/* Cache and manage the values of registers for GDB, the GNU debugger. Copyright 1986, 87, 89, 91, 94, 95, 96, 1998, 2000 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "defs.h" #include "frame.h" #include "inferior.h" #include "target.h" #include "gdbarch.h" #include "gdbcmd.h" /* * DATA STRUCTURE * * Here is the actual register cache. */ /* NOTE: this is a write-through cache. There is no "dirty" bit for recording if the register values have been changed (eg. by the user). Therefore all registers must be written back to the target when appropriate. */ /* REGISTERS contains the cached register values (in target byte order). */ char *registers; /* REGISTER_VALID is 0 if the register needs to be fetched, 1 if it has been fetched, and -1 if the register value was not available. "Not available" means don't try to fetch it again. */ signed char *register_valid; /* The thread/process associated with the current set of registers. For now, -1 is special, and means `no current process'. */ static int registers_pid = -1; /* * FUNCTIONS: */ /* REGISTER_CACHED() Returns 0 if the value is not in the cache (needs fetch). >0 if the value is in the cache. <0 if the value is permanently unavailable (don't ask again). */ int register_cached (int regnum) { return register_valid[regnum]; } /* Record that REGNUM's value is cached if STATE is >0, uncached but fetchable if STATE is 0, and uncached and unfetchable if STATE is <0. */ void set_register_cached (int regnum, int state) { register_valid[regnum] = state; } /* REGISTER_CHANGED invalidate a single register REGNUM in the cache */ void register_changed (int regnum) { set_register_cached (regnum, 0); } /* If REGNUM >= 0, return a pointer to register REGNUM's cache buffer area, else return a pointer to the start of the cache buffer. */ char * register_buffer (int regnum) { if (regnum < 0) return registers; else return ®isters[REGISTER_BYTE (regnum)]; } /* Return whether register REGNUM is a real register. */ static int real_register (int regnum) { return regnum >= 0 && regnum < NUM_REGS; } /* Return whether register REGNUM is a pseudo register. */ static int pseudo_register (int regnum) { return regnum >= NUM_REGS && regnum < NUM_REGS + NUM_PSEUDO_REGS; } /* Fetch register REGNUM into the cache. */ static void fetch_register (int regnum) { if (real_register (regnum)) target_fetch_registers (regnum); else if (pseudo_register (regnum)) FETCH_PSEUDO_REGISTER (regnum); } /* Write register REGNUM cached value to the target. */ static void store_register (int regnum) { if (real_register (regnum)) target_store_registers (regnum); else if (pseudo_register (regnum)) STORE_PSEUDO_REGISTER (regnum); } /* FIND_SAVED_REGISTER () Return the address in which frame FRAME's value of register REGNUM has been saved in memory. Or return zero if it has not been saved. If REGNUM specifies the SP, the value we return is actually the SP value, not an address where it was saved. */ CORE_ADDR find_saved_register (struct frame_info *frame, int regnum) { register struct frame_info *frame1 = NULL; register CORE_ADDR addr = 0; if (frame == NULL) /* No regs saved if want current frame */ return 0; #ifdef HAVE_REGISTER_WINDOWS /* We assume that a register in a register window will only be saved in one place (since the name changes and/or disappears as you go towards inner frames), so we only call get_frame_saved_regs on the current frame. This is directly in contradiction to the usage below, which assumes that registers used in a frame must be saved in a lower (more interior) frame. This change is a result of working on a register window machine; get_frame_saved_regs always returns the registers saved within a frame, within the context (register namespace) of that frame. */ /* However, note that we don't want this to return anything if nothing is saved (if there's a frame inside of this one). Also, callers to this routine asking for the stack pointer want the stack pointer saved for *this* frame; this is returned from the next frame. */ if (REGISTER_IN_WINDOW_P (regnum)) { frame1 = get_next_frame (frame); if (!frame1) return 0; /* Registers of this frame are active. */ /* Get the SP from the next frame in; it will be this current frame. */ if (regnum != SP_REGNUM) frame1 = frame; FRAME_INIT_SAVED_REGS (frame1); return frame1->saved_regs[regnum]; /* ... which might be zero */ } #endif /* HAVE_REGISTER_WINDOWS */ /* Note that this next routine assumes that registers used in frame x will be saved only in the frame that x calls and frames interior to it. This is not true on the sparc, but the above macro takes care of it, so we should be all right. */ while (1) { QUIT; frame1 = get_prev_frame (frame1); if (frame1 == 0 || frame1 == frame) break; FRAME_INIT_SAVED_REGS (frame1); if (frame1->saved_regs[regnum]) addr = frame1->saved_regs[regnum]; } return addr; } /* DEFAULT_GET_SAVED_REGISTER () Find register number REGNUM relative to FRAME and put its (raw, target format) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable was optimized out (and thus can't be fetched). Set *LVAL to lval_memory, lval_register, or not_lval, depending on whether the value was fetched from memory, from a register, or in a strange and non-modifiable way (e.g. a frame pointer which was calculated rather than fetched). Set *ADDRP to the address, either in memory on as a REGISTER_BYTE offset into the registers array. Note that this implementation never sets *LVAL to not_lval. But it can be replaced by defining GET_SAVED_REGISTER and supplying your own. The argument RAW_BUFFER must point to aligned memory. */ static void default_get_saved_register (char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval) { CORE_ADDR addr; if (!target_has_registers) error ("No registers."); /* Normal systems don't optimize out things with register numbers. */ if (optimized != NULL) *optimized = 0; addr = find_saved_register (frame, regnum); if (addr != 0) { if (lval != NULL) *lval = lval_memory; if (regnum == SP_REGNUM) { if (raw_buffer != NULL) { /* Put it back in target format. */ store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), (LONGEST) addr); } if (addrp != NULL) *addrp = 0; return; } if (raw_buffer != NULL) target_read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum)); } else { if (lval != NULL) *lval = lval_register; addr = REGISTER_BYTE (regnum); if (raw_buffer != NULL) read_register_gen (regnum, raw_buffer); } if (addrp != NULL) *addrp = addr; } #if !defined (GET_SAVED_REGISTER) #define GET_SAVED_REGISTER(raw_buffer, optimized, addrp, frame, regnum, lval) \ default_get_saved_register(raw_buffer, optimized, addrp, frame, regnum, lval) #endif void get_saved_register (char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval) { GET_SAVED_REGISTER (raw_buffer, optimized, addrp, frame, regnum, lval); } /* READ_RELATIVE_REGISTER_RAW_BYTES_FOR_FRAME Copy the bytes of register REGNUM, relative to the input stack frame, into our memory at MYADDR, in target byte order. The number of bytes copied is REGISTER_RAW_SIZE (REGNUM). Returns 1 if could not be read, 0 if could. */ /* FIXME: This function increases the confusion between FP_REGNUM and the virtual/pseudo-frame pointer. */ static int read_relative_register_raw_bytes_for_frame (int regnum, char *myaddr, struct frame_info *frame) { int optim; if (regnum == FP_REGNUM && frame) { /* Put it back in target format. */ store_address (myaddr, REGISTER_RAW_SIZE (FP_REGNUM), (LONGEST) FRAME_FP (frame)); return 0; } get_saved_register (myaddr, &optim, (CORE_ADDR *) NULL, frame, regnum, (enum lval_type *) NULL); if (register_cached (regnum) < 0) return 1; /* register value not available */ return optim; } /* READ_RELATIVE_REGISTER_RAW_BYTES Copy the bytes of register REGNUM, relative to the current stack frame, into our memory at MYADDR, in target byte order. The number of bytes copied is REGISTER_RAW_SIZE (REGNUM). Returns 1 if could not be read, 0 if could. */ int read_relative_register_raw_bytes (int regnum, char *myaddr) { return read_relative_register_raw_bytes_for_frame (regnum, myaddr, selected_frame); } /* Low level examining and depositing of registers. The caller is responsible for making sure that the inferior is stopped before calling the fetching routines, or it will get garbage. (a change from GDB version 3, in which the caller got the value from the last stop). */ /* REGISTERS_CHANGED () Indicate that registers may have changed, so invalidate the cache. */ void registers_changed (void) { int i; registers_pid = -1; /* Force cleanup of any alloca areas if using C alloca instead of a builtin alloca. This particular call is used to clean up areas allocated by low level target code which may build up during lengthy interactions between gdb and the target before gdb gives control to the user (ie watchpoints). */ alloca (0); for (i = 0; i < ARCH_NUM_REGS; i++) set_register_cached (i, 0); /* Assume that if all the hardware regs have changed, then so have the pseudo-registers. */ for (i = NUM_REGS; i < NUM_REGS + NUM_PSEUDO_REGS; i++) set_register_cached (i, 0); if (registers_changed_hook) registers_changed_hook (); } /* REGISTERS_FETCHED () Indicate that all registers have been fetched, so mark them all valid. */ void registers_fetched (void) { int i; for (i = 0; i < ARCH_NUM_REGS; i++) set_register_cached (i, 1); /* Do not assume that the pseudo-regs have also been fetched. Fetching all real regs might not account for all pseudo-regs. */ } /* read_register_bytes and write_register_bytes are generally a *BAD* idea. They are inefficient because they need to check for partial updates, which can only be done by scanning through all of the registers and seeing if the bytes that are being read/written fall inside of an invalid register. [The main reason this is necessary is that register sizes can vary, so a simple index won't suffice.] It is far better to call read_register_gen and write_register_gen if you want to get at the raw register contents, as it only takes a regnum as an argument, and therefore can't do a partial register update. Prior to the recent fixes to check for partial updates, both read and write_register_bytes always checked to see if any registers were stale, and then called target_fetch_registers (-1) to update the whole set. This caused really slowed things down for remote targets. */ /* Copy INLEN bytes of consecutive data from registers starting with the INREGBYTE'th byte of register data into memory at MYADDR. */ void read_register_bytes (int inregbyte, char *myaddr, int inlen) { int inregend = inregbyte + inlen; int regnum; if (registers_pid != inferior_pid) { registers_changed (); registers_pid = inferior_pid; } /* See if we are trying to read bytes from out-of-date registers. If so, update just those registers. */ for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++) { int regstart, regend; if (register_cached (regnum)) continue; if (REGISTER_NAME (regnum) == NULL || *REGISTER_NAME (regnum) == '\0') continue; regstart = REGISTER_BYTE (regnum); regend = regstart + REGISTER_RAW_SIZE (regnum); if (regend <= inregbyte || inregend <= regstart) /* The range the user wants to read doesn't overlap with regnum. */ continue; /* We've found an uncached register where at least one byte will be read. Update it from the target. */ fetch_register (regnum); if (!register_cached (regnum)) { /* Sometimes pseudoregs are never marked valid, so that they will be fetched every time (it can be complicated to know if a pseudoreg is valid, while "fetching" them can be cheap). */ if (regnum < NUM_REGS) error ("read_register_bytes: Couldn't update register %d.", regnum); } } if (myaddr != NULL) memcpy (myaddr, register_buffer (-1) + inregbyte, inlen); } /* Read register REGNUM into memory at MYADDR, which must be large enough for REGISTER_RAW_BYTES (REGNUM). Target byte-order. If the register is known to be the size of a CORE_ADDR or smaller, read_register can be used instead. */ void read_register_gen (int regnum, char *myaddr) { if (registers_pid != inferior_pid) { registers_changed (); registers_pid = inferior_pid; } if (!register_cached (regnum)) fetch_register (regnum); memcpy (myaddr, register_buffer (regnum), REGISTER_RAW_SIZE (regnum)); } /* Write register REGNUM at MYADDR to the target. MYADDR points at REGISTER_RAW_BYTES(REGNUM), which must be in target byte-order. */ /* Registers we shouldn't try to store. */ #if !defined (CANNOT_STORE_REGISTER) #define CANNOT_STORE_REGISTER(regnum) 0 #endif void write_register_gen (int regnum, char *myaddr) { int size; /* On the sparc, writing %g0 is a no-op, so we don't even want to change the registers array if something writes to this register. */ if (CANNOT_STORE_REGISTER (regnum)) return; if (registers_pid != inferior_pid) { registers_changed (); registers_pid = inferior_pid; } size = REGISTER_RAW_SIZE (regnum); /* If we have a valid copy of the register, and new value == old value, then don't bother doing the actual store. */ if (register_cached (regnum) && memcmp (register_buffer (regnum), myaddr, size) == 0) return; if (real_register (regnum)) target_prepare_to_store (); memcpy (register_buffer (regnum), myaddr, size); set_register_cached (regnum, 1); store_register (regnum); } /* Copy INLEN bytes of consecutive data from memory at MYADDR into registers starting with the MYREGSTART'th byte of register data. */ void write_register_bytes (int myregstart, char *myaddr, int inlen) { int myregend = myregstart + inlen; int regnum; target_prepare_to_store (); /* Scan through the registers updating any that are covered by the range myregstart<=>myregend using write_register_gen, which does nice things like handling threads, and avoiding updates when the new and old contents are the same. */ for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++) { int regstart, regend; regstart = REGISTER_BYTE (regnum); regend = regstart + REGISTER_RAW_SIZE (regnum); /* Is this register completely outside the range the user is writing? */ if (myregend <= regstart || regend <= myregstart) /* do nothing */ ; /* Is this register completely within the range the user is writing? */ else if (myregstart <= regstart && regend <= myregend) write_register_gen (regnum, myaddr + (regstart - myregstart)); /* The register partially overlaps the range being written. */ else { char *regbuf = (char*) alloca (MAX_REGISTER_RAW_SIZE); /* What's the overlap between this register's bytes and those the caller wants to write? */ int overlapstart = max (regstart, myregstart); int overlapend = min (regend, myregend); /* We may be doing a partial update of an invalid register. Update it from the target before scribbling on it. */ read_register_gen (regnum, regbuf); memcpy (registers + overlapstart, myaddr + (overlapstart - myregstart), overlapend - overlapstart); store_register (regnum); } } } /* Return the contents of register REGNUM as an unsigned integer. */ ULONGEST read_register (int regnum) { if (registers_pid != inferior_pid) { registers_changed (); registers_pid = inferior_pid; } if (!register_cached (regnum)) fetch_register (regnum); return (extract_unsigned_integer (register_buffer (regnum), REGISTER_RAW_SIZE (regnum))); } ULONGEST read_register_pid (int regnum, int pid) { int save_pid; CORE_ADDR retval; if (pid == inferior_pid) return read_register (regnum); save_pid = inferior_pid; inferior_pid = pid; retval = read_register (regnum); inferior_pid = save_pid; return retval; } /* Return the contents of register REGNUM as a signed integer. */ LONGEST read_signed_register (int regnum) { if (registers_pid != inferior_pid) { registers_changed (); registers_pid = inferior_pid; } if (!register_cached (regnum)) fetch_register (regnum); return (extract_signed_integer (register_buffer (regnum), REGISTER_RAW_SIZE (regnum))); } LONGEST read_signed_register_pid (int regnum, int pid) { int save_pid; LONGEST retval; if (pid == inferior_pid) return read_signed_register (regnum); save_pid = inferior_pid; inferior_pid = pid; retval = read_signed_register (regnum); inferior_pid = save_pid; return retval; } /* Store VALUE into the raw contents of register number REGNUM. */ void write_register (int regnum, LONGEST val) { PTR buf; int size; /* On the sparc, writing %g0 is a no-op, so we don't even want to change the registers array if something writes to this register. */ if (CANNOT_STORE_REGISTER (regnum)) return; if (registers_pid != inferior_pid) { registers_changed (); registers_pid = inferior_pid; } size = REGISTER_RAW_SIZE (regnum); buf = alloca (size); store_signed_integer (buf, size, (LONGEST) val); /* If we have a valid copy of the register, and new value == old value, then don't bother doing the actual store. */ if (register_cached (regnum) && memcmp (register_buffer (regnum), buf, size) == 0) return; if (real_register (regnum)) target_prepare_to_store (); memcpy (register_buffer (regnum), buf, size); set_register_cached (regnum, 1); store_register (regnum); } void write_register_pid (int regnum, CORE_ADDR val, int pid) { int save_pid; if (pid == inferior_pid) { write_register (regnum, val); return; } save_pid = inferior_pid; inferior_pid = pid; write_register (regnum, val); inferior_pid = save_pid; } /* SUPPLY_REGISTER() Record that register REGNUM contains VAL. This is used when the value is obtained from the inferior or core dump, so there is no need to store the value there. If VAL is a NULL pointer, then it's probably an unsupported register. We just set its value to all zeros. We might want to record this fact, and report it to the users of read_register and friends. */ void supply_register (int regnum, char *val) { #if 1 if (registers_pid != inferior_pid) { registers_changed (); registers_pid = inferior_pid; } #endif set_register_cached (regnum, 1); if (val) memcpy (register_buffer (regnum), val, REGISTER_RAW_SIZE (regnum)); else memset (register_buffer (regnum), '\000', REGISTER_RAW_SIZE (regnum)); /* On some architectures, e.g. HPPA, there are a few stray bits in some registers, that the rest of the code would like to ignore. */ #ifdef CLEAN_UP_REGISTER_VALUE CLEAN_UP_REGISTER_VALUE (regnum, register_buffer (regnum)); #endif } /* read_pc, write_pc, read_sp, write_sp, read_fp, write_fp, etc. Special handling for registers PC, SP, and FP. */ /* This routine is getting awfully cluttered with #if's. It's probably time to turn this into READ_PC and define it in the tm.h file. Ditto for write_pc. 1999-06-08: The following were re-written so that it assumes the existence of a TARGET_READ_PC et.al. macro. A default generic version of that macro is made available where needed. Since the ``TARGET_READ_PC'' et.al. macro is going to be controlled by the multi-arch framework, it will eventually be possible to eliminate the intermediate read_pc_pid(). The client would call TARGET_READ_PC directly. (cagney). */ CORE_ADDR generic_target_read_pc (int pid) { #ifdef PC_REGNUM if (PC_REGNUM >= 0) { CORE_ADDR pc_val = ADDR_BITS_REMOVE ((CORE_ADDR) read_register_pid (PC_REGNUM, pid)); return pc_val; } #endif internal_error ("generic_target_read_pc"); return 0; } CORE_ADDR read_pc_pid (int pid) { int saved_inferior_pid; CORE_ADDR pc_val; /* In case pid != inferior_pid. */ saved_inferior_pid = inferior_pid; inferior_pid = pid; pc_val = TARGET_READ_PC (pid); inferior_pid = saved_inferior_pid; return pc_val; } CORE_ADDR read_pc (void) { return read_pc_pid (inferior_pid); } void generic_target_write_pc (CORE_ADDR pc, int pid) { #ifdef PC_REGNUM if (PC_REGNUM >= 0) write_register_pid (PC_REGNUM, pc, pid); if (NPC_REGNUM >= 0) write_register_pid (NPC_REGNUM, pc + 4, pid); if (NNPC_REGNUM >= 0) write_register_pid (NNPC_REGNUM, pc + 8, pid); #else internal_error ("generic_target_write_pc"); #endif } void write_pc_pid (CORE_ADDR pc, int pid) { int saved_inferior_pid; /* In case pid != inferior_pid. */ saved_inferior_pid = inferior_pid; inferior_pid = pid; TARGET_WRITE_PC (pc, pid); inferior_pid = saved_inferior_pid; } void write_pc (CORE_ADDR pc) { write_pc_pid (pc, inferior_pid); } /* Cope with strage ways of getting to the stack and frame pointers */ CORE_ADDR generic_target_read_sp (void) { #ifdef SP_REGNUM if (SP_REGNUM >= 0) return read_register (SP_REGNUM); #endif internal_error ("generic_target_read_sp"); } CORE_ADDR read_sp (void) { return TARGET_READ_SP (); } void generic_target_write_sp (CORE_ADDR val) { #ifdef SP_REGNUM if (SP_REGNUM >= 0) { write_register (SP_REGNUM, val); return; } #endif internal_error ("generic_target_write_sp"); } void write_sp (CORE_ADDR val) { TARGET_WRITE_SP (val); } CORE_ADDR generic_target_read_fp (void) { #ifdef FP_REGNUM if (FP_REGNUM >= 0) return read_register (FP_REGNUM); #endif internal_error ("generic_target_read_fp"); } CORE_ADDR read_fp (void) { return TARGET_READ_FP (); } void generic_target_write_fp (CORE_ADDR val) { #ifdef FP_REGNUM if (FP_REGNUM >= 0) { write_register (FP_REGNUM, val); return; } #endif internal_error ("generic_target_write_fp"); } void write_fp (CORE_ADDR val) { TARGET_WRITE_FP (val); } /* ARGSUSED */ static void reg_flush_command (char *command, int from_tty) { /* Force-flush the register cache. */ registers_changed (); if (from_tty) printf_filtered ("Register cache flushed.\n"); } static void build_regcache (void) { /* We allocate some extra slop since we do a lot of memcpy's around `registers', and failing-soft is better than failing hard. */ int sizeof_registers = REGISTER_BYTES + /* SLOP */ 256; int sizeof_register_valid = (NUM_REGS + NUM_PSEUDO_REGS) * sizeof (*register_valid); registers = xmalloc (sizeof_registers); memset (registers, 0, sizeof_registers); register_valid = xmalloc (sizeof_register_valid); memset (register_valid, 0, sizeof_register_valid); } void _initialize_regcache (void) { build_regcache (); register_gdbarch_swap (®isters, sizeof (registers), NULL); register_gdbarch_swap (®ister_valid, sizeof (register_valid), NULL); register_gdbarch_swap (NULL, 0, build_regcache); add_com ("flushregs", class_maintenance, reg_flush_command, "Force gdb to flush its register cache (maintainer command)"); }