/* Target-dependent code for Hitachi Super-H, for GDB. Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Contributed by Steve Chamberlain sac@cygnus.com */ #include "defs.h" #include "frame.h" #include "obstack.h" #include "symtab.h" #include "symfile.h" #include "gdbtypes.h" #include "gdbcmd.h" #include "gdbcore.h" #include "value.h" #include "dis-asm.h" #include "inferior.h" /* for BEFORE_TEXT_END etc. */ #include "gdb_string.h" #include "arch-utils.h" #include "floatformat.h" #include "regcache.h" #include "doublest.h" #include "solib-svr4.h" void (*sh_show_regs) (void); CORE_ADDR (*skip_prologue_hard_way) (CORE_ADDR); void (*do_pseudo_register) (int); #define SH_DEFAULT_NUM_REGS 59 /* Define other aspects of the stack frame. we keep a copy of the worked out return pc lying around, since it is a useful bit of info */ struct frame_extra_info { CORE_ADDR return_pc; int leaf_function; int f_offset; }; static char * sh_generic_register_name (int reg_nr) { static char *register_names[] = { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "pc", "pr", "gbr", "vbr", "mach", "macl", "sr", "fpul", "fpscr", "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7", "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15", "ssr", "spc", "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0", "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1", }; if (reg_nr < 0) return NULL; if (reg_nr >= (sizeof (register_names) / sizeof (*register_names))) return NULL; return register_names[reg_nr]; } static char * sh_sh_register_name (int reg_nr) { static char *register_names[] = { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "pc", "pr", "gbr", "vbr", "mach", "macl", "sr", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", }; if (reg_nr < 0) return NULL; if (reg_nr >= (sizeof (register_names) / sizeof (*register_names))) return NULL; return register_names[reg_nr]; } static char * sh_sh3_register_name (int reg_nr) { static char *register_names[] = { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "pc", "pr", "gbr", "vbr", "mach", "macl", "sr", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "ssr", "spc", "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0", "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1" }; if (reg_nr < 0) return NULL; if (reg_nr >= (sizeof (register_names) / sizeof (*register_names))) return NULL; return register_names[reg_nr]; } static char * sh_sh3e_register_name (int reg_nr) { static char *register_names[] = { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "pc", "pr", "gbr", "vbr", "mach", "macl", "sr", "fpul", "fpscr", "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7", "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15", "ssr", "spc", "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0", "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1", }; if (reg_nr < 0) return NULL; if (reg_nr >= (sizeof (register_names) / sizeof (*register_names))) return NULL; return register_names[reg_nr]; } static char * sh_sh_dsp_register_name (int reg_nr) { static char *register_names[] = { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "pc", "pr", "gbr", "vbr", "mach", "macl", "sr", "", "dsr", "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1", "y0", "y1", "", "", "", "", "", "mod", "", "", "rs", "re", "", "", "", "", "", "", "", "", "", "", "", "", "", "", }; if (reg_nr < 0) return NULL; if (reg_nr >= (sizeof (register_names) / sizeof (*register_names))) return NULL; return register_names[reg_nr]; } static char * sh_sh3_dsp_register_name (int reg_nr) { static char *register_names[] = { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "pc", "pr", "gbr", "vbr", "mach", "macl", "sr", "", "dsr", "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1", "y0", "y1", "", "", "", "", "", "mod", "ssr", "spc", "rs", "re", "", "", "", "", "", "", "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b" "", "", "", "", "", "", "", "", }; if (reg_nr < 0) return NULL; if (reg_nr >= (sizeof (register_names) / sizeof (*register_names))) return NULL; return register_names[reg_nr]; } static char * sh_sh4_register_name (int reg_nr) { static char *register_names[] = { /* general registers 0-15 */ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", /* 16 - 22 */ "pc", "pr", "gbr", "vbr", "mach", "macl", "sr", /* 23, 24 */ "fpul", "fpscr", /* floating point registers 25 - 40 */ "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7", "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15", /* 41, 42 */ "ssr", "spc", /* bank 0 43 - 50 */ "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0", /* bank 1 51 - 58 */ "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1", /* double precision (pseudo) 59 - 66 */ "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14", /* vectors (pseudo) 67 - 70 */ "fv0", "fv4", "fv8", "fv12", /* FIXME: missing XF 71 - 86 */ /* FIXME: missing XD 87 - 94 */ }; if (reg_nr < 0) return NULL; if (reg_nr >= (sizeof (register_names) / sizeof (*register_names))) return NULL; return register_names[reg_nr]; } static unsigned char * sh_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr) { /* 0xc3c3 is trapa #c3, and it works in big and little endian modes */ static unsigned char breakpoint[] = {0xc3, 0xc3}; *lenptr = sizeof (breakpoint); return breakpoint; } /* Prologue looks like [mov.l ,@-r15]... [sts.l pr,@-r15] [mov.l r14,@-r15] [mov r15,r14] Actually it can be more complicated than this. For instance, with newer gcc's: mov.l r14,@-r15 add #-12,r15 mov r15,r14 mov r4,r1 mov r5,r2 mov.l r6,@(4,r14) mov.l r7,@(8,r14) mov.b r1,@r14 mov r14,r1 mov r14,r1 add #2,r1 mov.w r2,@r1 */ /* STS.L PR,@-r15 0100111100100010 r15-4-->r15, PR-->(r15) */ #define IS_STS(x) ((x) == 0x4f22) /* MOV.L Rm,@-r15 00101111mmmm0110 r15-4-->r15, Rm-->(R15) */ #define IS_PUSH(x) (((x) & 0xff0f) == 0x2f06) #define GET_PUSHED_REG(x) (((x) >> 4) & 0xf) /* MOV r15,r14 0110111011110011 r15-->r14 */ #define IS_MOV_SP_FP(x) ((x) == 0x6ef3) /* ADD #imm,r15 01111111iiiiiiii r15+imm-->r15 */ #define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00) #define IS_MOV_R3(x) (((x) & 0xff00) == 0x1a00) #define IS_SHLL_R3(x) ((x) == 0x4300) /* ADD r3,r15 0011111100111100 r15+r3-->r15 */ #define IS_ADD_R3SP(x) ((x) == 0x3f3c) /* FMOV.S FRm,@-Rn Rn-4-->Rn, FRm-->(Rn) 1111nnnnmmmm1011 FMOV DRm,@-Rn Rn-8-->Rn, DRm-->(Rn) 1111nnnnmmm01011 FMOV XDm,@-Rn Rn-8-->Rn, XDm-->(Rn) 1111nnnnmmm11011 */ #define IS_FMOV(x) (((x) & 0xf00f) == 0xf00b) /* MOV Rm,Rn Rm-->Rn 0110nnnnmmmm0011 MOV.L Rm,@(disp,Rn) Rm-->(dispx4+Rn) 0001nnnnmmmmdddd MOV.L Rm,@Rn Rm-->(Rn) 0010nnnnmmmm0010 where Rm is one of r4,r5,r6,r7 which are the argument registers. */ #define IS_ARG_MOV(x) \ (((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0040 && ((x) & 0x00f0) <= 0x0070)) \ || ((((x) & 0xf000) == 0x1000) && (((x) & 0x00f0) >= 0x0040 && ((x) & 0x00f0) <= 0x0070)) \ || ((((x) & 0xf00f) == 0x2002) && (((x) & 0x00f0) >= 0x0040 && ((x) & 0x00f0) <= 0x0070))) /* MOV.L Rm,@(disp,r14) 00011110mmmmdddd Rm-->(dispx4+r14) where Rm is one of r4,r5,r6,r7 */ #define IS_MOV_TO_R14(x) \ ((((x) & 0xff00) == 0x1e) && (((x) & 0x00f0) >= 0x0040 && ((x) & 0x00f0) <= 0x0070)) #define FPSCR_SZ (1 << 20) /* Skip any prologue before the guts of a function */ /* Skip the prologue using the debug information. If this fails we'll fall back on the 'guess' method below. */ static CORE_ADDR after_prologue (CORE_ADDR pc) { struct symtab_and_line sal; CORE_ADDR func_addr, func_end; /* If we can not find the symbol in the partial symbol table, then there is no hope we can determine the function's start address with this code. */ if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end)) return 0; /* Get the line associated with FUNC_ADDR. */ sal = find_pc_line (func_addr, 0); /* There are only two cases to consider. First, the end of the source line is within the function bounds. In that case we return the end of the source line. Second is the end of the source line extends beyond the bounds of the current function. We need to use the slow code to examine instructions in that case. */ if (sal.end < func_end) return sal.end; else return 0; } /* Here we look at each instruction in the function, and try to guess where the prologue ends. Unfortunately this is not always accurate. */ static CORE_ADDR sh_skip_prologue_hard_way (CORE_ADDR start_pc) { CORE_ADDR here, end; int updated_fp = 0; if (!start_pc) return 0; for (here = start_pc, end = start_pc + (2 * 28); here < end;) { int w = read_memory_integer (here, 2); here += 2; if (IS_FMOV (w) || IS_PUSH (w) || IS_STS (w) || IS_MOV_R3 (w) || IS_ADD_R3SP (w) || IS_ADD_SP (w) || IS_SHLL_R3 (w) || IS_ARG_MOV (w) || IS_MOV_TO_R14 (w)) { start_pc = here; } else if (IS_MOV_SP_FP (w)) { start_pc = here; updated_fp = 1; } else /* Don't bail out yet, if we are before the copy of sp. */ if (updated_fp) break; } return start_pc; } static CORE_ADDR sh_skip_prologue (CORE_ADDR pc) { CORE_ADDR post_prologue_pc; /* See if we can determine the end of the prologue via the symbol table. If so, then return either PC, or the PC after the prologue, whichever is greater. */ post_prologue_pc = after_prologue (pc); /* If after_prologue returned a useful address, then use it. Else fall back on the instruction skipping code. */ if (post_prologue_pc != 0) return max (pc, post_prologue_pc); else return (skip_prologue_hard_way (pc)); } /* Immediately after a function call, return the saved pc. Can't always go through the frames for this because on some machines the new frame is not set up until the new function executes some instructions. The return address is the value saved in the PR register + 4 */ static CORE_ADDR sh_saved_pc_after_call (struct frame_info *frame) { return (ADDR_BITS_REMOVE (read_register (gdbarch_tdep (current_gdbarch)->PR_REGNUM))); } /* Should call_function allocate stack space for a struct return? */ static int sh_use_struct_convention (int gcc_p, struct type *type) { return (TYPE_LENGTH (type) > 1); } /* Store the address of the place in which to copy the structure the subroutine will return. This is called from call_function. We store structs through a pointer passed in R2 */ static void sh_store_struct_return (CORE_ADDR addr, CORE_ADDR sp) { write_register (STRUCT_RETURN_REGNUM, (addr)); } /* Disassemble an instruction. */ static int gdb_print_insn_sh (bfd_vma memaddr, disassemble_info *info) { if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) return print_insn_sh (memaddr, info); else return print_insn_shl (memaddr, info); } /* Given a GDB frame, determine the address of the calling function's frame. This will be used to create a new GDB frame struct, and then INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame. For us, the frame address is its stack pointer value, so we look up the function prologue to determine the caller's sp value, and return it. */ static CORE_ADDR sh_frame_chain (struct frame_info *frame) { if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame)) return frame->frame; /* dummy frame same as caller's frame */ if (frame->pc && !inside_entry_file (frame->pc)) return read_memory_integer (FRAME_FP (frame) + frame->extra_info->f_offset, 4); else return 0; } /* Find REGNUM on the stack. Otherwise, it's in an active register. One thing we might want to do here is to check REGNUM against the clobber mask, and somehow flag it as invalid if it isn't saved on the stack somewhere. This would provide a graceful failure mode when trying to get the value of caller-saves registers for an inner frame. */ static CORE_ADDR sh_find_callers_reg (struct frame_info *fi, int regnum) { for (; fi; fi = fi->next) if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) /* When the caller requests PR from the dummy frame, we return PC because that's where the previous routine appears to have done a call from. */ return generic_read_register_dummy (fi->pc, fi->frame, regnum); else { FRAME_INIT_SAVED_REGS (fi); if (!fi->pc) return 0; if (fi->saved_regs[regnum] != 0) return read_memory_integer (fi->saved_regs[regnum], REGISTER_RAW_SIZE (regnum)); } return read_register (regnum); } /* Put here the code to store, into a struct frame_saved_regs, the addresses of the saved registers of frame described by FRAME_INFO. This includes special registers such as pc and fp saved in special ways in the stack frame. sp is even more special: the address we return for it IS the sp for the next frame. */ static void sh_nofp_frame_init_saved_regs (struct frame_info *fi) { int where[NUM_REGS + NUM_PSEUDO_REGS]; int rn; int have_fp = 0; int depth; int pc; int opc; int insn; int r3_val = 0; char *dummy_regs = generic_find_dummy_frame (fi->pc, fi->frame); if (fi->saved_regs == NULL) frame_saved_regs_zalloc (fi); else memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS); if (dummy_regs) { /* DANGER! This is ONLY going to work if the char buffer format of the saved registers is byte-for-byte identical to the CORE_ADDR regs[NUM_REGS] format used by struct frame_saved_regs! */ memcpy (fi->saved_regs, dummy_regs, sizeof (fi->saved_regs)); return; } fi->extra_info->leaf_function = 1; fi->extra_info->f_offset = 0; for (rn = 0; rn < NUM_REGS + NUM_PSEUDO_REGS; rn++) where[rn] = -1; depth = 0; /* Loop around examining the prologue insns until we find something that does not appear to be part of the prologue. But give up after 20 of them, since we're getting silly then. */ pc = get_pc_function_start (fi->pc); if (!pc) { fi->pc = 0; return; } for (opc = pc + (2 * 28); pc < opc; pc += 2) { insn = read_memory_integer (pc, 2); /* See where the registers will be saved to */ if (IS_PUSH (insn)) { rn = GET_PUSHED_REG (insn); where[rn] = depth; depth += 4; } else if (IS_STS (insn)) { where[gdbarch_tdep (current_gdbarch)->PR_REGNUM] = depth; /* If we're storing the pr then this isn't a leaf */ fi->extra_info->leaf_function = 0; depth += 4; } else if (IS_MOV_R3 (insn)) { r3_val = ((insn & 0xff) ^ 0x80) - 0x80; } else if (IS_SHLL_R3 (insn)) { r3_val <<= 1; } else if (IS_ADD_R3SP (insn)) { depth += -r3_val; } else if (IS_ADD_SP (insn)) { depth -= ((insn & 0xff) ^ 0x80) - 0x80; } else if (IS_MOV_SP_FP (insn)) break; #if 0 /* This used to just stop when it found an instruction that was not considered part of the prologue. Now, we just keep going looking for likely instructions. */ else break; #endif } /* Now we know how deep things are, we can work out their addresses */ for (rn = 0; rn < NUM_REGS + NUM_PSEUDO_REGS; rn++) { if (where[rn] >= 0) { if (rn == FP_REGNUM) have_fp = 1; fi->saved_regs[rn] = fi->frame - where[rn] + depth - 4; } else { fi->saved_regs[rn] = 0; } } if (have_fp) { fi->saved_regs[SP_REGNUM] = read_memory_integer (fi->saved_regs[FP_REGNUM], 4); } else { fi->saved_regs[SP_REGNUM] = fi->frame - 4; } fi->extra_info->f_offset = depth - where[FP_REGNUM] - 4; /* Work out the return pc - either from the saved pr or the pr value */ } /* For vectors of 4 floating point registers. */ static int fv_reg_base_num (int fv_regnum) { int fp_regnum; fp_regnum = FP0_REGNUM + (fv_regnum - gdbarch_tdep (current_gdbarch)->FV0_REGNUM) * 4; return fp_regnum; } /* For double precision floating point registers, i.e 2 fp regs.*/ static int dr_reg_base_num (int dr_regnum) { int fp_regnum; fp_regnum = FP0_REGNUM + (dr_regnum - gdbarch_tdep (current_gdbarch)->DR0_REGNUM) * 2; return fp_regnum; } static void sh_fp_frame_init_saved_regs (struct frame_info *fi) { int where[NUM_REGS + NUM_PSEUDO_REGS]; int rn; int have_fp = 0; int depth; int pc; int opc; int insn; int r3_val = 0; char *dummy_regs = generic_find_dummy_frame (fi->pc, fi->frame); struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); if (fi->saved_regs == NULL) frame_saved_regs_zalloc (fi); else memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS); if (dummy_regs) { /* DANGER! This is ONLY going to work if the char buffer format of the saved registers is byte-for-byte identical to the CORE_ADDR regs[NUM_REGS] format used by struct frame_saved_regs! */ memcpy (fi->saved_regs, dummy_regs, sizeof (fi->saved_regs)); return; } fi->extra_info->leaf_function = 1; fi->extra_info->f_offset = 0; for (rn = 0; rn < NUM_REGS + NUM_PSEUDO_REGS; rn++) where[rn] = -1; depth = 0; /* Loop around examining the prologue insns until we find something that does not appear to be part of the prologue. But give up after 20 of them, since we're getting silly then. */ pc = get_pc_function_start (fi->pc); if (!pc) { fi->pc = 0; return; } for (opc = pc + (2 * 28); pc < opc; pc += 2) { insn = read_memory_integer (pc, 2); /* See where the registers will be saved to */ if (IS_PUSH (insn)) { rn = GET_PUSHED_REG (insn); where[rn] = depth; depth += 4; } else if (IS_STS (insn)) { where[tdep->PR_REGNUM] = depth; /* If we're storing the pr then this isn't a leaf */ fi->extra_info->leaf_function = 0; depth += 4; } else if (IS_MOV_R3 (insn)) { r3_val = ((insn & 0xff) ^ 0x80) - 0x80; } else if (IS_SHLL_R3 (insn)) { r3_val <<= 1; } else if (IS_ADD_R3SP (insn)) { depth += -r3_val; } else if (IS_ADD_SP (insn)) { depth -= ((insn & 0xff) ^ 0x80) - 0x80; } else if (IS_FMOV (insn)) { if (read_register (tdep->FPSCR_REGNUM) & FPSCR_SZ) { depth += 8; } else { depth += 4; } } else if (IS_MOV_SP_FP (insn)) break; #if 0 /* This used to just stop when it found an instruction that was not considered part of the prologue. Now, we just keep going looking for likely instructions. */ else break; #endif } /* Now we know how deep things are, we can work out their addresses */ for (rn = 0; rn < NUM_REGS + NUM_PSEUDO_REGS; rn++) { if (where[rn] >= 0) { if (rn == FP_REGNUM) have_fp = 1; fi->saved_regs[rn] = fi->frame - where[rn] + depth - 4; } else { fi->saved_regs[rn] = 0; } } if (have_fp) { fi->saved_regs[SP_REGNUM] = read_memory_integer (fi->saved_regs[FP_REGNUM], 4); } else { fi->saved_regs[SP_REGNUM] = fi->frame - 4; } fi->extra_info->f_offset = depth - where[FP_REGNUM] - 4; /* Work out the return pc - either from the saved pr or the pr value */ } /* Initialize the extra info saved in a FRAME */ static void sh_init_extra_frame_info (int fromleaf, struct frame_info *fi) { fi->extra_info = (struct frame_extra_info *) frame_obstack_alloc (sizeof (struct frame_extra_info)); if (fi->next) fi->pc = FRAME_SAVED_PC (fi->next); if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) { /* We need to setup fi->frame here because run_stack_dummy gets it wrong by assuming it's always FP. */ fi->frame = generic_read_register_dummy (fi->pc, fi->frame, SP_REGNUM); fi->extra_info->return_pc = generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM); fi->extra_info->f_offset = -(CALL_DUMMY_LENGTH + 4); fi->extra_info->leaf_function = 0; return; } else { FRAME_INIT_SAVED_REGS (fi); fi->extra_info->return_pc = sh_find_callers_reg (fi, gdbarch_tdep (current_gdbarch)->PR_REGNUM); } } /* Extract from an array REGBUF containing the (raw) register state the address in which a function should return its structure value, as a CORE_ADDR (or an expression that can be used as one). */ static CORE_ADDR sh_extract_struct_value_address (char *regbuf) { return (extract_address ((regbuf), REGISTER_RAW_SIZE (0))); } static CORE_ADDR sh_frame_saved_pc (struct frame_info *frame) { return ((frame)->extra_info->return_pc); } /* Discard from the stack the innermost frame, restoring all saved registers. */ static void sh_pop_frame (void) { register struct frame_info *frame = get_current_frame (); register CORE_ADDR fp; register int regnum; if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame)) generic_pop_dummy_frame (); else { fp = FRAME_FP (frame); FRAME_INIT_SAVED_REGS (frame); /* Copy regs from where they were saved in the frame */ for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++) if (frame->saved_regs[regnum]) write_register (regnum, read_memory_integer (frame->saved_regs[regnum], 4)); write_register (PC_REGNUM, frame->extra_info->return_pc); write_register (SP_REGNUM, fp + 4); } flush_cached_frames (); } /* Function: push_arguments Setup the function arguments for calling a function in the inferior. On the Hitachi SH architecture, there are four registers (R4 to R7) which are dedicated for passing function arguments. Up to the first four arguments (depending on size) may go into these registers. The rest go on the stack. Arguments that are smaller than 4 bytes will still take up a whole register or a whole 32-bit word on the stack, and will be right-justified in the register or the stack word. This includes chars, shorts, and small aggregate types. Arguments that are larger than 4 bytes may be split between two or more registers. If there are not enough registers free, an argument may be passed partly in a register (or registers), and partly on the stack. This includes doubles, long longs, and larger aggregates. As far as I know, there is no upper limit to the size of aggregates that will be passed in this way; in other words, the convention of passing a pointer to a large aggregate instead of a copy is not used. An exceptional case exists for struct arguments (and possibly other aggregates such as arrays) if the size is larger than 4 bytes but not a multiple of 4 bytes. In this case the argument is never split between the registers and the stack, but instead is copied in its entirety onto the stack, AND also copied into as many registers as there is room for. In other words, space in registers permitting, two copies of the same argument are passed in. As far as I can tell, only the one on the stack is used, although that may be a function of the level of compiler optimization. I suspect this is a compiler bug. Arguments of these odd sizes are left-justified within the word (as opposed to arguments smaller than 4 bytes, which are right-justified). If the function is to return an aggregate type such as a struct, it is either returned in the normal return value register R0 (if its size is no greater than one byte), or else the caller must allocate space into which the callee will copy the return value (if the size is greater than one byte). In this case, a pointer to the return value location is passed into the callee in register R2, which does not displace any of the other arguments passed in via registers R4 to R7. */ static CORE_ADDR sh_push_arguments (int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr) { int stack_offset, stack_alloc; int argreg; int argnum; struct type *type; CORE_ADDR regval; char *val; char valbuf[4]; int len; int odd_sized_struct; struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); /* first force sp to a 4-byte alignment */ sp = sp & ~3; /* The "struct return pointer" pseudo-argument has its own dedicated register */ if (struct_return) write_register (STRUCT_RETURN_REGNUM, struct_addr); /* Now make sure there's space on the stack */ for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++) stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3); sp -= stack_alloc; /* make room on stack for args */ /* Now load as many as possible of the first arguments into registers, and push the rest onto the stack. There are 16 bytes in four registers available. Loop thru args from first to last. */ argreg = tdep->ARG0_REGNUM; for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++) { type = VALUE_TYPE (args[argnum]); len = TYPE_LENGTH (type); memset (valbuf, 0, sizeof (valbuf)); if (len < 4) { /* value gets right-justified in the register or stack word */ memcpy (valbuf + (4 - len), (char *) VALUE_CONTENTS (args[argnum]), len); val = valbuf; } else val = (char *) VALUE_CONTENTS (args[argnum]); if (len > 4 && (len & 3) != 0) odd_sized_struct = 1; /* such structs go entirely on stack */ else odd_sized_struct = 0; while (len > 0) { if (argreg > tdep->ARGLAST_REGNUM || odd_sized_struct) { /* must go on the stack */ write_memory (sp + stack_offset, val, 4); stack_offset += 4; } /* NOTE WELL!!!!! This is not an "else if" clause!!! That's because some *&^%$ things get passed on the stack AND in the registers! */ if (argreg <= tdep->ARGLAST_REGNUM) { /* there's room in a register */ regval = extract_address (val, REGISTER_RAW_SIZE (argreg)); write_register (argreg++, regval); } /* Store the value 4 bytes at a time. This means that things larger than 4 bytes may go partly in registers and partly on the stack. */ len -= REGISTER_RAW_SIZE (argreg); val += REGISTER_RAW_SIZE (argreg); } } return sp; } /* Function: push_return_address (pc) Set up the return address for the inferior function call. Needed for targets where we don't actually execute a JSR/BSR instruction */ static CORE_ADDR sh_push_return_address (CORE_ADDR pc, CORE_ADDR sp) { write_register (gdbarch_tdep (current_gdbarch)->PR_REGNUM, CALL_DUMMY_ADDRESS ()); return sp; } /* Function: fix_call_dummy Poke the callee function's address into the destination part of the CALL_DUMMY. The address is actually stored in a data word following the actualy CALL_DUMMY instructions, which will load it into a register using PC-relative addressing. This function expects the CALL_DUMMY to look like this: mov.w @(2,PC), R8 jsr @R8 nop trap */ #if 0 void sh_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p) { *(unsigned long *) (dummy + 8) = fun; } #endif static int sh_coerce_float_to_double (struct type *formal, struct type *actual) { return 1; } /* Find a function's return value in the appropriate registers (in regbuf), and copy it into valbuf. Extract from an array REGBUF containing the (raw) register state a function return value of type TYPE, and copy that, in virtual format, into VALBUF. */ static void sh_extract_return_value (struct type *type, char *regbuf, char *valbuf) { int len = TYPE_LENGTH (type); int return_register = R0_REGNUM; int offset; if (len <= 4) { if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) offset = REGISTER_BYTE (return_register) + 4 - len; else offset = REGISTER_BYTE (return_register); memcpy (valbuf, regbuf + offset, len); } else if (len <= 8) { if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) offset = REGISTER_BYTE (return_register) + 8 - len; else offset = REGISTER_BYTE (return_register); memcpy (valbuf, regbuf + offset, len); } else error ("bad size for return value"); } static void sh3e_sh4_extract_return_value (struct type *type, char *regbuf, char *valbuf) { int return_register; int offset; int len = TYPE_LENGTH (type); if (TYPE_CODE (type) == TYPE_CODE_FLT) return_register = FP0_REGNUM; else return_register = R0_REGNUM; if (len == 8 && TYPE_CODE (type) == TYPE_CODE_FLT) { DOUBLEST val; if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE) floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword, (char *) regbuf + REGISTER_BYTE (return_register), &val); else floatformat_to_doublest (&floatformat_ieee_double_big, (char *) regbuf + REGISTER_BYTE (return_register), &val); store_floating (valbuf, len, val); } else if (len <= 4) { if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) offset = REGISTER_BYTE (return_register) + 4 - len; else offset = REGISTER_BYTE (return_register); memcpy (valbuf, regbuf + offset, len); } else if (len <= 8) { if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) offset = REGISTER_BYTE (return_register) + 8 - len; else offset = REGISTER_BYTE (return_register); memcpy (valbuf, regbuf + offset, len); } else error ("bad size for return value"); } /* Write into appropriate registers a function return value of type TYPE, given in virtual format. If the architecture is sh4 or sh3e, store a function's return value in the R0 general register or in the FP0 floating point register, depending on the type of the return value. In all the other cases the result is stored in r0, left-justified. */ static void sh_default_store_return_value (struct type *type, char *valbuf) { char buf[32]; /* more than enough... */ if (TYPE_LENGTH (type) < REGISTER_RAW_SIZE (R0_REGNUM)) { /* Add leading zeros to the value. */ memset (buf, 0, REGISTER_RAW_SIZE (R0_REGNUM)); memcpy (buf + REGISTER_RAW_SIZE (R0_REGNUM) - TYPE_LENGTH (type), valbuf, TYPE_LENGTH (type)); write_register_bytes (REGISTER_BYTE (R0_REGNUM), buf, REGISTER_RAW_SIZE (R0_REGNUM)); } else write_register_bytes (REGISTER_BYTE (R0_REGNUM), valbuf, TYPE_LENGTH (type)); } static void sh3e_sh4_store_return_value (struct type *type, char *valbuf) { if (TYPE_CODE (type) == TYPE_CODE_FLT) write_register_bytes (REGISTER_BYTE (FP0_REGNUM), valbuf, TYPE_LENGTH (type)); else sh_default_store_return_value (type, valbuf); } /* Print the registers in a form similar to the E7000 */ static void sh_generic_show_regs (void) { struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n", paddr (read_register (PC_REGNUM)), (long) read_register (tdep->SR_REGNUM), (long) read_register (tdep->PR_REGNUM), (long) read_register (MACH_REGNUM), (long) read_register (MACL_REGNUM)); printf_filtered ("GBR=%08lx VBR=%08lx", (long) read_register (GBR_REGNUM), (long) read_register (VBR_REGNUM)); printf_filtered ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n", (long) read_register (0), (long) read_register (1), (long) read_register (2), (long) read_register (3), (long) read_register (4), (long) read_register (5), (long) read_register (6), (long) read_register (7)); printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n", (long) read_register (8), (long) read_register (9), (long) read_register (10), (long) read_register (11), (long) read_register (12), (long) read_register (13), (long) read_register (14), (long) read_register (15)); } static void sh3_show_regs (void) { struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n", paddr (read_register (PC_REGNUM)), (long) read_register (tdep->SR_REGNUM), (long) read_register (tdep->PR_REGNUM), (long) read_register (MACH_REGNUM), (long) read_register (MACL_REGNUM)); printf_filtered ("GBR=%08lx VBR=%08lx", (long) read_register (GBR_REGNUM), (long) read_register (VBR_REGNUM)); printf_filtered (" SSR=%08lx SPC=%08lx", (long) read_register (tdep->SSR_REGNUM), (long) read_register (tdep->SPC_REGNUM)); printf_filtered ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n", (long) read_register (0), (long) read_register (1), (long) read_register (2), (long) read_register (3), (long) read_register (4), (long) read_register (5), (long) read_register (6), (long) read_register (7)); printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n", (long) read_register (8), (long) read_register (9), (long) read_register (10), (long) read_register (11), (long) read_register (12), (long) read_register (13), (long) read_register (14), (long) read_register (15)); } static void sh3e_show_regs (void) { struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n", paddr (read_register (PC_REGNUM)), (long) read_register (tdep->SR_REGNUM), (long) read_register (tdep->PR_REGNUM), (long) read_register (MACH_REGNUM), (long) read_register (MACL_REGNUM)); printf_filtered ("GBR=%08lx VBR=%08lx", (long) read_register (GBR_REGNUM), (long) read_register (VBR_REGNUM)); printf_filtered (" SSR=%08lx SPC=%08lx", (long) read_register (tdep->SSR_REGNUM), (long) read_register (tdep->SPC_REGNUM)); printf_filtered (" FPUL=%08lx FPSCR=%08lx", (long) read_register (tdep->FPUL_REGNUM), (long) read_register (tdep->FPSCR_REGNUM)); printf_filtered ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n", (long) read_register (0), (long) read_register (1), (long) read_register (2), (long) read_register (3), (long) read_register (4), (long) read_register (5), (long) read_register (6), (long) read_register (7)); printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n", (long) read_register (8), (long) read_register (9), (long) read_register (10), (long) read_register (11), (long) read_register (12), (long) read_register (13), (long) read_register (14), (long) read_register (15)); printf_filtered (("FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"), (long) read_register (FP0_REGNUM + 0), (long) read_register (FP0_REGNUM + 1), (long) read_register (FP0_REGNUM + 2), (long) read_register (FP0_REGNUM + 3), (long) read_register (FP0_REGNUM + 4), (long) read_register (FP0_REGNUM + 5), (long) read_register (FP0_REGNUM + 6), (long) read_register (FP0_REGNUM + 7)); printf_filtered (("FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"), (long) read_register (FP0_REGNUM + 8), (long) read_register (FP0_REGNUM + 9), (long) read_register (FP0_REGNUM + 10), (long) read_register (FP0_REGNUM + 11), (long) read_register (FP0_REGNUM + 12), (long) read_register (FP0_REGNUM + 13), (long) read_register (FP0_REGNUM + 14), (long) read_register (FP0_REGNUM + 15)); } static void sh3_dsp_show_regs (void) { struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n", paddr (read_register (PC_REGNUM)), (long) read_register (tdep->SR_REGNUM), (long) read_register (tdep->PR_REGNUM), (long) read_register (MACH_REGNUM), (long) read_register (MACL_REGNUM)); printf_filtered ("GBR=%08lx VBR=%08lx", (long) read_register (GBR_REGNUM), (long) read_register (VBR_REGNUM)); printf_filtered (" SSR=%08lx SPC=%08lx", (long) read_register (tdep->SSR_REGNUM), (long) read_register (tdep->SPC_REGNUM)); printf_filtered (" DSR=%08lx", (long) read_register (tdep->DSR_REGNUM)); printf_filtered ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n", (long) read_register (0), (long) read_register (1), (long) read_register (2), (long) read_register (3), (long) read_register (4), (long) read_register (5), (long) read_register (6), (long) read_register (7)); printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n", (long) read_register (8), (long) read_register (9), (long) read_register (10), (long) read_register (11), (long) read_register (12), (long) read_register (13), (long) read_register (14), (long) read_register (15)); printf_filtered ("A0G=%02lx A0=%08lx M0=%08lx X0=%08lx Y0=%08lx RS=%08lx MOD=%08lx\n", (long) read_register (tdep->A0G_REGNUM) & 0xff, (long) read_register (tdep->A0_REGNUM), (long) read_register (tdep->M0_REGNUM), (long) read_register (tdep->X0_REGNUM), (long) read_register (tdep->Y0_REGNUM), (long) read_register (tdep->RS_REGNUM), (long) read_register (tdep->MOD_REGNUM)); printf_filtered ("A1G=%02lx A1=%08lx M1=%08lx X1=%08lx Y1=%08lx RE=%08lx\n", (long) read_register (tdep->A1G_REGNUM) & 0xff, (long) read_register (tdep->A1_REGNUM), (long) read_register (tdep->M1_REGNUM), (long) read_register (tdep->X1_REGNUM), (long) read_register (tdep->Y1_REGNUM), (long) read_register (tdep->RE_REGNUM)); } static void sh4_show_regs (void) { struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); int pr = read_register (tdep->FPSCR_REGNUM) & 0x80000; printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n", paddr (read_register (PC_REGNUM)), (long) read_register (tdep->SR_REGNUM), (long) read_register (tdep->PR_REGNUM), (long) read_register (MACH_REGNUM), (long) read_register (MACL_REGNUM)); printf_filtered ("GBR=%08lx VBR=%08lx", (long) read_register (GBR_REGNUM), (long) read_register (VBR_REGNUM)); printf_filtered (" SSR=%08lx SPC=%08lx", (long) read_register (tdep->SSR_REGNUM), (long) read_register (tdep->SPC_REGNUM)); printf_filtered (" FPUL=%08lx FPSCR=%08lx", (long) read_register (tdep->FPUL_REGNUM), (long) read_register (tdep->FPSCR_REGNUM)); printf_filtered ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n", (long) read_register (0), (long) read_register (1), (long) read_register (2), (long) read_register (3), (long) read_register (4), (long) read_register (5), (long) read_register (6), (long) read_register (7)); printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n", (long) read_register (8), (long) read_register (9), (long) read_register (10), (long) read_register (11), (long) read_register (12), (long) read_register (13), (long) read_register (14), (long) read_register (15)); printf_filtered ((pr ? "DR0-DR6 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n" : "FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"), (long) read_register (FP0_REGNUM + 0), (long) read_register (FP0_REGNUM + 1), (long) read_register (FP0_REGNUM + 2), (long) read_register (FP0_REGNUM + 3), (long) read_register (FP0_REGNUM + 4), (long) read_register (FP0_REGNUM + 5), (long) read_register (FP0_REGNUM + 6), (long) read_register (FP0_REGNUM + 7)); printf_filtered ((pr ? "DR8-DR14 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n" : "FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"), (long) read_register (FP0_REGNUM + 8), (long) read_register (FP0_REGNUM + 9), (long) read_register (FP0_REGNUM + 10), (long) read_register (FP0_REGNUM + 11), (long) read_register (FP0_REGNUM + 12), (long) read_register (FP0_REGNUM + 13), (long) read_register (FP0_REGNUM + 14), (long) read_register (FP0_REGNUM + 15)); } static void sh_dsp_show_regs (void) { struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n", paddr (read_register (PC_REGNUM)), (long) read_register (tdep->SR_REGNUM), (long) read_register (tdep->PR_REGNUM), (long) read_register (MACH_REGNUM), (long) read_register (MACL_REGNUM)); printf_filtered ("GBR=%08lx VBR=%08lx", (long) read_register (GBR_REGNUM), (long) read_register (VBR_REGNUM)); printf_filtered (" DSR=%08lx", (long) read_register (tdep->DSR_REGNUM)); printf_filtered ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n", (long) read_register (0), (long) read_register (1), (long) read_register (2), (long) read_register (3), (long) read_register (4), (long) read_register (5), (long) read_register (6), (long) read_register (7)); printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n", (long) read_register (8), (long) read_register (9), (long) read_register (10), (long) read_register (11), (long) read_register (12), (long) read_register (13), (long) read_register (14), (long) read_register (15)); printf_filtered ("A0G=%02lx A0=%08lx M0=%08lx X0=%08lx Y0=%08lx RS=%08lx MOD=%08lx\n", (long) read_register (tdep->A0G_REGNUM) & 0xff, (long) read_register (tdep->A0_REGNUM), (long) read_register (tdep->M0_REGNUM), (long) read_register (tdep->X0_REGNUM), (long) read_register (tdep->Y0_REGNUM), (long) read_register (tdep->RS_REGNUM), (long) read_register (tdep->MOD_REGNUM)); printf_filtered ("A1G=%02lx A1=%08lx M1=%08lx X1=%08lx Y1=%08lx RE=%08lx\n", (long) read_register (tdep->A1G_REGNUM) & 0xff, (long) read_register (tdep->A1_REGNUM), (long) read_register (tdep->M1_REGNUM), (long) read_register (tdep->X1_REGNUM), (long) read_register (tdep->Y1_REGNUM), (long) read_register (tdep->RE_REGNUM)); } void sh_show_regs_command (char *args, int from_tty) { if (sh_show_regs) (*sh_show_regs)(); } /* Index within `registers' of the first byte of the space for register N. */ static int sh_default_register_byte (int reg_nr) { return (reg_nr * 4); } static int sh_sh4_register_byte (int reg_nr) { struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); if (reg_nr >= tdep->DR0_REGNUM && reg_nr <= tdep->DR_LAST_REGNUM) return (dr_reg_base_num (reg_nr) * 4); else if (reg_nr >= tdep->FV0_REGNUM && reg_nr <= tdep->FV_LAST_REGNUM) return (fv_reg_base_num (reg_nr) * 4); else return (reg_nr * 4); } /* Number of bytes of storage in the actual machine representation for register REG_NR. */ static int sh_default_register_raw_size (int reg_nr) { return 4; } static int sh_sh4_register_raw_size (int reg_nr) { struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); if (reg_nr >= tdep->DR0_REGNUM && reg_nr <= tdep->DR_LAST_REGNUM) return 8; else if (reg_nr >= tdep->FV0_REGNUM && reg_nr <= tdep->FV_LAST_REGNUM) return 16; else return 4; } /* Number of bytes of storage in the program's representation for register N. */ static int sh_register_virtual_size (int reg_nr) { return 4; } /* Return the GDB type object for the "standard" data type of data in register N. */ static struct type * sh_sh3e_register_virtual_type (int reg_nr) { struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); if ((reg_nr >= FP0_REGNUM && (reg_nr <= tdep->FP_LAST_REGNUM)) || (reg_nr == tdep->FPUL_REGNUM)) return builtin_type_float; else return builtin_type_int; } static struct type * sh_sh4_build_float_register_type (int high) { struct type *temp; temp = create_range_type (NULL, builtin_type_int, 0, high); return create_array_type (NULL, builtin_type_float, temp); } static struct type * sh_sh4_register_virtual_type (int reg_nr) { struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); if ((reg_nr >= FP0_REGNUM && (reg_nr <= tdep->FP_LAST_REGNUM)) || (reg_nr == tdep->FPUL_REGNUM)) return builtin_type_float; else if (reg_nr >= tdep->DR0_REGNUM && reg_nr <= tdep->DR_LAST_REGNUM) return builtin_type_double; else if (reg_nr >= tdep->FV0_REGNUM && reg_nr <= tdep->FV_LAST_REGNUM) return sh_sh4_build_float_register_type (3); else return builtin_type_int; } static struct type * sh_default_register_virtual_type (int reg_nr) { return builtin_type_int; } /* On the sh4, the DRi pseudo registers are problematic if the target is little endian. When the user writes one of those registers, for instance with 'ser var $dr0=1', we want the double to be stored like this: fr0 = 0x00 0x00 0x00 0x00 0x00 0xf0 0x3f fr1 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00 This corresponds to little endian byte order & big endian word order. However if we let gdb write the register w/o conversion, it will write fr0 and fr1 this way: fr0 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00 fr1 = 0x00 0x00 0x00 0x00 0x00 0xf0 0x3f because it will consider fr0 and fr1 as a single LE stretch of memory. To achieve what we want we must force gdb to store things in floatformat_ieee_double_littlebyte_bigword (which is defined in include/floatformat.h and libiberty/floatformat.c. In case the target is big endian, there is no problem, the raw bytes will look like: fr0 = 0x3f 0xf0 0x00 0x00 0x00 0x00 0x00 fr1 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00 The other pseudo registers (the FVs) also don't pose a problem because they are stored as 4 individual FP elements. */ static void sh_sh4_register_convert_to_virtual (int regnum, struct type *type, char *from, char *to) { struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); if (regnum >= tdep->DR0_REGNUM && regnum <= tdep->DR_LAST_REGNUM) { DOUBLEST val; floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword, from, &val); store_floating (to, TYPE_LENGTH (type), val); } else error ("sh_register_convert_to_virtual called with non DR register number"); } static void sh_sh4_register_convert_to_raw (struct type *type, int regnum, char *from, char *to) { struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); if (regnum >= tdep->DR0_REGNUM && regnum <= tdep->DR_LAST_REGNUM) { DOUBLEST val = extract_floating (from, TYPE_LENGTH(type)); floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword, &val, to); } else error("sh_register_convert_to_raw called with non DR register number"); } void sh_pseudo_register_read (int reg_nr, char *buffer) { int base_regnum, portion; char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE); struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); if (reg_nr >= tdep->DR0_REGNUM && reg_nr <= tdep->DR_LAST_REGNUM) { base_regnum = dr_reg_base_num (reg_nr); /* Build the value in the provided buffer. */ /* Read the real regs for which this one is an alias. */ for (portion = 0; portion < 2; portion++) regcache_read (base_regnum + portion, temp_buffer + REGISTER_RAW_SIZE (base_regnum) * portion); /* We must pay attention to the endiannes. */ sh_sh4_register_convert_to_virtual (reg_nr, REGISTER_VIRTUAL_TYPE (reg_nr), temp_buffer, buffer); } else if (reg_nr >= tdep->FV0_REGNUM && reg_nr <= tdep->FV_LAST_REGNUM) { base_regnum = fv_reg_base_num (reg_nr); /* Read the real regs for which this one is an alias. */ for (portion = 0; portion < 4; portion++) regcache_read (base_regnum + portion, buffer + REGISTER_RAW_SIZE (base_regnum) * portion); } } static void sh4_register_read (struct gdbarch *gdbarch, int reg_nr, char *buffer) { if (reg_nr >= 0 && reg_nr < gdbarch_tdep (current_gdbarch)->DR0_REGNUM) /* It is a regular register. */ regcache_read (reg_nr, buffer); else /* It is a pseudo register and we need to construct its value */ sh_pseudo_register_read (reg_nr, buffer); } void sh_pseudo_register_write (int reg_nr, char *buffer) { int base_regnum, portion; char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE); struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); if (reg_nr >= tdep->DR0_REGNUM && reg_nr <= tdep->DR_LAST_REGNUM) { base_regnum = dr_reg_base_num (reg_nr); /* We must pay attention to the endiannes. */ sh_sh4_register_convert_to_raw (REGISTER_VIRTUAL_TYPE (reg_nr), reg_nr, buffer, temp_buffer); /* Write the real regs for which this one is an alias. */ for (portion = 0; portion < 2; portion++) regcache_write (base_regnum + portion, temp_buffer + REGISTER_RAW_SIZE (base_regnum) * portion); } else if (reg_nr >= tdep->FV0_REGNUM && reg_nr <= tdep->FV_LAST_REGNUM) { base_regnum = fv_reg_base_num (reg_nr); /* Write the real regs for which this one is an alias. */ for (portion = 0; portion < 4; portion++) regcache_write (base_regnum + portion, buffer + REGISTER_RAW_SIZE (base_regnum) * portion); } } static void sh4_register_write (struct gdbarch *gdbarch, int reg_nr, char *buffer) { if (reg_nr >= 0 && reg_nr < gdbarch_tdep (current_gdbarch)->DR0_REGNUM) /* It is a regular register. */ regcache_write (reg_nr, buffer); else /* It is a pseudo register and we need to construct its value */ sh_pseudo_register_write (reg_nr, buffer); } /* Floating point vector of 4 float registers. */ static void do_fv_register_info (int fv_regnum) { int first_fp_reg_num = fv_reg_base_num (fv_regnum); printf_filtered ("fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n", fv_regnum - gdbarch_tdep (current_gdbarch)->FV0_REGNUM, (int) read_register (first_fp_reg_num), (int) read_register (first_fp_reg_num + 1), (int) read_register (first_fp_reg_num + 2), (int) read_register (first_fp_reg_num + 3)); } /* Double precision registers. */ static void do_dr_register_info (int dr_regnum) { int first_fp_reg_num = dr_reg_base_num (dr_regnum); printf_filtered ("dr%d\t0x%08x%08x\n", dr_regnum - gdbarch_tdep (current_gdbarch)->DR0_REGNUM, (int) read_register (first_fp_reg_num), (int) read_register (first_fp_reg_num + 1)); } static void sh_do_pseudo_register (int regnum) { struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); if (regnum < NUM_REGS || regnum >= NUM_REGS + NUM_PSEUDO_REGS) internal_error (__FILE__, __LINE__, "Invalid pseudo register number %d\n", regnum); else if (regnum >= tdep->DR0_REGNUM && regnum < tdep->DR_LAST_REGNUM) do_dr_register_info (regnum); else if (regnum >= tdep->FV0_REGNUM && regnum <= tdep->FV_LAST_REGNUM) do_fv_register_info (regnum); } static void sh_do_fp_register (int regnum) { /* do values for FP (float) regs */ char *raw_buffer; double flt; /* double extracted from raw hex data */ int inv; int j; /* Allocate space for the float. */ raw_buffer = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM)); /* Get the data in raw format. */ if (read_relative_register_raw_bytes (regnum, raw_buffer)) error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum)); /* Get the register as a number */ flt = unpack_double (builtin_type_float, raw_buffer, &inv); /* Print the name and some spaces. */ fputs_filtered (REGISTER_NAME (regnum), gdb_stdout); print_spaces_filtered (15 - strlen (REGISTER_NAME (regnum)), gdb_stdout); /* Print the value. */ if (inv) printf_filtered (""); else printf_filtered ("%-10.9g", flt); /* Print the fp register as hex. */ printf_filtered ("\t(raw 0x"); for (j = 0; j < REGISTER_RAW_SIZE (regnum); j++) { register int idx = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? j : REGISTER_RAW_SIZE (regnum) - 1 - j; printf_filtered ("%02x", (unsigned char) raw_buffer[idx]); } printf_filtered (")"); printf_filtered ("\n"); } static void sh_do_register (int regnum) { char raw_buffer[MAX_REGISTER_RAW_SIZE]; fputs_filtered (REGISTER_NAME (regnum), gdb_stdout); print_spaces_filtered (15 - strlen (REGISTER_NAME (regnum)), gdb_stdout); /* Get the data in raw format. */ if (read_relative_register_raw_bytes (regnum, raw_buffer)) printf_filtered ("*value not available*\n"); val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0, gdb_stdout, 'x', 1, 0, Val_pretty_default); printf_filtered ("\t"); val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0, gdb_stdout, 0, 1, 0, Val_pretty_default); printf_filtered ("\n"); } static void sh_print_register (int regnum) { if (regnum < 0 || regnum >= NUM_REGS + NUM_PSEUDO_REGS) internal_error (__FILE__, __LINE__, "Invalid register number %d\n", regnum); else if (regnum >= 0 && regnum < NUM_REGS) { if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT) sh_do_fp_register (regnum); /* FP regs */ else sh_do_register (regnum); /* All other regs */ } else if (regnum < NUM_REGS + NUM_PSEUDO_REGS) do_pseudo_register (regnum); } void sh_do_registers_info (int regnum, int fpregs) { if (regnum != -1) /* do one specified register */ { if (*(REGISTER_NAME (regnum)) == '\0') error ("Not a valid register for the current processor type"); sh_print_register (regnum); } else /* do all (or most) registers */ { regnum = 0; while (regnum < NUM_REGS) { /* If the register name is empty, it is undefined for this processor, so don't display anything. */ if (REGISTER_NAME (regnum) == NULL || *(REGISTER_NAME (regnum)) == '\0') { regnum++; continue; } if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT) { if (fpregs) { /* true for "INFO ALL-REGISTERS" command */ sh_do_fp_register (regnum); /* FP regs */ regnum ++; } else regnum += (gdbarch_tdep (current_gdbarch)->FP_LAST_REGNUM - FP0_REGNUM); /* skip FP regs */ } else { sh_do_register (regnum); /* All other regs */ regnum++; } } if (fpregs) while (regnum < NUM_REGS + NUM_PSEUDO_REGS) { do_pseudo_register (regnum); regnum++; } } } #ifdef SVR4_SHARED_LIBS /* Fetch (and possibly build) an appropriate link_map_offsets structure for native i386 linux targets using the struct offsets defined in link.h (but without actual reference to that file). This makes it possible to access i386-linux shared libraries from a gdb that was not built on an i386-linux host (for cross debugging). */ struct link_map_offsets * sh_linux_svr4_fetch_link_map_offsets (void) { static struct link_map_offsets lmo; static struct link_map_offsets *lmp = 0; if (lmp == 0) { lmp = &lmo; lmo.r_debug_size = 8; /* 20 not actual size but all we need */ lmo.r_map_offset = 4; lmo.r_map_size = 4; lmo.link_map_size = 20; /* 552 not actual size but all we need */ lmo.l_addr_offset = 0; lmo.l_addr_size = 4; lmo.l_name_offset = 4; lmo.l_name_size = 4; lmo.l_next_offset = 12; lmo.l_next_size = 4; lmo.l_prev_offset = 16; lmo.l_prev_size = 4; } return lmp; } #endif /* SVR4_SHARED_LIBS */ static gdbarch_init_ftype sh_gdbarch_init; static struct gdbarch * sh_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) { static LONGEST sh_call_dummy_words[] = {0}; struct gdbarch *gdbarch; struct gdbarch_tdep *tdep; gdbarch_register_name_ftype *sh_register_name; gdbarch_store_return_value_ftype *sh_store_return_value; gdbarch_register_virtual_type_ftype *sh_register_virtual_type; /* Find a candidate among the list of pre-declared architectures. */ arches = gdbarch_list_lookup_by_info (arches, &info); if (arches != NULL) return arches->gdbarch; /* None found, create a new architecture from the information provided. */ tdep = XMALLOC (struct gdbarch_tdep); gdbarch = gdbarch_alloc (&info, tdep); /* Initialize the register numbers that are not common to all the variants to -1, if necessary thse will be overwritten in the case statement below. */ tdep->FPUL_REGNUM = -1; tdep->FPSCR_REGNUM = -1; tdep->PR_REGNUM = 17; tdep->SR_REGNUM = 22; tdep->DSR_REGNUM = -1; tdep->FP_LAST_REGNUM = -1; tdep->A0G_REGNUM = -1; tdep->A0_REGNUM = -1; tdep->A1G_REGNUM = -1; tdep->A1_REGNUM = -1; tdep->M0_REGNUM = -1; tdep->M1_REGNUM = -1; tdep->X0_REGNUM = -1; tdep->X1_REGNUM = -1; tdep->Y0_REGNUM = -1; tdep->Y1_REGNUM = -1; tdep->MOD_REGNUM = -1; tdep->RS_REGNUM = -1; tdep->RE_REGNUM = -1; tdep->SSR_REGNUM = -1; tdep->SPC_REGNUM = -1; tdep->DR0_REGNUM = -1; tdep->DR_LAST_REGNUM = -1; tdep->FV0_REGNUM = -1; tdep->FV_LAST_REGNUM = -1; tdep->ARG0_REGNUM = 4; tdep->ARGLAST_REGNUM = 7; tdep->RETURN_REGNUM = 0; tdep->FLOAT_ARGLAST_REGNUM = -1; set_gdbarch_fp0_regnum (gdbarch, -1); set_gdbarch_num_pseudo_regs (gdbarch, 0); set_gdbarch_max_register_raw_size (gdbarch, 4); set_gdbarch_max_register_virtual_size (gdbarch, 4); set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT); set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT); set_gdbarch_num_regs (gdbarch, SH_DEFAULT_NUM_REGS); set_gdbarch_sp_regnum (gdbarch, 15); set_gdbarch_fp_regnum (gdbarch, 14); set_gdbarch_pc_regnum (gdbarch, 16); set_gdbarch_register_size (gdbarch, 4); set_gdbarch_register_bytes (gdbarch, SH_DEFAULT_NUM_REGS * 4); set_gdbarch_do_registers_info (gdbarch, sh_do_registers_info); set_gdbarch_breakpoint_from_pc (gdbarch, sh_breakpoint_from_pc); set_gdbarch_frame_chain (gdbarch, sh_frame_chain); set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register); set_gdbarch_init_extra_frame_info (gdbarch, sh_init_extra_frame_info); set_gdbarch_extract_return_value (gdbarch, sh_extract_return_value); set_gdbarch_push_arguments (gdbarch, sh_push_arguments); set_gdbarch_store_struct_return (gdbarch, sh_store_struct_return); set_gdbarch_use_struct_convention (gdbarch, sh_use_struct_convention); set_gdbarch_extract_struct_value_address (gdbarch, sh_extract_struct_value_address); set_gdbarch_pop_frame (gdbarch, sh_pop_frame); set_gdbarch_print_insn (gdbarch, gdb_print_insn_sh); skip_prologue_hard_way = sh_skip_prologue_hard_way; do_pseudo_register = sh_do_pseudo_register; switch (info.bfd_arch_info->mach) { case bfd_mach_sh: sh_register_name = sh_sh_register_name; sh_show_regs = sh_generic_show_regs; sh_store_return_value = sh_default_store_return_value; sh_register_virtual_type = sh_default_register_virtual_type; set_gdbarch_frame_init_saved_regs (gdbarch, sh_nofp_frame_init_saved_regs); set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size); set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size); set_gdbarch_register_byte (gdbarch, sh_default_register_byte); break; case bfd_mach_sh2: sh_register_name = sh_sh_register_name; sh_show_regs = sh_generic_show_regs; sh_store_return_value = sh_default_store_return_value; sh_register_virtual_type = sh_default_register_virtual_type; set_gdbarch_frame_init_saved_regs (gdbarch, sh_nofp_frame_init_saved_regs); set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size); set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size); set_gdbarch_register_byte (gdbarch, sh_default_register_byte); break; case bfd_mach_sh_dsp: sh_register_name = sh_sh_dsp_register_name; sh_show_regs = sh_dsp_show_regs; sh_store_return_value = sh_default_store_return_value; sh_register_virtual_type = sh_default_register_virtual_type; set_gdbarch_frame_init_saved_regs (gdbarch, sh_nofp_frame_init_saved_regs); set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size); set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size); set_gdbarch_register_byte (gdbarch, sh_default_register_byte); tdep->DSR_REGNUM = 24; tdep->A0G_REGNUM = 25; tdep->A0_REGNUM = 26; tdep->A1G_REGNUM = 27; tdep->A1_REGNUM = 28; tdep->M0_REGNUM = 29; tdep->M1_REGNUM = 30; tdep->X0_REGNUM = 31; tdep->X1_REGNUM = 32; tdep->Y0_REGNUM = 33; tdep->Y1_REGNUM = 34; tdep->MOD_REGNUM = 40; tdep->RS_REGNUM = 43; tdep->RE_REGNUM = 44; break; case bfd_mach_sh3: sh_register_name = sh_sh3_register_name; sh_show_regs = sh3_show_regs; sh_store_return_value = sh_default_store_return_value; sh_register_virtual_type = sh_default_register_virtual_type; set_gdbarch_frame_init_saved_regs (gdbarch, sh_nofp_frame_init_saved_regs); set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size); set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size); set_gdbarch_register_byte (gdbarch, sh_default_register_byte); tdep->SSR_REGNUM = 41; tdep->SPC_REGNUM = 42; break; case bfd_mach_sh3e: sh_register_name = sh_sh3e_register_name; sh_show_regs = sh3e_show_regs; sh_store_return_value = sh3e_sh4_store_return_value; sh_register_virtual_type = sh_sh3e_register_virtual_type; set_gdbarch_frame_init_saved_regs (gdbarch, sh_fp_frame_init_saved_regs); set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size); set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size); set_gdbarch_register_byte (gdbarch, sh_default_register_byte); set_gdbarch_extract_return_value (gdbarch, sh3e_sh4_extract_return_value); set_gdbarch_fp0_regnum (gdbarch, 25); tdep->FPUL_REGNUM = 23; tdep->FPSCR_REGNUM = 24; tdep->FP_LAST_REGNUM = 40; tdep->SSR_REGNUM = 41; tdep->SPC_REGNUM = 42; break; case bfd_mach_sh3_dsp: sh_register_name = sh_sh3_dsp_register_name; sh_show_regs = sh3_dsp_show_regs; sh_store_return_value = sh_default_store_return_value; sh_register_virtual_type = sh_default_register_virtual_type; set_gdbarch_frame_init_saved_regs (gdbarch, sh_nofp_frame_init_saved_regs); set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size); set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size); set_gdbarch_register_byte (gdbarch, sh_default_register_byte); tdep->DSR_REGNUM = 24; tdep->A0G_REGNUM = 25; tdep->A0_REGNUM = 26; tdep->A1G_REGNUM = 27; tdep->A1_REGNUM = 28; tdep->M0_REGNUM = 29; tdep->M1_REGNUM = 30; tdep->X0_REGNUM = 31; tdep->X1_REGNUM = 32; tdep->Y0_REGNUM = 33; tdep->Y1_REGNUM = 34; tdep->MOD_REGNUM = 40; tdep->RS_REGNUM = 43; tdep->RE_REGNUM = 44; tdep->SSR_REGNUM = 41; tdep->SPC_REGNUM = 42; break; case bfd_mach_sh4: sh_register_name = sh_sh4_register_name; sh_show_regs = sh4_show_regs; sh_store_return_value = sh3e_sh4_store_return_value; sh_register_virtual_type = sh_sh4_register_virtual_type; set_gdbarch_frame_init_saved_regs (gdbarch, sh_fp_frame_init_saved_regs); set_gdbarch_extract_return_value (gdbarch, sh3e_sh4_extract_return_value); set_gdbarch_fp0_regnum (gdbarch, 25); set_gdbarch_register_raw_size (gdbarch, sh_sh4_register_raw_size); set_gdbarch_register_virtual_size (gdbarch, sh_sh4_register_raw_size); set_gdbarch_register_byte (gdbarch, sh_sh4_register_byte); set_gdbarch_num_pseudo_regs (gdbarch, 12); set_gdbarch_max_register_raw_size (gdbarch, 4 * 4); set_gdbarch_max_register_virtual_size (gdbarch, 4 * 4); set_gdbarch_register_read (gdbarch, sh4_register_read); set_gdbarch_register_write (gdbarch, sh4_register_write); tdep->FPUL_REGNUM = 23; tdep->FPSCR_REGNUM = 24; tdep->FP_LAST_REGNUM = 40; tdep->SSR_REGNUM = 41; tdep->SPC_REGNUM = 42; tdep->DR0_REGNUM = 59; tdep->DR_LAST_REGNUM = 66; tdep->FV0_REGNUM = 67; tdep->FV_LAST_REGNUM = 70; break; default: sh_register_name = sh_generic_register_name; sh_show_regs = sh_generic_show_regs; sh_store_return_value = sh_default_store_return_value; sh_register_virtual_type = sh_default_register_virtual_type; set_gdbarch_frame_init_saved_regs (gdbarch, sh_nofp_frame_init_saved_regs); set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size); set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size); set_gdbarch_register_byte (gdbarch, sh_default_register_byte); break; } set_gdbarch_read_pc (gdbarch, generic_target_read_pc); set_gdbarch_write_pc (gdbarch, generic_target_write_pc); set_gdbarch_read_fp (gdbarch, generic_target_read_fp); set_gdbarch_read_sp (gdbarch, generic_target_read_sp); set_gdbarch_write_sp (gdbarch, generic_target_write_sp); set_gdbarch_register_name (gdbarch, sh_register_name); set_gdbarch_register_virtual_type (gdbarch, sh_register_virtual_type); set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT); set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT); set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT); set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT); set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);/*??should be 8?*/ set_gdbarch_use_generic_dummy_frames (gdbarch, 1); set_gdbarch_call_dummy_length (gdbarch, 0); set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT); set_gdbarch_call_dummy_address (gdbarch, entry_point_address); set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1); /*???*/ set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0); set_gdbarch_call_dummy_start_offset (gdbarch, 0); set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy); set_gdbarch_call_dummy_words (gdbarch, sh_call_dummy_words); set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (sh_call_dummy_words)); set_gdbarch_call_dummy_p (gdbarch, 1); set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0); set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy); set_gdbarch_coerce_float_to_double (gdbarch, sh_coerce_float_to_double); set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame); set_gdbarch_push_return_address (gdbarch, sh_push_return_address); set_gdbarch_store_return_value (gdbarch, sh_store_return_value); set_gdbarch_skip_prologue (gdbarch, sh_skip_prologue); set_gdbarch_inner_than (gdbarch, core_addr_lessthan); set_gdbarch_decr_pc_after_break (gdbarch, 0); set_gdbarch_function_start_offset (gdbarch, 0); set_gdbarch_frame_args_skip (gdbarch, 0); set_gdbarch_frameless_function_invocation (gdbarch, frameless_look_for_prologue); set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid); set_gdbarch_frame_saved_pc (gdbarch, sh_frame_saved_pc); set_gdbarch_frame_args_address (gdbarch, default_frame_address); set_gdbarch_frame_locals_address (gdbarch, default_frame_address); set_gdbarch_saved_pc_after_call (gdbarch, sh_saved_pc_after_call); set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown); set_gdbarch_believe_pcc_promotion (gdbarch, 1); return gdbarch; } void _initialize_sh_tdep (void) { struct cmd_list_element *c; register_gdbarch_init (bfd_arch_sh, sh_gdbarch_init); add_com ("regs", class_vars, sh_show_regs_command, "Print all registers"); }