed to the core. */ static struct async_event_handler *remote_async_inferior_event_token; static ptid_t magic_null_ptid; static ptid_t not_sent_ptid; static ptid_t any_thread_ptid; /* Find out if the stub attached to PID (and hence GDB should offer to detach instead of killing it when bailing out). */ static int remote_query_attached (int pid) { struct remote_state *rs = get_remote_state (); size_t size = get_remote_packet_size (); if (packet_support (PACKET_qAttached) == PACKET_DISABLE) return 0; if (remote_multi_process_p (rs)) xsnprintf (rs->buf, size, "qAttached:%x", pid); else xsnprintf (rs->buf, size, "qAttached"); putpkt (rs->buf); getpkt (&rs->buf, &rs->buf_size, 0); switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qAttached])) { case PACKET_OK: if (strcmp (rs->buf, "1") == 0) return 1; break; case PACKET_ERROR: warning (_("Remote failure reply: %s"), rs->buf); break; case PACKET_UNKNOWN: break; } return 0; } /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID has been invented by GDB, instead of reported by the target. Since we can be connected to a remote system before before knowing about any inferior, mark the target with execution when we find the first inferior. If ATTACHED is 1, then we had just attached to this inferior. If it is 0, then we just created this inferior. If it is -1, then try querying the remote stub to find out if it had attached to the inferior or not. If TRY_OPEN_EXEC is true then attempt to open this inferior's executable as the main executable if no main executable is open already. */ static struct inferior * remote_add_inferior (int fake_pid_p, int pid, int attached, int try_open_exec) { struct inferior *inf; /* Check whether this process we're learning about is to be considered attached, or if is to be considered to have been spawned by the stub. */ if (attached == -1) attached = remote_query_attached (pid); if (gdbarch_has_global_solist (target_gdbarch ())) { /* If the target shares code across all inferiors, then every attach adds a new inferior. */ inf = add_inferior (pid); /* ... and every inferior is bound to the same program space. However, each inferior may still have its own address space. */ inf->aspace = maybe_new_address_space (); inf->pspace = current_program_space; } else { /* In the traditional debugging scenario, there's a 1-1 match between program/address spaces. We simply bind the inferior to the program space's address space. */ inf = current_inferior (); inferior_appeared (inf, pid); } inf->attach_flag = attached; inf->fake_pid_p = fake_pid_p; /* If no main executable is currently open then attempt to open the file that was executed to create this inferior. */ if (try_open_exec && get_exec_file (0) == NULL) exec_file_locate_attach (pid, 1); return inf; } /* Add thread PTID to GDB's thread list. Tag it as executing/running according to RUNNING. */ static void remote_add_thread (ptid_t ptid, int running) { struct remote_state *rs = get_remote_state (); /* GDB historically didn't pull threads in the initial connection setup. If the remote target doesn't even have a concept of threads (e.g., a bare-metal target), even if internally we consider that a single-threaded target, mentioning a new thread might be confusing to the user. Be silent then, preserving the age old behavior. */ if (rs->starting_up) add_thread_silent (ptid); else add_thread (ptid); set_executing (ptid, running); set_running (ptid, running); } /* Come here when we learn about a thread id from the remote target. It may be the first time we hear about such thread, so take the opportunity to add it to GDB's thread list. In case this is the first time we're noticing its corresponding inferior, add it to GDB's inferior list as well. */ static void remote_notice_new_inferior (ptid_t currthread, int running) { /* If this is a new thread, add it to GDB's thread list. If we leave it up to WFI to do this, bad things will happen. */ if (in_thread_list (currthread) && is_exited (currthread)) { /* We're seeing an event on a thread id we knew had exited. This has to be a new thread reusing the old id. Add it. */ remote_add_thread (currthread, running); return; } if (!in_thread_list (currthread)) { struct inferior *inf = NULL; int pid = ptid_get_pid (currthread); if (ptid_is_pid (inferior_ptid) && pid == ptid_get_pid (inferior_ptid)) { /* inferior_ptid has no thread member yet. This can happen with the vAttach -> remote_wait,"TAAthread:" path if the stub doesn't support qC. This is the first stop reported after an attach, so this is the main thread. Update the ptid in the thread list. */ if (in_thread_list (pid_to_ptid (pid))) thread_change_ptid (inferior_ptid, currthread); else { remote_add_thread (currthread, running); inferior_ptid = currthread; } return; } if (ptid_equal (magic_null_ptid, inferior_ptid)) { /* inferior_ptid is not set yet. This can happen with the vRun -> remote_wait,"TAAthread:" path if the stub doesn't support qC. This is the first stop reported after an attach, so this is the main thread. Update the ptid in the thread list. */ thread_change_ptid (inferior_ptid, currthread); return; } /* When connecting to a target remote, or to a target extended-remote which already was debugging an inferior, we may not know about it yet. Add it before adding its child thread, so notifications are emitted in a sensible order. */ if (!in_inferior_list (ptid_get_pid (currthread))) { struct remote_state *rs = get_remote_state (); int fake_pid_p = !remote_multi_process_p (rs); inf = remote_add_inferior (fake_pid_p, ptid_get_pid (currthread), -1, 1); } /* This is really a new thread. Add it. */ remote_add_thread (currthread, running); /* If we found a new inferior, let the common code do whatever it needs to with it (e.g., read shared libraries, insert breakpoints), unless we're just setting up an all-stop connection. */ if (inf != NULL) { struct remote_state *rs = get_remote_state (); if (non_stop || !rs->starting_up) notice_new_inferior (currthread, running, 0); } } } /* Return the private thread data, creating it if necessary. */ static struct private_thread_info * demand_private_info (ptid_t ptid) { struct thread_info *info = find_thread_ptid (ptid); gdb_assert (info); if (!info->priv) { info->priv = xmalloc (sizeof (*(info->priv))); info->private_dtor = free_private_thread_info; info->priv->core = -1; info->priv->extra = 0; } return info->priv; } /* Call this function as a result of 1) A halt indication (T packet) containing a thread id 2) A direct query of currthread 3) Successful execution of set thread */ static void record_currthread (struct remote_state *rs, ptid_t currthread) { rs->general_thread = currthread; } /* If 'QPassSignals' is supported, tell the remote stub what signals it can simply pass through to the inferior without reporting. */ static void remote_pass_signals (struct target_ops *self, int numsigs, unsigned char *pass_signals) { if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE) { char *pass_packet, *p; int count = 0, i; struct remote_state *rs = get_remote_state (); gdb_assert (numsigs < 256); for (i = 0; i < numsigs; i++) { if (pass_signals[i]) count++; } pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1); strcpy (pass_packet, "QPassSignals:"); p = pass_packet + strlen (pass_packet); for (i = 0; i < numsigs; i++) { if (pass_signals[i]) { if (i >= 16) *p++ = tohex (i >> 4); *p++ = tohex (i & 15); if (count) *p++ = ';'; else break; count--; } } *p = 0; if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet)) { putpkt (pass_packet); getpkt (&rs->buf, &rs->buf_size, 0); packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]); if (rs->last_pass_packet) xfree (rs->last_pass_packet); rs->last_pass_packet = pass_packet; } else xfree (pass_packet); } } /* If 'QProgramSignals' is supported, tell the remote stub what signals it should pass through to the inferior when detaching. */ static void remote_program_signals (struct target_ops *self, int numsigs, unsigned char *signals) { if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE) { char *packet, *p; int count = 0, i; struct remote_state *rs = get_remote_state (); gdb_assert (numsigs < 256); for (i = 0; i < numsigs; i++) { if (signals[i]) count++; } packet = xmalloc (count * 3 + strlen ("QProgramSignals:") + 1); strcpy (packet, "QProgramSignals:"); p = packet + strlen (packet); for (i = 0; i < numsigs; i++) { if (signal_pass_state (i)) { if (i >= 16) *p++ = tohex (i >> 4); *p++ = tohex (i & 15); if (count) *p++ = ';'; else break; count--; } } *p = 0; if (!rs->last_program_signals_packet || strcmp (rs->last_program_signals_packet, packet) != 0) { putpkt (packet); getpkt (&rs->buf, &rs->buf_size, 0); packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]); xfree (rs->last_program_signals_packet); rs->last_program_signals_packet = packet; } else xfree (packet); } } /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is MINUS_ONE_PTID, set the thread to -1, so the stub returns the thread. If GEN is set, set the general thread, if not, then set the step/continue thread. */ static void set_thread (struct ptid ptid, int gen) { struct remote_state *rs = get_remote_state (); ptid_t state = gen ? rs->general_thread : rs->continue_thread; char *buf = rs->buf; char *endbuf = rs->buf + get_remote_packet_size (); if (ptid_equal (state, ptid)) return; *buf++ = 'H'; *buf++ = gen ? 'g' : 'c'; if (ptid_equal (ptid, magic_null_ptid)) xsnprintf (buf, endbuf - buf, "0"); else if (ptid_equal (ptid, any_thread_ptid)) xsnprintf (buf, endbuf - buf, "0"); else if (ptid_equal (ptid, minus_one_ptid)) xsnprintf (buf, endbuf - buf, "-1"); else write_ptid (buf, endbuf, ptid); putpkt (rs->buf); getpkt (&rs->buf, &rs->buf_size, 0); if (gen) rs->general_thread = ptid; else rs->continue_thread = ptid; } static void set_general_thread (struct ptid ptid) { set_thread (ptid, 1); } static void set_continue_thread (struct ptid ptid) { set_thread (ptid, 0); } /* Change the remote current process. Which thread within the process ends up selected isn't important, as long as it is the same process as what INFERIOR_PTID points to. This comes from that fact that there is no explicit notion of "selected process" in the protocol. The selected process for general operations is the process the selected general thread belongs to. */ static void set_general_process (void) { struct remote_state *rs = get_remote_state (); /* If the remote can't handle multiple processes, don't bother. */ if (!rs->extended || !remote_multi_process_p (rs)) return; /* We only need to change the remote current thread if it's pointing at some other process. */ if (ptid_get_pid (rs->general_thread) != ptid_get_pid (inferior_ptid)) set_general_thread (inferior_ptid); } /* Return nonzero if this is the main thread that we made up ourselves to model non-threaded targets as single-threaded. */ static int remote_thread_always_alive (struct target_ops *ops, ptid_t ptid) { struct remote_state *rs = get_remote_state (); char *p, *endp; if (ptid_equal (ptid, magic_null_ptid)) /* The main thread is always alive. */ return 1; if (ptid_get_pid (ptid) != 0 && ptid_get_lwp (ptid) == 0) /* The main thread is always alive. This can happen after a vAttach, if the remote side doesn't support multi-threading. */ return 1; return 0; } /* Return nonzero if the thread PTID is still alive on the remote system. */ static int remote_thread_alive (struct target_ops *ops, ptid_t ptid) { struct remote_state *rs = get_remote_state (); char *p, *endp; /* Check if this is a thread that we made up ourselves to model non-threaded targets as single-threaded. */ if (remote_thread_always_alive (ops, ptid)) return 1; p = rs->buf; endp = rs->buf + get_remote_packet_size (); *p++ = 'T'; write_ptid (p, endp, ptid); putpkt (rs->buf); getpkt (&rs->buf, &rs->buf_size, 0); return (rs->buf[0] == 'O' && rs->buf[1] == 'K'); } /* About these extended threadlist and threadinfo packets. They are variable length packets but, the fields within them are often fixed length. They are redundent enough to send over UDP as is the remote protocol in general. There is a matching unit test module in libstub. */ /* WARNING: This threadref data structure comes from the remote O.S., libstub protocol encoding, and remote.c. It is not particularly changable. */ /* Right now, the internal structure is int. We want it to be bigger. Plan to fix this. */ typedef int gdb_threadref; /* Internal GDB thread reference. */ /* gdb_ext_thread_info is an internal GDB data structure which is equivalent to the reply of the remote threadinfo packet. */ struct gdb_ext_thread_info { threadref threadid; /* External form of thread reference. */ int active; /* Has state interesting to GDB? regs, stack. */ char display[256]; /* Brief state display, name, blocked/suspended. */ char shortname[32]; /* To be used to name threads. */ char more_display[256]; /* Long info, statistics, queue depth, whatever. */ }; /* The volume of remote transfers can be limited by submitting a mask containing bits specifying the desired information. Use a union of these values as the 'selection' parameter to get_thread_info. FIXME: Make these TAG names more thread specific. */ #define TAG_THREADID 1 #define TAG_EXISTS 2 #define TAG_DISPLAY 4 #define TAG_THREADNAME 8 #define TAG_MOREDISPLAY 16 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2) static char *unpack_nibble (char *buf, int *val); static char *unpack_byte (char *buf, int *value); static char *pack_int (char *buf, int value); static char *unpack_int (char *buf, int *value); static char *unpack_string (char *src, char *dest, int length); static char *pack_threadid (char *pkt, threadref *id); static char *unpack_threadid (char *inbuf, threadref *id); void int_to_threadref (threadref *id, int value); static int threadref_to_int (threadref *ref); static void copy_threadref (threadref *dest, threadref *src); static int threadmatch (threadref *dest, threadref *src); static char *pack_threadinfo_request (char *pkt, int mode, threadref *id); static int remote_unpack_thread_info_response (char *pkt, threadref *expectedref, struct gdb_ext_thread_info *info); static int remote_get_threadinfo (threadref *threadid, int fieldset, /*TAG mask */ struct gdb_ext_thread_info *info); static char *pack_threadlist_request (char *pkt, int startflag, int threadcount, threadref *nextthread); static int parse_threadlist_response (char *pkt, int result_limit, threadref *original_echo, threadref *resultlist, int *doneflag); static int remote_get_threadlist (int startflag, threadref *nextthread, int result_limit, int *done, int *result_count, threadref *threadlist); typedef int (*rmt_thread_action) (threadref *ref, void *context); static int remote_threadlist_iterator (rmt_thread_action stepfunction, void *context, int looplimit); static int remote_newthread_step (threadref *ref, void *context); /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the buffer we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. */ static char * write_ptid (char *buf, const char *endbuf, ptid_t ptid) { int pid, tid; struct remote_state *rs = get_remote_state (); if (remote_multi_process_p (rs)) { pid = ptid_get_pid (ptid); if (pid < 0) buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid); else buf += xsnprintf (buf, endbuf - buf, "p%x.", pid); } tid = ptid_get_lwp (ptid); if (tid < 0) buf += xsnprintf (buf, endbuf - buf, "-%x", -tid); else buf += xsnprintf (buf, endbuf - buf, "%x", tid); return buf; } /* Extract a PTID from BUF. If non-null, OBUF is set to the to one passed the last parsed char. Returns null_ptid on error. */ static ptid_t read_ptid (char *buf, char **obuf) { char *p = buf; char *pp; ULONGEST pid = 0, tid = 0; if (*p == 'p') { /* Multi-process ptid. */ pp = unpack_varlen_hex (p + 1, &pid); if (*pp != '.') error (_("invalid remote ptid: %s"), p); p = pp; pp = unpack_varlen_hex (p + 1, &tid); if (obuf) *obuf = pp; return ptid_build (pid, tid, 0); } /* No multi-process. Just a tid. */ pp = unpack_varlen_hex (p, &tid); /* Since the stub is not sending a process id, then default to what's in inferior_ptid, unless it's null at this point. If so, then since there's no way to know the pid of the reported threads, use the magic number. */ if (ptid_equal (inferior_ptid, null_ptid)) pid = ptid_get_pid (magic_null_ptid); else pid = ptid_get_pid (inferior_ptid); if (obuf) *obuf = pp; return ptid_build (pid, tid, 0); } static int stubhex (int ch) { if (ch >= 'a' && ch <= 'f') return ch - 'a' + 10; if (ch >= '0' && ch <= '9') return ch - '0'; if (ch >= 'A' && ch <= 'F') return ch - 'A' + 10; return -1; } static int stub_unpack_int (char *buff, int fieldlength) { int nibble; int retval = 0; while (fieldlength) { nibble = stubhex (*buff++); retval |= nibble; fieldlength--; if (fieldlength) retval = retval << 4; } return retval; } static char * unpack_nibble (char *buf, int *val) { *val = fromhex (*buf++); return buf; } static char * unpack_byte (char *buf, int *value) { *value = stub_unpack_int (buf, 2); return buf + 2; } static char * pack_int (char *buf, int value) { buf = pack_hex_byte (buf, (value >> 24) & 0xff); buf = pack_hex_byte (buf, (value >> 16) & 0xff); buf = pack_hex_byte (buf, (value >> 8) & 0x0ff); buf = pack_hex_byte (buf, (value & 0xff)); return buf; } static char * unpack_int (char *buf, int *value) { *value = stub_unpack_int (buf, 8); return buf + 8; } #if 0 /* Currently unused, uncomment when needed. */ static char *pack_string (char *pkt, char *string); static char * pack_string (char *pkt, char *string) { char ch; int len; len = strlen (string); if (len > 200) len = 200; /* Bigger than most GDB packets, junk??? */ pkt = pack_hex_byte (pkt, len); while (len-- > 0) { ch = *string++; if ((ch == '\0') || (ch == '#')) ch = '*'; /* Protect encapsulation. */ *pkt++ = ch; } return pkt; } #endif /* 0 (unused) */ static char * unpack_string (char *src, char *dest, int length) { while (length--) *dest++ = *src++; *dest = '\0'; return src; } static char * pack_threadid (char *pkt, threadref *id) { char *limit; unsigned char *altid; altid = (unsigned char *) id; limit = pkt + BUF_THREAD_ID_SIZE; while (pkt < limit) pkt = pack_hex_byte (pkt, *altid++); return pkt; } static char * unpack_threadid (char *inbuf, threadref *id) { char *altref; char *limit = inbuf + BUF_THREAD_ID_SIZE; int x, y; altref = (char *) id; while (inbuf < limit) { x = stubhex (*inbuf++); y = stubhex (*inbuf++); *altref++ = (x << 4) | y; } return inbuf; } /* Externally, threadrefs are 64 bits but internally, they are still ints. This is due to a mismatch of specifications. We would like to use 64bit thread references internally. This is an adapter function. */ void int_to_threadref (threadref *id, int value) { unsigned char *scan; scan = (unsigned char *) id; { int i = 4; while (i--) *scan++ = 0; } *scan++ = (value >> 24) & 0xff; *scan++ = (value >> 16) & 0xff; *scan++ = (value >> 8) & 0xff; *scan++ = (value & 0xff); } static int threadref_to_int (threadref *ref) { int i, value = 0; unsigned char *scan; scan = *ref; scan += 4; i = 4; while (i-- > 0) value = (value << 8) | ((*scan++) & 0xff); return value; } static void copy_threadref (threadref *dest, threadref *src) { int i; unsigned char *csrc, *cdest; csrc = (unsigned char *) src; cdest = (unsigned char *) dest; i = 8; while (i--) *cdest++ = *csrc++; } static int threadmatch (threadref *dest, threadref *src) { /* Things are broken right now, so just assume we got a match. */ #if 0 unsigned char *srcp, *destp; int i, result; srcp = (char *) src; destp = (char *) dest; result = 1; while (i-- > 0) result &= (*srcp++ == *destp++) ? 1 : 0; return result; #endif return 1; } /* threadid:1, # always request threadid context_exists:2, display:4, unique_name:8, more_display:16 */ /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */ static char * pack_threadinfo_request (char *pkt, int mode, threadref *id) { *pkt++ = 'q'; /* Info Query */ *pkt++ = 'P'; /* process or thread info */ pkt = pack_int (pkt, mode); /* mode */ pkt = pack_threadid (pkt, id); /* threadid */ *pkt = '\0'; /* terminate */ return pkt; } /* These values tag the fields in a thread info response packet. */ /* Tagging the fields allows us to request specific fields and to add more fields as time goes by. */ #define TAG_THREADID 1 /* Echo the thread identifier. */ #define TAG_EXISTS 2 /* Is this process defined enough to fetch registers and its stack? */ #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */ #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */ #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about the process. */ static int remote_unpack_thread_info_response (char *pkt, threadref *expectedref, struct gdb_ext_thread_info *info) { struct remote_state *rs = get_remote_state (); int mask, length; int tag; threadref ref; char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */ int retval = 1; /* info->threadid = 0; FIXME: implement zero_threadref. */ info->active = 0; info->display[0] = '\0'; info->shortname[0] = '\0'; info->more_display[0] = '\0'; /* Assume the characters indicating the packet type have been stripped. */ pkt = unpack_int (pkt, &mask); /* arg mask */ pkt = unpack_threadid (pkt, &ref); if (mask == 0) warning (_("Incomplete response to threadinfo request.")); if (!threadmatch (&ref, expectedref)) { /* This is an answer to a different request. */ warning (_("ERROR RMT Thread info mismatch.")); return 0; } copy_threadref (&info->threadid, &ref); /* Loop on tagged fields , try to bail if somthing goes wrong. */ /* Packets are terminated with nulls. */ while ((pkt < limit) && mask && *pkt) { pkt = unpack_int (pkt, &tag); /* tag */ pkt = unpack_byte (pkt, &length); /* length */ if (!(tag & mask)) /* Tags out of synch with mask. */ { warning (_("ERROR RMT: threadinfo tag mismatch.")); retval = 0; break; } if (tag == TAG_THREADID) { if (length != 16) { warning (_("ERROR RMT: length of threadid is not 16.")); retval = 0; break; } pkt = unpack_threadid (pkt, &ref); mask = mask & ~TAG_THREADID; continue; } if (tag == TAG_EXISTS) { info->active = stub_unpack_int (pkt, length); pkt += length; mask = mask & ~(TAG_EXISTS); if (length > 8) { warning (_("ERROR RMT: 'exists' length too long.")); retval = 0; break; } continue; } if (tag == TAG_THREADNAME) { pkt = unpack_string (pkt, &info->shortname[0], length); mask = mask & ~TAG_THREADNAME; continue; } if (tag == TAG_DISPLAY) { pkt = unpack_string (pkt, &info->display[0], length); mask = mask & ~TAG_DISPLAY; continue; } if (tag == TAG_MOREDISPLAY) { pkt = unpack_string (pkt, &info->more_display[0], length); mask = mask & ~TAG_MOREDISPLAY; continue; } warning (_("ERROR RMT: unknown thread info tag.")); break; /* Not a tag we know about. */ } return retval; } static int remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */ struct gdb_ext_thread_info *info) { struct remote_state *rs = get_remote_state (); int result; pack_threadinfo_request (rs->buf, fieldset, threadid); putpkt (rs->buf); getpkt (&rs->buf, &rs->buf_size, 0); if (rs->buf[0] == '\0') return 0; result = remote_unpack_thread_info_response (rs->buf + 2, threadid, info); return result; } /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */ static char * pack_threadlist_request (char *pkt, int startflag, int threadcount, threadref *nextthread) { *pkt++ = 'q'; /* info query packet */ *pkt++ = 'L'; /* Process LIST or threadLIST request */ pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */ pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */ pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */ *pkt = '\0'; return pkt; } /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */ static int parse_threadlist_response (char *pkt, int result_limit, threadref *original_echo, threadref *resultlist, int *doneflag) { struct remote_state *rs = get_remote_state (); char *limit; int count, resultcount, done; resultcount = 0; /* Assume the 'q' and 'M chars have been stripped. */ limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE); /* done parse past here */ pkt = unpack_byte (pkt, &count); /* count field */ pkt = unpack_nibble (pkt, &done); /* The first threadid is the argument threadid. */ pkt = unpack_threadid (pkt, original_echo); /* should match query packet */ while ((count-- > 0) && (pkt < limit)) { pkt = unpack_threadid (pkt, resultlist++); if (resultcount++ >= result_limit) break; } if (doneflag) *doneflag = done; return resultcount; } /* Fetch the next batch of threads from the remote. Returns -1 if the qL packet is not supported, 0 on error and 1 on success. */ static int remote_get_threadlist (int startflag, threadref *nextthread, int result_limit, int *done, int *result_count, threadref *threadlist) { struct remote_state *rs = get_remote_state (); int result = 1; /* Trancate result limit to be smaller than the packet size. */ if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ()) result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2; pack_threadlist_request (rs->buf, startflag, result_limit, nextthread); putpkt (rs->buf); getpkt (&rs->buf, &rs->buf_size, 0); if (*rs->buf == '\0') { /* Packet not supported. */ return -1; } *result_count = parse_threadlist_response (rs->buf + 2, result_limit, &rs->echo_nextthread, threadlist, done); if (!threadmatch (&rs->echo_nextthread, nextthread)) { /* FIXME: This is a good reason to drop the packet. */ /* Possably, there is a duplicate response. */ /* Possabilities : retransmit immediatly - race conditions retransmit after timeout - yes exit wait for packet, then exit */ warning (_("HMM: threadlist did not echo arg thread, dropping it.")); return 0; /* I choose simply exiting. */ } if (*result_count <= 0) { if (*done != 1) { warning (_("RMT ERROR : failed to get remote thread list.")); result = 0; } return result; /* break; */ } if (*result_count > result_limit) { *result_count = 0; warning (_("RMT ERROR: threadlist response longer than requested.")); return 0; } return result; } /* Fetch the list of remote threads, with the qL packet, and call STEPFUNCTION for each thread found. Stops iterating and returns 1 if STEPFUNCTION returns true. Stops iterating and returns 0 if the STEPFUNCTION returns false. If the packet is not supported, returns -1. */ static int remote_threadlist_iterator (rmt_thread_action stepfunction, void *context, int looplimit) { struct remote_state *rs = get_remote_state (); int done, i, result_count; int startflag = 1; int result = 1; int loopcount = 0; done = 0; while (!done) { if (loopcount++ > looplimit) { result = 0; warning (_("Remote fetch threadlist -infinite loop-.")); break; } result = remote_get_threadlist (startflag, &rs->nextthread, MAXTHREADLISTRESULTS, &done, &result_count, rs->resultthreadlist); if (result <= 0) break; /* Clear for later iterations. */ startflag = 0; /* Setup to resume next batch of thread references, set nextthread. */ if (result_count >= 1) copy_threadref (&rs->nextthread, &rs->resultthreadlist[result_count - 1]); i = 0; while (result_count--) { if (!(*stepfunction) (&rs->resultthreadlist[i++], context)) { result = 0; break; } } } return result; } /* A thread found on the remote target. */ typedef struct thread_item { /* The thread's PTID. */ ptid_t ptid; /* The thread's extra info. May be NULL. */ char *extra; /* The core the thread was running on. -1 if not known. */ int core; } thread_item_t; DEF_VEC_O(thread_item_t); /* Context passed around to the various methods listing remote threads. As new threads are found, they're added to the ITEMS vector. */ struct threads_listing_context { /* The threads found on the remote target. */ VEC (thread_item_t) *items; }; /* Discard the contents of the constructed thread listing context. */ static void clear_threads_listing_context (void *p) { struct threads_listing_context *context = p; int i; struct thread_item *item; for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i) xfree (item->extra); VEC_free (thread_item_t, context->items); } /* Remove the thread specified as the related_pid field of WS from the CONTEXT list. */ static void threads_listing_context_remove (struct target_waitstatus *ws, struct threads_listing_context *context) { struct thread_item *item; int i; ptid_t child_ptid = ws->value.related_pid; for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i) { if (ptid_equal (item->ptid, child_ptid)) { VEC_ordered_remove (thread_item_t, context->items, i); break; } } } static int remote_newthread_step (threadref *ref, void *data) { struct threads_listing_context *context = data; struct thread_item item; int pid = ptid_get_pid (inferior_ptid); item.ptid = ptid_build (pid, threadref_to_int (ref), 0); item.core = -1; item.extra = NULL; VEC_safe_push (thread_item_t, context->items, &item); return 1; /* continue iterator */ } #define CRAZY_MAX_THREADS 1000 static ptid_t remote_current_thread (ptid_t oldpid) { struct remote_state *rs = get_remote_state (); putpkt ("qC"); getpkt (&rs->buf, &rs->buf_size, 0); if (rs->buf[0] == 'Q' && rs->buf[1] == 'C') return read_ptid (&rs->buf[2], NULL); else return oldpid; } /* List remote threads using the deprecated qL packet. */ static int remote_get_threads_with_ql (struct target_ops *ops, struct threads_listing_context *context) { if (remote_threadlist_iterator (remote_newthread_step, context, CRAZY_MAX_THREADS) >= 0) return 1; return 0; } #if defined(HAVE_LIBEXPAT) static void start_thread (struct gdb_xml_parser *parser, const struct gdb_xml_element *element, void *user_data, VEC(gdb_xml_value_s) *attributes) { struct threads_listing_context *data = user_data; struct thread_item item; char *id; struct gdb_xml_value *attr; id = xml_find_attribute (attributes, "id")->value; item.ptid = read_ptid (id, NULL); attr = xml_find_attribute (attributes, "core"); if (attr != NULL) item.core = *(ULONGEST *) attr->value; else item.core = -1; item.extra = 0; VEC_safe_push (thread_item_t, data->items, &item); } static void end_thread (struct gdb_xml_parser *parser, const struct gdb_xml_element *element, void *user_data, const char *body_text) { struct threads_listing_context *data = user_data; if (body_text && *body_text) VEC_last (thread_item_t, data->items)->extra = xstrdup (body_text); } const struct gdb_xml_attribute thread_attributes[] = { { "id", GDB_XML_AF_NONE, NULL, NULL }, { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL }, { NULL, GDB_XML_AF_NONE, NULL, NULL } }; const struct gdb_xml_element thread_children[] = { { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL } }; const struct gdb_xml_element threads_children[] = { { "thread", thread_attributes, thread_children, GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL, start_thread, end_thread }, { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL } }; const struct gdb_xml_element threads_elements[] = { { "threads", NULL, threads_children, GDB_XML_EF_NONE, NULL, NULL }, { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL } }; #endif /* List remote threads using qXfer:threads:read. */ static int remote_get_threads_with_qxfer (struct target_ops *ops, struct threads_listing_context *context) { #if defined(HAVE_LIBEXPAT) if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE) { char *xml = target_read_stralloc (ops, TARGET_OBJECT_THREADS, NULL); struct cleanup *back_to = make_cleanup (xfree, xml); if (xml != NULL && *xml != '\0') { gdb_xml_parse_quick (_("threads"), "threads.dtd", threads_elements, xml, context); } do_cleanups (back_to); return 1; } #endif return 0; } /* List remote threads using qfThreadInfo/qsThreadInfo. */ static int remote_get_threads_with_qthreadinfo (struct target_ops *ops, struct threads_listing_context *context) { struct remote_state *rs = get_remote_state (); if (rs->use_threadinfo_query) { char *bufp; putpkt ("qfThreadInfo"); getpkt (&rs->buf, &rs->buf_size, 0); bufp = rs->buf; if (bufp[0] != '\0') /* q packet recognized */ { while (*bufp++ == 'm') /* reply contains one or more TID */ { do { struct thread_item item; item.ptid = read_ptid (bufp, &bufp); item.core = -1; item.extra = NULL; VEC_safe_push (thread_item_t, context->items, &item); } while (*bufp++ == ','); /* comma-separated list */ putpkt ("qsThreadInfo"); getpkt (&rs->buf, &rs->buf_size, 0); bufp = rs->buf; } return 1; } else { /* Packet not recognized. */ rs->use_threadinfo_query = 0; } } return 0; } /* Implement the to_update_thread_list function for the remote targets. */ static void remote_update_thread_list (struct target_ops *ops) { struct remote_state *rs = get_remote_state (); struct threads_listing_context context; struct cleanup *old_chain; int got_list = 0; context.items = NULL; old_chain = make_cleanup (clear_threads_listing_context, &context); /* We have a few different mechanisms to fetch the thread list. Try them all, starting with the most preferred one first, falling back to older methods. */ if (remote_get_threads_with_qxfer (ops, &context) || remote_get_threads_with_qthreadinfo (ops, &context) || remote_get_threads_with_ql (ops, &context)) { int i; struct thread_item *item; struct thread_info *tp, *tmp; got_list = 1; if (VEC_empty (thread_item_t, context.items) && remote_thread_always_alive (ops, inferior_ptid)) { /* Some targets don't really support threads, but still reply an (empty) thread list in response to the thread listing packets, instead of replying "packet not supported". Exit early so we don't delete the main thread. */ do_cleanups (old_chain); return; } /* CONTEXT now holds the current thread list on the remote target end. Delete GDB-side threads no longer found on the target. */ ALL_THREADS_SAFE (tp, tmp) { for (i = 0; VEC_iterate (thread_item_t, context.items, i, item); ++i) { if (ptid_equal (item->ptid, tp->ptid)) break; } if (i == VEC_length (thread_item_t, context.items)) { /* Not found. */ delete_thread (tp->ptid); } } /* Remove any unreported fork child threads from CONTEXT so that we don't interfere with follow fork, which is where creation of such threads is handled. */ remove_new_fork_children (&context); /* And now add threads we don't know about yet to our list. */ for (i = 0; VEC_iterate (thread_item_t, context.items, i, item); ++i) { if (!ptid_equal (item->ptid, null_ptid)) { struct private_thread_info *info; /* In non-stop mode, we assume new found threads are running until proven otherwise with a stop reply. In all-stop, we can only get here if all threads are stopped. */ int running = non_stop ? 1 : 0; remote_notice_new_inferior (item->ptid, running); info = demand_private_info (item->ptid); info->core = item->core; info->extra = item->extra; item->extra = NULL; } } } if (!got_list) { /* If no thread listing method is supported, then query whether each known thread is alive, one by one, with the T packet. If the target doesn't support threads at all, then this is a no-op. See remote_thread_alive. */ prune_threads (); } do_cleanups (old_chain); } /* * Collect a descriptive string about the given thread. * The target may say anything it wants to about the thread * (typically info about its blocked / runnable state, name, etc.). * This string will appear in the info threads display. * * Optional: targets are not required to implement this function. */ static char * remote_threads_extra_info (struct target_ops *self, struct thread_info *tp) { struct remote_state *rs = get_remote_state (); int result; int set; threadref id; struct gdb_ext_thread_info threadinfo; static char display_buf[100]; /* arbitrary... */ int n = 0; /* position in display_buf */ if (rs->remote_desc == 0) /* paranoia */ internal_error (__FILE__, __LINE__, _("remote_threads_extra_info")); if (ptid_equal (tp->ptid, magic_null_ptid) || (ptid_get_pid (tp->ptid) != 0 && ptid_get_lwp (tp->ptid) == 0)) /* This is the main thread which was added by GDB. The remote server doesn't know about it. */ return NULL; if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE) { struct thread_info *info = find_thread_ptid (tp->ptid); if (info && info->priv) return info->priv->extra; else return NULL; } if (rs->use_threadextra_query) { char *b = rs->buf; char *endb = rs->buf + get_remote_packet_size (); xsnprintf (b, endb - b, "qThreadExtraInfo,"); b += strlen (b); write_ptid (b, endb, tp->ptid); putpkt (rs->buf); getpkt (&rs->buf, &rs->buf_size, 0); if (rs->buf[0] != 0) { n = min (strlen (rs->buf) / 2, sizeof (display_buf)); result = hex2bin (rs->buf, (gdb_byte *) display_buf, n); display_buf [result] = '\0'; return display_buf; } } /* If the above query fails, fall back to the old method. */ rs->use_threadextra_query = 0; set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME | TAG_MOREDISPLAY | TAG_DISPLAY; int_to_threadref (&id, ptid_get_lwp (tp->ptid)); if (remote_get_threadinfo (&id, set, &threadinfo)) if (threadinfo.active) { if (*threadinfo.shortname) n += xsnprintf (&display_buf[0], sizeof (display_buf) - n, " Name: %s,", threadinfo.shortname); if (*threadinfo.display) n += xsnprintf (&display_buf[n], sizeof (display_buf) - n, " State: %s,", threadinfo.display); if (*threadinfo.more_display) n += xsnprintf (&display_buf[n], sizeof (display_buf) - n, " Priority: %s", threadinfo.more_display); if (n > 0) { /* For purely cosmetic reasons, clear up trailing commas. */ if (',' == display_buf[n-1]) display_buf[n-1] = ' '; return display_buf; } } return NULL; } static int remote_static_tracepoint_marker_at (struct target_ops *self, CORE_ADDR addr, struct static_tracepoint_marker *marker) { struct remote_state *rs = get_remote_state (); char *p = rs->buf; xsnprintf (p, get_remote_packet_size (), "qTSTMat:"); p += strlen (p); p += hexnumstr (p, addr); putpkt (rs->buf); getpkt (&rs->buf, &rs->buf_size, 0); p = rs->buf; if (*p == 'E') error (_("Remote failure reply: %s"), p); if (*p++ == 'm') { parse_static_tracepoint_marker_definition (p, &p, marker); return 1; } return 0; } static VEC(static_tracepoint_marker_p) * remote_static_tracepoint_markers_by_strid (struct target_ops *self, const char *strid) { struct remote_state *rs = get_remote_state (); VEC(static_tracepoint_marker_p) *markers = NULL; struct static_tracepoint_marker *marker = NULL; struct cleanup *old_chain; char *p; /* Ask for a first packet of static tracepoint marker definition. */ putpkt ("qTfSTM"); getpkt (&rs->buf, &rs->buf_size, 0); p = rs->buf; if (*p == 'E') error (_("Remote failure reply: %s"), p); old_chain = make_cleanup (free_current_marker, &marker); while (*p++ == 'm') { if (marker == NULL) marker = XCNEW (struct static_tracepoint_marker); do { parse_static_tracepoint_marker_definition (p, &p, marker); if (strid == NULL || strcmp (strid, marker->str_id) == 0) { VEC_safe_push (static_tracepoint_marker_p, markers, marker); marker = NULL; } else { release_static_tracepoint_marker (marker); memset (marker, 0, sizeof (*marker)); } } while (*p++ == ','); /* comma-separated list */ /* Ask for another packet of static tracepoint definition. */ putpkt ("qTsSTM"); getpkt (&rs->buf, &rs->buf_size, 0); p = rs->buf; } do_cleanups (old_chain); return markers; } /* Implement the to_get_ada_task_ptid function for the remote targets. */ static ptid_t remote_get_ada_task_ptid (struct target_ops *self, long lwp, long thread) { return ptid_build (ptid_get_pid (inferior_ptid), lwp, 0); } /* Restart the remote side; this is an extended protocol operation. */ static void extended_remote_restart (void) { struct remote_state *rs = get_remote_state (); /* Send the restart command; for reasons I don't understand the remote side really expects a number after the "R". */ xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0); putpkt (rs->buf); remote_fileio_reset (); } /* Clean up connection to a remote debugger. */ static void remote_close (struct target_ops *self) { struct remote_state *rs = get_remote_state (); if (rs->remote_desc == NULL) return; /* already closed */ /* Make sure we leave stdin registered in the event loop, and we don't leave the async SIGINT signal handler installed. */ remote_terminal_ours (self); serial_close (rs->remote_desc); rs->remote_desc = NULL; /* We don't have a connection to the remote stub anymore. Get rid of all the inferiors and their threads we were controlling. Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame will be unable to find the thread corresponding to (pid, 0, 0). */ inferior_ptid = null_ptid; discard_all_inferiors (); /* We are closing the remote target, so we should discard everything of this target. */ discard_pending_stop_replies_in_queue (rs); if (remote_async_inferior_event_token) delete_async_event_handler (&remote_async_inferior_event_token); remote_notif_state_xfree (rs->notif_state); trace_reset_local_state (); } /* Query the remote side for the text, data and bss offsets. */ static void get_offsets (void) { struct remote_state *rs = get_remote_state (); char *buf; char *ptr; int lose, num_segments = 0, do_sections, do_segments; CORE_ADDR text_addr, data_addr, bss_addr, segments[2]; struct section_offsets *offs; struct symfile_segment_data *data; if (symfile_objfile == NULL) return; putpkt ("qOffsets"); getpkt (&rs->buf, &rs->buf_size, 0); buf = rs->buf; if (buf[0] == '\000') return; /* Return silently. Stub doesn't support this command. */ if (buf[0] == 'E') { warning (_("Remote failure reply: %s"), buf); return; } /* Pick up each field in turn. This used to be done with scanf, but scanf will make trouble if CORE_ADDR size doesn't match conversion directives correctly. The following code will work with any size of CORE_ADDR. */ text_addr = data_addr = bss_addr = 0; ptr = buf; lose = 0; if (startswith (ptr, "Text=")) { ptr += 5; /* Don't use strtol, could lose on big values. */ while (*ptr && *ptr != ';') text_addr = (text_addr << 4) + fromhex (*ptr++); if (startswith (ptr, ";Data=")) { ptr += 6; while (*ptr && *ptr != ';') data_addr = (data_addr << 4) + fromhex (*ptr++); } else lose = 1; if (!lose && startswith (ptr, ";Bss=")) { ptr += 5; while (*ptr && *ptr != ';') bss_addr = (bss_addr << 4) + fromhex (*ptr++); if (bss_addr != data_addr) warning (_("Target reported unsupported offsets: %s"), buf); } else lose = 1; } else if (startswith (ptr, "TextSeg=")) { ptr += 8; /* Don't use strtol, could lose on big values. */ while (*ptr && *ptr != ';') text_addr = (text_addr << 4) + fromhex (*ptr++); num_segments = 1; if (startswith (ptr, ";DataSeg=")) { ptr += 9; while (*ptr && *ptr != ';') data_addr = (data_addr << 4) + fromhex (*ptr++); num_segments++; } } else lose = 1; if (lose) error (_("Malformed response to offset query, %s"), buf); else if (*ptr != '\0') warning (_("Target reported unsupported offsets: %s"), buf); offs = ((struct section_offsets *) alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections))); memcpy (offs, symfile_objfile->section_offsets, SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)); data = get_symfile_segment_data (symfile_objfile->obfd); do_segments = (data != NULL); do_sections = num_segments == 0; if (num_segments > 0) { segments[0] = text_addr; segments[1] = data_addr; } /* If we have two segments, we can still try to relocate everything by assuming that the .text and .data offsets apply to the whole text and data segments. Convert the offsets given in the packet to base addresses for symfile_map_offsets_to_segments. */ else if (data && data->num_segments == 2) { segments[0] = data->segment_bases[0] + text_addr; segments[1] = data->segment_bases[1] + data_addr; num_segments = 2; } /* If the object file has only one segment, assume that it is text rather than data; main programs with no writable data are rare, but programs with no code are useless. Of course the code might have ended up in the data segment... to detect that we would need the permissions here. */ else if (data && data->num_segments == 1) { segments[0] = data->segment_bases[0] + text_addr; num_segments = 1; } /* There's no way to relocate by segment. */ else do_segments = 0; if (do_segments) { int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data, offs, num_segments, segments); if (ret == 0 && !do_sections) error (_("Can not handle qOffsets TextSeg " "response with this symbol file")); if (ret > 0) do_sections = 0; } if (data) free_symfile_segment_data (data); if (do_sections) { offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr; /* This is a temporary kludge to force data and bss to use the same offsets because that's what nlmconv does now. The real solution requires changes to the stub and remote.c that I don't have time to do right now. */ offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr; offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr; } objfile_relocate (symfile_objfile, offs); } /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in threads we know are stopped already. This is used during the initial remote connection in non-stop mode --- threads that are reported as already being stopped are left stopped. */ static int set_stop_requested_callback (struct thread_info *thread, void *data) { /* If we have a stop reply for this thread, it must be stopped. */ if (peek_stop_reply (thread->ptid)) set_stop_requested (thread->ptid, 1); return 0; } /* Send interrupt_sequence to remote target. */ static void send_interrupt_sequence (void) { struct remote_state *rs = get_remote_state (); if (interrupt_sequence_mode == interrupt_sequence_control_c) remote_serial_write ("\x03", 1); else if (interrupt_sequence_mode == interrupt_sequence_break) serial_send_break (rs->remote_desc); else if (interrupt_sequence_mode == interrupt_sequence_break_g) { serial_send_break (rs->remote_desc); remote_serial_write ("g", 1); } else internal_error (__FILE__, __LINE__, _("Invalid value for interrupt_sequence_mode: %s."), interrupt_sequence_mode); } /* If STOP_REPLY is a T stop reply, look for the "thread" register, and extract the PTID. Returns NULL_PTID if not found. */ static ptid_t stop_reply_extract_thread (char *stop_reply) { if (stop_reply[0] == 'T' && strlen (stop_reply) > 3) { char *p; /* Txx r:val ; r:val (...) */ p = &stop_reply[3]; /* Look for "register" named "thread". */ while (*p != '\0') { char *p1; p1 = strchr (p, ':'); if (p1 == NULL) return null_ptid; if (strncmp (p, "thread", p1 - p) == 0) return read_ptid (++p1, &p); p1 = strchr (p, ';'); if (p1 == NULL) return null_ptid; p1++; p = p1; } } return null_ptid; } /* Determine the remote side's current thread. If we have a stop reply handy (in WAIT_STATUS), maybe it's a T stop reply with a "thread" register we can extract the current thread from. If not, ask the remote which is the current thread with qC. The former method avoids a roundtrip. */ static ptid_t get_current_thread (char *wait_status) { ptid_t ptid; /* Note we don't use remote_parse_stop_reply as that makes use of the target architecture, which we haven't yet fully determined at this point. */ if (wait_status != NULL) ptid = stop_reply_extract_thread (wait_status); if (ptid_equal (ptid, null_ptid)) ptid = remote_current_thread (inferior_ptid); return ptid; } /* Query the remote target for which is the current thread/process, add it to our tables, and update INFERIOR_PTID. The caller is responsible for setting the state such that the remote end is ready to return the current thread. This function is called after handling the '?' or 'vRun' packets, whose response is a stop reply from which we can also try extracting the thread. If the target doesn't support the explicit qC query, we infer the current thread from that stop reply, passed in in WAIT_STATUS, which may be NULL. */ static void add_current_inferior_and_thread (char *wait_status) { struct remote_state *rs = get_remote_state (); int fake_pid_p = 0; ptid_t ptid = null_ptid; inferior_ptid = null_ptid; /* Now, if we have thread information, update inferior_ptid. */ ptid = get_current_thread (wait_status); if (!ptid_equal (ptid, null_ptid)) { if (!remote_multi_process_p (rs)) fake_pid_p = 1; inferior_ptid = ptid; } else { /* Without this, some commands which require an active target (such as kill) won't work. This variable serves (at least) double duty as both the pid of the target process (if it has such), and as a flag indicating that a target is active. */ inferior_ptid = magic_null_ptid; fake_pid_p = 1; } remote_add_inferior (fake_pid_p, ptid_get_pid (inferior_ptid), -1, 1); /* Add the main thread. */ add_thread_silent (inferior_ptid); } static void remote_start_remote (int from_tty, struct target_ops *target, int extended_p) { struct remote_state *rs = get_remote_state (); struct packet_config *noack_config; char *wait_status = NULL; immediate_quit++; /* Allow user to interrupt it. */ QUIT; if (interrupt_on_connect) send_interrupt_sequence (); /* Ack any packet which the remote side has already sent. */ serial_write (rs->remote_desc, "+", 1); /* Signal other parts that we're going through the initial setup, and so things may not be stable yet. */ rs->starting_up = 1; /* The first packet we send to the target is the optional "supported packets" request. If the target can answer this, it will tell us which later probes to skip. */ remote_query_supported (); /* If the stub wants to get a QAllow, compose one and send it. */ if (packet_support (PACKET_QAllow) != PACKET_DISABLE) remote_set_permissions (target); /* Next, we possibly activate noack mode. If the QStartNoAckMode packet configuration is set to AUTO, enable noack mode if the stub reported a wish for it with qSupported. If set to TRUE, then enable noack mode even if the stub didn't report it in qSupported. If the stub doesn't reply OK, the session ends with an error. If FALSE, then don't activate noack mode, regardless of what the stub claimed should be the default with qSupported. */ noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode]; if (packet_config_support (noack_config) != PACKET_DISABLE) { putpkt ("QStartNoAckMode"); getpkt (&rs->buf, &rs->buf_size, 0); if (packet_ok (rs->buf, noack_config) == PACKET_OK) rs->noack_mode = 1; } if (extended_p) { /* Tell the remote that we are using the extended protocol. */ putpkt ("!"); getpkt (&rs->buf, &rs->buf_size, 0); } /* Let the target know which signals it is allowed to pass down to the program. */ update_signals_program_target (); /* Next, if the target can specify a description, read it. We do this before anything involving memory or registers. */ target_find_description (); /* Next, now that we know something about the target, update the address spaces in the program spaces. */ update_address_spaces (); /* On OSs where the list of libraries is global to all processes, we fetch them early. */ if (gdbarch_has_global_solist (target_gdbarch ())) solib_add (NULL, from_tty, target, auto_solib_add); if (non_stop) { if (packet_support (PACKET_QNonStop) != PACKET_ENABLE) error (_("Non-stop mode requested, but remote " "does not support non-stop")); putpkt ("QNonStop:1"); getpkt (&rs->buf, &rs->buf_size, 0); if (strcmp (rs->buf, "OK") != 0) error (_("Remote refused setting non-stop mode with: %s"), rs->buf); /* Find about threads and processes the stub is already controlling. We default to adding them in the running state. The '?' query below will then tell us about which threads are stopped. */ remote_update_thread_list (target); } else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE) { /* Don't assume that the stub can operate in all-stop mode. Request it explicitly. */ putpkt ("QNonStop:0"); getpkt (&rs->buf, &rs->buf_size, 0); if (strcmp (rs->buf, "OK") != 0) error (_("Remote refused setting all-stop mode with: %s"), rs->buf); } /* Upload TSVs regardless of whether the target is running or not. The remote stub, such as GDBserver, may have some predefined or builtin TSVs, even if the target is not running. */ if (remote_get_trace_status (target, current_trace_status ()) != -1) { struct uploaded_tsv *uploaded_tsvs = NULL; remote_upload_trace_state_variables (target, &uploaded_tsvs); merge_uploaded_trace_state_variables (&uploaded_tsvs); } /* Check whether the target is running now. */ putpkt ("?"); getpkt (&rs->buf, &rs->buf_size, 0); if (!non_stop) { ptid_t ptid; int fake_pid_p = 0; struct inferior *inf; if (rs->buf[0] == 'W' || rs->buf[0] == 'X') { if (!extended_p) error (_("The target is not running (try extended-remote?)")); /* We're connected, but not running. Drop out before we call start_remote. */ rs->starting_up = 0; return; } else { /* Save the reply for later. */ wait_status = alloca (strlen (rs->buf) + 1); strcpy (wait_status, rs->buf); } /* Fetch thread list. */ target_update_thread_list (); /* Let the stub know that we want it to return the thread. */ set_continue_thread (minus_one_ptid); if (thread_count () == 0) { /* Target has no concept of threads at all. GDB treats non-threaded target as single-threaded; add a main thread. */ add_current_inferior_and_thread (wait_status); } else { /* We have thread information; select the thread the target says should be current. If we're reconnecting to a multi-threaded program, this will ideally be the thread that last reported an event before GDB disconnected. */ inferior_ptid = get_current_thread (wait_status); if (ptid_equal (inferior_ptid, null_ptid)) { /* Odd... The target was able to list threads, but not tell us which thread was current (no "thread" register in T stop reply?). Just pick the first thread in the thread list then. */ inferior_ptid = thread_list->ptid; } } /* init_wait_for_inferior should be called before get_offsets in order to manage `inserted' flag in bp loc in a correct state. breakpoint_init_inferior, called from init_wait_for_inferior, set `inserted' flag to 0, while before breakpoint_re_set, called from start_remote, set `inserted' flag to 1. In the initialization of inferior, breakpoint_init_inferior should be called first, and then breakpoint_re_set can be called. If this order is broken, state of `inserted' flag is wrong, and cause some problems on breakpoint manipulation. */ init_wait_for_inferior (); get_offsets (); /* Get text, data & bss offsets. */ /* If we could not find a description using qXfer, and we know how to do it some other way, try again. This is not supported for non-stop; it could be, but it is tricky if there are no stopped threads when we connect. */ if (remote_read_description_p (target) && gdbarch_target_desc (target_gdbarch ()) == NULL) { target_clear_description (); target_find_description (); } /* Use the previously fetched status. */ gdb_assert (wait_status != NULL); strcpy (rs->buf, wait_status); rs->cached_wait_status = 1; immediate_quit--; start_remote (from_tty); /* Initialize gdb process mechanisms. */ } else { /* Clear WFI global state. Do this before finding about new threads and inferiors, and setting the current inferior. Otherwise we would clear the proceed status of the current inferior when we want its stop_soon state to be preserved (see notice_new_inferior). */ init_wait_for_inferior (); /* In non-stop, we will either get an "OK", meaning that there are no stopped threads at this time; or, a regular stop reply. In the latter case, there may be more than one thread stopped --- we pull them all out using the vStopped mechanism. */ if (strcmp (rs->buf, "OK") != 0) { struct notif_client *notif = ¬if_client_stop; /* remote_notif_get_pending_replies acks this one, and gets the rest out. */ rs->notif_state->pending_event[notif_client_stop.id] = remote_notif_parse (notif, rs->buf); remote_notif_get_pending_events (notif); /* Make sure that threads that were stopped remain stopped. */ iterate_over_threads (set_stop_requested_callback, NULL); } if (target_can_async_p ()) target_async (1); if (thread_count () == 0) { if (!extended_p) error (_("The target is not running (try extended-remote?)")); /* We're connected, but not running. Drop out before we call start_remote. */ rs->starting_up = 0; return; } /* Let the stub know that we want it to return the thread. */ /* Force the stub to choose a thread. */ set_general_thread (null_ptid); /* Query it. */ inferior_ptid = remote_current_thread (minus_one_ptid); if (ptid_equal (inferior_ptid, minus_one_ptid)) error (_("remote didn't report the current thread in non-stop mode")); get_offsets (); /* Get text, data & bss offsets. */ /* In non-stop mode, any cached wait status will be stored in the stop reply queue. */ gdb_assert (wait_status == NULL); /* Report all signals during attach/startup. */ remote_pass_signals (target, 0, NULL); } /* If we connected to a live target, do some additional setup. */ if (target_has_execution) { if (symfile_objfile) /* No use without a symbol-file. */ remote_check_symbols (); } /* Possibly the target has been engaged in a trace run started previously; find out where things are at. */ if (remote_get_trace_status (target, current_trace_status ()) != -1) { struct uploaded_tp *uploaded_tps = NULL; if (current_trace_status ()->running) printf_filtered (_("Trace is already running on the target.\n")); remote_upload_tracepoints (target, &uploaded_tps); merge_uploaded_tracepoints (&uploaded_tps); } /* The thread and inferior lists are now synchronized with the target, our symbols have been relocated, and we're merged the target's tracepoints with ours. We're done with basic start up. */ rs->starting_up = 0; /* Maybe breakpoints are global and need to be inserted now. */ if (breakpoints_should_be_inserted_now ()) insert_breakpoints (); } /* Open a connection to a remote debugger. NAME is the filename used for communication. */ static void remote_open (const char *name, int from_tty) { remote_open_1 (name, from_tty, &remote_ops, 0); } /* Open a connection to a remote debugger using the extended remote gdb protocol. NAME is the filename used for communication. */ static void extended_remote_open (const char *name, int from_tty) { remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */); } /* Reset all packets back to "unknown support". Called when opening a new connection to a remote target. */ static void reset_all_packet_configs_support (void) { int i; for (i = 0; i < PACKET_MAX; i++) remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN; } /* Initialize all packet configs. */ static void init_all_packet_configs (void) { int i; for (i = 0; i < PACKET_MAX; i++) { remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO; remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN; } } /* Symbol look-up. */ static void remote_check_symbols (void) { struct remote_state *rs = get_remote_state (); char *msg, *reply, *tmp; struct bound_minimal_symbol sym; int end; /* The remote side has no concept of inferiors that aren't running yet, it only knows about running processes. If we're connected but our current inferior is not running, we should not invite the remote target to request symbol lookups related to its (unrelated) current process. */ if (!target_has_execution) return; if (packet_support (PACKET_qSymbol) == PACKET_DISABLE) return; /* Make sure the remote is pointing at the right process. Note there's no way to select "no process". */ set_general_process (); /* Allocate a message buffer. We can't reuse the input buffer in RS, because we need both at the same time. */ msg = alloca (get_remote_packet_size ()); /* Invite target to request symbol lookups. */ putpkt ("qSymbol::"); getpkt (&rs->buf, &rs->buf_size, 0); packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]); reply = rs->buf; while (startswith (reply, "qSymbol:")) { struct bound_minimal_symbol sym; tmp = &reply[8]; end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2); msg[end] = '\0'; sym = lookup_minimal_symbol (msg, NULL, NULL); if (sym.minsym == NULL) xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]); else { int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8; CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym); /* If this is a function address, return the start of code instead of any data function descriptor. */ sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (), sym_addr, ¤t_target); xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s", phex_nz (sym_addr, addr_size), &reply[8]); } putpkt (msg); getpkt (&rs->buf, &rs->buf_size, 0); reply = rs->buf; } } static struct serial * remote_serial_open (const char *name) { static int udp_warning = 0; /* FIXME: Parsing NAME here is a hack. But we want to warn here instead of in ser-tcp.c, because it is the remote protocol assuming that the serial connection is reliable and not the serial connection promising to be. */ if (!udp_warning && startswith (name, "udp:")) { warning (_("The remote protocol may be unreliable over UDP.\n" "Some events may be lost, rendering further debugging " "impossible.")); udp_warning = 1; } return serial_open (name); } /* Inform the target of our permission settings. The permission flags work without this, but if the target knows the settings, it can do a couple things. First, it can add its own check, to catch cases that somehow manage to get by the permissions checks in target methods. Second, if the target is wired to disallow particular settings (for instance, a system in the field that is not set up to be able to stop at a breakpoint), it can object to any unavailable permissions. */ void remote_set_permissions (struct target_ops *self) { struct remote_state *rs = get_remote_state (); xsnprintf (rs->buf, get_remote_packet_size (), "QAllow:" "WriteReg:%x;WriteMem:%x;" "InsertBreak:%x;InsertTrace:%x;" "InsertFastTrace:%x;Stop:%x", may_write_registers, may_write_memory, may_insert_breakpoints, may_insert_tracepoints, may_insert_fast_tracepoints, may_stop); putpkt (rs->buf); getpkt (&rs->buf, &rs->buf_size, 0); /* If the target didn't like the packet, warn the user. Do not try to undo the user's settings, that would just be maddening. */ if (strcmp (rs->buf, "OK") != 0) warning (_("Remote refused setting permissions with: %s"), rs->buf); } /* This type describes each known response to the qSupported packet. */ struct protocol_feature { /* The name of this protocol feature. */ const char *name; /* The default for this protocol feature. */ enum packet_support default_support; /* The function to call when this feature is reported, or after qSupported processing if the feature is not supported. The first argument points to this structure. The second argument indicates whether the packet requested support be enabled, disabled, or probed (or the default, if this function is being called at the end of processing and this feature was not reported). The third argument may be NULL; if not NULL, it is a NUL-terminated string taken from the packet following this feature's name and an equals sign. */ void (*func) (const struct protocol_feature *, enum packet_support, const char *); /* The corresponding packet for this feature. Only used if FUNC is remote_supported_packet. */ int packet; }; static void remote_supported_packet (const struct protocol_feature *feature, enum packet_support support, const char *argument) { if (argument) { warning (_("Remote qSupported response supplied an unexpected value for" " \"%s\"."), feature->name); return; } remote_protocol_packets[feature->packet].support = support; } static void remote_packet_size (const struct protocol_feature *feature, enum packet_support support, const char *value) { struct remote_state *rs = get_remote_state (); int packet_size; char *value_end; if (support != PACKET_ENABLE) return; if (value == NULL || *value == '\0') { warning (_("Remote target reported \"%s\" without a size."), feature->name); return; } errno = 0; packet_size = strtol (value, &value_end, 16); if (errno != 0 || *value_end != '\0' || packet_size < 0) { warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."), feature->name, value); return; } if (packet_size > MAX_REMOTE_PACKET_SIZE) { warning (_("limiting remote suggested packet size (%d bytes) to %d"), packet_size, MAX_REMOTE_PACKET_SIZE); packet_size = MAX_REMOTE_PACKET_SIZE; } /* Record the new maximum packet size. */ rs->explicit_packet_size = packet_size; } static const struct protocol_feature remote_protocol_features[] = { { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 }, { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet, PACKET_qXfer_auxv }, { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet, PACKET_qXfer_exec_file }, { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet, PACKET_qXfer_features }, { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet, PACKET_qXfer_libraries }, { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet, PACKET_qXfer_libraries_svr4 }, { "augmented-libraries-svr4-read", PACKET_DISABLE, remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature }, { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet, PACKET_qXfer_memory_map }, { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet, PACKET_qXfer_spu_read }, { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet, PACKET_qXfer_spu_write }, { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet, PACKET_qXfer_osdata }, { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet, PACKET_qXfer_threads }, { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet, PACKET_qXfer_traceframe_info }, { "QPassSignals", PACKET_DISABLE, remote_supported_packet, PACKET_QPassSignals }, { "QProgramSignals", PACKET_DISABLE, remote_supported_packet, PACKET_QProgramSignals }, { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet, PACKET_QStartNoAckMode }, { "multiprocess", PACKET_DISABLE, remote_supported_packet, PACKET_multiprocess_feature }, { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop }, { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet, PACKET_qXfer_siginfo_read }, { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet, PACKET_qXfer_siginfo_write }, { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet, PACKET_ConditionalTracepoints }, { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet, PACKET_ConditionalBreakpoints }, { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet, PACKET_BreakpointCommands }, { "FastTracepoints", PACKET_DISABLE, remote_supported_packet, PACKET_FastTracepoints }, { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet, PACKET_StaticTracepoints }, {"InstallInTrace", PACKET_DISABLE, remote_supported_packet, PACKET_InstallInTrace}, { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet, PACKET_DisconnectedTracing_feature }, { "ReverseContinue", PACKET_DISABLE, remote_supported_packet, PACKET_bc }, { "ReverseStep", PACKET_DISABLE, remote_supported_packet, PACKET_bs }, { "TracepointSource", PACKET_DISABLE, remote_supported_packet, PACKET_TracepointSource }, { "QAllow", PACKET_DISABLE, remote_supported_packet, PACKET_QAllow }, { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet, PACKET_EnableDisableTracepoints_feature }, { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet, PACKET_qXfer_fdpic }, { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet, PACKET_qXfer_uib }, { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet, PACKET_QDisableRandomization }, { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent}, { "QTBuffer:size", PACKET_DISABLE, remote_supported_packet, PACKET_QTBuffer_size}, { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature }, { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off }, { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts }, { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet, PACKET_qXfer_btrace }, { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet, PACKET_qXfer_btrace_conf }, { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_conf_bts_size }, { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature }, { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature }, { "fork-events", PACKET_DISABLE, remote_supported_packet, PACKET_fork_event_feature }, { "vfork-events", PACKET_DISABLE, remote_supported_packet, PACKET_vfork_event_feature }, }; static char *remote_support_xml; /* Register string appended to "xmlRegisters=" in qSupported query. */ void register_remote_support_xml (const char *xml) { #if defined(HAVE_LIBEXPAT) if (remote_support_xml == NULL) remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL); else { char *copy = xstrdup (remote_support_xml + 13); char *p = strtok (copy, ","); do { if (strcmp (p, xml) == 0) { /* already there */ xfree (copy); return; } } while ((p = strtok (NULL, ",")) != NULL); xfree (copy); remote_support_xml = reconcat (remote_support_xml, remote_support_xml, ",", xml, (char *) NULL); } #endif } static char * remote_query_supported_append (char *msg, const char *append) { if (msg) return reconcat (msg, msg, ";", append, (char *) NULL); else return xstrdup (append); } static void remote_query_supported (void) { struct remote_state *rs = get_remote_state (); char *next; int i; unsigned char seen [ARRAY_SIZE (remote_protocol_features)]; /* The packet support flags are handled differently for this packet than for most others. We treat an error, a disabled packet, and an empty response identically: any features which must be reported to be used will be automatically disabled. An empty buffer accomplishes this, since that is also the representation for a list containing no features. */ rs->buf[0] = 0; if (packet_support (PACKET_qSupported) != PACKET_DISABLE) { char *q = NULL; struct cleanup *old_chain = make_cleanup (free_current_contents, &q); q = remote_query_supported_append (q, "multiprocess+"); if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE) q = remote_query_supported_append (q, "swbreak+"); if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE) q = remote_query_supported_append (q, "hwbreak+"); if (remote_support_xml) q = remote_query_supported_append (q, remote_support_xml); q = remote_query_supported_append (q, "qRelocInsn+"); if (rs->extended) { if (packet_set_cmd_state (PACKET_fork_event_feature) != AUTO_BOOLEAN_FALSE) q = remote_query_supported_append (q, "fork-events+"); if (packet_set_cmd_state (PACKET_vfork_event_feature) != AUTO_BOOLEAN_FALSE) q = remote_query_supported_append (q, "vfork-events+"); } q = reconcat (q, "qSupported:", q, (char *) NULL); putpkt (q); do_cleanups (old_chain); getpkt (&rs->buf, &rs->buf_size, 0); /* If an error occured, warn, but do not return - just reset the buffer to empty and go on to disable features. */ if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported]) == PACKET_ERROR) { warning (_("Remote failure reply: %s"), rs->buf); rs->buf[0] = 0; } } memset (seen, 0, sizeof (seen)); next = rs->buf; while (*next) { enum packet_support is_supported; char *p, *end, *name_end, *value; /* First separate out this item from the rest of the packet. If there's another item after this, we overwrite the separator (terminated strings are much easier to work with). */ p = next; end = strchr (p, ';'); if (end == NULL) { end = p + strlen (p); next = end; } else { *end = '\0'; next = end + 1; if (end == p) { warning (_("empty item in \"qSupported\" response")); continue; } } name_end = strchr (p, '='); if (name_end) { /* This is a name=value entry. */ is_supported = PACKET_ENABLE; value = name_end + 1; *name_end = '\0'; } else { value = NULL; switch (end[-1]) { case '+': is_supported = PACKET_ENABLE; break; case '-': is_supported = PACKET_DISABLE; break; case '?': is_supported = PACKET_SUPPORT_UNKNOWN; break; default: warning (_("unrecognized item \"%s\" " "in \"qSupported\" response"), p); continue; } end[-1] = '\0'; } for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++) if (strcmp (remote_protocol_features[i].name, p) == 0) { const struct protocol_feature *feature; seen[i] = 1; feature = &remote_protocol_features[i]; feature->func (feature, is_supported, value); break; } } /* If we increased the packet size, make sure to increase the global buffer size also. We delay this until after parsing the entire qSupported packet, because this is the same buffer we were parsing. */ if (rs->buf_size < rs->explicit_packet_size) { rs->buf_size = rs->explicit_packet_size; rs->buf = xrealloc (rs->buf, rs->buf_size); } /* Handle the defaults for unmentioned features. */ for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++) if (!seen[i]) { const struct protocol_feature *feature; feature = &remote_protocol_features[i]; feature->func (feature, feature->default_support, NULL); } } /* Remove any of the remote.c targets from target stack. Upper targets depend on it so remove them first. */ static void remote_unpush_target (void) { pop_all_targets_above (process_stratum - 1); } static void remote_open_1 (const char *name, int from_tty, struct target_ops *target, int extended_p) { struct remote_state *rs = get_remote_state (); if (name == 0) error (_("To open a remote debug connection, you need to specify what\n" "serial device is attached to the remote system\n" "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).")); /* See FIXME above. */ if (!target_async_permitted) wait_forever_enabled_p = 1; /* If we're connected to a running target, target_preopen will kill it. Ask this question first, before target_preopen has a chance to kill anything. */ if (rs->remote_desc != NULL && !have_inferiors ()) { if (from_tty && !query (_("Already connected to a remote target. Disconnect? "))) error (_("Still connected.")); } /* Here the possibly existing remote target gets unpushed. */ target_preopen (from_tty); /* Make sure we send the passed signals list the next time we resume. */ xfree (rs->last_pass_packet); rs->last_pass_packet = NULL; /* Make sure we send the program signals list the next time we resume. */ xfree (rs->last_program_signals_packet); rs->last_program_signals_packet = NULL; remote_fileio_reset (); reopen_exec_file (); reread_symbols (); rs->remote_desc = remote_serial_open (name); if (!rs->remote_desc) perror_with_name (name); if (baud_rate != -1) { if (serial_setbaudrate (rs->remote_desc, baud_rate)) { /* The requested speed could not be set. Error out to top level after closing remote_desc. Take care to set remote_desc to NULL to avoid closing remote_desc more than once. */ serial_close (rs->remote_desc); rs->remote_desc = NULL; perror_with_name (name); } } serial_setparity (rs->remote_desc, serial_parity); serial_raw (rs->remote_desc); /* If there is something sitting in the buffer we might take it as a response to a command, which would be bad. */ serial_flush_input (rs->remote_desc); if (from_tty) { puts_filtered ("Remote debugging using "); puts_filtered (name); puts_filtered ("\n"); } push_target (target); /* Switch to using remote target now. */ /* Register extra event sources in the event loop. */ remote_async_inferior_event_token = create_async_event_handler (remote_async_inferior_event_handler, NULL); rs->notif_state = remote_notif_state_allocate (); /* Reset the target state; these things will be queried either by remote_query_supported or as they are needed. */ reset_all_packet_configs_support (); rs->cached_wait_status = 0; rs->explicit_packet_size = 0; rs->noack_mode = 0; rs->extended = extended_p; rs->waiting_for_stop_reply = 0; rs->ctrlc_pending_p = 0; rs->general_thread = not_sent_ptid; rs->continue_thread = not_sent_ptid; rs->remote_traceframe_number = -1; /* Probe for ability to use "ThreadInfo" query, as required. */ rs->use_threadinfo_query = 1; rs->use_threadextra_query = 1; if (target_async_permitted) { /* With this target we start out by owning the terminal. */ remote_async_terminal_ours_p = 1; /* FIXME: cagney/1999-09-23: During the initial connection it is assumed that the target is already ready and able to respond to requests. Unfortunately remote_start_remote() eventually calls wait_for_inferior() with no timeout. wait_forever_enabled_p gets around this. Eventually a mechanism that allows wait_for_inferior() to expect/get timeouts will be implemented. */ wait_forever_enabled_p = 0; } /* First delete any symbols previously loaded from shared libraries. */ no_shared_libraries (NULL, 0); /* Start afresh. */ init_thread_list (); /* Start the remote connection. If error() or QUIT, discard this target (we'd otherwise be in an inconsistent state) and then propogate the error on up the exception chain. This ensures that the caller doesn't stumble along blindly assuming that the function succeeded. The CLI doesn't have this problem but other UI's, such as MI do. FIXME: cagney/2002-05-19: Instead of re-throwing the exception, this function should return an error indication letting the caller restore the previous state. Unfortunately the command ``target remote'' is directly wired to this function making that impossible. On a positive note, the CLI side of this problem has been fixed - the function set_cmd_context() makes it possible for all the ``target ....'' commands to share a common callback function. See cli-dump.c. */ { TRY { remote_start_remote (from_tty, target, extended_p); } CATCH (ex, RETURN_MASK_ALL) { /* Pop the partially set up target - unless something else did already before throwing the exception. */ if (rs->remote_desc != NULL) remote_unpush_target (); if (target_async_permitted) wait_forever_enabled_p = 1; throw_exception (ex); } END_CATCH } remote_btrace_reset (); if (target_async_permitted) wait_forever_enabled_p = 1; } /* Detach the specified process. */ static void remote_detach_pid (int pid) { struct remote_state *rs = get_remote_state (); if (remote_multi_process_p (rs)) xsnprintf (rs->buf, get_remote_packet_size (), "D;%x", pid); else strcpy (rs->buf, "D"); putpkt (rs->buf); getpkt (&rs->buf, &rs->buf_size, 0); if (rs->buf[0] == 'O' && rs->buf[1] == 'K') ; else if (rs->buf[0] == '\0') error (_("Remote doesn't know how to detach")); else error (_("Can't detach process.")); } /* This detaches a program to which we previously attached, using inferior_ptid to identify the process. After this is done, GDB can be used to debug some other program. We better not have left any breakpoints in the target program or it'll die when it hits one. */ static void remote_detach_1 (const char *args, int from_tty) { int pid = ptid_get_pid (inferior_ptid); struct remote_state *rs = get_remote_state (); struct thread_info *tp = find_thread_ptid (inferior_ptid); int is_fork_parent; if (args) error (_("Argument given to \"detach\" when remotely debugging.")); if (!target_has_execution) error (_("No process to detach from.")); if (from_tty) { char *exec_file = get_exec_file (0); if (exec_file == NULL) exec_file = ""; printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file, target_pid_to_str (pid_to_ptid (pid))); gdb_flush (gdb_stdout); } /* Tell the remote target to detach. */ remote_detach_pid (pid); if (from_tty && !rs->extended) puts_filtered (_("Ending remote debugging.\n")); /* Check to see if we are detaching a fork parent. Note that if we are detaching a fork child, tp == NULL. */ is_fork_parent = (tp != NULL && tp->pending_follow.kind == TARGET_WAITKIND_FORKED); /* If doing detach-on-fork, we don't mourn, because that will delete breakpoints that should be available for the followed inferior. */ if (!is_fork_parent) target_mourn_inferior (); else { inferior_ptid = null_ptid; detach_inferior (pid); } } static void remote_detach (struct target_ops *ops, const char *args, int from_tty) { remote_detach_1 (args, from_tty); } static void extended_remote_detach (struct target_ops *ops, const char *args, int from_tty) { remote_detach_1 (args, from_tty); } /* Target follow-fork function for remote targets. On entry, and at return, the current inferior is the fork parent. Note that although this is currently only used for extended-remote, it is named remote_follow_fork in anticipation of using it for the remote target as well. */ static int remote_follow_fork (struct target_ops *ops, int follow_child, int detach_fork) { struct remote_state *rs = get_remote_state (); enum target_waitkind kind = inferior_thread ()->pending_follow.kind; if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs)) || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs))) { /* When following the parent and detaching the child, we detach the child here. For the case of following the child and detaching the parent, the detach is done in the target- independent follow fork code in infrun.c. We can't use target_detach when detaching an unfollowed child because the client side doesn't know anything about the child. */ if (detach_fork && !follow_child) { /* Detach the fork child. */ ptid_t child_ptid; pid_t child_pid; child_ptid = inferior_thread ()->pending_follow.value.related_pid; child_pid = ptid_get_pid (child_ptid); remote_detach_pid (child_pid); detach_inferior (child_pid); } } return 0; } /* Same as remote_detach, but don't send the "D" packet; just disconnect. */ static void remote_disconnect (struct target_ops *target, const char *args, int from_tty) { if (args) error (_("Argument given to \"disconnect\" when remotely debugging.")); /* Make sure we unpush even the extended remote targets; mourn won't do it. So call remote_mourn directly instead of target_mourn_inferior. */ remote_mourn (target); if (from_tty) puts_filtered ("Ending remote debugging.\n"); } /* Attach to the process specified by ARGS. If FROM_TTY is non-zero, be chatty about it. */ static void extended_remote_attach (struct target_ops *target, const char *args, int from_tty) { struct remote_state *rs = get_remote_state (); int pid; char *wait_status = NULL; pid = parse_pid_to_attach (args); /* Remote PID can be freely equal to getpid, do not check it here the same way as in other targets. */ if (packet_support (PACKET_vAttach) == PACKET_DISABLE) error (_("This target does not support attaching to a process")); if (from_tty) { char *exec_file = get_exec_file (0); if (exec_file) printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file, target_pid_to_str (pid_to_ptid (pid))); else printf_unfiltered (_("Attaching to %s\n"), target_pid_to_str (pid_to_ptid (pid))); gdb_flush (gdb_stdout); } xsnprintf (rs->buf, get_remote_packet_size (), "vAttach;%x", pid); putpkt (rs->buf); getpkt (&rs->buf, &rs->buf_size, 0); switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vAttach])) { case PACKET_OK: if (!non_stop) { /* Save the reply for later. */ wait_status = alloca (strlen (rs->buf) + 1); strcpy (wait_status, rs->buf); } else if (strcmp (rs->buf, "OK") != 0) error (_("Attaching to %s failed with: %s"), target_pid_to_str (pid_to_ptid (pid)), rs->buf); break; case PACKET_UNKNOWN: error (_("This target does not support attaching to a process")); default: error (_("Attaching to %s failed"), target_pid_to_str (pid_to_ptid (pid))); } set_current_inferior (remote_add_inferior (0, pid, 1, 0)); inferior_ptid = pid_to_ptid (pid); if (non_stop) { struct thread_info *thread; /* Get list of threads. */ remote_update_thread_list (target); thread = first_thread_of_process (pid); if (thread) inferior_ptid = thread->ptid; else inferior_ptid = pid_to_ptid (pid); /* Invalidate our notion of the remote current thread. */ record_currthread (rs, minus_one_ptid); } else { /* Now, if we have thread information, update inferior_ptid. */ inferior_ptid = remote_current_thread (inferior_ptid); /* Add the main thread to the thread list. */ add_thread_silent (inferior_ptid); } /* Next, if the target can specify a description, read it. We do this before anything involving memory or registers. */ target_find_description (); if (!non_stop) { /* Use the previously fetched status. */ gdb_assert (wait_status != NULL); if (target_can_async_p ()) { struct notif_event *reply = remote_notif_parse (¬if_client_stop, wait_status); push_stop_reply ((struct stop_reply *) reply); target_async (1); } else { gdb_assert (wait_status != NULL); strcpy (rs->buf, wait_status); rs->cached_wait_status = 1; } } else gdb_assert (wait_status == NULL); } /* Implementation of the to_post_attach method. */ static void extended_remote_post_attach (struct target_ops *ops, int pid) { /* In certain cases GDB might not have had the chance to start symbol lookup up until now. This could happen if the debugged binary is not using shared libraries, the vsyscall page is not present (on Linux) and the binary itself hadn't changed since the debugging process was started. */ if (symfile_objfile != NULL) remote_check_symbols(); } /* Check for the availability of vCont. This function should also check the response. */ static void remote_vcont_probe (struct remote_state *rs) { char *buf; strcpy (rs->buf, "vCont?"); putpkt (rs->buf); getpkt (&rs->buf, &rs->buf_size, 0); buf = rs->buf; /* Make sure that the features we assume are supported. */ if (startswith (buf, "vCont")) { char *p = &buf[5]; int support_s, support_S, support_c, support_C; support_s = 0; support_S = 0; support_c = 0; support_C = 0; rs->supports_vCont.t = 0; rs->supports_vCont.r = 0; while (p && *p == ';') { p++; if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0)) support_s = 1; else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0)) support_S = 1; else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0)) support_c = 1; else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0)) support_C = 1; else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0)) rs->supports_vCont.t = 1; else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0)) rs->supports_vCont.r = 1; p = strchr (p, ';'); } /* If s, S, c, and C are not all supported, we can't use vCont. Clearing BUF will make packet_ok disable the packet. */ if (!support_s || !support_S || !support_c || !support_C) buf[0] = 0; } packet_ok (buf, &remote_protocol_packets[PACKET_vCont]); } /* Helper function for building "vCont" resumptions. Write a resumption to P. ENDP points to one-passed-the-end of the buffer we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The thread to be resumed is PTID; STEP and SIGGNAL indicate whether the resumed thread should be single-stepped and/or signalled. If PTID equals minus_one_ptid, then all threads are resumed; if PTID represents a process, then all threads of the process are resumed; the thread to be stepped and/or signalled is given in the global INFERIOR_PTID. */ static char * append_resumption (char *p, char *endp, ptid_t ptid, int step, enum gdb_signal siggnal) { struct remote_state *rs = get_remote_state (); if (step && siggnal != GDB_SIGNAL_0) p += xsnprintf (p, endp - p, ";S%02x", siggnal); else if (step /* GDB is willing to range step. */ && use_range_stepping /* Target supports range stepping. */ && rs->supports_vCont.r /* We don't currently support range stepping multiple threads with a wildcard (though the protocol allows it, so stubs shouldn't make an active effort to forbid it). */ && !(remote_multi_process_p (rs) && ptid_is_pid (ptid))) { struct thread_info *tp; if (ptid_equal (ptid, minus_one_ptid)) { /* If we don't know about the target thread's tid, then we're resuming magic_null_ptid (see caller). */ tp = find_thread_ptid (magic_null_ptid); } else tp = find_thread_ptid (ptid); gdb_assert (tp != NULL); if (tp->control.may_range_step) { int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8; p += xsnprintf (p, endp - p, ";r%s,%s", phex_nz (tp->control.step_range_start, addr_size), phex_nz (tp->control.step_range_end, addr_size)); } else p += xsnprintf (p, endp - p, ";s"); } else if (step) p += xsnprintf (p, endp - p, ";s"); else if (siggnal != GDB_SIGNAL_0) p += xsnprintf (p, endp - p, ";C%02x", siggnal); else p += xsnprintf (p, endp - p, ";c"); if (remote_multi_process_p (rs) && ptid_is_pid (ptid)) { ptid_t nptid; /* All (-1) threads of process. */ nptid = ptid_build (ptid_get_pid (ptid), -1, 0); p += xsnprintf (p, endp - p, ":"); p = write_ptid (p, endp, nptid); } else if (!ptid_equal (ptid, minus_one_ptid)) { p += xsnprintf (p, endp - p, ":"); p = write_ptid (p, endp, ptid); } return p; } /* Append a vCont continue-with-signal action for threads that have a non-zero stop signal. */ static char * append_pending_thread_resumptions (char *p, char *endp, ptid_t ptid) { struct thread_info *thread; ALL_NON_EXITED_THREADS (thread) if (ptid_match (thread->ptid, ptid) && !ptid_equal (inferior_ptid, thread->ptid) && thread->suspend.stop_signal != GDB_SIGNAL_0) { p = append_resumption (p, endp, thread->ptid, 0, thread->suspend.stop_signal); thread->suspend.stop_signal = GDB_SIGNAL_0; } return p; } /* Resume the remote inferior by using a "vCont" packet. The thread to be resumed is PTID; STEP and SIGGNAL indicate whether the resumed thread should be single-stepped and/or signalled. If PTID equals minus_one_ptid, then all threads are resumed; the thread to be stepped and/or signalled is given in the global INFERIOR_PTID. This function returns non-zero iff it resumes the inferior. This function issues a strict subset of all possible vCont commands at the moment. */ static int remote_vcont_resume (ptid_t ptid, int step, enum gdb_signal siggnal) { struct remote_state *rs = get_remote_state (); char *p; char *endp; if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN) remote_vcont_probe (rs); if (packet_support (PACKET_vCont) == PACKET_DISABLE) return 0; p = rs->buf; endp = rs->buf + get_remote_packet_size (); /* If we could generate a wider range of packets, we'd have to worry about overflowing BUF. Should there be a generic "multi-part-packet" packet? */ p += xsnprintf (p, endp - p, "vCont"); if (ptid_equal (ptid, magic_null_ptid)) { /* MAGIC_NULL_PTID means that we don't have any active threads, so we don't have any TID numbers the inferior will understand. Make sure to only send forms that do not specify a TID. */ append_resumption (p, endp, minus_one_ptid, step, siggnal); } else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid)) { /* Resume all threads (of all processes, or of a single process), with preference for INFERIOR_PTID. This assumes inferior_ptid belongs to the set of all threads we are about to resume. */ if (step || siggnal != GDB_SIGNAL_0) { /* Step inferior_ptid, with or without signal. */ p = append_resumption (p, endp, inferior_ptid, step, siggnal); } /* Also pass down any pending signaled resumption for other threads not the current. */ p = append_pending_thread_resumptions (p, endp, ptid); /* And continue others without a signal. */ append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0); } else { /* Scheduler locking; resume only PTID. */ append_resumption (p, endp, ptid, step, siggnal); } gdb_assert (strlen (rs->buf) < get_remote_packet_size ()); putpkt (rs->buf); if (non_stop) { /* In non-stop, the stub replies to vCont with "OK". The stop reply will be reported asynchronously by means of a `%Stop' notification. */ getpkt (&rs->buf, &rs->buf_size, 0); if (strcmp (rs->buf, "OK") != 0) error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf); } return 1; } /* Tell the remote machine to resume. */ static void remote_resume (struct target_ops *ops, ptid_t ptid, int step, enum gdb_signal siggnal) { struct remote_state *rs = get_remote_state (); char *buf; /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN (explained in remote-notif.c:handle_notification) so remote_notif_process is not called. We need find a place where it is safe to start a 'vNotif' sequence. It is good to do it before resuming inferior, because inferior was stopped and no RSP traffic at that moment. */ if (!non_stop) remote_notif_process (rs->notif_state, ¬if_client_stop); rs->last_sent_signal = siggnal; rs->last_sent_step = step; /* The vCont packet doesn't need to specify threads via Hc. */ /* No reverse support (yet) for vCont. */ if (execution_direction != EXEC_REVERSE) if (remote_vcont_resume (ptid, step, siggnal)) goto done; /* All other supported resume packets do use Hc, so set the continue thread. */ if (ptid_equal (ptid, minus_one_ptid)) set_continue_thread (any_thread_ptid); else set_continue_thread (ptid); buf = rs->buf; if (execution_direction == EXEC_REVERSE) { /* We don't pass signals to the target in reverse exec mode. */ if (info_verbose && siggnal != GDB_SIGNAL_0) warning (_(" - Can't pass signal %d to target in reverse: ignored."), siggnal); if (step && packet_support (PACKET_bs) == PACKET_DISABLE) error (_("Remote reverse-step not supported.")); if (!step && packet_support (PACKET_bc) == PACKET_DISABLE) error (_("Remote reverse-continue not supported.")); strcpy (buf, step ? "bs" : "bc"); } else if (siggnal != GDB_SIGNAL_0) { buf[0] = step ? 'S' : 'C'; buf[1] = tohex (((int) siggnal >> 4) & 0xf); buf[2] = tohex (((int) siggnal) & 0xf); buf[3] = '\0'; } else strcpy (buf, step ? "s" : "c"); putpkt (buf); done: /* We are about to start executing the inferior, let's register it with the event loop. NOTE: this is the one place where all the execution commands end up. We could alternatively do this in each of the execution commands in infcmd.c. */ /* FIXME: ezannoni 1999-09-28: We may need to move this out of here into infcmd.c in order to allow inferior function calls to work NOT asynchronously. */ if (target_can_async_p ()) target_async (1); /* We've just told the target to resume. The remote server will wait for the inferior to stop, and then send a stop reply. In the mean time, we can't start another command/query ourselves because the stub wouldn't be ready to process it. This applies only to the base all-stop protocol, however. In non-stop (which only supports vCont), the stub replies with an "OK", and is immediate able to process further serial input. */ if (!non_stop) rs->waiting_for_stop_reply = 1; } /* Set up the signal handler for SIGINT, while the target is executing, ovewriting the 'regular' SIGINT signal handler. */ static void async_initialize_sigint_signal_handler (void) { signal (SIGINT, async_handle_remote_sigint); } /* Signal handler for SIGINT, while the target is executing. */ static void async_handle_remote_sigint (int sig) { signal (sig, async_handle_remote_sigint_twice); /* Note we need to go through gdb_call_async_signal_handler in order to wake up the event loop on Windows. */ gdb_call_async_signal_handler (async_sigint_remote_token, 0); } /* Signal handler for SIGINT, installed after SIGINT has already been sent once. It will take effect the second time that the user sends a ^C. */ static void async_handle_remote_sigint_twice (int sig) { signal (sig, async_handle_remote_sigint); /* See note in async_handle_remote_sigint. */ gdb_call_async_signal_handler (async_sigint_remote_twice_token, 0); } /* Perform the real interruption of the target execution, in response to a ^C. */ static void async_remote_interrupt (gdb_client_data arg) { if (remote_debug) fprintf_unfiltered (gdb_stdlog, "async_remote_interrupt called\n"); target_stop (inferior_ptid); } /* Perform interrupt, if the first attempt did not succeed. Just give up on the target alltogether. */ static void async_remote_interrupt_twice (gdb_client_data arg) { if (remote_debug) fprintf_unfiltered (gdb_stdlog, "async_remote_interrupt_twice called\n"); interrupt_query (); } /* Reinstall the usual SIGINT handlers, after the target has stopped. */ static void async_cleanup_sigint_signal_handler (void *dummy) { signal (SIGINT, handle_sigint); } /* Send ^C to target to halt it. Target will respond, and send us a packet. */ static void (*ofunc) (int); /* The command line interface's stop routine. This function is installed as a signal handler for SIGINT. The first time a user requests a stop, we call remote_stop to send a break or ^C. If there is no response from the target (it didn't stop when the user requested it), we ask the user if he'd like to detach from the target. */ static void sync_remote_interrupt (int signo) { /* If this doesn't work, try more severe steps. */ signal (signo, sync_remote_interrupt_twice); gdb_call_async_signal_handler (async_sigint_remote_token, 1); } /* The user typed ^C twice. */ static void sync_remote_interrupt_twice (int signo) { signal (signo, ofunc); gdb_call_async_signal_handler (async_sigint_remote_twice_token, 1); signal (signo, sync_remote_interrupt); } /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote thread, all threads of a remote process, or all threads of all processes. */ static void remote_stop_ns (ptid_t ptid) { struct remote_state *rs = get_remote_state (); char *p = rs->buf; char *endp = rs->buf + get_remote_packet_size (); if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN) remote_vcont_probe (rs); if (!rs->supports_vCont.t) error (_("Remote server does not support stopping threads")); if (ptid_equal (ptid, minus_one_ptid) || (!remote_multi_process_p (rs) && ptid_is_pid (ptid))) p += xsnprintf (p, endp - p, "vCont;t"); else { ptid_t nptid; p += xsnprintf (p, endp - p, "vCont;t:"); if (ptid_is_pid (ptid)) /* All (-1) threads of process. */ nptid = ptid_build (ptid_get_pid (ptid), -1, 0); else { /* Small optimization: if we already have a stop reply for this thread, no use in telling the stub we want this stopped. */ if (peek_stop_reply (ptid)) return; nptid = ptid; } write_ptid (p, endp, nptid); } /* In non-stop, we get an immediate OK reply. The stop reply will come in asynchronously by notification. */ putpkt (rs->buf); getpkt (&rs->buf, &rs->buf_size, 0); if (strcmp (rs->buf, "OK") != 0) error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf); } /* All-stop version of target_stop. Sends a break or a ^C to stop the remote target. It is undefined which thread of which process reports the stop. */ static void remote_stop_as (ptid_t ptid) { struct remote_state *rs = get_remote_state (); rs->ctrlc_pending_p = 1; /* If the inferior is stopped already, but the core didn't know about it yet, just ignore the request. The cached wait status will be collected in remote_wait. */ if (rs->cached_wait_status) return; /* Send interrupt_sequence to remote target. */ send_interrupt_sequence (); } /* This is the generic stop called via the target vector. When a target interrupt is requested, either by the command line or the GUI, we will eventually end up here. */ static void remote_stop (struct target_ops *self, ptid_t ptid) { if (remote_debug) fprintf_unfiltered (gdb_stdlog, "remote_stop called\n"); if (non_stop) remote_stop_ns (ptid); else remote_stop_as (ptid); } /* Ask the user what to do when an interrupt is received. */ static void interrupt_query (void) { target_terminal_ours (); if (target_is_async_p ()) { signal (SIGINT, handle_sigint); quit (); } else { if (query (_("Interrupted while waiting for the program.\n\ Give up (and stop debugging it)? "))) { remote_unpush_target (); quit (); } } target_terminal_inferior (); } /* Enable/disable target terminal ownership. Most targets can use terminal groups to control terminal ownership. Remote targets are different in that explicit transfer of ownership to/from GDB/target is required. */ static void remote_terminal_inferior (struct target_ops *self) { if (!target_async_permitted) /* Nothing to do. */ return; /* FIXME: cagney/1999-09-27: Make calls to target_terminal_*() idempotent. The event-loop GDB talking to an asynchronous target with a synchronous command calls this function from both event-top.c and infrun.c/infcmd.c. Once GDB stops trying to transfer the terminal to the target when it shouldn't this guard can go away. */ if (!remote_async_terminal_ours_p) return; delete_file_handler (input_fd); remote_async_terminal_ours_p = 0; async_initialize_sigint_signal_handler (); /* NOTE: At this point we could also register our selves as the recipient of all input. Any characters typed could then be passed on down to the target. */ } static void remote_terminal_ours (struct target_ops *self) { if (!target_async_permitted) /* Nothing to do. */ return; /* See FIXME in remote_terminal_inferior. */ if (remote_async_terminal_ours_p) return; async_cleanup_sigint_signal_handler (NULL); add_file_handler (input_fd, stdin_event_handler, 0); remote_async_terminal_ours_p = 1; } static void remote_console_output (char *msg) { char *p; for (p = msg; p[0] && p[1]; p += 2) { char tb[2]; char c = fromhex (p[0]) * 16 + fromhex (p[1]); tb[0] = c; tb[1] = 0; fputs_unfiltered (tb, gdb_stdtarg); } gdb_flush (gdb_stdtarg); } typedef struct cached_reg { int num; gdb_byte data[MAX_REGISTER_SIZE]; } cached_reg_t; DEF_VEC_O(cached_reg_t); typedef struct stop_reply { struct notif_event base; /* The identifier of the thread about this event */ ptid_t ptid; /* The remote state this event is associated with. When the remote connection, represented by a remote_state object, is closed, all the associated stop_reply events should be released. */ struct remote_state *rs; struct target_waitstatus ws; /* Expedited registers. This makes remote debugging a bit more efficient for those targets that provide critical registers as part of their normal status mechanism (as another roundtrip to fetch them is avoided). */ VEC(cached_reg_t) *regcache; enum target_stop_reason stop_reason; CORE_ADDR watch_data_address; int core; } *stop_reply_p; DECLARE_QUEUE_P (stop_reply_p); DEFINE_QUEUE_P (stop_reply_p); /* The list of already fetched and acknowledged stop events. This queue is used for notification Stop, and other notifications don't need queue for their events, because the notification events of Stop can't be consumed immediately, so that events should be queued first, and be consumed by remote_wait_{ns,as} one per time. Other notifications can consume their events immediately, so queue is not needed for them. */ static QUEUE (stop_reply_p) *stop_reply_queue; static void stop_reply_xfree (struct stop_reply *r) { notif_event_xfree ((struct notif_event *) r); } static void remote_notif_stop_parse (struct notif_client *self, char *buf, struct notif_event *event) { remote_parse_stop_reply (buf, (struct stop_reply *) event); } static void remote_notif_stop_ack (struct notif_client *self, char *buf, struct notif_event *event) { struct stop_reply *stop_reply = (struct stop_reply *) event; /* acknowledge */ putpkt ((char *) self->ack_command); if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE) /* We got an unknown stop reply. */ error (_("Unknown stop reply")); push_stop_reply (stop_reply); } static int remote_notif_stop_can_get_pending_events (struct notif_client *self) { /* We can't get pending events in remote_notif_process for notification stop, and we have to do this in remote_wait_ns instead. If we fetch all queued events from stub, remote stub may exit and we have no chance to process them back in remote_wait_ns. */ mark_async_event_handler (remote_async_inferior_event_token); return 0; } static void stop_reply_dtr (struct notif_event *event) { struct stop_reply *r = (struct stop_reply *) event; VEC_free (cached_reg_t, r->regcache); } static struct notif_event * remote_notif_stop_alloc_reply (void) { struct notif_event *r = (struct notif_event *) XNEW (struct stop_reply); r->dtr = stop_reply_dtr; return r; } /* A client of notification Stop. */ struct notif_client notif_client_stop = { "Stop", "vStopped", remote_notif_stop_parse, remote_notif_stop_ack, remote_notif_stop_can_get_pending_events, remote_notif_stop_alloc_reply, REMOTE_NOTIF_STOP, }; /* A parameter to pass data in and out. */ struct queue_iter_param { void *input; struct stop_reply *output; }; /* Determine if THREAD is a pending fork parent thread. ARG contains the pid of the process that owns the threads we want to check, or -1 if we want to check all threads. */ static int is_pending_fork_parent (struct target_waitstatus *ws, int event_pid, ptid_t thread_ptid) { if (ws->kind == TARGET_WAITKIND_FORKED || ws->kind == TARGET_WAITKIND_VFORKED) { if (event_pid == -1 || event_pid == ptid_get_pid (thread_ptid)) return 1; } return 0; } /* Check whether EVENT is a fork event, and if it is, remove the fork child from the context list passed in DATA. */ static int remove_child_of_pending_fork (QUEUE (stop_reply_p) *q, QUEUE_ITER (stop_reply_p) *iter, stop_reply_p event, void *data) { struct queue_iter_param *param = data; struct threads_listing_context *context = param->input; if (event->ws.kind == TARGET_WAITKIND_FORKED || event->ws.kind == TARGET_WAITKIND_VFORKED) { threads_listing_context_remove (&event->ws, context); } return 1; } /* If CONTEXT contains any fork child threads that have not been reported yet, remove them from the CONTEXT list. If such a thread exists it is because we are stopped at a fork catchpoint and have not yet called follow_fork, which will set up the host-side data structures for the new process. */ static void remove_new_fork_children (struct threads_listing_context *context) { struct thread_info * thread; int pid = -1; struct notif_client *notif = ¬if_client_stop; struct queue_iter_param param; /* For any threads stopped at a fork event, remove the corresponding fork child threads from the CONTEXT list. */ ALL_NON_EXITED_THREADS (thread) { struct target_waitstatus *ws = &thread->pending_follow; if (is_pending_fork_parent (ws, pid, thread->ptid)) { threads_listing_context_remove (ws, context); } } /* Check for any pending fork events (not reported or processed yet) in process PID and remove those fork child threads from the CONTEXT list as well. */ remote_notif_get_pending_events (notif); param.input = context; param.output = NULL; QUEUE_iterate (stop_reply_p, stop_reply_queue, remove_child_of_pending_fork, ¶m); } /* Remove stop replies in the queue if its pid is equal to the given inferior's pid. */ static int remove_stop_reply_for_inferior (QUEUE (stop_reply_p) *q, QUEUE_ITER (stop_reply_p) *iter, stop_reply_p event, void *data) { struct queue_iter_param *param = data; struct inferior *inf = param->input; if (ptid_get_pid (event->ptid) == inf->pid) { stop_reply_xfree (event); QUEUE_remove_elem (stop_reply_p, q, iter); } return 1; } /* Discard all pending stop replies of inferior INF. */ static void discard_pending_stop_replies (struct inferior *inf) { int i; struct queue_iter_param param; struct stop_reply *reply; struct remote_state *rs = get_remote_state (); struct remote_notif_state *rns = rs->notif_state; /* This function can be notified when an inferior exists. When the target is not remote, the notification state is NULL. */ if (rs->remote_desc == NULL) return; reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id]; /* Discard the in-flight notification. */ if (reply != NULL && ptid_get_pid (reply->ptid) == inf->pid) { stop_reply_xfree (reply); rns->pending_event[notif_client_stop.id] = NULL; } param.input = inf; param.output = NULL; /* Discard the stop replies we have already pulled with vStopped. */ QUEUE_iterate (stop_reply_p, stop_reply_queue, remove_stop_reply_for_inferior, ¶m); } /* If its remote state is equal to the given remote state, remove EVENT from the stop reply queue. */ static int remove_stop_reply_of_remote_state (QUEUE (stop_reply_p) *q, QUEUE_ITER (stop_reply_p) *iter, stop_reply_p event, void *data) { struct queue_iter_param *param = data; struct remote_state *rs = param->input; if (event->rs == rs) { stop_reply_xfree (event); QUEUE_remove_elem (stop_reply_p, q, iter); } return 1; } /* Discard the stop replies for RS in stop_reply_queue. */ static void discard_pending_stop_replies_in_queue (struct remote_state *rs) { struct queue_iter_param param; param.input = rs; param.output = NULL; /* Discard the stop replies we have already pulled with vStopped. */ QUEUE_iterate (stop_reply_p, stop_reply_queue, remove_stop_reply_of_remote_state, ¶m); } /* A parameter to pass data in and out. */ static int remote_notif_remove_once_on_match (QUEUE (stop_reply_p) *q, QUEUE_ITER (stop_reply_p) *iter, stop_reply_p event, void *data) { struct queue_iter_param *param = data; ptid_t *ptid = param->input; if (ptid_match (event->ptid, *ptid)) { param->output = event; QUEUE_remove_elem (stop_reply_p, q, iter); return 0; } return 1; } /* Remove the first reply in 'stop_reply_queue' which matches PTID. */ static struct stop_reply * remote_notif_remove_queued_reply (ptid_t ptid) { struct queue_iter_param param; param.input = &ptid; param.output = NULL; QUEUE_iterate (stop_reply_p, stop_reply_queue, remote_notif_remove_once_on_match, ¶m); if (notif_debug) fprintf_unfiltered (gdb_stdlog, "notif: discard queued event: 'Stop' in %s\n", target_pid_to_str (ptid)); return param.output; } /* Look for a queued stop reply belonging to PTID. If one is found, remove it from the queue, and return it. Returns NULL if none is found. If there are still queued events left to process, tell the event loop to get back to target_wait soon. */ static struct stop_reply * queued_stop_reply (ptid_t ptid) { struct stop_reply *r = remote_notif_remove_queued_reply (ptid); if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue)) /* There's still at least an event left. */ mark_async_event_handler (remote_async_inferior_event_token); return r; } /* Push a fully parsed stop reply in the stop reply queue. Since we know that we now have at least one queued event left to pass to the core side, tell the event loop to get back to target_wait soon. */ static void push_stop_reply (struct stop_reply *new_event) { QUEUE_enque (stop_reply_p, stop_reply_queue, new_event); if (notif_debug) fprintf_unfiltered (gdb_stdlog, "notif: push 'Stop' %s to queue %d\n", target_pid_to_str (new_event->ptid), QUEUE_length (stop_reply_p, stop_reply_queue)); mark_async_event_handler (remote_async_inferior_event_token); } static int stop_reply_match_ptid_and_ws (QUEUE (stop_reply_p) *q, QUEUE_ITER (stop_reply_p) *iter, struct stop_reply *event, void *data) { ptid_t *ptid = data; return !(ptid_equal (*ptid, event->ptid) && event->ws.kind == TARGET_WAITKIND_STOPPED); } /* Returns true if we have a stop reply for PTID. */ static int peek_stop_reply (ptid_t ptid) { return !QUEUE_iterate (stop_reply_p, stop_reply_queue, stop_reply_match_ptid_and_ws, &ptid); } /* Skip PACKET until the next semi-colon (or end of string). */ static char * skip_to_semicolon (char *p) { while (*p != '\0' && *p != ';') p++; return p; } /* Parse the stop reply in BUF. Either the function succeeds, and the result is stored in EVENT, or throws an error. */ static void remote_parse_stop_reply (char *buf, struct stop_reply *event) { struct remote_arch_state *rsa = get_remote_arch_state (); ULONGEST addr; char *p; event->ptid = null_ptid; event->rs = get_remote_state (); event->ws.kind = TARGET_WAITKIND_IGNORE; event->ws.value.integer = 0; event->stop_reason = TARGET_STOPPED_BY_NO_REASON; event->regcache = NULL; event->core = -1; switch (buf[0]) { case 'T': /* Status with PC, SP, FP, ... */ /* Expedited reply, containing Signal, {regno, reg} repeat. */ /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where ss = signal number n... = register number r... = register contents */ p = &buf[3]; /* after Txx */ while (*p) { char *p1; int fieldsize; p1 = strchr (p, ':'); if (p1 == NULL) error (_("Malformed packet(a) (missing colon): %s\n\ Packet: '%s'\n"), p, buf); if (p == p1) error (_("Malformed packet(a) (missing register number): %s\n\ Packet: '%s'\n"), p, buf); /* Some "registers" are actually extended stop information. Note if you're adding a new entry here: GDB 7.9 and earlier assume that all register "numbers" that start with an hex digit are real register numbers. Make sure the server only sends such a packet if it knows the client understands it. */ if (strncmp (p, "thread", p1 - p) == 0) event->ptid = read_ptid (++p1, &p); else if ((strncmp (p, "watch", p1 - p) == 0) || (strncmp (p, "rwatch", p1 - p) == 0) || (strncmp (p, "awatch", p1 - p) == 0)) { event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT; p = unpack_varlen_hex (++p1, &addr); event->watch_data_address = (CORE_ADDR) addr; } else if (strncmp (p, "swbreak", p1 - p) == 0) { event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT; /* Make sure the stub doesn't forget to indicate support with qSupported. */ if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE) error (_("Unexpected swbreak stop reason")); /* The value part is documented as "must be empty", though we ignore it, in case we ever decide to make use of it in a backward compatible way. */ p = skip_to_semicolon (p1 + 1); } else if (strncmp (p, "hwbreak", p1 - p) == 0) { event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT; /* Make sure the stub doesn't forget to indicate support with qSupported. */ if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE) error (_("Unexpected hwbreak stop reason")); /* See above. */ p = skip_to_semicolon (p1 + 1); } else if (strncmp (p, "library", p1 - p) == 0) { event->ws.kind = TARGET_WAITKIND_LOADED; p = skip_to_semicolon (p1 + 1); } else if (strncmp (p, "replaylog", p1 - p) == 0) { event->ws.kind = TARGET_WAITKIND_NO_HISTORY; /* p1 will indicate "begin" or "end", but it makes no difference for now, so ignore it. */ p = skip_to_semicolon (p1 + 1); } else if (strncmp (p, "core", p1 - p) == 0) { ULONGEST c; p = unpack_varlen_hex (++p1, &c); event->core = c; } else if (strncmp (p, "fork", p1 - p) == 0) { event->ws.value.related_pid = read_ptid (++p1, &p); event->ws.kind = TARGET_WAITKIND_FORKED; } else if (strncmp (p, "vfork", p1 - p) == 0) { event->ws.value.related_pid = read_ptid (++p1, &p); event->ws.kind = TARGET_WAITKIND_VFORKED; } else if (strncmp (p, "vforkdone", p1 - p) == 0) { event->ws.kind = TARGET_WAITKIND_VFORK_DONE; p = skip_to_semicolon (p1 + 1); } else { ULONGEST pnum; char *p_temp; /* Maybe a real ``P'' register number. */ p_temp = unpack_varlen_hex (p, &pnum); /* If the first invalid character is the colon, we got a register number. Otherwise, it's an unknown stop reason. */ if (p_temp == p1) { struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum); cached_reg_t cached_reg; if (reg == NULL) error (_("Remote sent bad register number %s: %s\n\ Packet: '%s'\n"), hex_string (pnum), p, buf); cached_reg.num = reg->regnum; p = p1 + 1; fieldsize = hex2bin (p, cached_reg.data, register_size (target_gdbarch (), reg->regnum)); p += 2 * fieldsize; if (fieldsize < register_size (target_gdbarch (), reg->regnum)) warning (_("Remote reply is too short: %s"), buf); VEC_safe_push (cached_reg_t, event->regcache, &cached_reg); } else { /* Not a number. Silently skip unknown optional info. */ p = skip_to_semicolon (p1 + 1); } } if (*p != ';') error (_("Remote register badly formatted: %s\nhere: %s"), buf, p); ++p; } if (event->ws.kind != TARGET_WAITKIND_IGNORE) break; /* fall through */ case 'S': /* Old style status, just signal only. */ { int sig; event->ws.kind = TARGET_WAITKIND_STOPPED; sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]); if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST) event->ws.value.sig = (enum gdb_signal) sig; else event->ws.value.sig = GDB_SIGNAL_UNKNOWN; } break; case 'W': /* Target exited. */ case 'X': { char *p; int pid; ULONGEST value; /* GDB used to accept only 2 hex chars here. Stubs should only send more if they detect GDB supports multi-process support. */ p = unpack_varlen_hex (&buf[1], &value); if (buf[0] == 'W') { /* The remote process exited. */ event->ws.kind = TARGET_WAITKIND_EXITED; event->ws.value.integer = value; } else { /* The remote process exited with a signal. */ event->ws.kind = TARGET_WAITKIND_SIGNALLED; if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST) event->ws.value.sig = (enum gdb_signal) value; else event->ws.value.sig = GDB_SIGNAL_UNKNOWN; } /* If no process is specified, assume inferior_ptid. */ pid = ptid_get_pid (inferior_ptid); if (*p == '\0') ; else if (*p == ';') { p++; if (*p == '\0') ; else if (startswith (p, "process:")) { ULONGEST upid; p += sizeof ("process:") - 1; unpack_varlen_hex (p, &upid); pid = upid; } else error (_("unknown stop reply packet: %s"), buf); } else error (_("unknown stop reply packet: %s"), buf); event->ptid = pid_to_ptid (pid); } break; } if (non_stop && ptid_equal (event->ptid, null_ptid)) error (_("No process or thread specified in stop reply: %s"), buf); } /* When the stub wants to tell GDB about a new notification reply, it sends a notification (%Stop, for example). Those can come it at any time, hence, we have to make sure that any pending putpkt/getpkt sequence we're making is finished, before querying the stub for more events with the corresponding ack command (vStopped, for example). E.g., if we started a vStopped sequence immediately upon receiving the notification, something like this could happen: 1.1) --> Hg 1 1.2) <-- OK 1.3) --> g 1.4) <-- %Stop 1.5) --> vStopped 1.6) <-- (registers reply to step #1.3) Obviously, the reply in step #1.6 would be unexpected to a vStopped query. To solve this, whenever we parse a %Stop notification successfully, we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on doing whatever we were doing: 2.1) --> Hg 1 2.2) <-- OK 2.3) --> g 2.4) <-- %Stop 2.5) <-- (registers reply to step #2.3) Eventualy after step #2.5, we return to the event loop, which notices there's an event on the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the associated callback --- the function below. At this point, we're always safe to start a vStopped sequence. : 2.6) --> vStopped 2.7) <-- T05 thread:2 2.8) --> vStopped 2.9) --> OK */ void remote_notif_get_pending_events (struct notif_client *nc) { struct remote_state *rs = get_remote_state (); if (rs->notif_state->pending_event[nc->id] != NULL) { if (notif_debug) fprintf_unfiltered (gdb_stdlog, "notif: process: '%s' ack pending event\n", nc->name); /* acknowledge */ nc->ack (nc, rs->buf, rs->notif_state->pending_event[nc->id]); rs->notif_state->pending_event[nc->id] = NULL; while (1) { getpkt (&rs->buf, &rs->buf_size, 0); if (strcmp (rs->buf, "OK") == 0) break; else remote_notif_ack (nc, rs->buf); } } else { if (notif_debug) fprintf_unfiltered (gdb_stdlog, "notif: process: '%s' no pending reply\n", nc->name); } } /* Called when it is decided that STOP_REPLY holds the info of the event that is to be returned to the core. This function always destroys STOP_REPLY. */ static ptid_t process_stop_reply (struct stop_reply *stop_reply, struct target_waitstatus *status) { ptid_t ptid; *status = stop_reply->ws; ptid = stop_reply->ptid; /* If no thread/process was reported by the stub, assume the current inferior. */ if (ptid_equal (ptid, null_ptid)) ptid = inferior_ptid; if (status->kind != TARGET_WAITKIND_EXITED && status->kind != TARGET_WAITKIND_SIGNALLED) { struct remote_state *rs = get_remote_state (); /* Expedited registers. */ if (stop_reply->regcache) { struct regcache *regcache = get_thread_arch_regcache (ptid, target_gdbarch ()); cached_reg_t *reg; int ix; for (ix = 0; VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg); ix++) regcache_raw_supply (regcache, reg->num, reg->data); VEC_free (cached_reg_t, stop_reply->regcache); } rs->stop_reason = stop_reply->stop_reason; rs->remote_watch_data_address = stop_reply->watch_data_address; remote_notice_new_inferior (ptid, 0); demand_private_info (ptid)->core = stop_reply->core; } stop_reply_xfree (stop_reply); return ptid; } /* The non-stop mode version of target_wait. */ static ptid_t remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options) { struct remote_state *rs = get_remote_state (); struct stop_reply *stop_reply; int ret; int is_notif = 0; /* If in non-stop mode, get out of getpkt even if a notification is received. */ ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size, 0 /* forever */, &is_notif); while (1) { if (ret != -1 && !is_notif) switch (rs->buf[0]) { case 'E': /* Error of some sort. */ /* We're out of sync with the target now. Did it continue or not? We can't tell which thread it was in non-stop, so just ignore this. */ warning (_("Remote failure reply: %s"), rs->buf); break; case 'O': /* Console output. */ remote_console_output (rs->buf + 1); break; default: warning (_("Invalid remote reply: %s"), rs->buf); break; } /* Acknowledge a pending stop reply that may have arrived in the mean time. */ if (rs->notif_state->pending_event[notif_client_stop.id] != NULL) remote_notif_get_pending_events (¬if_client_stop); /* If indeed we noticed a stop reply, we're done. */ stop_reply = queued_stop_reply (ptid); if (stop_reply != NULL) return process_stop_reply (stop_reply, status); /* Still no event. If we're just polling for an event, then return to the event loop. */ if (options & TARGET_WNOHANG) { status->kind = TARGET_WAITKIND_IGNORE; return minus_one_ptid; } /* Otherwise do a blocking wait. */ ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size, 1 /* forever */, &is_notif); } } /* Wait until the remote machine stops, then return, storing status in STATUS just as `wait' would. */ static ptid_t remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options) { struct remote_state *rs = get_remote_state (); ptid_t event_ptid = null_ptid; char *buf; struct stop_reply *stop_reply; again: status->kind = TARGET_WAITKIND_IGNORE; status->value.integer = 0; stop_reply = queued_stop_reply (ptid); if (stop_reply != NULL) return process_stop_reply (stop_reply, status); if (rs->cached_wait_status) /* Use the cached wait status, but only once. */ rs->cached_wait_status = 0; else { int ret; int is_notif; if (!target_is_async_p ()) { ofunc = signal (SIGINT, sync_remote_interrupt); /* If the user hit C-c before this packet, or between packets, pretend that it was hit right here. */ if (check_quit_flag ()) { clear_quit_flag (); sync_remote_interrupt (SIGINT); } } /* FIXME: cagney/1999-09-27: If we're in async mode we should _never_ wait for ever -> test on target_is_async_p(). However, before we do that we need to ensure that the caller knows how to take the target into/out of async mode. */ ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size, wait_forever_enabled_p, &is_notif); if (!target_is_async_p ()) signal (SIGINT, ofunc); /* GDB gets a notification. Return to core as this event is not interesting. */ if (ret != -1 && is_notif) return minus_one_ptid; } buf = rs->buf; rs->stop_reason = TARGET_STOPPED_BY_NO_REASON; /* We got something. */ rs->waiting_for_stop_reply = 0; /* Assume that the target has acknowledged Ctrl-C unless we receive an 'F' or 'O' packet. */ if (buf[0] != 'F' && buf[0] != 'O') rs->ctrlc_pending_p = 0; switch (buf[0]) { case 'E': /* Error of some sort. */ /* We're out of sync with the target now. Did it continue or not? Not is more likely, so report a stop. */ warning (_("Remote failure reply: %s"), buf); status->kind = TARGET_WAITKIND_STOPPED; status->value.sig = GDB_SIGNAL_0; break; case 'F': /* File-I/O request. */ remote_fileio_request (buf, rs->ctrlc_pending_p); rs->ctrlc_pending_p = 0; break; case 'T': case 'S': case 'X': case 'W': { struct stop_reply *stop_reply = (struct stop_reply *) remote_notif_parse (¬if_client_stop, rs->buf); event_ptid = process_stop_reply (stop_reply, status); break; } case 'O': /* Console output. */ remote_console_output (buf + 1); /* The target didn't really stop; keep waiting. */ rs->waiting_for_stop_reply = 1; break; case '\0': if (rs->last_sent_signal != GDB_SIGNAL_0) { /* Zero length reply means that we tried 'S' or 'C' and the remote system doesn't support it. */ target_terminal_ours_for_output (); printf_filtered ("Can't send signals to this remote system. %s not sent.\n", gdb_signal_to_name (rs->last_sent_signal)); rs->last_sent_signal = GDB_SIGNAL_0; target_terminal_inferior (); strcpy ((char *) buf, rs->last_sent_step ? "s" : "c"); putpkt ((char *) buf); /* We just told the target to resume, so a stop reply is in order. */ rs->waiting_for_stop_reply = 1; break; } /* else fallthrough */ default: warning (_("Invalid remote reply: %s"), buf); /* Keep waiting. */ rs->waiting_for_stop_reply = 1; break; } if (status->kind == TARGET_WAITKIND_IGNORE) { /* Nothing interesting happened. If we're doing a non-blocking poll, we're done. Otherwise, go back to waiting. */ if (options & TARGET_WNOHANG) return minus_one_ptid; else goto again; } else if (status->kind != TARGET_WAITKIND_EXITED && status->kind != TARGET_WAITKIND_SIGNALLED) { if (!ptid_equal (event_ptid, null_ptid)) record_currthread (rs, event_ptid); else event_ptid = inferior_ptid; } else /* A process exit. Invalidate our notion of current thread. */ record_currthread (rs, minus_one_ptid); return event_ptid; } /* Wait until the remote machine stops, then return, storing status in STATUS just as `wait' would. */ static ptid_t remote_wait (struct target_ops *ops, ptid_t ptid, struct target_waitstatus *status, int options) { ptid_t event_ptid; if (non_stop) event_ptid = remote_wait_ns (ptid, status, options); else event_ptid = remote_wait_as (ptid, status, options); if (target_is_async_p ()) { /* If there are are events left in the queue tell the event loop to return here. */ if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue)) mark_async_event_handler (remote_async_inferior_event_token); } return event_ptid; } /* Fetch a single register using a 'p' packet. */ static int fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg) { struct remote_state *rs = get_remote_state (); char *buf, *p; char regp[MAX_REGISTER_SIZE]; int i; if (packet_support (PACKET_p) == PACKET_DISABLE) return 0; if (reg->pnum == -1) return 0; p = rs->buf; *p++ = 'p'; p += hexnumstr (p, reg->pnum); *p++ = '\0'; putpkt (rs->buf); getpkt (&rs->buf, &rs->buf_size, 0); buf = rs->buf; switch (packet_ok (buf, &remote_protocol_packets[PACKET_p])) { case PACKET_OK: break; case PACKET_UNKNOWN: return 0; case PACKET_ERROR: error (_("Could not fetch register \"%s\"; remote failure reply '%s'"), gdbarch_register_name (get_regcache_arch (regcache), reg->regnum), buf); } /* If this register is unfetchable, tell the regcache. */ if (buf[0] == 'x') { regcache_raw_supply (regcache, reg->regnum, NULL); return 1; } /* Otherwise, parse and supply the value. */ p = buf; i = 0; while (p[0] != 0) { if (p[1] == 0) error (_("fetch_register_using_p: early buf termination")); regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]); p += 2; } regcache_raw_supply (regcache, reg->regnum, regp); return 1; } /* Fetch the registers included in the target's 'g' packet. */ static int send_g_packet (void) { struct remote_state *rs = get_remote_state (); int buf_len; xsnprintf (rs->buf, get_remote_packet_size (), "g"); remote_send (&rs->buf, &rs->buf_size); /* We can get out of synch in various cases. If the first character in the buffer is not a hex character, assume that has happened and try to fetch another packet to read. */ while ((rs->buf[0] < '0' || rs->buf[0] > '9') && (rs->buf[0] < 'A' || rs->buf[0] > 'F') && (rs->buf[0] < 'a' || rs->buf[0] > 'f') && rs->buf[0] != 'x') /* New: unavailable register value. */ { if (remote_debug) fprintf_unfiltered (gdb_stdlog, "Bad register packet; fetching a new packet\n"); getpkt (&rs->buf, &rs->buf_size, 0); } buf_len = strlen (rs->buf); /* Sanity check the received packet. */ if (buf_len % 2 != 0) error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf); return buf_len / 2; } static void process_g_packet (struct regcache *regcache) { struct gdbarch *gdbarch = get_regcache_arch (regcache); struct remote_state *rs = get_remote_state (); struct remote_arch_state *rsa = get_remote_arch_state (); int i, buf_len; char *p; char *regs; buf_len = strlen (rs->buf); /* Further sanity checks, with knowledge of the architecture. */ if (buf_len > 2 * rsa->sizeof_g_packet) error (_("Remote 'g' packet reply is too long: %s"), rs->buf); /* Save the size of the packet sent to us by the target. It is used as a heuristic when determining the max size of packets that the target can safely receive. */ if (rsa->actual_register_packet_size == 0) rsa->actual_register_packet_size = buf_len; /* If this is smaller than we guessed the 'g' packet would be, update our records. A 'g' reply that doesn't include a register's value implies either that the register is not available, or that the 'p' packet must be used. */ if (buf_len < 2 * rsa->sizeof_g_packet) { rsa->sizeof_g_packet = buf_len / 2; for (i = 0; i < gdbarch_num_regs (gdbarch); i++) { if (rsa->regs[i].pnum == -1) continue; if (rsa->regs[i].offset >= rsa->sizeof_g_packet) rsa->regs[i].in_g_packet = 0; else rsa->regs[i].in_g_packet = 1; } } regs = alloca (rsa->sizeof_g_packet); /* Unimplemented registers read as all bits zero. */ memset (regs, 0, rsa->sizeof_g_packet); /* Reply describes registers byte by byte, each byte encoded as two hex characters. Suck them all up, then supply them to the register cacheing/storage mechanism. */ p = rs->buf; for (i = 0; i < rsa->sizeof_g_packet; i++) { if (p[0] == 0 || p[1] == 0) /* This shouldn't happen - we adjusted sizeof_g_packet above. */ internal_error (__FILE__, __LINE__, _("unexpected end of 'g' packet reply")); if (p[0] == 'x' && p[1] == 'x') regs[i] = 0; /* 'x' */ else regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]); p += 2; } for (i = 0; i < gdbarch_num_regs (gdbarch); i++) { struct packet_reg *r = &rsa->regs[i]; if (r->in_g_packet) { if (r->offset * 2 >= strlen (rs->buf)) /* This shouldn't happen - we adjusted in_g_packet above. */ internal_error (__FILE__, __LINE__, _("unexpected end of 'g' packet reply")); else if (rs->buf[r->offset * 2] == 'x') { gdb_assert (r->offset * 2 < strlen (rs->buf)); /* The register isn't available, mark it as such (at the same time setting the value to zero). */ regcache_raw_supply (regcache, r->regnum, NULL); } else regcache_raw_supply (regcache, r->regnum, regs + r->offset); } } } static void fetch_registers_using_g (struct regcache *regcache) { send_g_packet (); process_g_packet (regcache); } /* Make the remote selected traceframe match GDB's selected traceframe. */ static void set_remote_traceframe (void) { int newnum; struct remote_state *rs = get_remote_state (); if (rs->remote_traceframe_number == get_traceframe_number ()) return; /* Avoid recursion, remote_trace_find calls us again. */ rs->remote_traceframe_number = get_traceframe_number (); newnum = target_trace_find (tfind_number, get_traceframe_number (), 0, 0, NULL); /* Should not happen. If it does, all bets are off. */ if (newnum != get_traceframe_number ()) warning (_("could not set remote traceframe")); } static void remote_fetch_registers (struct target_ops *ops, struct regcache *regcache, int regnum) { struct remote_arch_state *rsa = get_remote_arch_state (); int i; set_remote_traceframe (); set_general_thread (inferior_ptid); if (regnum >= 0) { struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum); gdb_assert (reg != NULL); /* If this register might be in the 'g' packet, try that first - we are likely to read more than one register. If this is the first 'g' packet, we might be overly optimistic about its contents, so fall back to 'p'. */ if (reg->in_g_packet) { fetch_registers_using_g (regcache); if (reg->in_g_packet) return; } if (fetch_register_using_p (regcache, reg)) return; /* This register is not available. */ regcache_raw_supply (regcache, reg->regnum, NULL); return; } fetch_registers_using_g (regcache); for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++) if (!rsa->regs[i].in_g_packet) if (!fetch_register_using_p (regcache, &rsa->regs[i])) { /* This register is not available. */ regcache_raw_supply (regcache, i, NULL); } } /* Prepare to store registers. Since we may send them all (using a 'G' request), we have to read out the ones we don't want to change first. */ static void remote_prepare_to_store (struct target_ops *self, struct regcache *regcache) { struct remote_arch_state *rsa = get_remote_arch_state (); int i; gdb_byte buf[MAX_REGISTER_SIZE]; /* Make sure the entire registers array is valid. */ switch (packet_support (PACKET_P)) { case PACKET_DISABLE: case PACKET_SUPPORT_UNKNOWN: /* Make sure all the necessary registers are cached. */ for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++) if (rsa->regs[i].in_g_packet) regcache_raw_read (regcache, rsa->regs[i].regnum, buf); break; case PACKET_ENABLE: break; } } /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF packet was not recognized. */ static int store_register_using_P (const struct regcache *regcache, struct packet_reg *reg) { struct gdbarch *gdbarch = get_regcache_arch (regcache); struct remote_state *rs = get_remote_state (); /* Try storing a single register. */ char *buf = rs->buf; gdb_byte regp[MAX_REGISTER_SIZE]; char *p; if (packet_support (PACKET_P) == PACKET_DISABLE) return 0; if (reg->pnum == -1) return 0; xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0)); p = buf + strlen (buf); regcache_raw_collect (regcache, reg->regnum, regp); bin2hex (regp, p, register_size (gdbarch, reg->regnum)); putpkt (rs->buf); getpkt (&rs->buf, &rs->buf_size, 0); switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P])) { case PACKET_OK: return 1; case PACKET_ERROR: error (_("Could not write register \"%s\"; remote failure reply '%s'"), gdbarch_register_name (gdbarch, reg->regnum), rs->buf); case PACKET_UNKNOWN: return 0; default: internal_error (__FILE__, __LINE__, _("Bad result from packet_ok")); } } /* Store register REGNUM, or all registers if REGNUM == -1, from the contents of the register cache buffer. FIXME: ignores errors. */ static void store_registers_using_G (const struct regcache *regcache) { struct remote_state *rs = get_remote_state (); struct remote_arch_state *rsa = get_remote_arch_state (); gdb_byte *regs; char *p; /* Extract all the registers in the regcache copying them into a local buffer. */ { int i; regs = alloca (rsa->sizeof_g_packet); memset (regs, 0, rsa->sizeof_g_packet); for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++) { struct packet_reg *r = &rsa->regs[i]; if (r->in_g_packet) regcache_raw_collect (regcache, r->regnum, regs + r->offset); } } /* Command describes registers byte by byte, each byte encoded as two hex characters. */ p = rs->buf; *p++ = 'G'; /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets updated. */ bin2hex (regs, p, rsa->sizeof_g_packet); putpkt (rs->buf); getpkt (&rs->buf, &rs->buf_size, 0); if (packet_check_result (rs->buf) == PACKET_ERROR) error (_("Could not write registers; remote failure reply '%s'"), rs->buf); } /* Store register REGNUM, or all registers if REGNUM == -1, from the contents of the register cache buffer. FIXME: ignores errors. */ static void remote_store_registers (struct target_ops *ops, struct regcache *regcache, int regnum) { struct remote_arch_state *rsa = get_remote_arch_state (); int i; set_remote_traceframe (); set_general_thread (inferior_ptid); if (regnum >= 0) { struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum); gdb_assert (reg != NULL); /* Always prefer to store registers using the 'P' packet if possible; we often change only a small number of registers. Sometimes we change a larger number; we'd need help from a higher layer to know to use 'G'. */ if (store_register_using_P (regcache, reg)) return; /* For now, don't complain if we have no way to write the register. GDB loses track of unavailable registers too easily. Some day, this may be an error. We don't have any way to read the register, either... */ if (!reg->in_g_packet) return; store_registers_using_G (regcache); return; } store_registers_using_G (regcache); for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++) if (!rsa->regs[i].in_g_packet) if (!store_register_using_P (regcache, &rsa->regs[i])) /* See above for why we do not issue an error here. */ continue; } /* Return the number of hex digits in num. */ static int hexnumlen (ULONGEST num) { int i; for (i = 0; num != 0; i++) num >>= 4; return max (i, 1); } /* Set BUF to the minimum number of hex digits representing NUM. */ static int hexnumstr (char *buf, ULONGEST num) { int len = hexnumlen (num); return hexnumnstr (buf, num, len); } /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */ static int hexnumnstr (char *buf, ULONGEST num, int width) { int i; buf[width] = '\0'; for (i = width - 1; i >= 0; i--) { buf[i] = "0123456789abcdef"[(num & 0xf)]; num >>= 4; } return width; } /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */ static CORE_ADDR remote_address_masked (CORE_ADDR addr) { unsigned int address_size = remote_address_size; /* If "remoteaddresssize" was not set, default to target address size. */ if (!address_size) address_size = gdbarch_addr_bit (target_gdbarch ()); if (address_size > 0 && address_size < (sizeof (ULONGEST) * 8)) { /* Only create a mask when that mask can safely be constructed in a ULONGEST variable. */ ULONGEST mask = 1; mask = (mask << address_size) - 1; addr &= mask; } return addr; } /* Determine whether the remote target supports binary downloading. This is accomplished by sending a no-op memory write of zero length to the target at the specified address. It does not suffice to send the whole packet, since many stubs strip the eighth bit and subsequently compute a wrong checksum, which causes real havoc with remote_write_bytes. NOTE: This can still lose if the serial line is not eight-bit clean. In cases like this, the user should clear "remote X-packet". */ static void check_binary_download (CORE_ADDR addr) { struct remote_state *rs = get_remote_state (); switch (packet_support (PACKET_X)) { case PACKET_DISABLE: break; case PACKET_ENABLE: break; case PACKET_SUPPORT_UNKNOWN: { char *p; p = rs->buf; *p++ = 'X'; p += hexnumstr (p, (ULONGEST) addr); *p++ = ','; p += hexnumstr (p, (ULONGEST) 0); *p++ = ':'; *p = '\0'; putpkt_binary (rs->buf, (int) (p - rs->buf)); getpkt (&rs->buf, &rs->buf_size, 0); if (rs->buf[0] == '\0') { if (remote_debug) fprintf_unfiltered (gdb_stdlog, "binary downloading NOT " "supported by target\n"); remote_protocol_packets[PACKET_X].support = PACKET_DISABLE; } else { if (remote_debug) fprintf_unfiltered (gdb_stdlog, "binary downloading supported by target\n"); remote_protocol_packets[PACKET_X].support = PACKET_ENABLE; } break; } } } /* Write memory data directly to the remote machine. This does not inform the data cache; the data cache uses this. HEADER is the starting part of the packet. MEMADDR is the address in the remote memory space. MYADDR is the address of the buffer in our space. LEN is the number of bytes. PACKET_FORMAT should be either 'X' or 'M', and indicates if we should send data as binary ('X'), or hex-encoded ('M'). The function creates packet of the form
,: where encoding of is termined by PACKET_FORMAT. If USE_LENGTH is 0, then the field and the preceding comma are omitted. Return the transferred status, error or OK (an 'enum target_xfer_status' value). Save the number of bytes transferred in *XFERED_LEN. Only transfer a single packet. */ static enum target_xfer_status remote_write_bytes_aux (const char *header, CORE_ADDR memaddr, const gdb_byte *myaddr, ULONGEST len, ULONGEST *xfered_len, char packet_format, int use_length) { struct remote_state *rs = get_remote_state (); char *p; char *plen = NULL; int plenlen = 0; int todo; int nr_bytes; int payload_size; int payload_length; int header_length; if (packet_format != 'X' && packet_format != 'M') internal_error (__FILE__, __LINE__, _("remote_write_bytes_aux: bad packet format")); if (len == 0) return TARGET_XFER_EOF; payload_size = get_memory_write_packet_size (); /* The packet buffer will be large enough for the payload; get_memory_packet_size ensures this. */ rs->buf[0] = '\0'; /* Compute the size of the actual payload by subtracting out the packet header and footer overhead: "$M,:...#nn". */ payload_size -= strlen ("$,:#NN"); if (!use_length) /* The comma won't be used. */ payload_size += 1; header_length = strlen (header); payload_size -= header_length; payload_size -= hexnumlen (memaddr); /* Construct the packet excluding the data: "
,:". */ strcat (rs->buf, header); p = rs->buf + strlen (header); /* Compute a best guess of the number of bytes actually transfered. */ if (packet_format == 'X') { /* Best guess at number of bytes that will fit. */ todo = min (len, payload_size); if (use_length) payload_size -= hexnumlen (todo); todo = min (todo, payload_size); } else { /* Num bytes that will fit. */ todo = min (len, payload_size / 2); if (use_length) payload_size -= hexnumlen (todo); todo = min (todo, payload_size / 2); } if (todo <= 0) internal_error (__FILE__, __LINE__, _("minimum packet size too small to write data")); /* If we already need another packet, then try to align the end of this packet to a useful boundary. */ if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len) todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr; /* Append "". */ memaddr = remote_address_masked (memaddr); p += hexnumstr (p, (ULONGEST) memaddr); if (use_length) { /* Append ",". */ *p++ = ','; /* Append . Retain the location/size of . It may need to be adjusted once the packet body has been created. */ plen = p; plenlen = hexnumstr (p, (ULONGEST) todo); p += plenlen; } /* Append ":". */ *p++ = ':'; *p = '\0'; /* Append the packet body. */ if (packet_format == 'X') { /* Binary mode. Send target system values byte by byte, in increasing byte addresses. Only escape certain critical characters. */ payload_length = remote_escape_output (myaddr, todo, (gdb_byte *) p, &nr_bytes, payload_size); /* If not all TODO bytes fit, then we'll need another packet. Make a second try to keep the end of the packet aligned. Don't do this if the packet is tiny. */ if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES) { int new_nr_bytes; new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr); if (new_nr_bytes != nr_bytes) payload_length = remote_escape_output (myaddr, new_nr_bytes, (gdb_byte *) p, &nr_bytes, payload_size); } p += payload_length; if (use_length && nr_bytes < todo) { /* Escape chars have filled up the buffer prematurely, and we have actually sent fewer bytes than planned. Fix-up the length field of the packet. Use the same number of characters as before. */ plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen); *plen = ':'; /* overwrite \0 from hexnumnstr() */ } } else { /* Normal mode: Send target system values byte by byte, in increasing byte addresses. Each byte is encoded as a two hex value. */ nr_bytes = bin2hex (myaddr, p, todo); p += 2 * nr_bytes; } putpkt_binary (rs->buf, (int) (p - rs->buf)); getpkt (&rs->buf, &rs->buf_size, 0); if (rs->buf[0] == 'E') return TARGET_XFER_E_IO; /* Return NR_BYTES, not TODO, in case escape chars caused us to send fewer bytes than we'd planned. */ *xfered_len = (ULONGEST) nr_bytes; return TARGET_XFER_OK; } /* Write memory data directly to the remote machine. This does not inform the data cache; the data cache uses this. MEMADDR is the address in the remote memory space. MYADDR is the address of the buffer in our space. LEN is the number of bytes. Return the transferred status, error or OK (an 'enum target_xfer_status' value). Save the number of bytes transferred in *XFERED_LEN. Only transfer a single packet. */ static enum target_xfer_status remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, ULONGEST len, ULONGEST *xfered_len) { char *packet_format = 0; /* Check whether the target supports binary download. */ check_binary_download (memaddr); switch (packet_support (PACKET_X)) { case PACKET_ENABLE: packet_format = "X"; break; case PACKET_DISABLE: packet_format = "M"; break; case PACKET_SUPPORT_UNKNOWN: internal_error (__FILE__, __LINE__, _("remote_write_bytes: bad internal state")); default: internal_error (__FILE__, __LINE__, _("bad switch")); } return remote_write_bytes_aux (packet_format, memaddr, myaddr, len, xfered_len, packet_format[0], 1); } /* Read memory data directly from the remote machine. This does not use the data cache; the data cache uses this. MEMADDR is the address in the remote memory space. MYADDR is the address of the buffer in our space. LEN is the number of bytes. Return the transferred status, error or OK (an 'enum target_xfer_status' value). Save the number of bytes transferred in *XFERED_LEN. */ static enum target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr, ULONGEST len, ULONGEST *xfered_len) { struct remote_state *rs = get_remote_state (); int max_buf_size; /* Max size of packet output buffer. */ char *p; int todo; int i; max_buf_size = get_memory_read_packet_size (); /* The packet buffer will be large enough for the payload; get_memory_packet_size ensures this. */ /* Number if bytes that will fit. */ todo = min (len, max_buf_size / 2); /* Construct "m"","". */ memaddr = remote_address_masked (memaddr); p = rs->buf; *p++ = 'm'; p += hexnumstr (p, (ULONGEST) memaddr); *p++ = ','; p += hexnumstr (p, (ULONGEST) todo); *p = '\0'; putpkt (rs->buf); getpkt (&rs->buf, &rs->buf_size, 0); if (rs->buf[0] == 'E' && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2]) && rs->buf[3] == '\0') return TARGET_XFER_E_IO; /* Reply describes memory byte by byte, each byte encoded as two hex characters. */ p = rs->buf; i = hex2bin (p, myaddr, todo); /* Return what we have. Let higher layers handle partial reads. */ *xfered_len = (ULONGEST) i; return TARGET_XFER_OK; } /* Using the set of read-only target sections of remote, read live read-only memory. For interface/parameters/return description see target.h, to_xfer_partial. */ static enum target_xfer_status remote_xfer_live_readonly_partial (struct target_ops *ops, gdb_byte *readbuf, ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len) { struct target_section *secp; struct target_section_table *table; secp = target_section_by_addr (ops, memaddr); if (secp != NULL && (bfd_get_section_flags (secp->the_bfd_section->owner, secp->the_bfd_section) & SEC_READONLY)) { struct target_section *p; ULONGEST memend = memaddr + len; table = target_get_section_table (ops); for (p = table->sections; p < table->sections_end; p++) { if (memaddr >= p->addr) { if (memend <= p->endaddr) { /* Entire transfer is within this section. */ return remote_read_bytes_1 (memaddr, readbuf, len, xfered_len); } else if (memaddr >= p->endaddr) { /* This section ends before the transfer starts. */ continue; } else { /* This section overlaps the transfer. Just do half. */ len = p->endaddr - memaddr; return remote_read_bytes_1 (memaddr, readbuf, len, xfered_len); } } } } return TARGET_XFER_EOF; } /* Similar to remote_read_bytes_1, but it reads from the remote stub first if the requested memory is unavailable in traceframe. Otherwise, fall back to remote_read_bytes_1. */ static enum target_xfer_status remote_read_bytes (struct target_ops *ops, CORE_ADDR memaddr, gdb_byte *myaddr, ULONGEST len, ULONGEST *xfered_len) { if (len == 0) return TARGET_XFER_EOF; if (get_traceframe_number () != -1) { VEC(mem_range_s) *available; /* If we fail to get the set of available memory, then the target does not support querying traceframe info, and so we attempt reading from the traceframe anyway (assuming the target implements the old QTro packet then). */ if (traceframe_available_memory (&available, memaddr, len)) { struct cleanup *old_chain; old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available); if (VEC_empty (mem_range_s, available) || VEC_index (mem_range_s, available, 0)->start != memaddr) { enum target_xfer_status res; /* Don't read into the traceframe's available memory. */ if (!VEC_empty (mem_range_s, available)) { LONGEST oldlen = len; len = VEC_index (mem_range_s, available, 0)->start - memaddr; gdb_assert (len <= oldlen); } do_cleanups (old_chain); /* This goes through the topmost target again. */ res = remote_xfer_live_readonly_partial (ops, myaddr, memaddr, len, xfered_len); if (res == TARGET_XFER_OK) return TARGET_XFER_OK; else { /* No use trying further, we know some memory starting at MEMADDR isn't available. */ *xfered_len = len; return TARGET_XFER_UNAVAILABLE; } } /* Don't try to read more than how much is available, in case the target implements the deprecated QTro packet to cater for older GDBs (the target's knowledge of read-only sections may be outdated by now). */ len = VEC_index (mem_range_s, available, 0)->length; do_cleanups (old_chain); } } return remote_read_bytes_1 (memaddr, myaddr, len, xfered_len); } /* Sends a packet with content determined by the printf format string FORMAT and the remaining arguments, then gets the reply. Returns whether the packet was a success, a failure, or unknown. */ static enum packet_result remote_send_printf (const char *format, ...) ATTRIBUTE_PRINTF (1, 2); static enum packet_result remote_send_printf (const char *format, ...) { struct remote_state *rs = get_remote_state (); int max_size = get_remote_packet_size (); va_list ap; va_start (ap, format); rs->buf[0] = '\0'; if (vsnprintf (rs->buf, max_size, format, ap) >= max_size) internal_error (__FILE__, __LINE__, _("Too long remote packet.")); if (putpkt (rs->buf) < 0) error (_("Communication problem with target.")); rs->buf[0] = '\0'; getpkt (&rs->buf, &rs->buf_size, 0); return packet_check_result (rs->buf); } static void restore_remote_timeout (void *p) { int value = *(int *)p; remote_timeout = value; } /* Flash writing can take quite some time. We'll set effectively infinite timeout for flash operations. In future, we'll need to decide on a better approach. */ static const int remote_flash_timeout = 1000; static void remote_flash_erase (struct target_ops *ops, ULONGEST address, LONGEST length) { int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8; int saved_remote_timeout = remote_timeout; enum packet_result ret; struct cleanup *back_to = make_cleanup (restore_remote_timeout, &saved_remote_timeout); remote_timeout = remote_flash_timeout; ret = remote_send_printf ("vFlashErase:%s,%s", phex (address, addr_size), phex (length, 4)); switch (ret) { case PACKET_UNKNOWN: error (_("Remote target does not support flash erase")); case PACKET_ERROR: error (_("Error erasing flash with vFlashErase packet")); default: break; } do_cleanups (back_to); } static enum target_xfer_status remote_flash_write (struct target_ops *ops, ULONGEST address, ULONGEST length, ULONGEST *xfered_len, const gdb_byte *data) { int saved_remote_timeout = remote_timeout; enum target_xfer_status ret; struct cleanup *back_to = make_cleanup (restore_remote_timeout, &saved_remote_timeout); remote_timeout = remote_flash_timeout; ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, xfered_len,'X', 0); do_cleanups (back_to); return ret; } static void remote_flash_done (struct target_ops *ops) { int saved_remote_timeout = remote_timeout; int ret; struct cleanup *back_to = make_cleanup (restore_remote_timeout, &saved_remote_timeout); remote_timeout = remote_flash_timeout; ret = remote_send_printf ("vFlashDone"); do_cleanups (back_to); switch (ret) { case PACKET_UNKNOWN: error (_("Remote target does not support vFlashDone")); case PACKET_ERROR: error (_("Error finishing flash operation")); default: break; } } static void remote_files_info (struct target_ops *ignore) { puts_filtered ("Debugging a target over a serial line.\n"); } /* Stuff for dealing with the packets which are part of this protocol. See comment at top of file for details. */ /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR error to higher layers. Called when a serial error is detected. The exception message is STRING, followed by a colon and a blank, the system error message for errno at function entry and final dot for output compatibility with throw_perror_with_name. */ static void unpush_and_perror (const char *string) { int saved_errno = errno; remote_unpush_target (); throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string, safe_strerror (saved_errno)); } /* Read a single character from the remote end. */ static int readchar (int timeout) { int ch; struct remote_state *rs = get_remote_state (); ch = serial_readchar (rs->remote_desc, timeout); if (ch >= 0) return ch; switch ((enum serial_rc) ch) { case SERIAL_EOF: remote_unpush_target (); throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed")); /* no return */ case SERIAL_ERROR: unpush_and_perror (_("Remote communication error. " "Target disconnected.")); /* no return */ case SERIAL_TIMEOUT: break; } return ch; } /* Wrapper for serial_write that closes the target and throws if writing fails. */ static void remote_serial_write (const char *str, int len) { struct remote_state *rs = get_remote_state (); if (serial_write (rs->remote_desc, str, len)) { unpush_and_perror (_("Remote communication error. " "Target disconnected.")); } } /* Send the command in *BUF to the remote machine, and read the reply into *BUF. Report an error if we get an error reply. Resize *BUF using xrealloc if necessary to hold the result, and update *SIZEOF_BUF. */ static void remote_send (char **buf, long *sizeof_buf) { putpkt (*buf); getpkt (buf, sizeof_buf, 0); if ((*buf)[0] == 'E') error (_("Remote failure reply: %s"), *buf); } /* Return a pointer to an xmalloc'ed string representing an escaped version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t, etc. The caller is responsible for releasing the returned memory. */ static char * escape_buffer (const char *buf, int n) { struct cleanup *old_chain; struct ui_file *stb; char *str; stb = mem_fileopen (); old_chain = make_cleanup_ui_file_delete (stb); fputstrn_unfiltered (buf, n, '\\', stb); str = ui_file_xstrdup (stb, NULL); do_cleanups (old_chain); return str; } /* Display a null-terminated packet on stdout, for debugging, using C string notation. */ static void print_packet (const char *buf) { puts_filtered ("\""); fputstr_filtered (buf, '"', gdb_stdout); puts_filtered ("\""); } int putpkt (const char *buf) { return putpkt_binary (buf, strlen (buf)); } /* Send a packet to the remote machine, with error checking. The data of the packet is in BUF. The string in BUF can be at most get_remote_packet_size () - 5 to account for the $, # and checksum, and for a possible /0 if we are debugging (remote_debug) and want to print the sent packet as a string. */ static int putpkt_binary (const char *buf, int cnt) { struct remote_state *rs = get_remote_state (); int i; unsigned char csum = 0; char *buf2 = alloca (cnt + 6); int ch; int tcount = 0; char *p; char *message; /* Catch cases like trying to read memory or listing threads while we're waiting for a stop reply. The remote server wouldn't be ready to handle this request, so we'd hang and timeout. We don't have to worry about this in synchronous mode, because in that case it's not possible to issue a command while the target is running. This is not a problem in non-stop mode, because in that case, the stub is always ready to process serial input. */ if (!non_stop && target_is_async_p () && rs->waiting_for_stop_reply) { error (_("Cannot execute this command while the target is running.\n" "Use the \"interrupt\" command to stop the target\n" "and then try again.")); } /* We're sending out a new packet. Make sure we don't look at a stale cached response. */ rs->cached_wait_status = 0; /* Copy the packet into buffer BUF2, encapsulating it and giving it a checksum. */ p = buf2; *p++ = '$'; for (i = 0; i < cnt; i++) { csum += buf[i]; *p++ = buf[i]; } *p++ = '#'; *p++ = tohex ((csum >> 4) & 0xf); *p++ = tohex (csum & 0xf); /* Send it over and over until we get a positive ack. */ while (1) { int started_error_output = 0; if (remote_debug) { struct cleanup *old_chain; char *str; *p = '\0'; str = escape_buffer (buf2, p - buf2); old_chain = make_cleanup (xfree, str); fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str); gdb_flush (gdb_stdlog); do_cleanups (old_chain); } remote_serial_write (buf2, p - buf2); /* If this is a no acks version of the remote protocol, send the packet and move on. */ if (rs->noack_mode) break; /* Read until either a timeout occurs (-2) or '+' is read. Handle any notification that arrives in the mean time. */ while (1) { ch = readchar (remote_timeout); if (remote_debug) { switch (ch) { case '+': case '-': case SERIAL_TIMEOUT: case '$': case '%': if (started_error_output) { putchar_unfiltered ('\n'); started_error_output = 0; } } } switch (ch) { case '+': if (remote_debug) fprintf_unfiltered (gdb_stdlog, "Ack\n"); return 1; case '-': if (remote_debug) fprintf_unfiltered (gdb_stdlog, "Nak\n"); /* FALLTHROUGH */ case SERIAL_TIMEOUT: tcount++; if (tcount > 3) return 0; break; /* Retransmit buffer. */ case '$': { if (remote_debug) fprintf_unfiltered (gdb_stdlog, "Packet instead of Ack, ignoring it\n"); /* It's probably an old response sent because an ACK was lost. Gobble up the packet and ack it so it doesn't get retransmitted when we resend this packet. */ skip_frame (); remote_serial_write ("+", 1); continue; /* Now, go look for +. */ } case '%': { int val; /* If we got a notification, handle it, and go back to looking for an ack. */ /* We've found the start of a notification. Now collect the data. */ val = read_frame (&rs->buf, &rs->buf_size); if (val >= 0) { if (remote_debug) { struct cleanup *old_chain; char *str; str = escape_buffer (rs->buf, val); old_chain = make_cleanup (xfree, str); fprintf_unfiltered (gdb_stdlog, " Notification received: %s\n", str); do_cleanups (old_chain); } handle_notification (rs->notif_state, rs->buf); /* We're in sync now, rewait for the ack. */ tcount = 0; } else { if (remote_debug) { if (!started_error_output) { started_error_output = 1; fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: "); } fputc_unfiltered (ch & 0177, gdb_stdlog); fprintf_unfiltered (gdb_stdlog, "%s", rs->buf); } } continue; } /* fall-through */ default: if (remote_debug) { if (!started_error_output) { started_error_output = 1; fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: "); } fputc_unfiltered (ch & 0177, gdb_stdlog); } continue; } break; /* Here to retransmit. */ } #if 0 /* This is wrong. If doing a long backtrace, the user should be able to get out next time we call QUIT, without anything as violent as interrupt_query. If we want to provide a way out of here without getting to the next QUIT, it should be based on hitting ^C twice as in remote_wait. */ if (quit_flag) { quit_flag = 0; interrupt_query (); } #endif } return 0; } /* Come here after finding the start of a frame when we expected an ack. Do our best to discard the rest of this packet. */ static void skip_frame (void) { int c; while (1) { c = readchar (remote_timeout); switch (c) { case SERIAL_TIMEOUT: /* Nothing we can do. */ return; case '#': /* Discard the two bytes of checksum and stop. */ c = readchar (remote_timeout); if (c >= 0) c = readchar (remote_timeout); return; case '*': /* Run length encoding. */ /* Discard the repeat count. */ c = readchar (remote_timeout); if (c < 0) return; break; default: /* A regular character. */ break; } } } /* Come here after finding the start of the frame. Collect the rest into *BUF, verifying the checksum, length, and handling run-length compression. NUL terminate the buffer. If there is not enough room, expand *BUF using xrealloc. Returns -1 on error, number of characters in buffer (ignoring the trailing NULL) on success. (could be extended to return one of the SERIAL status indications). */ static long read_frame (char **buf_p, long *sizeof_buf) { unsigned char csum; long bc; int c; char *buf = *buf_p; struct remote_state *rs = get_remote_state (); csum = 0; bc = 0; while (1) { c = readchar (remote_timeout); switch (c) { case SERIAL_TIMEOUT: if (remote_debug) fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog); return -1; case '$': if (remote_debug) fputs_filtered ("Saw new packet start in middle of old one\n", gdb_stdlog); return -1; /* Start a new packet, count retries. */ case '#': { unsigned char pktcsum; int check_0 = 0; int check_1 = 0; buf[bc] = '\0'; check_0 = readchar (remote_timeout); if (check_0 >= 0) check_1 = readchar (remote_timeout); if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT) { if (remote_debug) fputs_filtered ("Timeout in checksum, retrying\n", gdb_stdlog); return -1; } else if (check_0 < 0 || check_1 < 0) { if (remote_debug) fputs_filtered ("Communication error in checksum\n", gdb_stdlog); return -1; } /* Don't recompute the checksum; with no ack packets we don't have any way to indicate a packet retransmission is necessary. */ if (rs->noack_mode) return bc; pktcsum = (fromhex (check_0) << 4) | fromhex (check_1); if (csum == pktcsum) return bc; if (remote_debug) { struct cleanup *old_chain; char *str; str = escape_buffer (buf, bc); old_chain = make_cleanup (xfree, str); fprintf_unfiltered (gdb_stdlog, "Bad checksum, sentsum=0x%x, " "csum=0x%x, buf=%s\n", pktcsum, csum, str); do_cleanups (old_chain); } /* Number of characters in buffer ignoring trailing NULL. */ return -1; } case '*': /* Run length encoding. */ { int repeat; csum += c; c = readchar (remote_timeout); csum += c; repeat = c - ' ' + 3; /* Compute repeat count. */ /* The character before ``*'' is repeated. */ if (repeat > 0 && repeat <= 255 && bc > 0) { if (bc + repeat - 1 >= *sizeof_buf - 1) { /* Make some more room in the buffer. */ *sizeof_buf += repeat; *buf_p = xrealloc (*buf_p, *sizeof_buf); buf = *buf_p; } memset (&buf[bc], buf[bc - 1], repeat); bc += repeat; continue; } buf[bc] = '\0'; printf_filtered (_("Invalid run length encoding: %s\n"), buf); return -1; } default: if (bc >= *sizeof_buf - 1) { /* Make some more room in the buffer. */ *sizeof_buf *= 2; *buf_p = xrealloc (*buf_p, *sizeof_buf); buf = *buf_p; } buf[bc++] = c; csum += c; continue; } } } /* Read a packet from the remote machine, with error checking, and store it in *BUF. Resize *BUF using xrealloc if necessary to hold the result, and update *SIZEOF_BUF. If FOREVER, wait forever rather than timing out; this is used (in synchronous mode) to wait for a target that is is executing user code to stop. */ /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we don't have to change all the calls to getpkt to deal with the return value, because at the moment I don't know what the right thing to do it for those. */ void getpkt (char **buf, long *sizeof_buf, int forever) { int timed_out; timed_out = getpkt_sane (buf, sizeof_buf, forever); } /* Read a packet from the remote machine, with error checking, and store it in *BUF. Resize *BUF using xrealloc if necessary to hold the result, and update *SIZEOF_BUF. If FOREVER, wait forever rather than timing out; this is used (in synchronous mode) to wait for a target that is is executing user code to stop. If FOREVER == 0, this function is allowed to time out gracefully and return an indication of this to the caller. Otherwise return the number of bytes read. If EXPECTING_NOTIF, consider receiving a notification enough reason to return to the caller. *IS_NOTIF is an output boolean that indicates whether *BUF holds a notification or not (a regular packet). */ static int getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever, int expecting_notif, int *is_notif) { struct remote_state *rs = get_remote_state (); int c; int tries; int timeout; int val = -1; /* We're reading a new response. Make sure we don't look at a previously cached response. */ rs->cached_wait_status = 0; strcpy (*buf, "timeout"); if (forever) timeout = watchdog > 0 ? watchdog : -1; else if (expecting_notif) timeout = 0; /* There should already be a char in the buffer. If not, bail out. */ else timeout = remote_timeout; #define MAX_TRIES 3 /* Process any number of notifications, and then return when we get a packet. */ for (;;) { /* If we get a timeout or bad checksum, retry up to MAX_TRIES times. */ for (tries = 1; tries <= MAX_TRIES; tries++) { /* This can loop forever if the remote side sends us characters continuously, but if it pauses, we'll get SERIAL_TIMEOUT from readchar because of timeout. Then we'll count that as a retry. Note that even when forever is set, we will only wait forever prior to the start of a packet. After that, we expect characters to arrive at a brisk pace. They should show up within remote_timeout intervals. */ do c = readchar (timeout); while (c != SERIAL_TIMEOUT && c != '$' && c != '%'); if (c == SERIAL_TIMEOUT) { if (expecting_notif) return -1; /* Don't complain, it's normal to not get anything in this case. */ if (forever) /* Watchdog went off? Kill the target. */ { QUIT; remote_unpush_target (); throw_error (TARGET_CLOSE_ERROR, _("Watchdog timeout has expired. " "Target detached.")); } if (remote_debug) fputs_filtered ("Timed out.\n", gdb_stdlog); } else { /* We've found the start of a packet or notification. Now collect the data. */ val = read_frame (buf, sizeof_buf); if (val >= 0) break; } remote_serial_write ("-", 1); } if (tries > MAX_TRIES) { /* We have tried hard enough, and just can't receive the packet/notification. Give up. */ printf_unfiltered (_("Ignoring packet error, continuing...\n")); /* Skip the ack char if we're in no-ack mode. */ if (!rs->noack_mode) remote_serial_write ("+", 1); return -1; } /* If we got an ordinary packet, return that to our caller. */ if (c == '$') { if (remote_debug) { struct cleanup *old_chain; char *str; str = escape_buffer (*buf, val); old_chain = make_cleanup (xfree, str); fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str); do_cleanups (old_chain); } /* Skip the ack char if we're in no-ack mode. */ if (!rs->noack_mode) remote_serial_write ("+", 1); if (is_notif != NULL) *is_notif = 0; return val; } /* If we got a notification, handle it, and go back to looking for a packet. */ else { gdb_assert (c == '%'); if (remote_debug) { struct cleanup *old_chain; char *str; str = escape_buffer (*buf, val); old_chain = make_cleanup (xfree, str); fprintf_unfiltered (gdb_stdlog, " Notification received: %s\n", str); do_cleanups (old_chain); } if (is_notif != NULL) *is_notif = 1; handle_notification (rs->notif_state, *buf); /* Notifications require no acknowledgement. */ if (expecting_notif) return val; } } } static int getpkt_sane (char **buf, long *sizeof_buf, int forever) { return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0, NULL); } static int getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever, int *is_notif) { return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1, is_notif); } /* Check whether EVENT is a fork event for the process specified by the pid passed in DATA, and if it is, kill the fork child. */ static int kill_child_of_pending_fork (QUEUE (stop_reply_p) *q, QUEUE_ITER (stop_reply_p) *iter, stop_reply_p event, void *data) { struct queue_iter_param *param = data; int parent_pid = *(int *) param->input; if (is_pending_fork_parent (&event->ws, parent_pid, event->ptid)) { struct remote_state *rs = get_remote_state (); int child_pid = ptid_get_pid (event->ws.value.related_pid); int res; res = remote_vkill (child_pid, rs); if (res != 0) error (_("Can't kill fork child process %d"), child_pid); } return 1; } /* Kill any new fork children of process PID that haven't been processed by follow_fork. */ static void kill_new_fork_children (int pid, struct remote_state *rs) { struct thread_info *thread; struct notif_client *notif = ¬if_client_stop; struct queue_iter_param param; /* Kill the fork child threads of any threads in process PID that are stopped at a fork event. */ ALL_NON_EXITED_THREADS (thread) { struct target_waitstatus *ws = &thread->pending_follow; if (is_pending_fork_parent (ws, pid, thread->ptid)) { struct remote_state *rs = get_remote_state (); int child_pid = ptid_get_pid (ws->value.related_pid); int res; res = remote_vkill (child_pid, rs); if (res != 0) error (_("Can't kill fork child process %d"), child_pid); } } /* Check for any pending fork events (not reported or processed yet) in process PID and kill those fork child threads as well. */ remote_notif_get_pending_events (notif); param.input = &pid; param.output = NULL; QUEUE_iterate (stop_reply_p, stop_reply_queue, kill_child_of_pending_fork, ¶m); } static void remote_kill (struct target_ops *ops) { /* Catch errors so the user can quit from gdb even when we aren't on speaking terms with the remote system. */ TRY { putpkt ("k"); } CATCH (ex, RETURN_MASK_ERROR) { if (ex.error == TARGET_CLOSE_ERROR) { /* If we got an (EOF) error that caused the target to go away, then we're done, that's what we wanted. "k" is susceptible to cause a premature EOF, given that the remote server isn't actually required to reply to "k", and it can happen that it doesn't even get to reply ACK to the "k". */ return; } /* Otherwise, something went wrong. We didn't actually kill the target. Just propagate the exception, and let the user or higher layers decide what to do. */ throw_exception (ex); } END_CATCH /* We've killed the remote end, we get to mourn it. Since this is target remote, single-process, mourning the inferior also unpushes remote_ops. */ target_mourn_inferior (); } static int remote_vkill (int pid, struct remote_state *rs) { if (packet_support (PACKET_vKill) == PACKET_DISABLE) return -1; /* Tell the remote target to detach. */ xsnprintf (rs->buf, get_remote_packet_size (), "vKill;%x", pid); putpkt (rs->buf); getpkt (&rs->buf, &rs->buf_size, 0); switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vKill])) { case PACKET_OK: return 0; case PACKET_ERROR: return 1; case PACKET_UNKNOWN: return -1; default: internal_error (__FILE__, __LINE__, _("Bad result from packet_ok")); } } static void extended_remote_kill (struct target_ops *ops) { int res; int pid = ptid_get_pid (inferior_ptid); struct remote_state *rs = get_remote_state (); /* If we're stopped while forking and we haven't followed yet, kill the child task. We need to do this before killing the parent task because if this is a vfork then the parent will be sleeping. */ kill_new_fork_children (pid, rs); res = remote_vkill (pid, rs); if (res == -1 && !(rs->extended && remote_multi_process_p (rs))) { /* Don't try 'k' on a multi-process aware stub -- it has no way to specify the pid. */ putpkt ("k"); #if 0 getpkt (&rs->buf, &rs->buf_size, 0); if (rs->buf[0] != 'O' || rs->buf[0] != 'K') res = 1; #else /* Don't wait for it to die. I'm not really sure it matters whether we do or not. For the existing stubs, kill is a noop. */ res = 0; #endif } if (res != 0) error (_("Can't kill process")); target_mourn_inferior (); } static void remote_mourn (struct target_ops *target) { unpush_target (target); /* remote_close takes care of doing most of the clean up. */ generic_mourn_inferior (); } static void extended_remote_mourn (struct target_ops *target) { struct remote_state *rs = get_remote_state (); /* In case we got here due to an error, but we're going to stay connected. */ rs->waiting_for_stop_reply = 0; /* If the current general thread belonged to the process we just detached from or has exited, the remote side current general thread becomes undefined. Considering a case like this: - We just got here due to a detach. - The process that we're detaching from happens to immediately report a global breakpoint being hit in non-stop mode, in the same thread we had selected before. - GDB attaches to this process again. - This event happens to be the next event we handle. GDB would consider that the current general thread didn't need to be set on the stub side (with Hg), since for all it knew, GENERAL_THREAD hadn't changed. Notice that although in all-stop mode, the remote server always sets the current thread to the thread reporting the stop event, that doesn't happen in non-stop mode; in non-stop, the stub *must not* change the current thread when reporting a breakpoint hit, due to the decoupling of event reporting and event handling. To keep things simple, we always invalidate our notion of the current thread. */ record_currthread (rs, minus_one_ptid); /* Unlike "target remote", we do not want to unpush the target; then the next time the user says "run", we won't be connected. */ /* Call common code to mark the inferior as not running. */ generic_mourn_inferior (); if (!have_inferiors ()) { if (!remote_multi_process_p (rs)) { /* Check whether the target is running now - some remote stubs automatically restart after kill. */ putpkt ("?"); getpkt (&rs->buf, &rs->buf_size, 0); if (rs->buf[0] == 'S' || rs->buf[0] == 'T') { /* Assume that the target has been restarted. Set inferior_ptid so that bits of core GDB realizes there's something here, e.g., so that the user can say "kill" again. */ inferior_ptid = magic_null_ptid; } } } } static int extended_remote_supports_disable_randomization (struct target_ops *self) { return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE; } static void extended_remote_disable_randomization (int val) { struct remote_state *rs = get_remote_state (); char *reply; xsnprintf (rs->buf, get_remote_packet_size (), "QDisableRandomization:%x", val); putpkt (rs->buf); reply = remote_get_noisy_reply (&target_buf, &target_buf_size); if (*reply == '\0') error (_("Target does not support QDisableRandomization.")); if (strcmp (reply, "OK") != 0) error (_("Bogus QDisableRandomization reply from target: %s"), reply); } static int extended_remote_run (char *args) { struct remote_state *rs = get_remote_state (); int len; /* If the user has disabled vRun support, or we have detected that support is not available, do not try it. */ if (packet_support (PACKET_vRun) == PACKET_DISABLE) return -1; strcpy (rs->buf, "vRun;"); len = strlen (rs->buf); if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ()) error (_("Remote file name too long for run packet")); len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, strlen (remote_exec_file)); gdb_assert (args != NULL); if (*args) { struct cleanup *back_to; int i; char **argv; argv = gdb_buildargv (args); back_to = make_cleanup_freeargv (argv); for (i = 0; argv[i] != NULL; i++) { if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ()) error (_("Argument list too long for run packet")); rs->buf[len++] = ';'; len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, strlen (argv[i])); } do_cleanups (back_to); } rs->buf[len++] = '\0'; putpkt (rs->buf); getpkt (&rs->buf, &rs->buf_size, 0); switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun])) { case PACKET_OK: /* We have a wait response. All is well. */ return 0; case PACKET_UNKNOWN: return -1; case PACKET_ERROR: if (remote_exec_file[0] == '\0') error (_("Running the default executable on the remote target failed; " "try \"set remote exec-file\"?")); else error (_("Running \"%s\" on the remote target failed"), remote_exec_file); default: gdb_assert_not_reached (_("bad switch")); } } /* In the extended protocol we want to be able to do things like "run" and have them basically work as expected. So we need a special create_inferior function. We support changing the executable file and the command line arguments, but not the environment. */ static void extended_remote_create_inferior (struct target_ops *ops, char *exec_file, char *args, char **env, int from_tty) { int run_worked; char *stop_reply; struct remote_state *rs = get_remote_state (); /* If running asynchronously, register the target file descriptor with the event loop. */ if (target_can_async_p ()) target_async (1); /* Disable address space randomization if requested (and supported). */ if (extended_remote_supports_disable_randomization (ops)) extended_remote_disable_randomization (disable_randomization); /* Now restart the remote server. */ run_worked = extended_remote_run (args) != -1; if (!run_worked) { /* vRun was not supported. Fail if we need it to do what the user requested. */ if (remote_exec_file[0]) error (_("Remote target does not support \"set remote exec-file\"")); if (args[0]) error (_("Remote target does not support \"set args\" or run ")); /* Fall back to "R". */ extended_remote_restart (); } if (!have_inferiors ()) { /* Clean up from the last time we ran, before we mark the target running again. This will mark breakpoints uninserted, and get_offsets may insert breakpoints. */ init_thread_list (); init_wait_for_inferior (); } /* vRun's success return is a stop reply. */ stop_reply = run_worked ? rs->buf : NULL; add_current_inferior_and_thread (stop_reply); /* Get updated offsets, if the stub uses qOffsets. */ get_offsets (); } /* Given a location's target info BP_TGT and the packet buffer BUF, output the list of conditions (in agent expression bytecode format), if any, the target needs to evaluate. The output is placed into the packet buffer started from BUF and ended at BUF_END. */ static int remote_add_target_side_condition (struct gdbarch *gdbarch, struct bp_target_info *bp_tgt, char *buf, char *buf_end) { struct agent_expr *aexpr = NULL; int i, ix; char *pkt; char *buf_start = buf; if (VEC_empty (agent_expr_p, bp_tgt->conditions)) return 0; buf += strlen (buf); xsnprintf (buf, buf_end - buf, "%s", ";"); buf++; /* Send conditions to the target and free the vector. */ for (ix = 0; VEC_iterate (agent_expr_p, bp_tgt->conditions, ix, aexpr); ix++) { xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len); buf += strlen (buf); for (i = 0; i < aexpr->len; ++i) buf = pack_hex_byte (buf, aexpr->buf[i]); *buf = '\0'; } return 0; } static void remote_add_target_side_commands (struct gdbarch *gdbarch, struct bp_target_info *bp_tgt, char *buf) { struct agent_expr *aexpr = NULL; int i, ix; if (VEC_empty (agent_expr_p, bp_tgt->tcommands)) return; buf += strlen (buf); sprintf (buf, ";cmds:%x,", bp_tgt->persist); buf += strlen (buf); /* Concatenate all the agent expressions that are commands into the cmds parameter. */ for (ix = 0; VEC_iterate (agent_expr_p, bp_tgt->tcommands, ix, aexpr); ix++) { sprintf (buf, "X%x,", aexpr->len); buf += strlen (buf); for (i = 0; i < aexpr->len; ++i) buf = pack_hex_byte (buf, aexpr->buf[i]); *buf = '\0'; } } /* Insert a breakpoint. On targets that have software breakpoint support, we ask the remote target to do the work; on targets which don't, we insert a traditional memory breakpoint. */ static int remote_insert_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch, struct bp_target_info *bp_tgt) { /* Try the "Z" s/w breakpoint packet if it is not already disabled. If it succeeds, then set the support to PACKET_ENABLE. If it fails, and the user has explicitly requested the Z support then report an error, otherwise, mark it disabled and go on. */ if (packet_support (PACKET_Z0) != PACKET_DISABLE) { CORE_ADDR addr = bp_tgt->reqstd_address; struct remote_state *rs; char *p, *endbuf; int bpsize; struct condition_list *cond = NULL; /* Make sure the remote is pointing at the right process, if necessary. */ if (!gdbarch_has_global_breakpoints (target_gdbarch ())) set_general_process (); gdbarch_remote_breakpoint_from_pc (gdbarch, &addr, &bpsize); rs = get_remote_state (); p = rs->buf; endbuf = rs->buf + get_remote_packet_size (); *(p++) = 'Z'; *(p++) = '0'; *(p++) = ','; addr = (ULONGEST) remote_address_masked (addr); p += hexnumstr (p, addr); xsnprintf (p, endbuf - p, ",%d", bpsize); if (remote_supports_cond_breakpoints (ops)) remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf); if (remote_can_run_breakpoint_commands (ops)) remote_add_target_side_commands (gdbarch, bp_tgt, p); putpkt (rs->buf); getpkt (&rs->buf, &rs->buf_size, 0); switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0])) { case PACKET_ERROR: return -1; case PACKET_OK: bp_tgt->placed_address = addr; bp_tgt->placed_size = bpsize; return 0; case PACKET_UNKNOWN: break; } } /* If this breakpoint has target-side commands but this stub doesn't support Z0 packets, throw error. */ if (!VEC_empty (agent_expr_p, bp_tgt->tcommands)) throw_error (NOT_SUPPORTED_ERROR, _("\ Target doesn't support breakpoints that have target side commands.")); return memory_insert_breakpoint (ops, gdbarch, bp_tgt); } static int remote_remove_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch, struct bp_target_info *bp_tgt) { CORE_ADDR addr = bp_tgt->placed_address; struct remote_state *rs = get_remote_state (); if (packet_support (PACKET_Z0) != PACKET_DISABLE) { char *p = rs->buf; char *endbuf = rs->buf + get_remote_packet_size (); /* Make sure the remote is pointing at the right process, if necessary. */ if (!gdbarch_has_global_breakpoints (target_gdbarch ())) set_general_process (); *(p++) = 'z'; *(p++) = '0'; *(p++) = ','; addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address); p += hexnumstr (p, addr); xsnprintf (p, endbuf - p, ",%d", bp_tgt->placed_size); putpkt (rs->buf); getpkt (&rs->buf, &rs->buf_size, 0); return (rs->buf[0] == 'E'); } return memory_remove_breakpoint (ops, gdbarch, bp_tgt); } static int watchpoint_to_Z_packet (int type) { switch (type) { case hw_write: return Z_PACKET_WRITE_WP; break; case hw_read: return Z_PACKET_READ_WP; break; case hw_access: return Z_PACKET_ACCESS_WP; break; default: internal_error (__FILE__, __LINE__, _("hw_bp_to_z: bad watchpoint type %d"), type); } } static int remote_insert_watchpoint (struct target_ops *self, CORE_ADDR addr, int len, int type, struct expression *cond) { struct remote_state *rs = get_remote_state (); char *endbuf = rs->buf + get_remote_packet_size (); char *p; enum Z_packet_type packet = watchpoint_to_Z_packet (type); if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE) return 1; /* Make sure the remote is pointing at the right process, if necessary. */ if (!gdbarch_has_global_breakpoints (target_gdbarch ())) set_general_process (); xsnprintf (rs->buf, endbuf - rs->buf, "Z%x,", packet); p = strchr (rs->buf, '\0'); addr = remote_address_masked (addr); p += hexnumstr (p, (ULONGEST) addr); xsnprintf (p, endbuf - p, ",%x", len); putpkt (rs->buf); getpkt (&rs->buf, &rs->buf_size, 0); switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet])) { case PACKET_ERROR: return -1; case PACKET_UNKNOWN: return 1; case PACKET_OK: return 0; } internal_error (__FILE__, __LINE__, _("remote_insert_watchpoint: reached end of function")); } static int remote_watchpoint_addr_within_range (struct target_ops *target, CORE_ADDR addr, CORE_ADDR start, int length) { CORE_ADDR diff = remote_address_masked (addr - start); return diff < length; } static int remote_remove_watchpoint (struct target_ops *self, CORE_ADDR addr, int len, int type, struct expression *cond) { struct remote_state *rs = get_remote_state (); char *endbuf = rs->buf + get_remote_packet_size (); char *p; enum Z_packet_type packet = watchpoint_to_Z_packet (type); if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE) return -1; /* Make sure the remote is pointing at the right process, if necessary. */ if (!gdbarch_has_global_breakpoints (target_gdbarch ())) set_general_process (); xsnprintf (rs->buf, endbuf - rs->buf, "z%x,", packet); p = strchr (rs->buf, '\0'); addr = remote_address_masked (addr); p += hexnumstr (p, (ULONGEST) addr); xsnprintf (p, endbuf - p, ",%x", len); putpkt (rs->buf); getpkt (&rs->buf, &rs->buf_size, 0); switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet])) { case PACKET_ERROR: case PACKET_UNKNOWN: return -1; case PACKET_OK: return 0; } internal_error (__FILE__, __LINE__, _("remote_remove_watchpoint: reached end of function")); } int remote_hw_watchpoint_limit = -1; int remote_hw_watchpoint_length_limit = -1; int remote_hw_breakpoint_limit = -1; static int remote_region_ok_for_hw_watchpoint (struct target_ops *self, CORE_ADDR addr, int len) { if (remote_hw_watchpoint_length_limit == 0) return 0; else if (remote_hw_watchpoint_length_limit < 0) return 1; else if (len <= remote_hw_watchpoint_length_limit) return 1; else return 0; } static int remote_check_watch_resources (struct target_ops *self, int type, int cnt, int ot) { if (type == bp_hardware_breakpoint) { if (remote_hw_breakpoint_limit == 0) return 0; else if (remote_hw_breakpoint_limit < 0) return 1; else if (cnt <= remote_hw_breakpoint_limit) return 1; } else { if (remote_hw_watchpoint_limit == 0) return 0; else if (remote_hw_watchpoint_limit < 0) return 1; else if (ot) return -1; else if (cnt <= remote_hw_watchpoint_limit) return 1; } return -1; } /* The to_stopped_by_sw_breakpoint method of target remote. */ static int remote_stopped_by_sw_breakpoint (struct target_ops *ops) { struct remote_state *rs = get_remote_state (); return rs->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT; } /* The to_supports_stopped_by_sw_breakpoint method of target remote. */ static int remote_supports_stopped_by_sw_breakpoint (struct target_ops *ops) { struct remote_state *rs = get_remote_state (); return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE); } /* The to_stopped_by_hw_breakpoint method of target remote. */ static int remote_stopped_by_hw_breakpoint (struct target_ops *ops) { struct remote_state *rs = get_remote_state (); return rs->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT; } /* The to_supports_stopped_by_hw_breakpoint method of target remote. */ static int remote_supports_stopped_by_hw_breakpoint (struct target_ops *ops) { struct remote_state *rs = get_remote_state (); return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE); } static int remote_stopped_by_watchpoint (struct target_ops *ops) { struct remote_state *rs = get_remote_state (); return rs->stop_reason == TARGET_STOPPED_BY_WATCHPOINT; } static int remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p) { struct remote_state *rs = get_remote_state (); int rc = 0; if (remote_stopped_by_watchpoint (target)) { *addr_p = rs->remote_watch_data_address; rc = 1; } return rc; } static int remote_insert_hw_breakpoint (struct target_ops *self, struct gdbarch *gdbarch, struct bp_target_info *bp_tgt) { CORE_ADDR addr = bp_tgt->reqstd_address; struct remote_state *rs; char *p, *endbuf; char *message; int bpsize; /* The length field should be set to the size of a breakpoint instruction, even though we aren't inserting one ourselves. */ gdbarch_remote_breakpoint_from_pc (gdbarch, &addr, &bpsize); if (packet_support (PACKET_Z1) == PACKET_DISABLE) return -1; /* Make sure the remote is pointing at the right process, if necessary. */ if (!gdbarch_has_global_breakpoints (target_gdbarch ())) set_general_process (); rs = get_remote_state (); p = rs->buf; endbuf = rs->buf + get_remote_packet_size (); *(p++) = 'Z'; *(p++) = '1'; *(p++) = ','; addr = remote_address_masked (addr); p += hexnumstr (p, (ULONGEST) addr); xsnprintf (p, endbuf - p, ",%x", bpsize); if (remote_supports_cond_breakpoints (self)) remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf); if (remote_can_run_breakpoint_commands (self)) remote_add_target_side_commands (gdbarch, bp_tgt, p); putpkt (rs->buf); getpkt (&rs->buf, &rs->buf_size, 0); switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1])) { case PACKET_ERROR: if (rs->buf[1] == '.') { message = strchr (rs->buf + 2, '.'); if (message) error (_("Remote failure reply: %s"), message + 1); } return -1; case PACKET_UNKNOWN: return -1; case PACKET_OK: bp_tgt->placed_address = addr; bp_tgt->placed_size = bpsize; return 0; } internal_error (__FILE__, __LINE__, _("remote_insert_hw_breakpoint: reached end of function")); } static int remote_remove_hw_breakpoint (struct target_ops *self, struct gdbarch *gdbarch, struct bp_target_info *bp_tgt) { CORE_ADDR addr; struct remote_state *rs = get_remote_state (); char *p = rs->buf; char *endbuf = rs->buf + get_remote_packet_size (); if (packet_support (PACKET_Z1) == PACKET_DISABLE) return -1; /* Make sure the remote is pointing at the right process, if necessary. */ if (!gdbarch_has_global_breakpoints (target_gdbarch ())) set_general_process (); *(p++) = 'z'; *(p++) = '1'; *(p++) = ','; addr = remote_address_masked (bp_tgt->placed_address); p += hexnumstr (p, (ULONGEST) addr); xsnprintf (p, endbuf - p, ",%x", bp_tgt->placed_size); putpkt (rs->buf); getpkt (&rs->buf, &rs->buf_size, 0); switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1])) { case PACKET_ERROR: case PACKET_UNKNOWN: return -1; case PACKET_OK: return 0; } internal_error (__FILE__, __LINE__, _("remote_remove_hw_breakpoint: reached end of function")); } /* Verify memory using the "qCRC:" request. */ static int remote_verify_memory (struct target_ops *ops, const gdb_byte *data, CORE_ADDR lma, ULONGEST size) { struct remote_state *rs = get_remote_state (); unsigned long host_crc, target_crc; char *tmp; /* It doesn't make sense to use qCRC if the remote target is connected but not running. */ if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE) { enum packet_result result; /* Make sure the remote is pointing at the right process. */ set_general_process (); /* FIXME: assumes lma can fit into long. */ xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx", (long) lma, (long) size); putpkt (rs->buf); /* Be clever; compute the host_crc before waiting for target reply. */ host_crc = xcrc32 (data, size, 0xffffffff); getpkt (&rs->buf, &rs->buf_size, 0); result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qCRC]); if (result == PACKET_ERROR) return -1; else if (result == PACKET_OK) { for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++) target_crc = target_crc * 16 + fromhex (*tmp); return (host_crc == target_crc); } } return simple_verify_memory (ops, data, lma, size); } /* compare-sections command With no arguments, compares each loadable section in the exec bfd with the same memory range on the target, and reports mismatches. Useful for verifying the image on the target against the exec file. */ static void compare_sections_command (char *args, int from_tty) { asection *s; struct cleanup *old_chain; gdb_byte *sectdata; const char *sectname; bfd_size_type size; bfd_vma lma; int matched = 0; int mismatched = 0; int res; int read_only = 0; if (!exec_bfd) error (_("command cannot be used without an exec file")); /* Make sure the remote is pointing at the right process. */ set_general_process (); if (args != NULL && strcmp (args, "-r") == 0) { read_only = 1; args = NULL; } for (s = exec_bfd->sections; s; s = s->next) { if (!(s->flags & SEC_LOAD)) continue; /* Skip non-loadable section. */ if (read_only && (s->flags & SEC_READONLY) == 0) continue; /* Skip writeable sections */ size = bfd_get_section_size (s); if (size == 0) continue; /* Skip zero-length section. */ sectname = bfd_get_section_name (exec_bfd, s); if (args && strcmp (args, sectname) != 0) continue; /* Not the section selected by user. */ matched = 1; /* Do this section. */ lma = s->lma; sectdata = xmalloc (size); old_chain = make_cleanup (xfree, sectdata); bfd_get_section_contents (exec_bfd, s, sectdata, 0, size); res = target_verify_memory (sectdata, lma, size); if (res == -1) error (_("target memory fault, section %s, range %s -- %s"), sectname, paddress (target_gdbarch (), lma), paddress (target_gdbarch (), lma + size)); printf_filtered ("Section %s, range %s -- %s: ", sectname, paddress (target_gdbarch (), lma), paddress (target_gdbarch (), lma + size)); if (res) printf_filtered ("matched.\n"); else { printf_filtered ("MIS-MATCHED!\n"); mismatched++; } do_cleanups (old_chain); } if (mismatched > 0) warning (_("One or more sections of the target image does not match\n\ the loaded file\n")); if (args && !matched) printf_filtered (_("No loaded section named '%s'.\n"), args); } /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET into remote target. The number of bytes written to the remote target is returned, or -1 for error. */ static enum target_xfer_status remote_write_qxfer (struct target_ops *ops, const char *object_name, const char *annex, const gdb_byte *writebuf, ULONGEST offset, LONGEST len, ULONGEST *xfered_len, struct packet_config *packet) { int i, buf_len; ULONGEST n; struct remote_state *rs = get_remote_state (); int max_size = get_memory_write_packet_size (); if (packet->support == PACKET_DISABLE) return TARGET_XFER_E_IO; /* Insert header. */ i = snprintf (rs->buf, max_size, "qXfer:%s:write:%s:%s:", object_name, annex ? annex : "", phex_nz (offset, sizeof offset)); max_size -= (i + 1); /* Escape as much data as fits into rs->buf. */ buf_len = remote_escape_output (writebuf, len, (gdb_byte *) rs->buf + i, &max_size, max_size); if (putpkt_binary (rs->buf, i + buf_len) < 0 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0 || packet_ok (rs->buf, packet) != PACKET_OK) return TARGET_XFER_E_IO; unpack_varlen_hex (rs->buf, &n); *xfered_len = n; return TARGET_XFER_OK; } /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet. Data at OFFSET, of up to LEN bytes, is read into READBUF; the number of bytes read is returned, or 0 for EOF, or -1 for error. The number of bytes read may be less than LEN without indicating an EOF. PACKET is checked and updated to indicate whether the remote target supports this object. */ static enum target_xfer_status remote_read_qxfer (struct target_ops *ops, const char *object_name, const char *annex, gdb_byte *readbuf, ULONGEST offset, LONGEST len, ULONGEST *xfered_len, struct packet_config *packet) { struct remote_state *rs = get_remote_state (); LONGEST i, n, packet_len; if (packet->support == PACKET_DISABLE) return TARGET_XFER_E_IO; /* Check whether we've cached an end-of-object packet that matches this request. */ if (rs->finished_object) { if (strcmp (object_name, rs->finished_object) == 0 && strcmp (annex ? annex : "", rs->finished_annex) == 0 && offset == rs->finished_offset) return TARGET_XFER_EOF; /* Otherwise, we're now reading something different. Discard the cache. */ xfree (rs->finished_object); xfree (rs->finished_annex); rs->finished_object = NULL; rs->finished_annex = NULL; } /* Request only enough to fit in a single packet. The actual data may not, since we don't know how much of it will need to be escaped; the target is free to respond with slightly less data. We subtract five to account for the response type and the protocol frame. */ n = min (get_remote_packet_size () - 5, len); snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s", object_name, annex ? annex : "", phex_nz (offset, sizeof offset), phex_nz (n, sizeof n)); i = putpkt (rs->buf); if (i < 0) return TARGET_XFER_E_IO; rs->buf[0] = '\0'; packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0); if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK) return TARGET_XFER_E_IO; if (rs->buf[0] != 'l' && rs->buf[0] != 'm') error (_("Unknown remote qXfer reply: %s"), rs->buf); /* 'm' means there is (or at least might be) more data after this batch. That does not make sense unless there's at least one byte of data in this reply. */ if (rs->buf[0] == 'm' && packet_len == 1) error (_("Remote qXfer reply contained no data.")); /* Got some data. */ i = remote_unescape_input ((gdb_byte *) rs->buf + 1, packet_len - 1, readbuf, n); /* 'l' is an EOF marker, possibly including a final block of data, or possibly empty. If we have the final block of a non-empty object, record this fact to bypass a subsequent partial read. */ if (rs->buf[0] == 'l' && offset + i > 0) { rs->finished_object = xstrdup (object_name); rs->finished_annex = xstrdup (annex ? annex : ""); rs->finished_offset = offset + i; } if (i == 0) return TARGET_XFER_EOF; else { *xfered_len = i; return TARGET_XFER_OK; } } static enum target_xfer_status remote_xfer_partial (struct target_ops *ops, enum target_object object, const char *annex, gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST offset, ULONGEST len, ULONGEST *xfered_len) { struct remote_state *rs; int i; char *p2; char query_type; set_remote_traceframe (); set_general_thread (inferior_ptid); rs = get_remote_state (); /* Handle memory using the standard memory routines. */ if (object == TARGET_OBJECT_MEMORY) { /* If the remote target is connected but not running, we should pass this request down to a lower stratum (e.g. the executable file). */ if (!target_has_execution) return TARGET_XFER_EOF; if (writebuf != NULL) return remote_write_bytes (offset, writebuf, len, xfered_len); else return remote_read_bytes (ops, offset, readbuf, len, xfered_len); } /* Handle SPU memory using qxfer packets. */ if (object == TARGET_OBJECT_SPU) { if (readbuf) return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len, xfered_len, &remote_protocol_packets [PACKET_qXfer_spu_read]); else return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len, xfered_len, &remote_protocol_packets [PACKET_qXfer_spu_write]); } /* Handle extra signal info using qxfer packets. */ if (object == TARGET_OBJECT_SIGNAL_INFO) { if (readbuf) return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len, xfered_len, &remote_protocol_packets [PACKET_qXfer_siginfo_read]); else return remote_write_qxfer (ops, "siginfo", annex, writebuf, offset, len, xfered_len, &remote_protocol_packets [PACKET_qXfer_siginfo_write]); } if (object == TARGET_OBJECT_STATIC_TRACE_DATA) { if (readbuf) return remote_read_qxfer (ops, "statictrace", annex, readbuf, offset, len, xfered_len, &remote_protocol_packets [PACKET_qXfer_statictrace_read]); else return TARGET_XFER_E_IO; } /* Only handle flash writes. */ if (writebuf != NULL) { LONGEST xfered; switch (object) { case TARGET_OBJECT_FLASH: return remote_flash_write (ops, offset, len, xfered_len, writebuf); default: return TARGET_XFER_E_IO; } } /* Map pre-existing objects onto letters. DO NOT do this for new objects!!! Instead specify new query packets. */ switch (object) { case TARGET_OBJECT_AVR: query_type = 'R'; break; case TARGET_OBJECT_AUXV: gdb_assert (annex == NULL); return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len, xfered_len, &remote_protocol_packets[PACKET_qXfer_auxv]); case TARGET_OBJECT_AVAILABLE_FEATURES: return remote_read_qxfer (ops, "features", annex, readbuf, offset, len, xfered_len, &remote_protocol_packets[PACKET_qXfer_features]); case TARGET_OBJECT_LIBRARIES: return remote_read_qxfer (ops, "libraries", annex, readbuf, offset, len, xfered_len, &remote_protocol_packets[PACKET_qXfer_libraries]); case TARGET_OBJECT_LIBRARIES_SVR4: return remote_read_qxfer (ops, "libraries-svr4", annex, readbuf, offset, len, xfered_len, &remote_protocol_packets[PACKET_qXfer_libraries_svr4]); case TARGET_OBJECT_MEMORY_MAP: gdb_assert (annex == NULL); return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len, xfered_len, &remote_protocol_packets[PACKET_qXfer_memory_map]); case TARGET_OBJECT_OSDATA: /* Should only get here if we're connected. */ gdb_assert (rs->remote_desc); return remote_read_qxfer (ops, "osdata", annex, readbuf, offset, len, xfered_len, &remote_protocol_packets[PACKET_qXfer_osdata]); case TARGET_OBJECT_THREADS: gdb_assert (annex == NULL); return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len, xfered_len, &remote_protocol_packets[PACKET_qXfer_threads]); case TARGET_OBJECT_TRACEFRAME_INFO: gdb_assert (annex == NULL); return remote_read_qxfer (ops, "traceframe-info", annex, readbuf, offset, len, xfered_len, &remote_protocol_packets[PACKET_qXfer_traceframe_info]); case TARGET_OBJECT_FDPIC: return remote_read_qxfer (ops, "fdpic", annex, readbuf, offset, len, xfered_len, &remote_protocol_packets[PACKET_qXfer_fdpic]); case TARGET_OBJECT_OPENVMS_UIB: return remote_read_qxfer (ops, "uib", annex, readbuf, offset, len, xfered_len, &remote_protocol_packets[PACKET_qXfer_uib]); case TARGET_OBJECT_BTRACE: return remote_read_qxfer (ops, "btrace", annex, readbuf, offset, len, xfered_len, &remote_protocol_packets[PACKET_qXfer_btrace]); case TARGET_OBJECT_BTRACE_CONF: return remote_read_qxfer (ops, "btrace-conf", annex, readbuf, offset, len, xfered_len, &remote_protocol_packets[PACKET_qXfer_btrace_conf]); case TARGET_OBJECT_EXEC_FILE: return remote_read_qxfer (ops, "exec-file", annex, readbuf, offset, len, xfered_len, &remote_protocol_packets[PACKET_qXfer_exec_file]); default: return TARGET_XFER_E_IO; } /* Minimum outbuf size is get_remote_packet_size (). If LEN is not large enough let the caller deal with it. */ if (len < get_remote_packet_size ()) return TARGET_XFER_E_IO; len = get_remote_packet_size (); /* Except for querying the minimum buffer size, target must be open. */ if (!rs->remote_desc) error (_("remote query is only available after target open")); gdb_assert (annex != NULL); gdb_assert (readbuf != NULL); p2 = rs->buf; *p2++ = 'q'; *p2++ = query_type; /* We used one buffer char for the remote protocol q command and another for the query type. As the remote protocol encapsulation uses 4 chars plus one extra in case we are debugging (remote_debug), we have PBUFZIZ - 7 left to pack the query string. */ i = 0; while (annex[i] && (i < (get_remote_packet_size () - 8))) { /* Bad caller may have sent forbidden characters. */ gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#'); *p2++ = annex[i]; i++; } *p2 = '\0'; gdb_assert (annex[i] == '\0'); i = putpkt (rs->buf); if (i < 0) return TARGET_XFER_E_IO; getpkt (&rs->buf, &rs->buf_size, 0); strcpy ((char *) readbuf, rs->buf); *xfered_len = strlen ((char *) readbuf); return TARGET_XFER_OK; } static int remote_search_memory (struct target_ops* ops, CORE_ADDR start_addr, ULONGEST search_space_len, const gdb_byte *pattern, ULONGEST pattern_len, CORE_ADDR *found_addrp) { int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8; struct remote_state *rs = get_remote_state (); int max_size = get_memory_write_packet_size (); struct packet_config *packet = &remote_protocol_packets[PACKET_qSearch_memory]; /* Number of packet bytes used to encode the pattern; this could be more than PATTERN_LEN due to escape characters. */ int escaped_pattern_len; /* Amount of pattern that was encodable in the packet. */ int used_pattern_len; int i; int found; ULONGEST found_addr; /* Don't go to the target if we don't have to. This is done before checking packet->support to avoid the possibility that a success for this edge case means the facility works in general. */ if (pattern_len > search_space_len) return 0; if (pattern_len == 0) { *found_addrp = start_addr; return 1; } /* If we already know the packet isn't supported, fall back to the simple way of searching memory. */ if (packet_config_support (packet) == PACKET_DISABLE) { /* Target doesn't provided special support, fall back and use the standard support (copy memory and do the search here). */ return simple_search_memory (ops, start_addr, search_space_len, pattern, pattern_len, found_addrp); } /* Make sure the remote is pointing at the right process. */ set_general_process (); /* Insert header. */ i = snprintf (rs->buf, max_size, "qSearch:memory:%s;%s;", phex_nz (start_addr, addr_size), phex_nz (search_space_len, sizeof (search_space_len))); max_size -= (i + 1); /* Escape as much data as fits into rs->buf. */ escaped_pattern_len = remote_escape_output (pattern, pattern_len, (gdb_byte *) rs->buf + i, &used_pattern_len, max_size); /* Bail if the pattern is too large. */ if (used_pattern_len != pattern_len) error (_("Pattern is too large to transmit to remote target.")); if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0 || packet_ok (rs->buf, packet) != PACKET_OK) { /* The request may not have worked because the command is not supported. If so, fall back to the simple way. */ if (packet->support == PACKET_DISABLE) { return simple_search_memory (ops, start_addr, search_space_len, pattern, pattern_len, found_addrp); } return -1; } if (rs->buf[0] == '0') found = 0; else if (rs->buf[0] == '1') { found = 1; if (rs->buf[1] != ',') error (_("Unknown qSearch:memory reply: %s"), rs->buf); unpack_varlen_hex (rs->buf + 2, &found_addr); *found_addrp = found_addr; } else error (_("Unknown qSearch:memory reply: %s"), rs->buf); return found; } static void remote_rcmd (struct target_ops *self, const char *command, struct ui_file *outbuf) { struct remote_state *rs = get_remote_state (); char *p = rs->buf; if (!rs->remote_desc) error (_("remote rcmd is only available after target open")); /* Send a NULL command across as an empty command. */ if (command == NULL) command = ""; /* The query prefix. */ strcpy (rs->buf, "qRcmd,"); p = strchr (rs->buf, '\0'); if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ()) error (_("\"monitor\" command ``%s'' is too long."), command); /* Encode the actual command. */ bin2hex ((const gdb_byte *) command, p, strlen (command)); if (putpkt (rs->buf) < 0) error (_("Communication problem with target.")); /* get/display the response */ while (1) { char *buf; /* XXX - see also remote_get_noisy_reply(). */ QUIT; /* Allow user to bail out with ^C. */ rs->buf[0] = '\0'; if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1) { /* Timeout. Continue to (try to) read responses. This is better than stopping with an error, assuming the stub is still executing the (long) monitor command. If needed, the user can interrupt gdb using C-c, obtaining an effect similar to stop on timeout. */ continue; } buf = rs->buf; if (buf[0] == '\0') error (_("Target does not support this command.")); if (buf[0] == 'O' && buf[1] != 'K') { remote_console_output (buf + 1); /* 'O' message from stub. */ continue; } if (strcmp (buf, "OK") == 0) break; if (strlen (buf) == 3 && buf[0] == 'E' && isdigit (buf[1]) && isdigit (buf[2])) { error (_("Protocol error with Rcmd")); } for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2) { char c = (fromhex (p[0]) << 4) + fromhex (p[1]); fputc_unfiltered (c, outbuf); } break; } } static VEC(mem_region_s) * remote_memory_map (struct target_ops *ops) { VEC(mem_region_s) *result = NULL; char *text = target_read_stralloc (¤t_target, TARGET_OBJECT_MEMORY_MAP, NULL); if (text) { struct cleanup *back_to = make_cleanup (xfree, text); result = parse_memory_map (text); do_cleanups (back_to); } return result; } static void packet_command (char *args, int from_tty) { struct remote_state *rs = get_remote_state (); if (!rs->remote_desc) error (_("command can only be used with remote target")); if (!args) error (_("remote-packet command requires packet text as argument")); puts_filtered ("sending: "); print_packet (args); puts_filtered ("\n"); putpkt (args); getpkt (&rs->buf, &rs->buf_size, 0); puts_filtered ("received: "); print_packet (rs->buf); puts_filtered ("\n"); } #if 0 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */ static void display_thread_info (struct gdb_ext_thread_info *info); static void threadset_test_cmd (char *cmd, int tty); static void threadalive_test (char *cmd, int tty); static void threadlist_test_cmd (char *cmd, int tty); int get_and_display_threadinfo (threadref *ref); static void threadinfo_test_cmd (char *cmd, int tty); static int thread_display_step (threadref *ref, void *context); static void threadlist_update_test_cmd (char *cmd, int tty); static void init_remote_threadtests (void); #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */ static void threadset_test_cmd (char *cmd, int tty) { int sample_thread = SAMPLE_THREAD; printf_filtered (_("Remote threadset test\n")); set_general_thread (sample_thread); } static void threadalive_test (char *cmd, int tty) { int sample_thread = SAMPLE_THREAD; int pid = ptid_get_pid (inferior_ptid); ptid_t ptid = ptid_build (pid, sample_thread, 0); if (remote_thread_alive (ptid)) printf_filtered ("PASS: Thread alive test\n"); else printf_filtered ("FAIL: Thread alive test\n"); } void output_threadid (char *title, threadref *ref); void output_threadid (char *title, threadref *ref) { char hexid[20]; pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */ hexid[16] = 0; printf_filtered ("%s %s\n", title, (&hexid[0])); } static void threadlist_test_cmd (char *cmd, int tty) { int startflag = 1; threadref nextthread; int done, result_count; threadref threadlist[3]; printf_filtered ("Remote Threadlist test\n"); if (!remote_get_threadlist (startflag, &nextthread, 3, &done, &result_count, &threadlist[0])) printf_filtered ("FAIL: threadlist test\n"); else { threadref *scan = threadlist; threadref *limit = scan + result_count; while (scan < limit) output_threadid (" thread ", scan++); } } void display_thread_info (struct gdb_ext_thread_info *info) { output_threadid ("Threadid: ", &info->threadid); printf_filtered ("Name: %s\n ", info->shortname); printf_filtered ("State: %s\n", info->display); printf_filtered ("other: %s\n\n", info->more_display); } int get_and_display_threadinfo (threadref *ref) { int result; int set; struct gdb_ext_thread_info threadinfo; set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME | TAG_MOREDISPLAY | TAG_DISPLAY; if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo))) display_thread_info (&threadinfo); return result; } static void threadinfo_test_cmd (char *cmd, int tty) { int athread = SAMPLE_THREAD; threadref thread; int set; int_to_threadref (&thread, athread); printf_filtered ("Remote Threadinfo test\n"); if (!get_and_display_threadinfo (&thread)) printf_filtered ("FAIL cannot get thread info\n"); } static int thread_display_step (threadref *ref, void *context) { /* output_threadid(" threadstep ",ref); *//* simple test */ return get_and_display_threadinfo (ref); } static void threadlist_update_test_cmd (char *cmd, int tty) { printf_filtered ("Remote Threadlist update test\n"); remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS); } static void init_remote_threadtests (void) { add_com ("tlist", class_obscure, threadlist_test_cmd, _("Fetch and print the remote list of " "thread identifiers, one pkt only")); add_com ("tinfo", class_obscure, threadinfo_test_cmd, _("Fetch and display info about one thread")); add_com ("tset", class_obscure, threadset_test_cmd, _("Test setting to a different thread")); add_com ("tupd", class_obscure, threadlist_update_test_cmd, _("Iterate through updating all remote thread info")); add_com ("talive", class_obscure, threadalive_test, _(" Remote thread alive test ")); } #endif /* 0 */ /* Convert a thread ID to a string. Returns the string in a static buffer. */ static char * remote_pid_to_str (struct target_ops *ops, ptid_t ptid) { static char buf[64]; struct remote_state *rs = get_remote_state (); if (ptid_equal (ptid, null_ptid)) return normal_pid_to_str (ptid); else if (ptid_is_pid (ptid)) { /* Printing an inferior target id. */ /* When multi-process extensions are off, there's no way in the remote protocol to know the remote process id, if there's any at all. There's one exception --- when we're connected with target extended-remote, and we manually attached to a process with "attach PID". We don't record anywhere a flag that allows us to distinguish that case from the case of connecting with extended-remote and the stub already being attached to a process, and reporting yes to qAttached, hence no smart special casing here. */ if (!remote_multi_process_p (rs)) { xsnprintf (buf, sizeof buf, "Remote target"); return buf; } return normal_pid_to_str (ptid); } else { if (ptid_equal (magic_null_ptid, ptid)) xsnprintf (buf, sizeof buf, "Thread
"); else if (rs->extended && remote_multi_process_p (rs)) if (ptid_get_lwp (ptid) == 0) return normal_pid_to_str (ptid); else xsnprintf (buf, sizeof buf, "Thread %d.%ld", ptid_get_pid (ptid), ptid_get_lwp (ptid)); else xsnprintf (buf, sizeof buf, "Thread %ld", ptid_get_lwp (ptid)); return buf; } } /* Get the address of the thread local variable in OBJFILE which is stored at OFFSET within the thread local storage for thread PTID. */ static CORE_ADDR remote_get_thread_local_address (struct target_ops *ops, ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset) { if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE) { struct remote_state *rs = get_remote_state (); char *p = rs->buf; char *endp = rs->buf + get_remote_packet_size (); enum packet_result result; strcpy (p, "qGetTLSAddr:"); p += strlen (p); p = write_ptid (p, endp, ptid); *p++ = ','; p += hexnumstr (p, offset); *p++ = ','; p += hexnumstr (p, lm); *p++ = '\0'; putpkt (rs->buf); getpkt (&rs->buf, &rs->buf_size, 0); result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]); if (result == PACKET_OK) { ULONGEST result; unpack_varlen_hex (rs->buf, &result); return result; } else if (result == PACKET_UNKNOWN) throw_error (TLS_GENERIC_ERROR, _("Remote target doesn't support qGetTLSAddr packet")); else throw_error (TLS_GENERIC_ERROR, _("Remote target failed to process qGetTLSAddr request")); } else throw_error (TLS_GENERIC_ERROR, _("TLS not supported or disabled on this target")); /* Not reached. */ return 0; } /* Provide thread local base, i.e. Thread Information Block address. Returns 1 if ptid is found and thread_local_base is non zero. */ static int remote_get_tib_address (struct target_ops *self, ptid_t ptid, CORE_ADDR *addr) { if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE) { struct remote_state *rs = get_remote_state (); char *p = rs->buf; char *endp = rs->buf + get_remote_packet_size (); enum packet_result result; strcpy (p, "qGetTIBAddr:"); p += strlen (p); p = write_ptid (p, endp, ptid); *p++ = '\0'; putpkt (rs->buf); getpkt (&rs->buf, &rs->buf_size, 0); result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTIBAddr]); if (result == PACKET_OK) { ULONGEST result; unpack_varlen_hex (rs->buf, &result); if (addr) *addr = (CORE_ADDR) result; return 1; } else if (result == PACKET_UNKNOWN) error (_("Remote target doesn't support qGetTIBAddr packet")); else error (_("Remote target failed to process qGetTIBAddr request")); } else error (_("qGetTIBAddr not supported or disabled on this target")); /* Not reached. */ return 0; } /* Support for inferring a target description based on the current architecture and the size of a 'g' packet. While the 'g' packet can have any size (since optional registers can be left off the end), some sizes are easily recognizable given knowledge of the approximate architecture. */ struct remote_g_packet_guess { int bytes; const struct target_desc *tdesc; }; typedef struct remote_g_packet_guess remote_g_packet_guess_s; DEF_VEC_O(remote_g_packet_guess_s); struct remote_g_packet_data { VEC(remote_g_packet_guess_s) *guesses; }; static struct gdbarch_data *remote_g_packet_data_handle; static void * remote_g_packet_data_init (struct obstack *obstack) { return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data); } void register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes, const struct target_desc *tdesc) { struct remote_g_packet_data *data = gdbarch_data (gdbarch, remote_g_packet_data_handle); struct remote_g_packet_guess new_guess, *guess; int ix; gdb_assert (tdesc != NULL); for (ix = 0; VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess); ix++) if (guess->bytes == bytes) internal_error (__FILE__, __LINE__, _("Duplicate g packet description added for size %d"), bytes); new_guess.bytes = bytes; new_guess.tdesc = tdesc; VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess); } /* Return 1 if remote_read_description would do anything on this target and architecture, 0 otherwise. */ static int remote_read_description_p (struct target_ops *target) { struct remote_g_packet_data *data = gdbarch_data (target_gdbarch (), remote_g_packet_data_handle); if (!VEC_empty (remote_g_packet_guess_s, data->guesses)) return 1; return 0; } static const struct target_desc * remote_read_description (struct target_ops *target) { struct remote_g_packet_data *data = gdbarch_data (target_gdbarch (), remote_g_packet_data_handle); /* Do not try this during initial connection, when we do not know whether there is a running but stopped thread. */ if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid)) return target->beneath->to_read_description (target->beneath); if (!VEC_empty (remote_g_packet_guess_s, data->guesses)) { struct remote_g_packet_guess *guess; int ix; int bytes = send_g_packet (); for (ix = 0; VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess); ix++) if (guess->bytes == bytes) return guess->tdesc; /* We discard the g packet. A minor optimization would be to hold on to it, and fill the register cache once we have selected an architecture, but it's too tricky to do safely. */ } return target->beneath->to_read_description (target->beneath); } /* Remote file transfer support. This is host-initiated I/O, not target-initiated; for target-initiated, see remote-fileio.c. */ /* If *LEFT is at least the length of STRING, copy STRING to *BUFFER, update *BUFFER to point to the new end of the buffer, and decrease *LEFT. Otherwise raise an error. */ static void remote_buffer_add_string (char **buffer, int *left, char *string) { int len = strlen (string); if (len > *left) error (_("Packet too long for target.")); memcpy (*buffer, string, len); *buffer += len; *left -= len; /* NUL-terminate the buffer as a convenience, if there is room. */ if (*left) **buffer = '\0'; } /* If *LEFT is large enough, hex encode LEN bytes from BYTES into *BUFFER, update *BUFFER to point to the new end of the buffer, and decrease *LEFT. Otherwise raise an error. */ static void remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes, int len) { if (2 * len > *left) error (_("Packet too long for target.")); bin2hex (bytes, *buffer, len); *buffer += 2 * len; *left -= 2 * len; /* NUL-terminate the buffer as a convenience, if there is room. */ if (*left) **buffer = '\0'; } /* If *LEFT is large enough, convert VALUE to hex and add it to *BUFFER, update *BUFFER to point to the new end of the buffer, and decrease *LEFT. Otherwise raise an error. */ static void remote_buffer_add_int (char **buffer, int *left, ULONGEST value) { int len = hexnumlen (value); if (len > *left) error (_("Packet too long for target.")); hexnumstr (*buffer, value); *buffer += len; *left -= len; /* NUL-terminate the buffer as a convenience, if there is room. */ if (*left) **buffer = '\0'; } /* Parse an I/O result packet from BUFFER. Set RETCODE to the return value, *REMOTE_ERRNO to the remote error number or zero if none was included, and *ATTACHMENT to point to the start of the annex if any. The length of the packet isn't needed here; there may be NUL bytes in BUFFER, but they will be after *ATTACHMENT. Return 0 if the packet could be parsed, -1 if it could not. If -1 is returned, the other variables may not be initialized. */ static int remote_hostio_parse_result (char *buffer, int *retcode, int *remote_errno, char **attachment) { char *p, *p2; *remote_errno = 0; *attachment = NULL; if (buffer[0] != 'F') return -1; errno = 0; *retcode = strtol (&buffer[1], &p, 16); if (errno != 0 || p == &buffer[1]) return -1; /* Check for ",errno". */ if (*p == ',') { errno = 0; *remote_errno = strtol (p + 1, &p2, 16); if (errno != 0 || p + 1 == p2) return -1; p = p2; } /* Check for ";attachment". If there is no attachment, the packet should end here. */ if (*p == ';') { *attachment = p + 1; return 0; } else if (*p == '\0') return 0; else return -1; } /* Send a prepared I/O packet to the target and read its response. The prepared packet is in the global RS->BUF before this function is called, and the answer is there when we return. COMMAND_BYTES is the length of the request to send, which may include binary data. WHICH_PACKET is the packet configuration to check before attempting a packet. If an error occurs, *REMOTE_ERRNO is set to the error number and -1 is returned. Otherwise the value returned by the function is returned. ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an attachment is expected; an error will be reported if there's a mismatch. If one is found, *ATTACHMENT will be set to point into the packet buffer and *ATTACHMENT_LEN will be set to the attachment's length. */ static int remote_hostio_send_command (int command_bytes, int which_packet, int *remote_errno, char **attachment, int *attachment_len) { struct remote_state *rs = get_remote_state (); int ret, bytes_read; char *attachment_tmp; if (!rs->remote_desc || packet_support (which_packet) == PACKET_DISABLE) { *remote_errno = FILEIO_ENOSYS; return -1; } putpkt_binary (rs->buf, command_bytes); bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0); /* If it timed out, something is wrong. Don't try to parse the buffer. */ if (bytes_read < 0) { *remote_errno = FILEIO_EINVAL; return -1; } switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet])) { case PACKET_ERROR: *remote_errno = FILEIO_EINVAL; return -1; case PACKET_UNKNOWN: *remote_errno = FILEIO_ENOSYS; return -1; case PACKET_OK: break; } if (remote_hostio_parse_result (rs->buf, &ret, remote_errno, &attachment_tmp)) { *remote_errno = FILEIO_EINVAL; return -1; } /* Make sure we saw an attachment if and only if we expected one. */ if ((attachment_tmp == NULL && attachment != NULL) || (attachment_tmp != NULL && attachment == NULL)) { *remote_errno = FILEIO_EINVAL; return -1; } /* If an attachment was found, it must point into the packet buffer; work out how many bytes there were. */ if (attachment_tmp != NULL) { *attachment = attachment_tmp; *attachment_len = bytes_read - (*attachment - rs->buf); } return ret; } /* Set the filesystem remote_hostio functions that take FILENAME arguments will use. Return 0 on success, or -1 if an error occurs (and set *REMOTE_ERRNO). */ static int remote_hostio_set_filesystem (struct inferior *inf, int *remote_errno) { struct remote_state *rs = get_remote_state (); int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid; char *p = rs->buf; int left = get_remote_packet_size () - 1; char arg[9]; int ret; if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE) return 0; if (rs->fs_pid != -1 && required_pid == rs->fs_pid) return 0; remote_buffer_add_string (&p, &left, "vFile:setfs:"); xsnprintf (arg, sizeof (arg), "%x", required_pid); remote_buffer_add_string (&p, &left, arg); ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_setfs, remote_errno, NULL, NULL); if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE) return 0; if (ret == 0) rs->fs_pid = required_pid; return ret; } /* Implementation of to_fileio_open. */ static int remote_hostio_open (struct target_ops *self, struct inferior *inf, const char *filename, int flags, int mode, int *remote_errno) { struct remote_state *rs = get_remote_state (); char *p = rs->buf; int left = get_remote_packet_size () - 1; if (remote_hostio_set_filesystem (inf, remote_errno) != 0) return -1; remote_buffer_add_string (&p, &left, "vFile:open:"); remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename, strlen (filename)); remote_buffer_add_string (&p, &left, ","); remote_buffer_add_int (&p, &left, flags); remote_buffer_add_string (&p, &left, ","); remote_buffer_add_int (&p, &left, mode); return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open, remote_errno, NULL, NULL); } /* Implementation of to_fileio_pwrite. */ static int remote_hostio_pwrite (struct target_ops *self, int fd, const gdb_byte *write_buf, int len, ULONGEST offset, int *remote_errno) { struct remote_state *rs = get_remote_state (); char *p = rs->buf; int left = get_remote_packet_size (); int out_len; remote_buffer_add_string (&p, &left, "vFile:pwrite:"); remote_buffer_add_int (&p, &left, fd); remote_buffer_add_string (&p, &left, ","); remote_buffer_add_int (&p, &left, offset); remote_buffer_add_string (&p, &left, ","); p += remote_escape_output (write_buf, len, (gdb_byte *) p, &out_len, get_remote_packet_size () - (p - rs->buf)); return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite, remote_errno, NULL, NULL); } /* Implementation of to_fileio_pread. */ static int remote_hostio_pread (struct target_ops *self, int fd, gdb_byte *read_buf, int len, ULONGEST offset, int *remote_errno) { struct remote_state *rs = get_remote_state (); char *p = rs->buf; char *attachment; int left = get_remote_packet_size (); int ret, attachment_len; int read_len; remote_buffer_add_string (&p, &left, "vFile:pread:"); remote_buffer_add_int (&p, &left, fd); remote_buffer_add_string (&p, &left, ","); remote_buffer_add_int (&p, &left, len); remote_buffer_add_string (&p, &left, ","); remote_buffer_add_int (&p, &left, offset); ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread, remote_errno, &attachment, &attachment_len); if (ret < 0) return ret; read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len, read_buf, len); if (read_len != ret) error (_("Read returned %d, but %d bytes."), ret, (int) read_len); return ret; } /* Implementation of to_fileio_close. */ static int remote_hostio_close (struct target_ops *self, int fd, int *remote_errno) { struct remote_state *rs = get_remote_state (); char *p = rs->buf; int left = get_remote_packet_size () - 1; remote_buffer_add_string (&p, &left, "vFile:close:"); remote_buffer_add_int (&p, &left, fd); return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close, remote_errno, NULL, NULL); } /* Implementation of to_fileio_unlink. */ static int remote_hostio_unlink (struct target_ops *self, struct inferior *inf, const char *filename, int *remote_errno) { struct remote_state *rs = get_remote_state (); char *p = rs->buf; int left = get_remote_packet_size () - 1; if (remote_hostio_set_filesystem (inf, remote_errno) != 0) return -1; remote_buffer_add_string (&p, &left, "vFile:unlink:"); remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename, strlen (filename)); return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink, remote_errno, NULL, NULL); } /* Implementation of to_fileio_readlink. */ static char * remote_hostio_readlink (struct target_ops *self, struct inferior *inf, const char *filename, int *remote_errno) { struct remote_state *rs = get_remote_state (); char *p = rs->buf; char *attachment; int left = get_remote_packet_size (); int len, attachment_len; int read_len; char *ret; if (remote_hostio_set_filesystem (inf, remote_errno) != 0) return NULL; remote_buffer_add_string (&p, &left, "vFile:readlink:"); remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename, strlen (filename)); len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink, remote_errno, &attachment, &attachment_len); if (len < 0) return NULL; ret = xmalloc (len + 1); read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len, (gdb_byte *) ret, len); if (read_len != len) error (_("Readlink returned %d, but %d bytes."), len, read_len); ret[len] = '\0'; return ret; } /* Implementation of to_fileio_fstat. */ static int remote_hostio_fstat (struct target_ops *self, int fd, struct stat *st, int *remote_errno) { struct remote_state *rs = get_remote_state (); char *p = rs->buf; int left = get_remote_packet_size (); int attachment_len, ret; char *attachment; struct fio_stat fst; int read_len; remote_buffer_add_string (&p, &left, "vFile:fstat:"); remote_buffer_add_int (&p, &left, fd); ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_fstat, remote_errno, &attachment, &attachment_len); if (ret < 0) { if (*remote_errno != FILEIO_ENOSYS) return ret; /* Strictly we should return -1, ENOSYS here, but when "set sysroot remote:" was implemented in August 2008 BFD's need for a stat function was sidestepped with this hack. This was not remedied until March 2015 so we retain the previous behavior to avoid breaking compatibility. Note that the memset is a March 2015 addition; older GDBs set st_size *and nothing else* so the structure would have garbage in all other fields. This might break something but retaining the previous behavior here would be just too wrong. */ memset (st, 0, sizeof (struct stat)); st->st_size = INT_MAX; return 0; } read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len, (gdb_byte *) &fst, sizeof (fst)); if (read_len != ret) error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len); if (read_len != sizeof (fst)) error (_("vFile:fstat returned %d bytes, but expecting %d."), read_len, (int) sizeof (fst)); remote_fileio_to_host_stat (&fst, st); return 0; } /* Implementation of to_filesystem_is_local. */ static int remote_filesystem_is_local (struct target_ops *self) { /* Valgrind GDB presents itself as a remote target but works on the local filesystem: it does not implement remote get and users are not expected to set a sysroot. To handle this case we treat the remote filesystem as local if the sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub does not support vFile:open. */ if (gdb_sysroot != NULL && strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0) { enum packet_support ps = packet_support (PACKET_vFile_open); if (ps == PACKET_SUPPORT_UNKNOWN) { int fd, remote_errno; /* Try opening a file to probe support. The supplied filename is irrelevant, we only care about whether the stub recognizes the packet or not. */ fd = remote_hostio_open (self, NULL, "just probing", FILEIO_O_RDONLY, 0700, &remote_errno); if (fd >= 0) remote_hostio_close (self, fd, &remote_errno); ps = packet_support (PACKET_vFile_open); } if (ps == PACKET_DISABLE) { static int warning_issued = 0; if (!warning_issued) { warning (_("remote target does not support file" " transfer, attempting to access files" " from local filesystem.")); warning_issued = 1; } return 1; } } return 0; } static int remote_fileio_errno_to_host (int errnum) { switch (errnum) { case FILEIO_EPERM: return EPERM; case FILEIO_ENOENT: return ENOENT; case FILEIO_EINTR: return EINTR; case FILEIO_EIO: return EIO; case FILEIO_EBADF: return EBADF; case FILEIO_EACCES: return EACCES; case FILEIO_EFAULT: return EFAULT; case FILEIO_EBUSY: return EBUSY; case FILEIO_EEXIST: return EEXIST; case FILEIO_ENODEV: return ENODEV; case FILEIO_ENOTDIR: return ENOTDIR; case FILEIO_EISDIR: return EISDIR; case FILEIO_EINVAL: return EINVAL; case FILEIO_ENFILE: return ENFILE; case FILEIO_EMFILE: return EMFILE; case FILEIO_EFBIG: return EFBIG; case FILEIO_ENOSPC: return ENOSPC; case FILEIO_ESPIPE: return ESPIPE; case FILEIO_EROFS: return EROFS; case FILEIO_ENOSYS: return ENOSYS; case FILEIO_ENAMETOOLONG: return ENAMETOOLONG; } return -1; } static char * remote_hostio_error (int errnum) { int host_error = remote_fileio_errno_to_host (errnum); if (host_error == -1) error (_("Unknown remote I/O error %d"), errnum); else error (_("Remote I/O error: %s"), safe_strerror (host_error)); } static void remote_hostio_close_cleanup (void *opaque) { int fd = *(int *) opaque; int remote_errno; remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno); } void remote_file_put (const char *local_file, const char *remote_file, int from_tty) { struct cleanup *back_to, *close_cleanup; int retcode, fd, remote_errno, bytes, io_size; FILE *file; gdb_byte *buffer; int bytes_in_buffer; int saw_eof; ULONGEST offset; struct remote_state *rs = get_remote_state (); if (!rs->remote_desc) error (_("command can only be used with remote target")); file = gdb_fopen_cloexec (local_file, "rb"); if (file == NULL) perror_with_name (local_file); back_to = make_cleanup_fclose (file); fd = remote_hostio_open (find_target_at (process_stratum), NULL, remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT | FILEIO_O_TRUNC), 0700, &remote_errno); if (fd == -1) remote_hostio_error (remote_errno); /* Send up to this many bytes at once. They won't all fit in the remote packet limit, so we'll transfer slightly fewer. */ io_size = get_remote_packet_size (); buffer = xmalloc (io_size); make_cleanup (xfree, buffer); close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd); bytes_in_buffer = 0; saw_eof = 0; offset = 0; while (bytes_in_buffer || !saw_eof) { if (!saw_eof) { bytes = fread (buffer + bytes_in_buffer, 1, io_size - bytes_in_buffer, file); if (bytes == 0) { if (ferror (file)) error (_("Error reading %s."), local_file); else { /* EOF. Unless there is something still in the buffer from the last iteration, we are done. */ saw_eof = 1; if (bytes_in_buffer == 0) break; } } } else bytes = 0; bytes += bytes_in_buffer; bytes_in_buffer = 0; retcode = remote_hostio_pwrite (find_target_at (process_stratum), fd, buffer, bytes, offset, &remote_errno); if (retcode < 0) remote_hostio_error (remote_errno); else if (retcode == 0) error (_("Remote write of %d bytes returned 0!"), bytes); else if (retcode < bytes) { /* Short write. Save the rest of the read data for the next write. */ bytes_in_buffer = bytes - retcode; memmove (buffer, buffer + retcode, bytes_in_buffer); } offset += retcode; } discard_cleanups (close_cleanup); if (remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno)) remote_hostio_error (remote_errno); if (from_tty) printf_filtered (_("Successfully sent file \"%s\".\n"), local_file); do_cleanups (back_to); } void remote_file_get (const char *remote_file, const char *local_file, int from_tty) { struct cleanup *back_to, *close_cleanup; int fd, remote_errno, bytes, io_size; FILE *file; gdb_byte *buffer; ULONGEST offset; struct remote_state *rs = get_remote_state (); if (!rs->remote_desc) error (_("command can only be used with remote target")); fd = remote_hostio_open (find_target_at (process_stratum), NULL, remote_file, FILEIO_O_RDONLY, 0, &remote_errno); if (fd == -1) remote_hostio_error (remote_errno); file = gdb_fopen_cloexec (local_file, "wb"); if (file == NULL) perror_with_name (local_file); back_to = make_cleanup_fclose (file); /* Send up to this many bytes at once. They won't all fit in the remote packet limit, so we'll transfer slightly fewer. */ io_size = get_remote_packet_size (); buffer = xmalloc (io_size); make_cleanup (xfree, buffer); close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd); offset = 0; while (1) { bytes = remote_hostio_pread (find_target_at (process_stratum), fd, buffer, io_size, offset, &remote_errno); if (bytes == 0) /* Success, but no bytes, means end-of-file. */ break; if (bytes == -1) remote_hostio_error (remote_errno); offset += bytes; bytes = fwrite (buffer, 1, bytes, file); if (bytes == 0) perror_with_name (local_file); } discard_cleanups (close_cleanup); if (remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno)) remote_hostio_error (remote_errno); if (from_tty) printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file); do_cleanups (back_to); } void remote_file_delete (const char *remote_file, int from_tty) { int retcode, remote_errno; struct remote_state *rs = get_remote_state (); if (!rs->remote_desc) error (_("command can only be used with remote target")); retcode = remote_hostio_unlink (find_target_at (process_stratum), NULL, remote_file, &remote_errno); if (retcode == -1) remote_hostio_error (remote_errno); if (from_tty) printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file); } static void remote_put_command (char *args, int from_tty) { struct cleanup *back_to; char **argv; if (args == NULL) error_no_arg (_("file to put")); argv = gdb_buildargv (args); back_to = make_cleanup_freeargv (argv); if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL) error (_("Invalid parameters to remote put")); remote_file_put (argv[0], argv[1], from_tty); do_cleanups (back_to); } static void remote_get_command (char *args, int from_tty) { struct cleanup *back_to; char **argv; if (args == NULL) error_no_arg (_("file to get")); argv = gdb_buildargv (args); back_to = make_cleanup_freeargv (argv); if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL) error (_("Invalid parameters to remote get")); remote_file_get (argv[0], argv[1], from_tty); do_cleanups (back_to); } static void remote_delete_command (char *args, int from_tty) { struct cleanup *back_to; char **argv; if (args == NULL) error_no_arg (_("file to delete")); argv = gdb_buildargv (args); back_to = make_cleanup_freeargv (argv); if (argv[0] == NULL || argv[1] != NULL) error (_("Invalid parameters to remote delete")); remote_file_delete (argv[0], from_tty); do_cleanups (back_to); } static void remote_command (char *args, int from_tty) { help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout); } static int remote_can_execute_reverse (struct target_ops *self) { if (packet_support (PACKET_bs) == PACKET_ENABLE || packet_support (PACKET_bc) == PACKET_ENABLE) return 1; else return 0; } static int remote_supports_non_stop (struct target_ops *self) { return 1; } static int remote_supports_disable_randomization (struct target_ops *self) { /* Only supported in extended mode. */ return 0; } static int remote_supports_multi_process (struct target_ops *self) { struct remote_state *rs = get_remote_state (); /* Only extended-remote handles being attached to multiple processes, even though plain remote can use the multi-process thread id extensions, so that GDB knows the target process's PID. */ return rs->extended && remote_multi_process_p (rs); } static int remote_supports_cond_tracepoints (void) { return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE; } static int remote_supports_cond_breakpoints (struct target_ops *self) { return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE; } static int remote_supports_fast_tracepoints (void) { return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE; } static int remote_supports_static_tracepoints (void) { return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE; } static int remote_supports_install_in_trace (void) { return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE; } static int remote_supports_enable_disable_tracepoint (struct target_ops *self) { return (packet_support (PACKET_EnableDisableTracepoints_feature) == PACKET_ENABLE); } static int remote_supports_string_tracing (struct target_ops *self) { return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE; } static int remote_can_run_breakpoint_commands (struct target_ops *self) { return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE; } static void remote_trace_init (struct target_ops *self) { putpkt ("QTinit"); remote_get_noisy_reply (&target_buf, &target_buf_size); if (strcmp (target_buf, "OK") != 0) error (_("Target does not support this command.")); } static void free_actions_list (char **actions_list); static void free_actions_list_cleanup_wrapper (void *); static void free_actions_list_cleanup_wrapper (void *al) { free_actions_list (al); } static void free_actions_list (char **actions_list) { int ndx; if (actions_list == 0) return; for (ndx = 0; actions_list[ndx]; ndx++) xfree (actions_list[ndx]); xfree (actions_list); } /* Recursive routine to walk through command list including loops, and download packets for each command. */ static void remote_download_command_source (int num, ULONGEST addr, struct command_line *cmds) { struct remote_state *rs = get_remote_state (); struct command_line *cmd; for (cmd = cmds; cmd; cmd = cmd->next) { QUIT; /* Allow user to bail out with ^C. */ strcpy (rs->buf, "QTDPsrc:"); encode_source_string (num, addr, "cmd", cmd->line, rs->buf + strlen (rs->buf), rs->buf_size - strlen (rs->buf)); putpkt (rs->buf); remote_get_noisy_reply (&target_buf, &target_buf_size); if (strcmp (target_buf, "OK")) warning (_("Target does not support source download.")); if (cmd->control_type == while_control || cmd->control_type == while_stepping_control) { remote_download_command_source (num, addr, *cmd->body_list); QUIT; /* Allow user to bail out with ^C. */ strcpy (rs->buf, "QTDPsrc:"); encode_source_string (num, addr, "cmd", "end", rs->buf + strlen (rs->buf), rs->buf_size - strlen (rs->buf)); putpkt (rs->buf); remote_get_noisy_reply (&target_buf, &target_buf_size); if (strcmp (target_buf, "OK")) warning (_("Target does not support source download.")); } } } static void remote_download_tracepoint (struct target_ops *self, struct bp_location *loc) { #define BUF_SIZE 2048 CORE_ADDR tpaddr; char addrbuf[40]; char buf[BUF_SIZE]; char **tdp_actions; char **stepping_actions; int ndx; struct cleanup *old_chain = NULL; struct agent_expr *aexpr; struct cleanup *aexpr_chain = NULL; char *pkt; struct breakpoint *b = loc->owner; struct tracepoint *t = (struct tracepoint *) b; encode_actions_rsp (loc, &tdp_actions, &stepping_actions); old_chain = make_cleanup (free_actions_list_cleanup_wrapper, tdp_actions); (void) make_cleanup (free_actions_list_cleanup_wrapper, stepping_actions); tpaddr = loc->address; sprintf_vma (addrbuf, tpaddr); xsnprintf (buf, BUF_SIZE, "QTDP:%x:%s:%c:%lx:%x", b->number, addrbuf, /* address */ (b->enable_state == bp_enabled ? 'E' : 'D'), t->step_count, t->pass_count); /* Fast tracepoints are mostly handled by the target, but we can tell the target how big of an instruction block should be moved around. */ if (b->type == bp_fast_tracepoint) { /* Only test for support at download time; we may not know target capabilities at definition time. */ if (remote_supports_fast_tracepoints ()) { int isize; if (gdbarch_fast_tracepoint_valid_at (target_gdbarch (), tpaddr, &isize, NULL)) xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":F%x", isize); else /* If it passed validation at definition but fails now, something is very wrong. */ internal_error (__FILE__, __LINE__, _("Fast tracepoint not " "valid during download")); } else /* Fast tracepoints are functionally identical to regular tracepoints, so don't take lack of support as a reason to give up on the trace run. */ warning (_("Target does not support fast tracepoints, " "downloading %d as regular tracepoint"), b->number); } else if (b->type == bp_static_tracepoint) { /* Only test for support at download time; we may not know target capabilities at definition time. */ if (remote_supports_static_tracepoints ()) { struct static_tracepoint_marker marker; if (target_static_tracepoint_marker_at (tpaddr, &marker)) strcat (buf, ":S"); else error (_("Static tracepoint not valid during download")); } else /* Fast tracepoints are functionally identical to regular tracepoints, so don't take lack of support as a reason to give up on the trace run. */ error (_("Target does not support static tracepoints")); } /* If the tracepoint has a conditional, make it into an agent expression and append to the definition. */ if (loc->cond) { /* Only test support at download time, we may not know target capabilities at definition time. */ if (remote_supports_cond_tracepoints ()) { aexpr = gen_eval_for_expr (tpaddr, loc->cond); aexpr_chain = make_cleanup_free_agent_expr (aexpr); xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":X%x,", aexpr->len); pkt = buf + strlen (buf); for (ndx = 0; ndx < aexpr->len; ++ndx) pkt = pack_hex_byte (pkt, aexpr->buf[ndx]); *pkt = '\0'; do_cleanups (aexpr_chain); } else warning (_("Target does not support conditional tracepoints, " "ignoring tp %d cond"), b->number); } if (b->commands || *default_collect) strcat (buf, "-"); putpkt (buf); remote_get_noisy_reply (&target_buf, &target_buf_size); if (strcmp (target_buf, "OK")) error (_("Target does not support tracepoints.")); /* do_single_steps (t); */ if (tdp_actions) { for (ndx = 0; tdp_actions[ndx]; ndx++) { QUIT; /* Allow user to bail out with ^C. */ xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%c", b->number, addrbuf, /* address */ tdp_actions[ndx], ((tdp_actions[ndx + 1] || stepping_actions) ? '-' : 0)); putpkt (buf); remote_get_noisy_reply (&target_buf, &target_buf_size); if (strcmp (target_buf, "OK")) error (_("Error on target while setting tracepoints.")); } } if (stepping_actions) { for (ndx = 0; stepping_actions[ndx]; ndx++) { QUIT; /* Allow user to bail out with ^C. */ xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%s%s", b->number, addrbuf, /* address */ ((ndx == 0) ? "S" : ""), stepping_actions[ndx], (stepping_actions[ndx + 1] ? "-" : "")); putpkt (buf); remote_get_noisy_reply (&target_buf, &target_buf_size); if (strcmp (target_buf, "OK")) error (_("Error on target while setting tracepoints.")); } } if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE) { if (b->addr_string) { strcpy (buf, "QTDPsrc:"); encode_source_string (b->number, loc->address, "at", b->addr_string, buf + strlen (buf), 2048 - strlen (buf)); putpkt (buf); remote_get_noisy_reply (&target_buf, &target_buf_size); if (strcmp (target_buf, "OK")) warning (_("Target does not support source download.")); } if (b->cond_string) { strcpy (buf, "QTDPsrc:"); encode_source_string (b->number, loc->address, "cond", b->cond_string, buf + strlen (buf), 2048 - strlen (buf)); putpkt (buf); remote_get_noisy_reply (&target_buf, &target_buf_size); if (strcmp (target_buf, "OK")) warning (_("Target does not support source download.")); } remote_download_command_source (b->number, loc->address, breakpoint_commands (b)); } do_cleanups (old_chain); } static int remote_can_download_tracepoint (struct target_ops *self) { struct remote_state *rs = get_remote_state (); struct trace_status *ts; int status; /* Don't try to install tracepoints until we've relocated our symbols, and fetched and merged the target's tracepoint list with ours. */ if (rs->starting_up) return 0; ts = current_trace_status (); status = remote_get_trace_status (self, ts); if (status == -1 || !ts->running_known || !ts->running) return 0; /* If we are in a tracing experiment, but remote stub doesn't support installing tracepoint in trace, we have to return. */ if (!remote_supports_install_in_trace ()) return 0; return 1; } static void remote_download_trace_state_variable (struct target_ops *self, struct trace_state_variable *tsv) { struct remote_state *rs = get_remote_state (); char *p; xsnprintf (rs->buf, get_remote_packet_size (), "QTDV:%x:%s:%x:", tsv->number, phex ((ULONGEST) tsv->initial_value, 8), tsv->builtin); p = rs->buf + strlen (rs->buf); if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ()) error (_("Trace state variable name too long for tsv definition packet")); p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, strlen (tsv->name)); *p++ = '\0'; putpkt (rs->buf); remote_get_noisy_reply (&target_buf, &target_buf_size); if (*target_buf == '\0') error (_("Target does not support this command.")); if (strcmp (target_buf, "OK") != 0) error (_("Error on target while downloading trace state variable.")); } static void remote_enable_tracepoint (struct target_ops *self, struct bp_location *location) { struct remote_state *rs = get_remote_state (); char addr_buf[40]; sprintf_vma (addr_buf, location->address); xsnprintf (rs->buf, get_remote_packet_size (), "QTEnable:%x:%s", location->owner->number, addr_buf); putpkt (rs->buf); remote_get_noisy_reply (&rs->buf, &rs->buf_size); if (*rs->buf == '\0') error (_("Target does not support enabling tracepoints while a trace run is ongoing.")); if (strcmp (rs->buf, "OK") != 0) error (_("Error on target while enabling tracepoint.")); } static void remote_disable_tracepoint (struct target_ops *self, struct bp_location *location) { struct remote_state *rs = get_remote_state (); char addr_buf[40]; sprintf_vma (addr_buf, location->address); xsnprintf (rs->buf, get_remote_packet_size (), "QTDisable:%x:%s", location->owner->number, addr_buf); putpkt (rs->buf); remote_get_noisy_reply (&rs->buf, &rs->buf_size); if (*rs->buf == '\0') error (_("Target does not support disabling tracepoints while a trace run is ongoing.")); if (strcmp (rs->buf, "OK") != 0) error (_("Error on target while disabling tracepoint.")); } static void remote_trace_set_readonly_regions (struct target_ops *self) { asection *s; bfd *abfd = NULL; bfd_size_type size; bfd_vma vma; int anysecs = 0; int offset = 0; if (!exec_bfd) return; /* No information to give. */ strcpy (target_buf, "QTro"); offset = strlen (target_buf); for (s = exec_bfd->sections; s; s = s->next) { char tmp1[40], tmp2[40]; int sec_length; if ((s->flags & SEC_LOAD) == 0 || /* (s->flags & SEC_CODE) == 0 || */ (s->flags & SEC_READONLY) == 0) continue; anysecs = 1; vma = bfd_get_section_vma (abfd, s); size = bfd_get_section_size (s); sprintf_vma (tmp1, vma); sprintf_vma (tmp2, vma + size); sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2); if (offset + sec_length + 1 > target_buf_size) { if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE) warning (_("\ Too many sections for read-only sections definition packet.")); break; } xsnprintf (target_buf + offset, target_buf_size - offset, ":%s,%s", tmp1, tmp2); offset += sec_length; } if (anysecs) { putpkt (target_buf); getpkt (&target_buf, &target_buf_size, 0); } } static void remote_trace_start (struct target_ops *self) { putpkt ("QTStart"); remote_get_noisy_reply (&target_buf, &target_buf_size); if (*target_buf == '\0') error (_("Target does not support this command.")); if (strcmp (target_buf, "OK") != 0) error (_("Bogus reply from target: %s"), target_buf); } static int remote_get_trace_status (struct target_ops *self, struct trace_status *ts) { /* Initialize it just to avoid a GCC false warning. */ char *p = NULL; /* FIXME we need to get register block size some other way. */ extern int trace_regblock_size; enum packet_result result; if (packet_support (PACKET_qTStatus) == PACKET_DISABLE) return -1; trace_regblock_size = get_remote_arch_state ()->sizeof_g_packet; putpkt ("qTStatus"); TRY { p = remote_get_noisy_reply (&target_buf, &target_buf_size); } CATCH (ex, RETURN_MASK_ERROR) { if (ex.error != TARGET_CLOSE_ERROR) { exception_fprintf (gdb_stderr, ex, "qTStatus: "); return -1; } throw_exception (ex); } END_CATCH result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]); /* If the remote target doesn't do tracing, flag it. */ if (result == PACKET_UNKNOWN) return -1; /* We're working with a live target. */ ts->filename = NULL; if (*p++ != 'T') error (_("Bogus trace status reply from target: %s"), target_buf); /* Function 'parse_trace_status' sets default value of each field of 'ts' at first, so we don't have to do it here. */ parse_trace_status (p, ts); return ts->running; } static void remote_get_tracepoint_status (struct target_ops *self, struct breakpoint *bp, struct uploaded_tp *utp) { struct remote_state *rs = get_remote_state (); char *reply; struct bp_location *loc; struct tracepoint *tp = (struct tracepoint *) bp; size_t size = get_remote_packet_size (); if (tp) { tp->base.hit_count = 0; tp->traceframe_usage = 0; for (loc = tp->base.loc; loc; loc = loc->next) { /* If the tracepoint was never downloaded, don't go asking for any status. */ if (tp->number_on_target == 0) continue; xsnprintf (rs->buf, size, "qTP:%x:%s", tp->number_on_target, phex_nz (loc->address, 0)); putpkt (rs->buf); reply = remote_get_noisy_reply (&target_buf, &target_buf_size); if (reply && *reply) { if (*reply == 'V') parse_tracepoint_status (reply + 1, bp, utp); } } } else if (utp) { utp->hit_count = 0; utp->traceframe_usage = 0; xsnprintf (rs->buf, size, "qTP:%x:%s", utp->number, phex_nz (utp->addr, 0)); putpkt (rs->buf); reply = remote_get_noisy_reply (&target_buf, &target_buf_size); if (reply && *reply) { if (*reply == 'V') parse_tracepoint_status (reply + 1, bp, utp); } } } static void remote_trace_stop (struct target_ops *self) { putpkt ("QTStop"); remote_get_noisy_reply (&target_buf, &target_buf_size); if (*target_buf == '\0') error (_("Target does not support this command.")); if (strcmp (target_buf, "OK") != 0) error (_("Bogus reply from target: %s"), target_buf); } static int remote_trace_find (struct target_ops *self, enum trace_find_type type, int num, CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) { struct remote_state *rs = get_remote_state (); char *endbuf = rs->buf + get_remote_packet_size (); char *p, *reply; int target_frameno = -1, target_tracept = -1; /* Lookups other than by absolute frame number depend on the current trace selected, so make sure it is correct on the remote end first. */ if (type != tfind_number) set_remote_traceframe (); p = rs->buf; strcpy (p, "QTFrame:"); p = strchr (p, '\0'); switch (type) { case tfind_number: xsnprintf (p, endbuf - p, "%x", num); break; case tfind_pc: xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0)); break; case tfind_tp: xsnprintf (p, endbuf - p, "tdp:%x", num); break; case tfind_range: xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0), phex_nz (addr2, 0)); break; case tfind_outside: xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0), phex_nz (addr2, 0)); break; default: error (_("Unknown trace find type %d"), type); } putpkt (rs->buf); reply = remote_get_noisy_reply (&(rs->buf), &rs->buf_size); if (*reply == '\0') error (_("Target does not support this command.")); while (reply && *reply) switch (*reply) { case 'F': p = ++reply; target_frameno = (int) strtol (p, &reply, 16); if (reply == p) error (_("Unable to parse trace frame number")); /* Don't update our remote traceframe number cache on failure to select a remote traceframe. */ if (target_frameno == -1) return -1; break; case 'T': p = ++reply; target_tracept = (int) strtol (p, &reply, 16); if (reply == p) error (_("Unable to parse tracepoint number")); break; case 'O': /* "OK"? */ if (reply[1] == 'K' && reply[2] == '\0') reply += 2; else error (_("Bogus reply from target: %s"), reply); break; default: error (_("Bogus reply from target: %s"), reply); } if (tpp) *tpp = target_tracept; rs->remote_traceframe_number = target_frameno; return target_frameno; } static int remote_get_trace_state_variable_value (struct target_ops *self, int tsvnum, LONGEST *val) { struct remote_state *rs = get_remote_state (); char *reply; ULONGEST uval; set_remote_traceframe (); xsnprintf (rs->buf, get_remote_packet_size (), "qTV:%x", tsvnum); putpkt (rs->buf); reply = remote_get_noisy_reply (&target_buf, &target_buf_size); if (reply && *reply) { if (*reply == 'V') { unpack_varlen_hex (reply + 1, &uval); *val = (LONGEST) uval; return 1; } } return 0; } static int remote_save_trace_data (struct target_ops *self, const char *filename) { struct remote_state *rs = get_remote_state (); char *p, *reply; p = rs->buf; strcpy (p, "QTSave:"); p += strlen (p); if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ()) error (_("Remote file name too long for trace save packet")); p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename)); *p++ = '\0'; putpkt (rs->buf); reply = remote_get_noisy_reply (&target_buf, &target_buf_size); if (*reply == '\0') error (_("Target does not support this command.")); if (strcmp (reply, "OK") != 0) error (_("Bogus reply from target: %s"), reply); return 0; } /* This is basically a memory transfer, but needs to be its own packet because we don't know how the target actually organizes its trace memory, plus we want to be able to ask for as much as possible, but not be unhappy if we don't get as much as we ask for. */ static LONGEST remote_get_raw_trace_data (struct target_ops *self, gdb_byte *buf, ULONGEST offset, LONGEST len) { struct remote_state *rs = get_remote_state (); char *reply; char *p; int rslt; p = rs->buf; strcpy (p, "qTBuffer:"); p += strlen (p); p += hexnumstr (p, offset); *p++ = ','; p += hexnumstr (p, len); *p++ = '\0'; putpkt (rs->buf); reply = remote_get_noisy_reply (&target_buf, &target_buf_size); if (reply && *reply) { /* 'l' by itself means we're at the end of the buffer and there is nothing more to get. */ if (*reply == 'l') return 0; /* Convert the reply into binary. Limit the number of bytes to convert according to our passed-in buffer size, rather than what was returned in the packet; if the target is unexpectedly generous and gives us a bigger reply than we asked for, we don't want to crash. */ rslt = hex2bin (target_buf, buf, len); return rslt; } /* Something went wrong, flag as an error. */ return -1; } static void remote_set_disconnected_tracing (struct target_ops *self, int val) { struct remote_state *rs = get_remote_state (); if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE) { char *reply; xsnprintf (rs->buf, get_remote_packet_size (), "QTDisconnected:%x", val); putpkt (rs->buf); reply = remote_get_noisy_reply (&target_buf, &target_buf_size); if (*reply == '\0') error (_("Target does not support this command.")); if (strcmp (reply, "OK") != 0) error (_("Bogus reply from target: %s"), reply); } else if (val) warning (_("Target does not support disconnected tracing.")); } static int remote_core_of_thread (struct target_ops *ops, ptid_t ptid) { struct thread_info *info = find_thread_ptid (ptid); if (info && info->priv) return info->priv->core; return -1; } static void remote_set_circular_trace_buffer (struct target_ops *self, int val) { struct remote_state *rs = get_remote_state (); char *reply; xsnprintf (rs->buf, get_remote_packet_size (), "QTBuffer:circular:%x", val); putpkt (rs->buf); reply = remote_get_noisy_reply (&target_buf, &target_buf_size); if (*reply == '\0') error (_("Target does not support this command.")); if (strcmp (reply, "OK") != 0) error (_("Bogus reply from target: %s"), reply); } static struct traceframe_info * remote_traceframe_info (struct target_ops *self) { char *text; text = target_read_stralloc (¤t_target, TARGET_OBJECT_TRACEFRAME_INFO, NULL); if (text != NULL) { struct traceframe_info *info; struct cleanup *back_to = make_cleanup (xfree, text); info = parse_traceframe_info (text); do_cleanups (back_to); return info; } return NULL; } /* Handle the qTMinFTPILen packet. Returns the minimum length of instruction on which a fast tracepoint may be placed. Returns -1 if the packet is not supported, and 0 if the minimum instruction length is unknown. */ static int remote_get_min_fast_tracepoint_insn_len (struct target_ops *self) { struct remote_state *rs = get_remote_state (); char *reply; /* If we're not debugging a process yet, the IPA can't be loaded. */ if (!target_has_execution) return 0; /* Make sure the remote is pointing at the right process. */ set_general_process (); xsnprintf (rs->buf, get_remote_packet_size (), "qTMinFTPILen"); putpkt (rs->buf); reply = remote_get_noisy_reply (&target_buf, &target_buf_size); if (*reply == '\0') return -1; else { ULONGEST min_insn_len; unpack_varlen_hex (reply, &min_insn_len); return (int) min_insn_len; } } static void remote_set_trace_buffer_size (struct target_ops *self, LONGEST val) { if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE) { struct remote_state *rs = get_remote_state (); char *buf = rs->buf; char *endbuf = rs->buf + get_remote_packet_size (); enum packet_result result; gdb_assert (val >= 0 || val == -1); buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:"); /* Send -1 as literal "-1" to avoid host size dependency. */ if (val < 0) { *buf++ = '-'; buf += hexnumstr (buf, (ULONGEST) -val); } else buf += hexnumstr (buf, (ULONGEST) val); putpkt (rs->buf); remote_get_noisy_reply (&rs->buf, &rs->buf_size); result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QTBuffer_size]); if (result != PACKET_OK) warning (_("Bogus reply from target: %s"), rs->buf); } } static int remote_set_trace_notes (struct target_ops *self, const char *user, const char *notes, const char *stop_notes) { struct remote_state *rs = get_remote_state (); char *reply; char *buf = rs->buf; char *endbuf = rs->buf + get_remote_packet_size (); int nbytes; buf += xsnprintf (buf, endbuf - buf, "QTNotes:"); if (user) { buf += xsnprintf (buf, endbuf - buf, "user:"); nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user)); buf += 2 * nbytes; *buf++ = ';'; } if (notes) { buf += xsnprintf (buf, endbuf - buf, "notes:"); nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes)); buf += 2 * nbytes; *buf++ = ';'; } if (stop_notes) { buf += xsnprintf (buf, endbuf - buf, "tstop:"); nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes)); buf += 2 * nbytes; *buf++ = ';'; } /* Ensure the buffer is terminated. */ *buf = '\0'; putpkt (rs->buf); reply = remote_get_noisy_reply (&target_buf, &target_buf_size); if (*reply == '\0') return 0; if (strcmp (reply, "OK") != 0) error (_("Bogus reply from target: %s"), reply); return 1; } static int remote_use_agent (struct target_ops *self, int use) { if (packet_support (PACKET_QAgent) != PACKET_DISABLE) { struct remote_state *rs = get_remote_state (); /* If the stub supports QAgent. */ xsnprintf (rs->buf, get_remote_packet_size (), "QAgent:%d", use); putpkt (rs->buf); getpkt (&rs->buf, &rs->buf_size, 0); if (strcmp (rs->buf, "OK") == 0) { use_agent = use; return 1; } } return 0; } static int remote_can_use_agent (struct target_ops *self) { return (packet_support (PACKET_QAgent) != PACKET_DISABLE); } struct btrace_target_info { /* The ptid of the traced thread. */ ptid_t ptid; /* The obtained branch trace configuration. */ struct btrace_config conf; }; /* Reset our idea of our target's btrace configuration. */ static void remote_btrace_reset (void) { struct remote_state *rs = get_remote_state (); memset (&rs->btrace_config, 0, sizeof (rs->btrace_config)); } /* Check whether the target supports branch tracing. */ static int remote_supports_btrace (struct target_ops *self, enum btrace_format format) { if (packet_support (PACKET_Qbtrace_off) != PACKET_ENABLE) return 0; if (packet_support (PACKET_qXfer_btrace) != PACKET_ENABLE) return 0; switch (format) { case BTRACE_FORMAT_NONE: return 0; case BTRACE_FORMAT_BTS: return (packet_support (PACKET_Qbtrace_bts) == PACKET_ENABLE); } internal_error (__FILE__, __LINE__, _("Unknown branch trace format")); } /* Synchronize the configuration with the target. */ static void btrace_sync_conf (const struct btrace_config *conf) { struct packet_config *packet; struct remote_state *rs; char *buf, *pos, *endbuf; rs = get_remote_state (); buf = rs->buf; endbuf = buf + get_remote_packet_size (); packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size]; if (packet_config_support (packet) == PACKET_ENABLE && conf->bts.size != rs->btrace_config.bts.size) { pos = buf; pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name, conf->bts.size); putpkt (buf); getpkt (&buf, &rs->buf_size, 0); if (packet_ok (buf, packet) == PACKET_ERROR) { if (buf[0] == 'E' && buf[1] == '.') error (_("Failed to configure the BTS buffer size: %s"), buf + 2); else error (_("Failed to configure the BTS buffer size.")); } rs->btrace_config.bts.size = conf->bts.size; } } /* Read the current thread's btrace configuration from the target and store it into CONF. */ static void btrace_read_config (struct btrace_config *conf) { char *xml; xml = target_read_stralloc (¤t_target, TARGET_OBJECT_BTRACE_CONF, ""); if (xml != NULL) { struct cleanup *cleanup; cleanup = make_cleanup (xfree, xml); parse_xml_btrace_conf (conf, xml); do_cleanups (cleanup); } } /* Enable branch tracing. */ static struct btrace_target_info * remote_enable_btrace (struct target_ops *self, ptid_t ptid, const struct btrace_config *conf) { struct btrace_target_info *tinfo = NULL; struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_bts]; struct remote_state *rs = get_remote_state (); char *buf = rs->buf; char *endbuf = rs->buf + get_remote_packet_size (); if (packet_config_support (packet) != PACKET_ENABLE) error (_("Target does not support branch tracing.")); btrace_sync_conf (conf); set_general_thread (ptid); buf += xsnprintf (buf, endbuf - buf, "%s", packet->name); putpkt (rs->buf); getpkt (&rs->buf, &rs->buf_size, 0); if (packet_ok (rs->buf, packet) == PACKET_ERROR) { if (rs->buf[0] == 'E' && rs->buf[1] == '.') error (_("Could not enable branch tracing for %s: %s"), target_pid_to_str (ptid), rs->buf + 2); else error (_("Could not enable branch tracing for %s."), target_pid_to_str (ptid)); } tinfo = xzalloc (sizeof (*tinfo)); tinfo->ptid = ptid; /* If we fail to read the configuration, we lose some information, but the tracing itself is not impacted. */ TRY { btrace_read_config (&tinfo->conf); } CATCH (err, RETURN_MASK_ERROR) { if (err.message != NULL) warning ("%s", err.message); } END_CATCH return tinfo; } /* Disable branch tracing. */ static void remote_disable_btrace (struct target_ops *self, struct btrace_target_info *tinfo) { struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off]; struct remote_state *rs = get_remote_state (); char *buf = rs->buf; char *endbuf = rs->buf + get_remote_packet_size (); if (packet_config_support (packet) != PACKET_ENABLE) error (_("Target does not support branch tracing.")); set_general_thread (tinfo->ptid); buf += xsnprintf (buf, endbuf - buf, "%s", packet->name); putpkt (rs->buf); getpkt (&rs->buf, &rs->buf_size, 0); if (packet_ok (rs->buf, packet) == PACKET_ERROR) { if (rs->buf[0] == 'E' && rs->buf[1] == '.') error (_("Could not disable branch tracing for %s: %s"), target_pid_to_str (tinfo->ptid), rs->buf + 2); else error (_("Could not disable branch tracing for %s."), target_pid_to_str (tinfo->ptid)); } xfree (tinfo); } /* Teardown branch tracing. */ static void remote_teardown_btrace (struct target_ops *self, struct btrace_target_info *tinfo) { /* We must not talk to the target during teardown. */ xfree (tinfo); } /* Read the branch trace. */ static enum btrace_error remote_read_btrace (struct target_ops *self, struct btrace_data *btrace, struct btrace_target_info *tinfo, enum btrace_read_type type) { struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace]; struct remote_state *rs = get_remote_state (); struct cleanup *cleanup; const char *annex; char *xml; if (packet_config_support (packet) != PACKET_ENABLE) error (_("Target does not support branch tracing.")); #if !defined(HAVE_LIBEXPAT) error (_("Cannot process branch tracing result. XML parsing not supported.")); #endif switch (type) { case BTRACE_READ_ALL: annex = "all"; break; case BTRACE_READ_NEW: annex = "new"; break; case BTRACE_READ_DELTA: annex = "delta"; break; default: internal_error (__FILE__, __LINE__, _("Bad branch tracing read type: %u."), (unsigned int) type); } xml = target_read_stralloc (¤t_target, TARGET_OBJECT_BTRACE, annex); if (xml == NULL) return BTRACE_ERR_UNKNOWN; cleanup = make_cleanup (xfree, xml); parse_xml_btrace (btrace, xml); do_cleanups (cleanup); return BTRACE_ERR_NONE; } static const struct btrace_config * remote_btrace_conf (struct target_ops *self, const struct btrace_target_info *tinfo) { return &tinfo->conf; } static int remote_augmented_libraries_svr4_read (struct target_ops *self) { return (packet_support (PACKET_augmented_libraries_svr4_read_feature) == PACKET_ENABLE); } /* Implementation of to_load. */ static void remote_load (struct target_ops *self, const char *name, int from_tty) { generic_load (name, from_tty); } /* Accepts an integer PID; returns a string representing a file that can be opened on the remote side to get the symbols for the child process. Returns NULL if the operation is not supported. */ static char * remote_pid_to_exec_file (struct target_ops *self, int pid) { static char *filename = NULL; struct inferior *inf; char *annex = NULL; if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE) return NULL; if (filename != NULL) xfree (filename); inf = find_inferior_pid (pid); if (inf == NULL) internal_error (__FILE__, __LINE__, _("not currently attached to process %d"), pid); if (!inf->fake_pid_p) { const int annex_size = 9; annex = alloca (annex_size); xsnprintf (annex, annex_size, "%x", pid); } filename = target_read_stralloc (¤t_target, TARGET_OBJECT_EXEC_FILE, annex); return filename; } static void init_remote_ops (void) { remote_ops.to_shortname = "remote"; remote_ops.to_longname = "Remote serial target in gdb-specific protocol"; remote_ops.to_doc = "Use a remote computer via a serial line, using a gdb-specific protocol.\n\ Specify the serial device it is connected to\n\ (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."; remote_ops.to_open = remote_open; remote_ops.to_close = remote_close; remote_ops.to_detach = remote_detach; remote_ops.to_disconnect = remote_disconnect; remote_ops.to_resume = remote_resume; remote_ops.to_wait = remote_wait; remote_ops.to_fetch_registers = remote_fetch_registers; remote_ops.to_store_registers = remote_store_registers; remote_ops.to_prepare_to_store = remote_prepare_to_store; remote_ops.to_files_info = remote_files_info; remote_ops.to_insert_breakpoint = remote_insert_breakpoint; remote_ops.to_remove_breakpoint = remote_remove_breakpoint; remote_ops.to_stopped_by_sw_breakpoint = remote_stopped_by_sw_breakpoint; remote_ops.to_supports_stopped_by_sw_breakpoint = remote_supports_stopped_by_sw_breakpoint; remote_ops.to_stopped_by_hw_breakpoint = remote_stopped_by_hw_breakpoint; remote_ops.to_supports_stopped_by_hw_breakpoint = remote_supports_stopped_by_hw_breakpoint; remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint; remote_ops.to_stopped_data_address = remote_stopped_data_address; remote_ops.to_watchpoint_addr_within_range = remote_watchpoint_addr_within_range; remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources; remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint; remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint; remote_ops.to_region_ok_for_hw_watchpoint = remote_region_ok_for_hw_watchpoint; remote_ops.to_insert_watchpoint = remote_insert_watchpoint; remote_ops.to_remove_watchpoint = remote_remove_watchpoint; remote_ops.to_kill = remote_kill; remote_ops.to_load = remote_load; remote_ops.to_mourn_inferior = remote_mourn; remote_ops.to_pass_signals = remote_pass_signals; remote_ops.to_program_signals = remote_program_signals; remote_ops.to_thread_alive = remote_thread_alive; remote_ops.to_update_thread_list = remote_update_thread_list; remote_ops.to_pid_to_str = remote_pid_to_str; remote_ops.to_extra_thread_info = remote_threads_extra_info; remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid; remote_ops.to_stop = remote_stop; remote_ops.to_xfer_partial = remote_xfer_partial; remote_ops.to_rcmd = remote_rcmd; remote_ops.to_pid_to_exec_file = remote_pid_to_exec_file; remote_ops.to_log_command = serial_log_command; remote_ops.to_get_thread_local_address = remote_get_thread_local_address; remote_ops.to_stratum = process_stratum; remote_ops.to_has_all_memory = default_child_has_all_memory; remote_ops.to_has_memory = default_child_has_memory; remote_ops.to_has_stack = default_child_has_stack; remote_ops.to_has_registers = default_child_has_registers; remote_ops.to_has_execution = default_child_has_execution; remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */ remote_ops.to_can_execute_reverse = remote_can_execute_reverse; remote_ops.to_magic = OPS_MAGIC; remote_ops.to_memory_map = remote_memory_map; remote_ops.to_flash_erase = remote_flash_erase; remote_ops.to_flash_done = remote_flash_done; remote_ops.to_read_description = remote_read_description; remote_ops.to_search_memory = remote_search_memory; remote_ops.to_can_async_p = remote_can_async_p; remote_ops.to_is_async_p = remote_is_async_p; remote_ops.to_async = remote_async; remote_ops.to_terminal_inferior = remote_terminal_inferior; remote_ops.to_terminal_ours = remote_terminal_ours; remote_ops.to_supports_non_stop = remote_supports_non_stop; remote_ops.to_supports_multi_process = remote_supports_multi_process; remote_ops.to_supports_disable_randomization = remote_supports_disable_randomization; remote_ops.to_filesystem_is_local = remote_filesystem_is_local; remote_ops.to_fileio_open = remote_hostio_open; remote_ops.to_fileio_pwrite = remote_hostio_pwrite; remote_ops.to_fileio_pread = remote_hostio_pread; remote_ops.to_fileio_fstat = remote_hostio_fstat; remote_ops.to_fileio_close = remote_hostio_close; remote_ops.to_fileio_unlink = remote_hostio_unlink; remote_ops.to_fileio_readlink = remote_hostio_readlink; remote_ops.to_supports_enable_disable_tracepoint = remote_supports_enable_disable_tracepoint; remote_ops.to_supports_string_tracing = remote_supports_string_tracing; remote_ops.to_supports_evaluation_of_breakpoint_conditions = remote_supports_cond_breakpoints; remote_ops.to_can_run_breakpoint_commands = remote_can_run_breakpoint_commands; remote_ops.to_trace_init = remote_trace_init; remote_ops.to_download_tracepoint = remote_download_tracepoint; remote_ops.to_can_download_tracepoint = remote_can_download_tracepoint; remote_ops.to_download_trace_state_variable = remote_download_trace_state_variable; remote_ops.to_enable_tracepoint = remote_enable_tracepoint; remote_ops.to_disable_tracepoint = remote_disable_tracepoint; remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions; remote_ops.to_trace_start = remote_trace_start; remote_ops.to_get_trace_status = remote_get_trace_status; remote_ops.to_get_tracepoint_status = remote_get_tracepoint_status; remote_ops.to_trace_stop = remote_trace_stop; remote_ops.to_trace_find = remote_trace_find; remote_ops.to_get_trace_state_variable_value = remote_get_trace_state_variable_value; remote_ops.to_save_trace_data = remote_save_trace_data; remote_ops.to_upload_tracepoints = remote_upload_tracepoints; remote_ops.to_upload_trace_state_variables = remote_upload_trace_state_variables; remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data; remote_ops.to_get_min_fast_tracepoint_insn_len = remote_get_min_fast_tracepoint_insn_len; remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing; remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer; remote_ops.to_set_trace_buffer_size = remote_set_trace_buffer_size; remote_ops.to_set_trace_notes = remote_set_trace_notes; remote_ops.to_core_of_thread = remote_core_of_thread; remote_ops.to_verify_memory = remote_verify_memory; remote_ops.to_get_tib_address = remote_get_tib_address; remote_ops.to_set_permissions = remote_set_permissions; remote_ops.to_static_tracepoint_marker_at = remote_static_tracepoint_marker_at; remote_ops.to_static_tracepoint_markers_by_strid = remote_static_tracepoint_markers_by_strid; remote_ops.to_traceframe_info = remote_traceframe_info; remote_ops.to_use_agent = remote_use_agent; remote_ops.to_can_use_agent = remote_can_use_agent; remote_ops.to_supports_btrace = remote_supports_btrace; remote_ops.to_enable_btrace = remote_enable_btrace; remote_ops.to_disable_btrace = remote_disable_btrace; remote_ops.to_teardown_btrace = remote_teardown_btrace; remote_ops.to_read_btrace = remote_read_btrace; remote_ops.to_btrace_conf = remote_btrace_conf; remote_ops.to_augmented_libraries_svr4_read = remote_augmented_libraries_svr4_read; } /* Set up the extended remote vector by making a copy of the standard remote vector and adding to it. */ static void init_extended_remote_ops (void) { extended_remote_ops = remote_ops; extended_remote_ops.to_shortname = "extended-remote"; extended_remote_ops.to_longname = "Extended remote serial target in gdb-specific protocol"; extended_remote_ops.to_doc = "Use a remote computer via a serial line, using a gdb-specific protocol.\n\ Specify the serial device it is connected to (e.g. /dev/ttya)."; extended_remote_ops.to_open = extended_remote_open; extended_remote_ops.to_create_inferior = extended_remote_create_inferior; extended_remote_ops.to_mourn_inferior = extended_remote_mourn; extended_remote_ops.to_detach = extended_remote_detach; extended_remote_ops.to_attach = extended_remote_attach; extended_remote_ops.to_post_attach = extended_remote_post_attach; extended_remote_ops.to_kill = extended_remote_kill; extended_remote_ops.to_supports_disable_randomization = extended_remote_supports_disable_randomization; extended_remote_ops.to_follow_fork = remote_follow_fork; extended_remote_ops.to_insert_fork_catchpoint = remote_insert_fork_catchpoint; extended_remote_ops.to_remove_fork_catchpoint = remote_remove_fork_catchpoint; extended_remote_ops.to_insert_vfork_catchpoint = remote_insert_vfork_catchpoint; extended_remote_ops.to_remove_vfork_catchpoint = remote_remove_vfork_catchpoint; } static int remote_can_async_p (struct target_ops *ops) { struct remote_state *rs = get_remote_state (); if (!target_async_permitted) /* We only enable async when the user specifically asks for it. */ return 0; /* We're async whenever the serial device is. */ return serial_can_async_p (rs->remote_desc); } static int remote_is_async_p (struct target_ops *ops) { struct remote_state *rs = get_remote_state (); if (!target_async_permitted) /* We only enable async when the user specifically asks for it. */ return 0; /* We're async whenever the serial device is. */ return serial_is_async_p (rs->remote_desc); } /* Pass the SERIAL event on and up to the client. One day this code will be able to delay notifying the client of an event until the point where an entire packet has been received. */ static serial_event_ftype remote_async_serial_handler; static void remote_async_serial_handler (struct serial *scb, void *context) { struct remote_state *rs = context; /* Don't propogate error information up to the client. Instead let the client find out about the error by querying the target. */ inferior_event_handler (INF_REG_EVENT, NULL); } static void remote_async_inferior_event_handler (gdb_client_data data) { inferior_event_handler (INF_REG_EVENT, NULL); } static void remote_async (struct target_ops *ops, int enable) { struct remote_state *rs = get_remote_state (); if (enable) { serial_async (rs->remote_desc, remote_async_serial_handler, rs); /* If there are pending events in the stop reply queue tell the event loop to process them. */ if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue)) mark_async_event_handler (remote_async_inferior_event_token); } else { serial_async (rs->remote_desc, NULL, NULL); clear_async_event_handler (remote_async_inferior_event_token); } } static void set_remote_cmd (char *args, int from_tty) { help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout); } static void show_remote_cmd (char *args, int from_tty) { /* We can't just use cmd_show_list here, because we want to skip the redundant "show remote Z-packet" and the legacy aliases. */ struct cleanup *showlist_chain; struct cmd_list_element *list = remote_show_cmdlist; struct ui_out *uiout = current_uiout; showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist"); for (; list != NULL; list = list->next) if (strcmp (list->name, "Z-packet") == 0) continue; else if (list->type == not_set_cmd) /* Alias commands are exactly like the original, except they don't have the normal type. */ continue; else { struct cleanup *option_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "option"); ui_out_field_string (uiout, "name", list->name); ui_out_text (uiout, ": "); if (list->type == show_cmd) do_show_command ((char *) NULL, from_tty, list); else cmd_func (list, NULL, from_tty); /* Close the tuple. */ do_cleanups (option_chain); } /* Close the tuple. */ do_cleanups (showlist_chain); } /* Function to be called whenever a new objfile (shlib) is detected. */ static void remote_new_objfile (struct objfile *objfile) { struct remote_state *rs = get_remote_state (); if (rs->remote_desc != 0) /* Have a remote connection. */ remote_check_symbols (); } /* Pull all the tracepoints defined on the target and create local data structures representing them. We don't want to create real tracepoints yet, we don't want to mess up the user's existing collection. */ static int remote_upload_tracepoints (struct target_ops *self, struct uploaded_tp **utpp) { struct remote_state *rs = get_remote_state (); char *p; /* Ask for a first packet of tracepoint definition. */ putpkt ("qTfP"); getpkt (&rs->buf, &rs->buf_size, 0); p = rs->buf; while (*p && *p != 'l') { parse_tracepoint_definition (p, utpp); /* Ask for another packet of tracepoint definition. */ putpkt ("qTsP"); getpkt (&rs->buf, &rs->buf_size, 0); p = rs->buf; } return 0; } static int remote_upload_trace_state_variables (struct target_ops *self, struct uploaded_tsv **utsvp) { struct remote_state *rs = get_remote_state (); char *p; /* Ask for a first packet of variable definition. */ putpkt ("qTfV"); getpkt (&rs->buf, &rs->buf_size, 0); p = rs->buf; while (*p && *p != 'l') { parse_tsv_definition (p, utsvp); /* Ask for another packet of variable definition. */ putpkt ("qTsV"); getpkt (&rs->buf, &rs->buf_size, 0); p = rs->buf; } return 0; } /* The "set/show range-stepping" show hook. */ static void show_range_stepping (struct ui_file *file, int from_tty, struct cmd_list_element *c, const char *value) { fprintf_filtered (file, _("Debugger's willingness to use range stepping " "is %s.\n"), value); } /* The "set/show range-stepping" set hook. */ static void set_range_stepping (char *ignore_args, int from_tty, struct cmd_list_element *c) { struct remote_state *rs = get_remote_state (); /* Whene enabling, check whether range stepping is actually supported by the target, and warn if not. */ if (use_range_stepping) { if (rs->remote_desc != NULL) { if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN) remote_vcont_probe (rs); if (packet_support (PACKET_vCont) == PACKET_ENABLE && rs->supports_vCont.r) return; } warning (_("Range stepping is not supported by the current target")); } } void _initialize_remote (void) { struct remote_state *rs; struct cmd_list_element *cmd; const char *cmd_name; /* architecture specific data */ remote_gdbarch_data_handle = gdbarch_data_register_post_init (init_remote_state); remote_g_packet_data_handle = gdbarch_data_register_pre_init (remote_g_packet_data_init); /* Initialize the per-target state. At the moment there is only one of these, not one per target. Only one target is active at a time. */ remote_state = new_remote_state (); init_remote_ops (); add_target (&remote_ops); init_extended_remote_ops (); add_target (&extended_remote_ops); /* Hook into new objfile notification. */ observer_attach_new_objfile (remote_new_objfile); /* We're no longer interested in notification events of an inferior when it exits. */ observer_attach_inferior_exit (discard_pending_stop_replies); /* Set up signal handlers. */ async_sigint_remote_token = create_async_signal_handler (async_remote_interrupt, NULL); async_sigint_remote_twice_token = create_async_signal_handler (async_remote_interrupt_twice, NULL); #if 0 init_remote_threadtests (); #endif stop_reply_queue = QUEUE_alloc (stop_reply_p, stop_reply_xfree); /* set/show remote ... */ add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\ Remote protocol specific variables\n\ Configure various remote-protocol specific variables such as\n\ the packets being used"), &remote_set_cmdlist, "set remote ", 0 /* allow-unknown */, &setlist); add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\ Remote protocol specific variables\n\ Configure various remote-protocol specific variables such as\n\ the packets being used"), &remote_show_cmdlist, "show remote ", 0 /* allow-unknown */, &showlist); add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\ Compare section data on target to the exec file.\n\ Argument is a single section name (default: all loaded sections).\n\ To compare only read-only loaded sections, specify the -r option."), &cmdlist); add_cmd ("packet", class_maintenance, packet_command, _("\ Send an arbitrary packet to a remote target.\n\ maintenance packet TEXT\n\ If GDB is talking to an inferior via the GDB serial protocol, then\n\ this command sends the string TEXT to the inferior, and displays the\n\ response packet. GDB supplies the initial `$' character, and the\n\ terminating `#' character and checksum."), &maintenancelist); add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\ Set whether to send break if interrupted."), _("\ Show whether to send break if interrupted."), _("\ If set, a break, instead of a cntrl-c, is sent to the remote target."), set_remotebreak, show_remotebreak, &setlist, &showlist); cmd_name = "remotebreak"; cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1); deprecate_cmd (cmd, "set remote interrupt-sequence"); cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */ cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1); deprecate_cmd (cmd, "show remote interrupt-sequence"); add_setshow_enum_cmd ("interrupt-sequence", class_support, interrupt_sequence_modes, &interrupt_sequence_mode, _("\ Set interrupt sequence to remote target."), _("\ Show interrupt sequence to remote target."), _("\ Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."), NULL, show_interrupt_sequence, &remote_set_cmdlist, &remote_show_cmdlist); add_setshow_boolean_cmd ("interrupt-on-connect", class_support, &interrupt_on_connect, _("\ Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \ Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \ If set, interrupt sequence is sent to remote target."), NULL, NULL, &remote_set_cmdlist, &remote_show_cmdlist); /* Install commands for configuring memory read/write packets. */ add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\ Set the maximum number of bytes per memory write packet (deprecated)."), &setlist); add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\ Show the maximum number of bytes per memory write packet (deprecated)."), &showlist); add_cmd ("memory-write-packet-size", no_class, set_memory_write_packet_size, _("\ Set the maximum number of bytes per memory-write packet.\n\ Specify the number of bytes in a packet or 0 (zero) for the\n\ default packet size. The actual limit is further reduced\n\ dependent on the target. Specify ``fixed'' to disable the\n\ further restriction and ``limit'' to enable that restriction."), &remote_set_cmdlist); add_cmd ("memory-read-packet-size", no_class, set_memory_read_packet_size, _("\ Set the maximum number of bytes per memory-read packet.\n\ Specify the number of bytes in a packet or 0 (zero) for the\n\ default packet size. The actual limit is further reduced\n\ dependent on the target. Specify ``fixed'' to disable the\n\ further restriction and ``limit'' to enable that restriction."), &remote_set_cmdlist); add_cmd ("memory-write-packet-size", no_class, show_memory_write_packet_size, _("Show the maximum number of bytes per memory-write packet."), &remote_show_cmdlist); add_cmd ("memory-read-packet-size", no_class, show_memory_read_packet_size, _("Show the maximum number of bytes per memory-read packet."), &remote_show_cmdlist); add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class, &remote_hw_watchpoint_limit, _("\ Set the maximum number of target hardware watchpoints."), _("\ Show the maximum number of target hardware watchpoints."), _("\ Specify a negative limit for unlimited."), NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */ &remote_set_cmdlist, &remote_show_cmdlist); add_setshow_zinteger_cmd ("hardware-watchpoint-length-limit", no_class, &remote_hw_watchpoint_length_limit, _("\ Set the maximum length (in bytes) of a target hardware watchpoint."), _("\ Show the maximum length (in bytes) of a target hardware watchpoint."), _("\ Specify a negative limit for unlimited."), NULL, NULL, /* FIXME: i18n: The maximum length (in bytes) of a target hardware watchpoint is %s. */ &remote_set_cmdlist, &remote_show_cmdlist); add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class, &remote_hw_breakpoint_limit, _("\ Set the maximum number of target hardware breakpoints."), _("\ Show the maximum number of target hardware breakpoints."), _("\ Specify a negative limit for unlimited."), NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */ &remote_set_cmdlist, &remote_show_cmdlist); add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure, &remote_address_size, _("\ Set the maximum size of the address (in bits) in a memory packet."), _("\ Show the maximum size of the address (in bits) in a memory packet."), NULL, NULL, NULL, /* FIXME: i18n: */ &setlist, &showlist); init_all_packet_configs (); add_packet_config_cmd (&remote_protocol_packets[PACKET_X], "X", "binary-download", 1); add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont], "vCont", "verbose-resume", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals], "QPassSignals", "pass-signals", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals], "QProgramSignals", "program-signals", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol], "qSymbol", "symbol-lookup", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_P], "P", "set-register", 1); add_packet_config_cmd (&remote_protocol_packets[PACKET_p], "p", "fetch-register", 1); add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0], "Z0", "software-breakpoint", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1], "Z1", "hardware-breakpoint", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2], "Z2", "write-watchpoint", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3], "Z3", "read-watchpoint", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4], "Z4", "access-watchpoint", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv], "qXfer:auxv:read", "read-aux-vector", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file], "qXfer:exec-file:read", "pid-to-exec-file", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features], "qXfer:features:read", "target-features", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries], "qXfer:libraries:read", "library-info", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4], "qXfer:libraries-svr4:read", "library-info-svr4", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map], "qXfer:memory-map:read", "memory-map", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read], "qXfer:spu:read", "read-spu-object", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write], "qXfer:spu:write", "write-spu-object", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata], "qXfer:osdata:read", "osdata", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads], "qXfer:threads:read", "threads", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read], "qXfer:siginfo:read", "read-siginfo-object", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write], "qXfer:siginfo:write", "write-siginfo-object", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_traceframe_info], "qXfer:traceframe-info:read", "traceframe-info", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib], "qXfer:uib:read", "unwind-info-block", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr], "qGetTLSAddr", "get-thread-local-storage-address", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr], "qGetTIBAddr", "get-thread-information-block-address", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_bc], "bc", "reverse-continue", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_bs], "bs", "reverse-step", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported], "qSupported", "supported-packets", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory], "qSearch:memory", "search-memory", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus], "qTStatus", "trace-status", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs], "vFile:setfs", "hostio-setfs", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open], "vFile:open", "hostio-open", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread], "vFile:pread", "hostio-pread", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite], "vFile:pwrite", "hostio-pwrite", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close], "vFile:close", "hostio-close", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink], "vFile:unlink", "hostio-unlink", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink], "vFile:readlink", "hostio-readlink", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat], "vFile:fstat", "hostio-fstat", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach], "vAttach", "attach", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun], "vRun", "run", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode], "QStartNoAckMode", "noack", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill], "vKill", "kill", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached], "qAttached", "query-attached", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints], "ConditionalTracepoints", "conditional-tracepoints", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints], "ConditionalBreakpoints", "conditional-breakpoints", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands], "BreakpointCommands", "breakpoint-commands", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints], "FastTracepoints", "fast-tracepoints", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource], "TracepointSource", "TracepointSource", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow], "QAllow", "allow", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints], "StaticTracepoints", "static-tracepoints", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace], "InstallInTrace", "install-in-trace", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read], "qXfer:statictrace:read", "read-sdata-object", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic], "qXfer:fdpic:read", "read-fdpic-loadmap", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization], "QDisableRandomization", "disable-randomization", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent], "QAgent", "agent", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size], "QTBuffer:size", "trace-buffer-size", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off], "Qbtrace:off", "disable-btrace", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts], "Qbtrace:bts", "enable-btrace", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace], "qXfer:btrace", "read-btrace", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf], "qXfer:btrace-conf", "read-btrace-conf", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size], "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature], "swbreak-feature", "swbreak-feature", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature], "hwbreak-feature", "hwbreak-feature", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature], "fork-event-feature", "fork-event-feature", 0); add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature], "vfork-event-feature", "vfork-event-feature", 0); /* Assert that we've registered "set remote foo-packet" commands for all packet configs. */ { int i; for (i = 0; i < PACKET_MAX; i++) { /* Ideally all configs would have a command associated. Some still don't though. */ int excepted; switch (i) { case PACKET_QNonStop: case PACKET_multiprocess_feature: case PACKET_EnableDisableTracepoints_feature: case PACKET_tracenz_feature: case PACKET_DisconnectedTracing_feature: case PACKET_augmented_libraries_svr4_read_feature: case PACKET_qCRC: /* Additions to this list need to be well justified: pre-existing packets are OK; new packets are not. */ excepted = 1; break; default: excepted = 0; break; } /* This catches both forgetting to add a config command, and forgetting to remove a packet from the exception list. */ gdb_assert (excepted == (remote_protocol_packets[i].name == NULL)); } } /* Keep the old ``set remote Z-packet ...'' working. Each individual Z sub-packet has its own set and show commands, but users may have sets to this variable in their .gdbinit files (or in their documentation). */ add_setshow_auto_boolean_cmd ("Z-packet", class_obscure, &remote_Z_packet_detect, _("\ Set use of remote protocol `Z' packets"), _("\ Show use of remote protocol `Z' packets "), _("\ When set, GDB will attempt to use the remote breakpoint and watchpoint\n\ packets."), set_remote_protocol_Z_packet_cmd, show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */ &remote_set_cmdlist, &remote_show_cmdlist); add_prefix_cmd ("remote", class_files, remote_command, _("\ Manipulate files on the remote system\n\ Transfer files to and from the remote target system."), &remote_cmdlist, "remote ", 0 /* allow-unknown */, &cmdlist); add_cmd ("put", class_files, remote_put_command, _("Copy a local file to the remote system."), &remote_cmdlist); add_cmd ("get", class_files, remote_get_command, _("Copy a remote file to the local system."), &remote_cmdlist); add_cmd ("delete", class_files, remote_delete_command, _("Delete a remote file."), &remote_cmdlist); remote_exec_file = xstrdup (""); add_setshow_string_noescape_cmd ("exec-file", class_files, &remote_exec_file, _("\ Set the remote pathname for \"run\""), _("\ Show the remote pathname for \"run\""), NULL, NULL, NULL, &remote_set_cmdlist, &remote_show_cmdlist); add_setshow_boolean_cmd ("range-stepping", class_run, &use_range_stepping, _("\ Enable or disable range stepping."), _("\ Show whether target-assisted range stepping is enabled."), _("\ If on, and the target supports it, when stepping a source line, GDB\n\ tells the target to step the corresponding range of addresses itself instead\n\ of issuing multiple single-steps. This speeds up source level\n\ stepping. If off, GDB always issues single-steps, even if range\n\ stepping is supported by the target. The default is on."), set_range_stepping, show_range_stepping, &setlist, &showlist); /* Eventually initialize fileio. See fileio.c */ initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist); /* Take advantage of the fact that the TID field is not used, to tag special ptids with it set to != 0. */ magic_null_ptid = ptid_build (42000, -1, 1); not_sent_ptid = ptid_build (42000, -2, 1); any_thread_ptid = ptid_build (42000, 0, 1); target_buf_size = 2048; target_buf = xmalloc (target_buf_size); }