/* Machine-dependent code which would otherwise be in inflow.c and core.c, for GDB, the GNU debugger, for SPARC host systems. Copyright (C) 1986, 1987, 1989, 1990 Free Software Foundation, Inc. This file is part of GDB. GDB is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 1, or (at your option) any later version. GDB is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GDB; see the file COPYING. If not, write to the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include "defs.h" #include "tm-sparc.h" #include "param-no-tm.h" #include "inferior.h" #include "target.h" #include #include /* For L_SET */ #include #include #include "gdbcore.h" #include extern char register_valid[]; /* Fetch one or more registers from the inferior. REGNO == -1 to get them all. We actually fetch more than requested, when convenient, marking them as valid so we won't fetch them again. */ void fetch_inferior_registers (regno) int regno; { struct regs inferior_registers; struct fp_status inferior_fp_registers; int i; /* We should never be called with deferred stores, because a prerequisite for writing regs is to have fetched them all (PREPARE_TO_STORE), sigh. */ if (deferred_stores) abort(); DO_DEFERRED_STORES; /* Global and Out regs are fetched directly, as well as the control registers. If we're getting one of the in or local regs, and the stack pointer has not yet been fetched, we have to do that first, since they're found in memory relative to the stack pointer. */ if (regno < O7_REGNUM /* including -1 */ || regno >= Y_REGNUM || (!register_valid[SP_REGNUM] && regno < I7_REGNUM)) { if (0 != ptrace (PTRACE_GETREGS, inferior_pid, &inferior_registers)) perror("ptrace_getregs"); registers[REGISTER_BYTE (0)] = 0; bcopy (&inferior_registers.r_g1, ®isters[REGISTER_BYTE (1)], 15 * REGISTER_RAW_SIZE (G0_REGNUM)); *(int *)®isters[REGISTER_BYTE (PS_REGNUM)] = inferior_registers.r_ps; *(int *)®isters[REGISTER_BYTE (PC_REGNUM)] = inferior_registers.r_pc; *(int *)®isters[REGISTER_BYTE (NPC_REGNUM)] = inferior_registers.r_npc; *(int *)®isters[REGISTER_BYTE (Y_REGNUM)] = inferior_registers.r_y; for (i = G0_REGNUM; i <= O7_REGNUM; i++) register_valid[i] = 1; register_valid[Y_REGNUM] = 1; register_valid[PS_REGNUM] = 1; register_valid[PC_REGNUM] = 1; register_valid[NPC_REGNUM] = 1; /* If we don't set these valid, read_register_bytes() rereads all the regs every time it is called! FIXME. */ register_valid[WIM_REGNUM] = 1; /* Not true yet, FIXME */ register_valid[TBR_REGNUM] = 1; /* Not true yet, FIXME */ register_valid[FPS_REGNUM] = 1; /* Not true yet, FIXME */ register_valid[CPS_REGNUM] = 1; /* Not true yet, FIXME */ } /* Floating point registers */ if (regno == -1 || (regno >= FP0_REGNUM && regno <= FP0_REGNUM + 31)) { if (0 != ptrace (PTRACE_GETFPREGS, inferior_pid, &inferior_fp_registers)) perror("ptrace_getfpregs"); bcopy (&inferior_fp_registers, ®isters[REGISTER_BYTE (FP0_REGNUM)], sizeof inferior_fp_registers.fpu_fr); /* bcopy (&inferior_fp_registers.Fpu_fsr, ®isters[REGISTER_BYTE (FPS_REGNUM)], sizeof (FPU_FSR_TYPE)); FIXME??? -- gnu@cyg */ for (i = FP0_REGNUM; i <= FP0_REGNUM+31; i++) register_valid[i] = 1; register_valid[FPS_REGNUM] = 1; } /* These regs are saved on the stack by the kernel. Only read them all (16 ptrace calls!) if we really need them. */ if (regno == -1) { target_xfer_memory (*(CORE_ADDR*)®isters[REGISTER_BYTE (SP_REGNUM)], ®isters[REGISTER_BYTE (L0_REGNUM)], 16*REGISTER_RAW_SIZE (L0_REGNUM), 0); for (i = L0_REGNUM; i <= I7_REGNUM; i++) register_valid[i] = 1; } else if (regno >= L0_REGNUM && regno <= I7_REGNUM) { CORE_ADDR sp = *(CORE_ADDR*)®isters[REGISTER_BYTE (SP_REGNUM)]; i = REGISTER_BYTE (regno); if (register_valid[regno]) printf("register %d valid and read\n", regno); target_xfer_memory (sp + i - REGISTER_BYTE (L0_REGNUM), ®isters[i], REGISTER_RAW_SIZE (regno), 0); register_valid[regno] = 1; } } /* Store our register values back into the inferior. If REGNO is -1, do this for all registers. Otherwise, REGNO specifies which register (so we can save time). */ #define INT_REGS 1 #define STACK_REGS 2 #define FP_REGS 4 int deferred_stores = 0; /* Cumulates stores we want to do eventually. */ int store_inferior_registers (regno) int regno; { struct regs inferior_registers; struct fp_status inferior_fp_registers; int wanna_store = INT_REGS + STACK_REGS + FP_REGS; /* First decide which pieces of machine-state we need to modify. Default for regno == -1 case is all pieces. */ if (regno >= 0) if (FP0_REGNUM <= regno && regno < FP0_REGNUM + 32) { wanna_store = FP_REGS; } else { if (regno == SP_REGNUM) wanna_store = INT_REGS + STACK_REGS; else if (regno < L0_REGNUM || regno > I7_REGNUM) wanna_store = INT_REGS; else wanna_store = STACK_REGS; } /* See if we're forcing the stores to happen now, or deferring. */ if (regno == -2) { wanna_store = deferred_stores; deferred_stores = 0; } else { if (wanna_store == STACK_REGS) { /* Fall through and just store one stack reg. If we deferred it, we'd have to store them all, or remember more info. */ } else { deferred_stores |= wanna_store; return 0; } } if (wanna_store & STACK_REGS) { CORE_ADDR sp = *(CORE_ADDR *)®isters[REGISTER_BYTE (SP_REGNUM)]; if (regno < 0 || regno == SP_REGNUM) { if (!register_valid[L0_REGNUM+5]) abort(); target_xfer_memory (sp, ®isters[REGISTER_BYTE (L0_REGNUM)], 16*REGISTER_RAW_SIZE (L0_REGNUM), 1); } else { if (!register_valid[regno]) abort(); target_xfer_memory (sp + REGISTER_BYTE (regno) - REGISTER_BYTE (L0_REGNUM), ®isters[REGISTER_BYTE (regno)], REGISTER_RAW_SIZE (regno), 1); } } if (wanna_store & INT_REGS) { if (!register_valid[G1_REGNUM]) abort(); bcopy (®isters[REGISTER_BYTE (G1_REGNUM)], &inferior_registers.r_g1, 15 * REGISTER_RAW_SIZE (G1_REGNUM)); inferior_registers.r_ps = *(int *)®isters[REGISTER_BYTE (PS_REGNUM)]; inferior_registers.r_pc = *(int *)®isters[REGISTER_BYTE (PC_REGNUM)]; inferior_registers.r_npc = *(int *)®isters[REGISTER_BYTE (NPC_REGNUM)]; inferior_registers.r_y = *(int *)®isters[REGISTER_BYTE (Y_REGNUM)]; if (0 != ptrace (PTRACE_SETREGS, inferior_pid, &inferior_registers)) perror("ptrace_setregs"); } if (wanna_store & FP_REGS) { if (!register_valid[FP0_REGNUM+9]) abort(); bcopy (®isters[REGISTER_BYTE (FP0_REGNUM)], &inferior_fp_registers, sizeof inferior_fp_registers.fpu_fr); /* bcopy (®isters[REGISTER_BYTE (FPS_REGNUM)], &inferior_fp_registers.Fpu_fsr, sizeof (FPU_FSR_TYPE)); ****/ if (0 != ptrace (PTRACE_SETFPREGS, inferior_pid, &inferior_fp_registers)) perror("ptrace_setfpregs"); } return 0; } void fetch_core_registers (core_reg_sect, core_reg_size, which) char *core_reg_sect; unsigned core_reg_size; int which; { if (which == 0) { /* Integer registers */ #define gregs ((struct regs *)core_reg_sect) /* G0 *always* holds 0. */ *(int *)®isters[REGISTER_BYTE (0)] = 0; /* The globals and output registers. */ bcopy (&gregs->r_g1, ®isters[REGISTER_BYTE (G1_REGNUM)], 15 * REGISTER_RAW_SIZE (G1_REGNUM)); *(int *)®isters[REGISTER_BYTE (PS_REGNUM)] = gregs->r_ps; *(int *)®isters[REGISTER_BYTE (PC_REGNUM)] = gregs->r_pc; *(int *)®isters[REGISTER_BYTE (NPC_REGNUM)] = gregs->r_npc; *(int *)®isters[REGISTER_BYTE (Y_REGNUM)] = gregs->r_y; /* My best guess at where to get the locals and input registers is exactly where they usually are, right above the stack pointer. If the core dump was caused by a bus error from blowing away the stack pointer (as is possible) then this won't work, but it's worth the try. */ { int sp; sp = *(int *)®isters[REGISTER_BYTE (SP_REGNUM)]; if (0 != target_read_memory (sp, ®isters[REGISTER_BYTE (L0_REGNUM)], 16 * REGISTER_RAW_SIZE (L0_REGNUM))) { /* fprintf so user can still use gdb */ fprintf (stderr, "Couldn't read input and local registers from core file\n"); } } } else if (which == 2) { /* Floating point registers */ #define fpuregs ((struct fpu *) core_reg_sect) if (core_reg_size >= sizeof (struct fpu)) { bcopy (fpuregs->fpu_regs, ®isters[REGISTER_BYTE (FP0_REGNUM)], sizeof (fpuregs->fpu_regs)); bcopy (&fpuregs->fpu_fsr, ®isters[REGISTER_BYTE (FPS_REGNUM)], sizeof (FPU_FSR_TYPE)); } else fprintf (stderr, "Couldn't read float regs from core file\n"); } }