/* Configurable Xtensa ISA support. Copyright 2003 Free Software Foundation, Inc. This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include #include #include #include #include "xtensa-isa.h" #include "xtensa-isa-internal.h" xtensa_isa xtensa_default_isa = NULL; static int opname_lookup_compare (const void *v1, const void *v2) { opname_lookup_entry *e1 = (opname_lookup_entry *)v1; opname_lookup_entry *e2 = (opname_lookup_entry *)v2; return strcmp (e1->key, e2->key); } xtensa_isa xtensa_isa_init (void) { xtensa_isa isa; int mod; isa = xtensa_load_isa (0); if (isa == 0) { fprintf (stderr, "Failed to initialize Xtensa base ISA module\n"); return NULL; } for (mod = 1; xtensa_isa_modules[mod].get_num_opcodes_fn; mod++) { if (!xtensa_extend_isa (isa, mod)) { fprintf (stderr, "Failed to initialize Xtensa TIE ISA module\n"); return NULL; } } return isa; } /* ISA information. */ static int xtensa_check_isa_config (xtensa_isa_internal *isa, struct config_struct *config_table) { int i, j; if (!config_table) { fprintf (stderr, "Error: Empty configuration table in ISA DLL\n"); return 0; } /* For the first module, save a pointer to the table and record the specified endianness and availability of the density option. */ if (isa->num_modules == 0) { int found_memory_order = 0; isa->config = config_table; isa->has_density = 1; /* Default to have density option. */ for (i = 0; config_table[i].param_name; i++) { if (!strcmp (config_table[i].param_name, "IsaMemoryOrder")) { isa->is_big_endian = (strcmp (config_table[i].param_value, "BigEndian") == 0); found_memory_order = 1; } if (!strcmp (config_table[i].param_name, "IsaUseDensityInstruction")) { isa->has_density = atoi (config_table[i].param_value); } } if (!found_memory_order) { fprintf (stderr, "Error: \"IsaMemoryOrder\" missing from " "configuration table in ISA DLL\n"); return 0; } return 1; } /* For subsequent modules, check that the parameters match. Note: This code is sufficient to handle the current model where there are never more than 2 modules; we might at some point want to handle cases where module N > 0 specifies some parameters not included in the base table, and we would then add those to isa->config so that subsequent modules would check against them. */ for (i = 0; config_table[i].param_name; i++) { for (j = 0; isa->config[j].param_name; j++) { if (!strcmp (config_table[i].param_name, isa->config[j].param_name)) { int mismatch; if (!strcmp (config_table[i].param_name, "IsaCoprocessorCount")) { /* Only require the coprocessor count to be <= the base. */ int tiecnt = atoi (config_table[i].param_value); int basecnt = atoi (isa->config[j].param_value); mismatch = (tiecnt > basecnt); } else mismatch = strcmp (config_table[i].param_value, isa->config[j].param_value); if (mismatch) { #define MISMATCH_MESSAGE \ "Error: Configuration mismatch in the \"%s\" parameter:\n\ the configuration used when the TIE file was compiled had a value of\n\ \"%s\", while the current configuration has a value of\n\ \"%s\". Please rerun the TIE compiler with a matching\n\ configuration.\n" fprintf (stderr, MISMATCH_MESSAGE, config_table[i].param_name, config_table[i].param_value, isa->config[j].param_value); return 0; } break; } } } return 1; } static int xtensa_add_isa (xtensa_isa_internal *isa, libisa_module_specifier libisa) { int (*get_num_opcodes_fn) (void); struct config_struct *(*get_config_table_fn) (void); xtensa_opcode_internal **(*get_opcodes_fn) (void); int (*decode_insn_fn) (const xtensa_insnbuf); xtensa_opcode_internal **opcodes; int opc, insn_size, prev_num_opcodes, new_num_opcodes, this_module; get_num_opcodes_fn = xtensa_isa_modules[libisa].get_num_opcodes_fn; get_opcodes_fn = xtensa_isa_modules[libisa].get_opcodes_fn; decode_insn_fn = xtensa_isa_modules[libisa].decode_insn_fn; get_config_table_fn = xtensa_isa_modules[libisa].get_config_table_fn; if (!get_num_opcodes_fn || !get_opcodes_fn || !decode_insn_fn || (!get_config_table_fn && isa->num_modules == 0)) return 0; if (get_config_table_fn && !xtensa_check_isa_config (isa, get_config_table_fn ())) return 0; prev_num_opcodes = isa->num_opcodes; new_num_opcodes = (*get_num_opcodes_fn) (); isa->num_opcodes += new_num_opcodes; isa->opcode_table = (xtensa_opcode_internal **) realloc (isa->opcode_table, isa->num_opcodes * sizeof (xtensa_opcode_internal *)); isa->opname_lookup_table = (opname_lookup_entry *) realloc (isa->opname_lookup_table, isa->num_opcodes * sizeof (opname_lookup_entry)); opcodes = (*get_opcodes_fn) (); insn_size = isa->insn_size; for (opc = 0; opc < new_num_opcodes; opc++) { xtensa_opcode_internal *intopc = opcodes[opc]; int newopc = prev_num_opcodes + opc; isa->opcode_table[newopc] = intopc; isa->opname_lookup_table[newopc].key = intopc->name; isa->opname_lookup_table[newopc].opcode = newopc; if (intopc->length > insn_size) insn_size = intopc->length; } isa->insn_size = insn_size; isa->insnbuf_size = ((isa->insn_size + sizeof (xtensa_insnbuf_word) - 1) / sizeof (xtensa_insnbuf_word)); qsort (isa->opname_lookup_table, isa->num_opcodes, sizeof (opname_lookup_entry), opname_lookup_compare); /* Check for duplicate opcode names. */ for (opc = 1; opc < isa->num_opcodes; opc++) { if (!opname_lookup_compare (&isa->opname_lookup_table[opc-1], &isa->opname_lookup_table[opc])) { fprintf (stderr, "Error: Duplicate TIE opcode \"%s\"\n", isa->opname_lookup_table[opc].key); return 0; } } this_module = isa->num_modules; isa->num_modules += 1; isa->module_opcode_base = (int *) realloc (isa->module_opcode_base, isa->num_modules * sizeof (int)); isa->module_decode_fn = (xtensa_insn_decode_fn *) realloc (isa->module_decode_fn, isa->num_modules * sizeof (xtensa_insn_decode_fn)); isa->module_opcode_base[this_module] = prev_num_opcodes; isa->module_decode_fn[this_module] = decode_insn_fn; xtensa_default_isa = isa; return 1; /* Library was successfully added. */ } xtensa_isa xtensa_load_isa (libisa_module_specifier libisa) { xtensa_isa_internal *isa; isa = (xtensa_isa_internal *) malloc (sizeof (xtensa_isa_internal)); memset (isa, 0, sizeof (xtensa_isa_internal)); if (!xtensa_add_isa (isa, libisa)) { xtensa_isa_free (isa); return NULL; } return (xtensa_isa) isa; } int xtensa_extend_isa (xtensa_isa isa, libisa_module_specifier libisa) { xtensa_isa_internal *intisa = (xtensa_isa_internal *) isa; return xtensa_add_isa (intisa, libisa); } void xtensa_isa_free (xtensa_isa isa) { xtensa_isa_internal *intisa = (xtensa_isa_internal *) isa; if (intisa->opcode_table) free (intisa->opcode_table); if (intisa->opname_lookup_table) free (intisa->opname_lookup_table); if (intisa->module_opcode_base) free (intisa->module_opcode_base); if (intisa->module_decode_fn) free (intisa->module_decode_fn); free (intisa); } int xtensa_insn_maxlength (xtensa_isa isa) { xtensa_isa_internal *intisa = (xtensa_isa_internal *) isa; return intisa->insn_size; } int xtensa_insnbuf_size (xtensa_isa isa) { xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; return intisa->insnbuf_size; } int xtensa_num_opcodes (xtensa_isa isa) { xtensa_isa_internal *intisa = (xtensa_isa_internal *) isa; return intisa->num_opcodes; } xtensa_opcode xtensa_opcode_lookup (xtensa_isa isa, const char *opname) { xtensa_isa_internal *intisa = (xtensa_isa_internal *) isa; opname_lookup_entry entry, *result; entry.key = opname; result = bsearch (&entry, intisa->opname_lookup_table, intisa->num_opcodes, sizeof (opname_lookup_entry), opname_lookup_compare); if (!result) return XTENSA_UNDEFINED; return result->opcode; } xtensa_opcode xtensa_decode_insn (xtensa_isa isa, const xtensa_insnbuf insn) { xtensa_isa_internal *intisa = (xtensa_isa_internal *) isa; int n, opc; for (n = 0; n < intisa->num_modules; n++) { opc = (intisa->module_decode_fn[n]) (insn); if (opc != XTENSA_UNDEFINED) return intisa->module_opcode_base[n] + opc; } return XTENSA_UNDEFINED; } /* Opcode information. */ void xtensa_encode_insn (xtensa_isa isa, xtensa_opcode opc, xtensa_insnbuf insn) { xtensa_isa_internal *intisa = (xtensa_isa_internal *) isa; xtensa_insnbuf template = intisa->opcode_table[opc]->template(); int len = intisa->opcode_table[opc]->length; int n; /* Convert length to 32-bit words. */ len = (len + 3) / 4; /* Copy the template. */ for (n = 0; n < len; n++) insn[n] = template[n]; /* Fill any unused buffer space with zeros. */ for ( ; n < intisa->insnbuf_size; n++) insn[n] = 0; } const char * xtensa_opcode_name (xtensa_isa isa, xtensa_opcode opc) { xtensa_isa_internal *intisa = (xtensa_isa_internal *) isa; return intisa->opcode_table[opc]->name; } int xtensa_insn_length (xtensa_isa isa, xtensa_opcode opc) { xtensa_isa_internal *intisa = (xtensa_isa_internal *) isa; return intisa->opcode_table[opc]->length; } int xtensa_insn_length_from_first_byte (xtensa_isa isa, char first_byte) { xtensa_isa_internal *intisa = (xtensa_isa_internal *) isa; int is_density = (first_byte & (intisa->is_big_endian ? 0x80 : 0x08)) != 0; return (intisa->has_density && is_density ? 2 : 3); } int xtensa_num_operands (xtensa_isa isa, xtensa_opcode opc) { xtensa_isa_internal *intisa = (xtensa_isa_internal *) isa; return intisa->opcode_table[opc]->iclass->num_operands; } xtensa_operand xtensa_get_operand (xtensa_isa isa, xtensa_opcode opc, int opnd) { xtensa_isa_internal *intisa = (xtensa_isa_internal *) isa; xtensa_iclass_internal *iclass = intisa->opcode_table[opc]->iclass; if (opnd >= iclass->num_operands) return NULL; return (xtensa_operand) iclass->operands[opnd]; } /* Operand information. */ char * xtensa_operand_kind (xtensa_operand opnd) { xtensa_operand_internal *intop = (xtensa_operand_internal *) opnd; return intop->operand_kind; } char xtensa_operand_inout (xtensa_operand opnd) { xtensa_operand_internal *intop = (xtensa_operand_internal *) opnd; return intop->inout; } uint32 xtensa_operand_get_field (xtensa_operand opnd, const xtensa_insnbuf insn) { xtensa_operand_internal *intop = (xtensa_operand_internal *) opnd; return (*intop->get_field) (insn); } void xtensa_operand_set_field (xtensa_operand opnd, xtensa_insnbuf insn, uint32 val) { xtensa_operand_internal *intop = (xtensa_operand_internal *) opnd; return (*intop->set_field) (insn, val); } xtensa_encode_result xtensa_operand_encode (xtensa_operand opnd, uint32 *valp) { xtensa_operand_internal *intop = (xtensa_operand_internal *) opnd; return (*intop->encode) (valp); } uint32 xtensa_operand_decode (xtensa_operand opnd, uint32 val) { xtensa_operand_internal *intop = (xtensa_operand_internal *) opnd; return (*intop->decode) (val); } int xtensa_operand_isPCRelative (xtensa_operand opnd) { xtensa_operand_internal *intop = (xtensa_operand_internal *) opnd; return intop->isPCRelative; } uint32 xtensa_operand_do_reloc (xtensa_operand opnd, uint32 addr, uint32 pc) { xtensa_operand_internal *intop = (xtensa_operand_internal *) opnd; if (!intop->isPCRelative) return addr; return (*intop->do_reloc) (addr, pc); } uint32 xtensa_operand_undo_reloc (xtensa_operand opnd, uint32 offset, uint32 pc) { xtensa_operand_internal *intop = (xtensa_operand_internal *) opnd; if (!intop->isPCRelative) return offset; return (*intop->undo_reloc) (offset, pc); } /* Instruction buffers. */ xtensa_insnbuf xtensa_insnbuf_alloc (xtensa_isa isa) { return (xtensa_insnbuf) malloc (xtensa_insnbuf_size (isa) * sizeof (xtensa_insnbuf_word)); } void xtensa_insnbuf_free (xtensa_insnbuf buf) { free( buf ); } /* Given , the index of a byte in a xtensa_insnbuf, our internal representation of a xtensa instruction word, return the index of its word and the bit index of its low order byte in the xtensa_insnbuf. */ static inline int byte_to_word_index (int byte_index) { return byte_index / sizeof (xtensa_insnbuf_word); } static inline int byte_to_bit_index (int byte_index) { return (byte_index & 0x3) * 8; } /* Copy an instruction in the 32 bit words pointed at by to characters pointed at by . This is more complicated than you might think because we want 16 bit instructions in bytes 2,3 for big endian. This function allows us to specify which byte in to start with and which way to increment, allowing trivial implementation for both big and little endian. And it seems to make pretty good code for both. */ void xtensa_insnbuf_to_chars (xtensa_isa isa, const xtensa_insnbuf insn, char *cp) { xtensa_isa_internal *intisa = (xtensa_isa_internal *) isa; int insn_size = xtensa_insn_maxlength (intisa); int fence_post, start, increment, i, byte_count; xtensa_opcode opc; if (intisa->is_big_endian) { start = insn_size - 1; increment = -1; } else { start = 0; increment = 1; } /* Find the opcode; do nothing if the buffer does not contain a valid instruction since we need to know how many bytes to copy. */ opc = xtensa_decode_insn (isa, insn); if (opc == XTENSA_UNDEFINED) return; byte_count = xtensa_insn_length (isa, opc); fence_post = start + (byte_count * increment); for (i = start; i != fence_post; i += increment, ++cp) { int word_inx = byte_to_word_index (i); int bit_inx = byte_to_bit_index (i); *cp = (insn[word_inx] >> bit_inx) & 0xff; } } /* Inward conversion from byte stream to xtensa_insnbuf. See xtensa_insnbuf_to_chars for a discussion of why this is complicated by endianness. */ void xtensa_insnbuf_from_chars (xtensa_isa isa, xtensa_insnbuf insn, const char* cp) { xtensa_isa_internal *intisa = (xtensa_isa_internal *) isa; int insn_size = xtensa_insn_maxlength (intisa); int fence_post, start, increment, i; if (intisa->is_big_endian) { start = insn_size - 1; increment = -1; } else { start = 0; increment = 1; } fence_post = start + (insn_size * increment); memset (insn, 0, xtensa_insnbuf_size (isa) * sizeof (xtensa_insnbuf_word)); for ( i = start; i != fence_post; i += increment, ++cp ) { int word_inx = byte_to_word_index (i); int bit_inx = byte_to_bit_index (i); insn[word_inx] |= (*cp & 0xff) << bit_inx; } }