/* Alpha specific support for 64-bit ELF Copyright 1996, 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc. Contributed by Richard Henderson . This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* We need a published ABI spec for this. Until one comes out, don't assume this'll remain unchanged forever. */ #include "bfd.h" #include "sysdep.h" #include "libbfd.h" #include "elf-bfd.h" #include "elf/alpha.h" #define ALPHAECOFF #define NO_COFF_RELOCS #define NO_COFF_SYMBOLS #define NO_COFF_LINENOS /* Get the ECOFF swapping routines. Needed for the debug information. */ #include "coff/internal.h" #include "coff/sym.h" #include "coff/symconst.h" #include "coff/ecoff.h" #include "coff/alpha.h" #include "aout/ar.h" #include "libcoff.h" #include "libecoff.h" #define ECOFF_64 #include "ecoffswap.h" static int alpha_elf_dynamic_symbol_p PARAMS((struct elf_link_hash_entry *, struct bfd_link_info *)); static struct bfd_hash_entry * elf64_alpha_link_hash_newfunc PARAMS((struct bfd_hash_entry *, struct bfd_hash_table *, const char *)); static struct bfd_link_hash_table * elf64_alpha_bfd_link_hash_table_create PARAMS((bfd *)); static bfd_reloc_status_type elf64_alpha_reloc_nil PARAMS((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **)); static bfd_reloc_status_type elf64_alpha_reloc_bad PARAMS((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **)); static bfd_reloc_status_type elf64_alpha_do_reloc_gpdisp PARAMS((bfd *, bfd_vma, bfd_byte *, bfd_byte *)); static bfd_reloc_status_type elf64_alpha_reloc_gpdisp PARAMS((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **)); static reloc_howto_type * elf64_alpha_bfd_reloc_type_lookup PARAMS((bfd *, bfd_reloc_code_real_type)); static void elf64_alpha_info_to_howto PARAMS((bfd *, arelent *, Elf64_Internal_Rela *)); static boolean elf64_alpha_mkobject PARAMS((bfd *)); static boolean elf64_alpha_object_p PARAMS((bfd *)); static boolean elf64_alpha_section_from_shdr PARAMS((bfd *, Elf64_Internal_Shdr *, char *)); static boolean elf64_alpha_fake_sections PARAMS((bfd *, Elf64_Internal_Shdr *, asection *)); static boolean elf64_alpha_create_got_section PARAMS((bfd *, struct bfd_link_info *)); static boolean elf64_alpha_create_dynamic_sections PARAMS((bfd *, struct bfd_link_info *)); static boolean elf64_alpha_read_ecoff_info PARAMS((bfd *, asection *, struct ecoff_debug_info *)); static boolean elf64_alpha_is_local_label_name PARAMS((bfd *, const char *)); static boolean elf64_alpha_find_nearest_line PARAMS((bfd *, asection *, asymbol **, bfd_vma, const char **, const char **, unsigned int *)); #if defined(__STDC__) || defined(ALMOST_STDC) struct alpha_elf_link_hash_entry; #endif static boolean elf64_alpha_output_extsym PARAMS((struct alpha_elf_link_hash_entry *, PTR)); static boolean elf64_alpha_can_merge_gots PARAMS((bfd *, bfd *)); static void elf64_alpha_merge_gots PARAMS((bfd *, bfd *)); static boolean elf64_alpha_calc_got_offsets_for_symbol PARAMS ((struct alpha_elf_link_hash_entry *, PTR)); static void elf64_alpha_calc_got_offsets PARAMS ((struct bfd_link_info *)); static boolean elf64_alpha_size_got_sections PARAMS ((bfd *, struct bfd_link_info *)); static boolean elf64_alpha_always_size_sections PARAMS ((bfd *, struct bfd_link_info *)); static boolean elf64_alpha_calc_dynrel_sizes PARAMS ((struct alpha_elf_link_hash_entry *, struct bfd_link_info *)); static boolean elf64_alpha_add_symbol_hook PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *, const char **, flagword *, asection **, bfd_vma *)); static boolean elf64_alpha_check_relocs PARAMS((bfd *, struct bfd_link_info *, asection *sec, const Elf_Internal_Rela *)); static boolean elf64_alpha_adjust_dynamic_symbol PARAMS((struct bfd_link_info *, struct elf_link_hash_entry *)); static boolean elf64_alpha_size_dynamic_sections PARAMS((bfd *, struct bfd_link_info *)); static boolean elf64_alpha_relocate_section PARAMS((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Sym *, asection **)); static boolean elf64_alpha_finish_dynamic_symbol PARAMS((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *, Elf_Internal_Sym *)); static boolean elf64_alpha_finish_dynamic_sections PARAMS((bfd *, struct bfd_link_info *)); static boolean elf64_alpha_final_link PARAMS((bfd *, struct bfd_link_info *)); static boolean elf64_alpha_merge_ind_symbols PARAMS((struct alpha_elf_link_hash_entry *, PTR)); static Elf_Internal_Rela * elf64_alpha_find_reloc_at_ofs PARAMS ((Elf_Internal_Rela *, Elf_Internal_Rela *, bfd_vma, int)); static enum elf_reloc_type_class elf64_alpha_reloc_type_class PARAMS ((int)); struct alpha_elf_link_hash_entry { struct elf_link_hash_entry root; /* External symbol information. */ EXTR esym; /* Cumulative flags for all the .got entries. */ int flags; /* Contexts (LITUSE) in which a literal was referenced. */ #define ALPHA_ELF_LINK_HASH_LU_ADDR 0x01 #define ALPHA_ELF_LINK_HASH_LU_MEM 0x02 #define ALPHA_ELF_LINK_HASH_LU_BYTE 0x04 #define ALPHA_ELF_LINK_HASH_LU_FUNC 0x08 /* Used to implement multiple .got subsections. */ struct alpha_elf_got_entry { struct alpha_elf_got_entry *next; /* which .got subsection? */ bfd *gotobj; /* the addend in effect for this entry. */ bfd_signed_vma addend; /* the .got offset for this entry. */ int got_offset; int flags; /* An additional flag. */ #define ALPHA_ELF_GOT_ENTRY_RELOCS_DONE 0x10 int use_count; } *got_entries; /* used to count non-got, non-plt relocations for delayed sizing of relocation sections. */ struct alpha_elf_reloc_entry { struct alpha_elf_reloc_entry *next; /* which .reloc section? */ asection *srel; /* what kind of relocation? */ unsigned int rtype; /* is this against read-only section? */ unsigned int reltext : 1; /* how many did we find? */ unsigned long count; } *reloc_entries; }; /* Alpha ELF linker hash table. */ struct alpha_elf_link_hash_table { struct elf_link_hash_table root; /* The head of a list of .got subsections linked through alpha_elf_tdata(abfd)->got_link_next. */ bfd *got_list; }; /* Look up an entry in a Alpha ELF linker hash table. */ #define alpha_elf_link_hash_lookup(table, string, create, copy, follow) \ ((struct alpha_elf_link_hash_entry *) \ elf_link_hash_lookup (&(table)->root, (string), (create), \ (copy), (follow))) /* Traverse a Alpha ELF linker hash table. */ #define alpha_elf_link_hash_traverse(table, func, info) \ (elf_link_hash_traverse \ (&(table)->root, \ (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \ (info))) /* Get the Alpha ELF linker hash table from a link_info structure. */ #define alpha_elf_hash_table(p) \ ((struct alpha_elf_link_hash_table *) ((p)->hash)) /* Get the object's symbols as our own entry type. */ #define alpha_elf_sym_hashes(abfd) \ ((struct alpha_elf_link_hash_entry **)elf_sym_hashes(abfd)) /* Should we do dynamic things to this symbol? */ static int alpha_elf_dynamic_symbol_p (h, info) struct elf_link_hash_entry *h; struct bfd_link_info *info; { if (h == NULL) return false; while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; if (h->dynindx == -1) return false; if (h->root.type == bfd_link_hash_undefweak || h->root.type == bfd_link_hash_defweak) return true; switch (ELF_ST_VISIBILITY (h->other)) { case STV_DEFAULT: break; case STV_HIDDEN: case STV_INTERNAL: return false; case STV_PROTECTED: if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) return false; break; } if ((info->shared && !info->symbolic) || ((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR)) == (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR))) return true; return false; } /* Create an entry in a Alpha ELF linker hash table. */ static struct bfd_hash_entry * elf64_alpha_link_hash_newfunc (entry, table, string) struct bfd_hash_entry *entry; struct bfd_hash_table *table; const char *string; { struct alpha_elf_link_hash_entry *ret = (struct alpha_elf_link_hash_entry *) entry; /* Allocate the structure if it has not already been allocated by a subclass. */ if (ret == (struct alpha_elf_link_hash_entry *) NULL) ret = ((struct alpha_elf_link_hash_entry *) bfd_hash_allocate (table, sizeof (struct alpha_elf_link_hash_entry))); if (ret == (struct alpha_elf_link_hash_entry *) NULL) return (struct bfd_hash_entry *) ret; /* Call the allocation method of the superclass. */ ret = ((struct alpha_elf_link_hash_entry *) _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret, table, string)); if (ret != (struct alpha_elf_link_hash_entry *) NULL) { /* Set local fields. */ memset (&ret->esym, 0, sizeof (EXTR)); /* We use -2 as a marker to indicate that the information has not been set. -1 means there is no associated ifd. */ ret->esym.ifd = -2; ret->flags = 0; ret->got_entries = NULL; ret->reloc_entries = NULL; } return (struct bfd_hash_entry *) ret; } /* Create a Alpha ELF linker hash table. */ static struct bfd_link_hash_table * elf64_alpha_bfd_link_hash_table_create (abfd) bfd *abfd; { struct alpha_elf_link_hash_table *ret; ret = ((struct alpha_elf_link_hash_table *) bfd_zalloc (abfd, sizeof (struct alpha_elf_link_hash_table))); if (ret == (struct alpha_elf_link_hash_table *) NULL) return NULL; if (! _bfd_elf_link_hash_table_init (&ret->root, abfd, elf64_alpha_link_hash_newfunc)) { bfd_release (abfd, ret); return NULL; } return &ret->root.root; } /* We have some private fields hanging off of the elf_tdata structure. */ struct alpha_elf_obj_tdata { struct elf_obj_tdata root; /* For every input file, these are the got entries for that object's local symbols. */ struct alpha_elf_got_entry ** local_got_entries; /* For every input file, this is the object that owns the got that this input file uses. */ bfd *gotobj; /* For every got, this is a linked list through the objects using this got */ bfd *in_got_link_next; /* For every got, this is a link to the next got subsegment. */ bfd *got_link_next; /* For every got, this is the section. */ asection *got; /* For every got, this is it's total number of *entries*. */ int total_got_entries; /* For every got, this is the sum of the number of *entries* required to hold all of the member object's local got. */ int n_local_got_entries; }; #define alpha_elf_tdata(abfd) \ ((struct alpha_elf_obj_tdata *) (abfd)->tdata.any) static boolean elf64_alpha_mkobject (abfd) bfd *abfd; { abfd->tdata.any = bfd_zalloc (abfd, sizeof (struct alpha_elf_obj_tdata)); if (abfd->tdata.any == NULL) return false; return true; } static boolean elf64_alpha_object_p (abfd) bfd *abfd; { /* Allocate our special target data. */ struct alpha_elf_obj_tdata *new_tdata; new_tdata = bfd_zalloc (abfd, sizeof (struct alpha_elf_obj_tdata)); if (new_tdata == NULL) return false; new_tdata->root = *abfd->tdata.elf_obj_data; abfd->tdata.any = new_tdata; /* Set the right machine number for an Alpha ELF file. */ return bfd_default_set_arch_mach (abfd, bfd_arch_alpha, 0); } /* In case we're on a 32-bit machine, construct a 64-bit "-1" value from smaller values. Start with zero, widen, *then* decrement. */ #define MINUS_ONE (((bfd_vma)0) - 1) #define SKIP_HOWTO(N) \ HOWTO(N, 0, 0, 0, 0, 0, 0, elf64_alpha_reloc_bad, 0, 0, 0, 0, 0) static reloc_howto_type elf64_alpha_howto_table[] = { HOWTO (R_ALPHA_NONE, /* type */ 0, /* rightshift */ 0, /* size (0 = byte, 1 = short, 2 = long) */ 8, /* bitsize */ true, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ elf64_alpha_reloc_nil, /* special_function */ "NONE", /* name */ false, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ true), /* pcrel_offset */ /* A 32 bit reference to a symbol. */ HOWTO (R_ALPHA_REFLONG, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ 0, /* special_function */ "REFLONG", /* name */ false, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ false), /* pcrel_offset */ /* A 64 bit reference to a symbol. */ HOWTO (R_ALPHA_REFQUAD, /* type */ 0, /* rightshift */ 4, /* size (0 = byte, 1 = short, 2 = long) */ 64, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ 0, /* special_function */ "REFQUAD", /* name */ false, /* partial_inplace */ MINUS_ONE, /* src_mask */ MINUS_ONE, /* dst_mask */ false), /* pcrel_offset */ /* A 32 bit GP relative offset. This is just like REFLONG except that when the value is used the value of the gp register will be added in. */ HOWTO (R_ALPHA_GPREL32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_bitfield, /* complain_on_overflow */ 0, /* special_function */ "GPREL32", /* name */ false, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ false), /* pcrel_offset */ /* Used for an instruction that refers to memory off the GP register. */ HOWTO (R_ALPHA_LITERAL, /* type */ 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ 0, /* special_function */ "ELF_LITERAL", /* name */ false, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ false), /* pcrel_offset */ /* This reloc only appears immediately following an ELF_LITERAL reloc. It identifies a use of the literal. The symbol index is special: 1 means the literal address is in the base register of a memory format instruction; 2 means the literal address is in the byte offset register of a byte-manipulation instruction; 3 means the literal address is in the target register of a jsr instruction. This does not actually do any relocation. */ HOWTO (R_ALPHA_LITUSE, /* type */ 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ elf64_alpha_reloc_nil, /* special_function */ "LITUSE", /* name */ false, /* partial_inplace */ 0, /* src_mask */ 0, /* dst_mask */ false), /* pcrel_offset */ /* Load the gp register. This is always used for a ldah instruction which loads the upper 16 bits of the gp register. The symbol index of the GPDISP instruction is an offset in bytes to the lda instruction that loads the lower 16 bits. The value to use for the relocation is the difference between the GP value and the current location; the load will always be done against a register holding the current address. NOTE: Unlike ECOFF, partial in-place relocation is not done. If any offset is present in the instructions, it is an offset from the register to the ldah instruction. This lets us avoid any stupid hackery like inventing a gp value to do partial relocation against. Also unlike ECOFF, we do the whole relocation off of the GPDISP rather than a GPDISP_HI16/GPDISP_LO16 pair. An odd, space consuming bit, that, since all the information was present in the GPDISP_HI16 reloc. */ HOWTO (R_ALPHA_GPDISP, /* type */ 16, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ elf64_alpha_reloc_gpdisp, /* special_function */ "GPDISP", /* name */ false, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ true), /* pcrel_offset */ /* A 21 bit branch. */ HOWTO (R_ALPHA_BRADDR, /* type */ 2, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 21, /* bitsize */ true, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ 0, /* special_function */ "BRADDR", /* name */ false, /* partial_inplace */ 0x1fffff, /* src_mask */ 0x1fffff, /* dst_mask */ true), /* pcrel_offset */ /* A hint for a jump to a register. */ HOWTO (R_ALPHA_HINT, /* type */ 2, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 14, /* bitsize */ true, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ 0, /* special_function */ "HINT", /* name */ false, /* partial_inplace */ 0x3fff, /* src_mask */ 0x3fff, /* dst_mask */ true), /* pcrel_offset */ /* 16 bit PC relative offset. */ HOWTO (R_ALPHA_SREL16, /* type */ 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ true, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ 0, /* special_function */ "SREL16", /* name */ false, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ true), /* pcrel_offset */ /* 32 bit PC relative offset. */ HOWTO (R_ALPHA_SREL32, /* type */ 0, /* rightshift */ 2, /* size (0 = byte, 1 = short, 2 = long) */ 32, /* bitsize */ true, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ 0, /* special_function */ "SREL32", /* name */ false, /* partial_inplace */ 0xffffffff, /* src_mask */ 0xffffffff, /* dst_mask */ true), /* pcrel_offset */ /* A 64 bit PC relative offset. */ HOWTO (R_ALPHA_SREL64, /* type */ 0, /* rightshift */ 4, /* size (0 = byte, 1 = short, 2 = long) */ 64, /* bitsize */ true, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ 0, /* special_function */ "SREL64", /* name */ false, /* partial_inplace */ MINUS_ONE, /* src_mask */ MINUS_ONE, /* dst_mask */ true), /* pcrel_offset */ /* Skip 12 - 16; deprecated ECOFF relocs. */ SKIP_HOWTO (12), SKIP_HOWTO (13), SKIP_HOWTO (14), SKIP_HOWTO (15), SKIP_HOWTO (16), /* The high 16 bits of the displacement from GP to the target. */ HOWTO (R_ALPHA_GPRELHIGH, 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ 0, /* special_function */ "GPRELHIGH", /* name */ false, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ false), /* pcrel_offset */ /* The low 16 bits of the displacement from GP to the target. */ HOWTO (R_ALPHA_GPRELLOW, 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_dont, /* complain_on_overflow */ 0, /* special_function */ "GPRELLOW", /* name */ false, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ false), /* pcrel_offset */ /* A 16-bit displacement from the GP to the target. */ HOWTO (R_ALPHA_GPREL16, 0, /* rightshift */ 1, /* size (0 = byte, 1 = short, 2 = long) */ 16, /* bitsize */ false, /* pc_relative */ 0, /* bitpos */ complain_overflow_signed, /* complain_on_overflow */ 0, /* special_function */ "GPREL16", /* name */ false, /* partial_inplace */ 0xffff, /* src_mask */ 0xffff, /* dst_mask */ false), /* pcrel_offset */ /* Skip 20 - 23; deprecated ECOFF relocs. */ SKIP_HOWTO (20), SKIP_HOWTO (21), SKIP_HOWTO (22), SKIP_HOWTO (23), /* Misc ELF relocations. */ /* A dynamic relocation to copy the target into our .dynbss section. */ /* Not generated, as all Alpha objects use PIC, so it is not needed. It is present because every other ELF has one, but should not be used because .dynbss is an ugly thing. */ HOWTO (R_ALPHA_COPY, 0, 0, 0, false, 0, complain_overflow_dont, bfd_elf_generic_reloc, "COPY", false, 0, 0, true), /* A dynamic relocation for a .got entry. */ HOWTO (R_ALPHA_GLOB_DAT, 0, 0, 0, false, 0, complain_overflow_dont, bfd_elf_generic_reloc, "GLOB_DAT", false, 0, 0, true), /* A dynamic relocation for a .plt entry. */ HOWTO (R_ALPHA_JMP_SLOT, 0, 0, 0, false, 0, complain_overflow_dont, bfd_elf_generic_reloc, "JMP_SLOT", false, 0, 0, true), /* A dynamic relocation to add the base of the DSO to a 64-bit field. */ HOWTO (R_ALPHA_RELATIVE, 0, 0, 0, false, 0, complain_overflow_dont, bfd_elf_generic_reloc, "RELATIVE", false, 0, 0, true) }; /* A relocation function which doesn't do anything. */ static bfd_reloc_status_type elf64_alpha_reloc_nil (abfd, reloc, sym, data, sec, output_bfd, error_message) bfd *abfd ATTRIBUTE_UNUSED; arelent *reloc; asymbol *sym ATTRIBUTE_UNUSED; PTR data ATTRIBUTE_UNUSED; asection *sec; bfd *output_bfd; char **error_message ATTRIBUTE_UNUSED; { if (output_bfd) reloc->address += sec->output_offset; return bfd_reloc_ok; } /* A relocation function used for an unsupported reloc. */ static bfd_reloc_status_type elf64_alpha_reloc_bad (abfd, reloc, sym, data, sec, output_bfd, error_message) bfd *abfd ATTRIBUTE_UNUSED; arelent *reloc; asymbol *sym ATTRIBUTE_UNUSED; PTR data ATTRIBUTE_UNUSED; asection *sec; bfd *output_bfd; char **error_message ATTRIBUTE_UNUSED; { if (output_bfd) reloc->address += sec->output_offset; return bfd_reloc_notsupported; } /* Do the work of the GPDISP relocation. */ static bfd_reloc_status_type elf64_alpha_do_reloc_gpdisp (abfd, gpdisp, p_ldah, p_lda) bfd *abfd; bfd_vma gpdisp; bfd_byte *p_ldah; bfd_byte *p_lda; { bfd_reloc_status_type ret = bfd_reloc_ok; bfd_vma addend; unsigned long i_ldah, i_lda; i_ldah = bfd_get_32 (abfd, p_ldah); i_lda = bfd_get_32 (abfd, p_lda); /* Complain if the instructions are not correct. */ if (((i_ldah >> 26) & 0x3f) != 0x09 || ((i_lda >> 26) & 0x3f) != 0x08) ret = bfd_reloc_dangerous; /* Extract the user-supplied offset, mirroring the sign extensions that the instructions perform. */ addend = ((i_ldah & 0xffff) << 16) | (i_lda & 0xffff); addend = (addend ^ 0x80008000) - 0x80008000; gpdisp += addend; if ((bfd_signed_vma) gpdisp < -(bfd_signed_vma) 0x80000000 || (bfd_signed_vma) gpdisp >= (bfd_signed_vma) 0x7fff8000) ret = bfd_reloc_overflow; /* compensate for the sign extension again. */ i_ldah = ((i_ldah & 0xffff0000) | (((gpdisp >> 16) + ((gpdisp >> 15) & 1)) & 0xffff)); i_lda = (i_lda & 0xffff0000) | (gpdisp & 0xffff); bfd_put_32 (abfd, i_ldah, p_ldah); bfd_put_32 (abfd, i_lda, p_lda); return ret; } /* The special function for the GPDISP reloc. */ static bfd_reloc_status_type elf64_alpha_reloc_gpdisp (abfd, reloc_entry, sym, data, input_section, output_bfd, err_msg) bfd *abfd; arelent *reloc_entry; asymbol *sym ATTRIBUTE_UNUSED; PTR data; asection *input_section; bfd *output_bfd; char **err_msg; { bfd_reloc_status_type ret; bfd_vma gp, relocation; bfd_byte *p_ldah, *p_lda; /* Don't do anything if we're not doing a final link. */ if (output_bfd) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } if (reloc_entry->address > input_section->_cooked_size || reloc_entry->address + reloc_entry->addend > input_section->_cooked_size) return bfd_reloc_outofrange; /* The gp used in the portion of the output object to which this input object belongs is cached on the input bfd. */ gp = _bfd_get_gp_value (abfd); relocation = (input_section->output_section->vma + input_section->output_offset + reloc_entry->address); p_ldah = (bfd_byte *) data + reloc_entry->address; p_lda = p_ldah + reloc_entry->addend; ret = elf64_alpha_do_reloc_gpdisp (abfd, gp - relocation, p_ldah, p_lda); /* Complain if the instructions are not correct. */ if (ret == bfd_reloc_dangerous) *err_msg = _("GPDISP relocation did not find ldah and lda instructions"); return ret; } /* A mapping from BFD reloc types to Alpha ELF reloc types. */ struct elf_reloc_map { bfd_reloc_code_real_type bfd_reloc_val; int elf_reloc_val; }; static const struct elf_reloc_map elf64_alpha_reloc_map[] = { {BFD_RELOC_NONE, R_ALPHA_NONE}, {BFD_RELOC_32, R_ALPHA_REFLONG}, {BFD_RELOC_64, R_ALPHA_REFQUAD}, {BFD_RELOC_CTOR, R_ALPHA_REFQUAD}, {BFD_RELOC_GPREL32, R_ALPHA_GPREL32}, {BFD_RELOC_ALPHA_ELF_LITERAL, R_ALPHA_LITERAL}, {BFD_RELOC_ALPHA_LITUSE, R_ALPHA_LITUSE}, {BFD_RELOC_ALPHA_GPDISP, R_ALPHA_GPDISP}, {BFD_RELOC_23_PCREL_S2, R_ALPHA_BRADDR}, {BFD_RELOC_ALPHA_HINT, R_ALPHA_HINT}, {BFD_RELOC_16_PCREL, R_ALPHA_SREL16}, {BFD_RELOC_32_PCREL, R_ALPHA_SREL32}, {BFD_RELOC_64_PCREL, R_ALPHA_SREL64}, {BFD_RELOC_ALPHA_GPREL_HI16, R_ALPHA_GPRELHIGH}, {BFD_RELOC_ALPHA_GPREL_LO16, R_ALPHA_GPRELLOW}, {BFD_RELOC_GPREL16, R_ALPHA_GPREL16}, }; /* Given a BFD reloc type, return a HOWTO structure. */ static reloc_howto_type * elf64_alpha_bfd_reloc_type_lookup (abfd, code) bfd *abfd ATTRIBUTE_UNUSED; bfd_reloc_code_real_type code; { const struct elf_reloc_map *i, *e; i = e = elf64_alpha_reloc_map; e += sizeof (elf64_alpha_reloc_map) / sizeof (struct elf_reloc_map); for (; i != e; ++i) { if (i->bfd_reloc_val == code) return &elf64_alpha_howto_table[i->elf_reloc_val]; } return 0; } /* Given an Alpha ELF reloc type, fill in an arelent structure. */ static void elf64_alpha_info_to_howto (abfd, cache_ptr, dst) bfd *abfd ATTRIBUTE_UNUSED; arelent *cache_ptr; Elf64_Internal_Rela *dst; { unsigned r_type; r_type = ELF64_R_TYPE(dst->r_info); BFD_ASSERT (r_type < (unsigned int) R_ALPHA_max); cache_ptr->howto = &elf64_alpha_howto_table[r_type]; } /* These functions do relaxation for Alpha ELF. Currently I'm only handling what I can do with existing compiler and assembler support, which means no instructions are removed, though some may be nopped. At this time GCC does not emit enough information to do all of the relaxing that is possible. It will take some not small amount of work for that to happen. There are a couple of interesting papers that I once read on this subject, that I cannot find references to at the moment, that related to Alpha in particular. They are by David Wall, then of DEC WRL. */ #define OP_LDA 0x08 #define OP_LDAH 0x09 #define INSN_JSR 0x68004000 #define INSN_JSR_MASK 0xfc00c000 #define OP_LDQ 0x29 #define OP_BR 0x30 #define OP_BSR 0x34 #define INSN_UNOP 0x2fe00000 struct alpha_relax_info { bfd *abfd; asection *sec; bfd_byte *contents; Elf_Internal_Rela *relocs, *relend; struct bfd_link_info *link_info; boolean changed_contents; boolean changed_relocs; bfd_vma gp; bfd *gotobj; asection *tsec; struct alpha_elf_link_hash_entry *h; struct alpha_elf_got_entry *gotent; unsigned char other; }; static Elf_Internal_Rela * elf64_alpha_relax_with_lituse PARAMS((struct alpha_relax_info *info, bfd_vma symval, Elf_Internal_Rela *irel, Elf_Internal_Rela *irelend)); static boolean elf64_alpha_relax_without_lituse PARAMS((struct alpha_relax_info *info, bfd_vma symval, Elf_Internal_Rela *irel)); static bfd_vma elf64_alpha_relax_opt_call PARAMS((struct alpha_relax_info *info, bfd_vma symval)); static boolean elf64_alpha_relax_section PARAMS((bfd *abfd, asection *sec, struct bfd_link_info *link_info, boolean *again)); static Elf_Internal_Rela * elf64_alpha_find_reloc_at_ofs (rel, relend, offset, type) Elf_Internal_Rela *rel, *relend; bfd_vma offset; int type; { while (rel < relend) { if (rel->r_offset == offset && ELF64_R_TYPE (rel->r_info) == (unsigned int) type) return rel; ++rel; } return NULL; } static Elf_Internal_Rela * elf64_alpha_relax_with_lituse (info, symval, irel, irelend) struct alpha_relax_info *info; bfd_vma symval; Elf_Internal_Rela *irel, *irelend; { Elf_Internal_Rela *urel; int flags, count, i; bfd_signed_vma disp; boolean fits16; boolean fits32; boolean lit_reused = false; boolean all_optimized = true; unsigned int lit_insn; lit_insn = bfd_get_32 (info->abfd, info->contents + irel->r_offset); if (lit_insn >> 26 != OP_LDQ) { ((*_bfd_error_handler) ("%s: %s+0x%lx: warning: LITERAL relocation against unexpected insn", bfd_get_filename (info->abfd), info->sec->name, (unsigned long)irel->r_offset)); return irel; } /* Summarize how this particular LITERAL is used. */ for (urel = irel+1, flags = count = 0; urel < irelend; ++urel, ++count) { if (ELF64_R_TYPE (urel->r_info) != R_ALPHA_LITUSE) break; if (urel->r_addend >= 0 && urel->r_addend <= 3) flags |= 1 << urel->r_addend; } /* A little preparation for the loop... */ disp = symval - info->gp; for (urel = irel+1, i = 0; i < count; ++i, ++urel) { unsigned int insn; int insn_disp; bfd_signed_vma xdisp; insn = bfd_get_32 (info->abfd, info->contents + urel->r_offset); switch (urel->r_addend) { default: /* 0 = ADDRESS FORMAT */ /* This type is really just a placeholder to note that all uses cannot be optimized, but to still allow some. */ all_optimized = false; break; case 1: /* MEM FORMAT */ /* We can always optimize 16-bit displacements. */ /* Extract the displacement from the instruction, sign-extending it if necessary, then test whether it is within 16 or 32 bits displacement from GP. */ insn_disp = insn & 0x0000ffff; if (insn_disp & 0x00008000) insn_disp |= 0xffff0000; /* Negative: sign-extend. */ xdisp = disp + insn_disp; fits16 = (xdisp >= - (bfd_signed_vma) 0x00008000 && xdisp < 0x00008000); fits32 = (xdisp >= - (bfd_signed_vma) 0x80000000 && xdisp < 0x7fff8000); if (fits16) { /* Take the op code and dest from this insn, take the base register from the literal insn. Leave the offset alone. */ insn = (insn & 0xffe0ffff) | (lit_insn & 0x001f0000); urel->r_info = ELF64_R_INFO (ELF64_R_SYM (irel->r_info), R_ALPHA_GPREL16); urel->r_addend = irel->r_addend; info->changed_relocs = true; bfd_put_32 (info->abfd, insn, info->contents + urel->r_offset); info->changed_contents = true; } /* If all mem+byte, we can optimize 32-bit mem displacements. */ else if (fits32 && !(flags & ~6)) { /* FIXME: sanity check that lit insn Ra is mem insn Rb. */ irel->r_info = ELF64_R_INFO (ELF64_R_SYM (irel->r_info), R_ALPHA_GPRELHIGH); lit_insn = (OP_LDAH << 26) | (lit_insn & 0x03ff0000); bfd_put_32 (info->abfd, lit_insn, info->contents + irel->r_offset); lit_reused = true; info->changed_contents = true; urel->r_info = ELF64_R_INFO (ELF64_R_SYM (irel->r_info), R_ALPHA_GPRELLOW); urel->r_addend = irel->r_addend; info->changed_relocs = true; } else all_optimized = false; break; case 2: /* BYTE OFFSET FORMAT */ /* We can always optimize byte instructions. */ /* FIXME: sanity check the insn for byte op. Check that the literal dest reg is indeed Rb in the byte insn. */ insn = (insn & ~0x001ff000) | ((symval & 7) << 13) | 0x1000; urel->r_info = ELF64_R_INFO (0, R_ALPHA_NONE); urel->r_addend = 0; info->changed_relocs = true; bfd_put_32 (info->abfd, insn, info->contents + urel->r_offset); info->changed_contents = true; break; case 3: /* CALL FORMAT */ { /* If not zero, place to jump without needing pv. */ bfd_vma optdest = elf64_alpha_relax_opt_call (info, symval); bfd_vma org = (info->sec->output_section->vma + info->sec->output_offset + urel->r_offset + 4); bfd_signed_vma odisp; odisp = (optdest ? optdest : symval) - org; if (odisp >= -0x400000 && odisp < 0x400000) { Elf_Internal_Rela *xrel; /* Preserve branch prediction call stack when possible. */ if ((insn & INSN_JSR_MASK) == INSN_JSR) insn = (OP_BSR << 26) | (insn & 0x03e00000); else insn = (OP_BR << 26) | (insn & 0x03e00000); urel->r_info = ELF64_R_INFO (ELF64_R_SYM (irel->r_info), R_ALPHA_BRADDR); urel->r_addend = irel->r_addend; if (optdest) urel->r_addend += optdest - symval; else all_optimized = false; bfd_put_32 (info->abfd, insn, info->contents + urel->r_offset); /* Kill any HINT reloc that might exist for this insn. */ xrel = (elf64_alpha_find_reloc_at_ofs (info->relocs, info->relend, urel->r_offset, R_ALPHA_HINT)); if (xrel) xrel->r_info = ELF64_R_INFO (0, R_ALPHA_NONE); info->changed_contents = true; info->changed_relocs = true; } else all_optimized = false; /* Even if the target is not in range for a direct branch, if we share a GP, we can eliminate the gp reload. */ if (optdest) { Elf_Internal_Rela *gpdisp = (elf64_alpha_find_reloc_at_ofs (irel, irelend, urel->r_offset + 4, R_ALPHA_GPDISP)); if (gpdisp) { bfd_byte *p_ldah = info->contents + gpdisp->r_offset; bfd_byte *p_lda = p_ldah + gpdisp->r_addend; unsigned int ldah = bfd_get_32 (info->abfd, p_ldah); unsigned int lda = bfd_get_32 (info->abfd, p_lda); /* Verify that the instruction is "ldah $29,0($26)". Consider a function that ends in a noreturn call, and that the next function begins with an ldgp, and that by accident there is no padding between. In that case the insn would use $27 as the base. */ if (ldah == 0x27ba0000 && lda == 0x23bd0000) { bfd_put_32 (info->abfd, INSN_UNOP, p_ldah); bfd_put_32 (info->abfd, INSN_UNOP, p_lda); gpdisp->r_info = ELF64_R_INFO (0, R_ALPHA_NONE); info->changed_contents = true; info->changed_relocs = true; } } } } break; } } /* If all cases were optimized, we can reduce the use count on this got entry by one, possibly eliminating it. */ if (all_optimized) { info->gotent->use_count -= 1; alpha_elf_tdata (info->gotent->gotobj)->total_got_entries -= 1; if (!info->h) alpha_elf_tdata (info->gotent->gotobj)->n_local_got_entries -= 1; /* If the literal instruction is no longer needed (it may have been reused. We can eliminate it. ??? For now, I don't want to deal with compacting the section, so just nop it out. */ if (!lit_reused) { irel->r_info = ELF64_R_INFO (0, R_ALPHA_NONE); info->changed_relocs = true; bfd_put_32 (info->abfd, INSN_UNOP, info->contents + irel->r_offset); info->changed_contents = true; } } return irel + count; } static bfd_vma elf64_alpha_relax_opt_call (info, symval) struct alpha_relax_info *info; bfd_vma symval; { /* If the function has the same gp, and we can identify that the function does not use its function pointer, we can eliminate the address load. */ /* If the symbol is marked NOPV, we are being told the function never needs its procedure value. */ if ((info->other & STO_ALPHA_STD_GPLOAD) == STO_ALPHA_NOPV) return symval; /* If the symbol is marked STD_GP, we are being told the function does a normal ldgp in the first two words. */ else if ((info->other & STO_ALPHA_STD_GPLOAD) == STO_ALPHA_STD_GPLOAD) ; /* Otherwise, we may be able to identify a GP load in the first two words, which we can then skip. */ else { Elf_Internal_Rela *tsec_relocs, *tsec_relend, *tsec_free, *gpdisp; bfd_vma ofs; /* Load the relocations from the section that the target symbol is in. */ if (info->sec == info->tsec) { tsec_relocs = info->relocs; tsec_relend = info->relend; tsec_free = NULL; } else { tsec_relocs = (_bfd_elf64_link_read_relocs (info->abfd, info->tsec, (PTR) NULL, (Elf_Internal_Rela *) NULL, info->link_info->keep_memory)); if (tsec_relocs == NULL) return 0; tsec_relend = tsec_relocs + info->tsec->reloc_count; tsec_free = (info->link_info->keep_memory ? NULL : tsec_relocs); } /* Recover the symbol's offset within the section. */ ofs = (symval - info->tsec->output_section->vma - info->tsec->output_offset); /* Look for a GPDISP reloc. */ gpdisp = (elf64_alpha_find_reloc_at_ofs (tsec_relocs, tsec_relend, ofs, R_ALPHA_GPDISP)); if (!gpdisp || gpdisp->r_addend != 4) { if (tsec_free) free (tsec_free); return 0; } if (tsec_free) free (tsec_free); } /* We've now determined that we can skip an initial gp load. Verify that the call and the target use the same gp. */ if (info->link_info->hash->creator != info->tsec->owner->xvec || info->gotobj != alpha_elf_tdata (info->tsec->owner)->gotobj) return 0; return symval + 8; } static boolean elf64_alpha_relax_without_lituse (info, symval, irel) struct alpha_relax_info *info; bfd_vma symval; Elf_Internal_Rela *irel; { unsigned int insn; bfd_signed_vma disp; /* Get the instruction. */ insn = bfd_get_32 (info->abfd, info->contents + irel->r_offset); if (insn >> 26 != OP_LDQ) { ((*_bfd_error_handler) ("%s: %s+0x%lx: warning: LITERAL relocation against unexpected insn", bfd_get_filename (info->abfd), info->sec->name, (unsigned long) irel->r_offset)); return true; } /* So we aren't told much. Do what we can with the address load and fake the rest. All of the optimizations here require that the offset from the GP fit in 16 bits. */ disp = symval - info->gp; if (disp < -0x8000 || disp >= 0x8000) return true; /* On the LITERAL instruction itself, consider exchanging `ldq R,X(gp)' for `lda R,Y(gp)'. */ insn = (OP_LDA << 26) | (insn & 0x03ff0000); bfd_put_32 (info->abfd, insn, info->contents + irel->r_offset); info->changed_contents = true; irel->r_info = ELF64_R_INFO (ELF64_R_SYM (irel->r_info), R_ALPHA_GPREL16); info->changed_relocs = true; /* Reduce the use count on this got entry by one, possibly eliminating it. */ info->gotent->use_count -= 1; alpha_elf_tdata (info->gotent->gotobj)->total_got_entries -= 1; if (!info->h) alpha_elf_tdata (info->gotent->gotobj)->n_local_got_entries -= 1; /* ??? Search forward through this basic block looking for insns that use the target register. Stop after an insn modifying the register is seen, or after a branch or call. Any such memory load insn may be substituted by a load directly off the GP. This allows the memory load insn to be issued before the calculated GP register would otherwise be ready. Any such jsr insn can be replaced by a bsr if it is in range. This would mean that we'd have to _add_ relocations, the pain of which gives one pause. */ return true; } static boolean elf64_alpha_relax_section (abfd, sec, link_info, again) bfd *abfd; asection *sec; struct bfd_link_info *link_info; boolean *again; { Elf_Internal_Shdr *symtab_hdr; Elf_Internal_Rela *internal_relocs; Elf_Internal_Rela *free_relocs = NULL; Elf_Internal_Rela *irel, *irelend; bfd_byte *free_contents = NULL; Elf64_External_Sym *extsyms = NULL; Elf64_External_Sym *free_extsyms = NULL; struct alpha_elf_got_entry **local_got_entries; struct alpha_relax_info info; /* We are not currently changing any sizes, so only one pass. */ *again = false; if (link_info->relocateable || (sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0) return true; /* If this is the first time we have been called for this section, initialize the cooked size. */ if (sec->_cooked_size == 0) sec->_cooked_size = sec->_raw_size; symtab_hdr = &elf_tdata (abfd)->symtab_hdr; local_got_entries = alpha_elf_tdata(abfd)->local_got_entries; /* Load the relocations for this section. */ internal_relocs = (_bfd_elf64_link_read_relocs (abfd, sec, (PTR) NULL, (Elf_Internal_Rela *) NULL, link_info->keep_memory)); if (internal_relocs == NULL) goto error_return; if (! link_info->keep_memory) free_relocs = internal_relocs; memset(&info, 0, sizeof (info)); info.abfd = abfd; info.sec = sec; info.link_info = link_info; info.relocs = internal_relocs; info.relend = irelend = internal_relocs + sec->reloc_count; /* Find the GP for this object. */ info.gotobj = alpha_elf_tdata (abfd)->gotobj; if (info.gotobj) { asection *sgot = alpha_elf_tdata (info.gotobj)->got; info.gp = _bfd_get_gp_value (info.gotobj); if (info.gp == 0) { info.gp = (sgot->output_section->vma + sgot->output_offset + 0x8000); _bfd_set_gp_value (info.gotobj, info.gp); } } for (irel = internal_relocs; irel < irelend; irel++) { bfd_vma symval; Elf_Internal_Sym isym; struct alpha_elf_got_entry *gotent; if (ELF64_R_TYPE (irel->r_info) != (int) R_ALPHA_LITERAL) continue; /* Get the section contents. */ if (info.contents == NULL) { if (elf_section_data (sec)->this_hdr.contents != NULL) info.contents = elf_section_data (sec)->this_hdr.contents; else { info.contents = (bfd_byte *) bfd_malloc (sec->_raw_size); if (info.contents == NULL) goto error_return; free_contents = info.contents; if (! bfd_get_section_contents (abfd, sec, info.contents, (file_ptr) 0, sec->_raw_size)) goto error_return; } } /* Read this BFD's symbols if we haven't done so already. */ if (extsyms == NULL) { if (symtab_hdr->contents != NULL) extsyms = (Elf64_External_Sym *) symtab_hdr->contents; else { extsyms = ((Elf64_External_Sym *) bfd_malloc (symtab_hdr->sh_size)); if (extsyms == NULL) goto error_return; free_extsyms = extsyms; if (bfd_seek (abfd, symtab_hdr->sh_offset, SEEK_SET) != 0 || (bfd_read (extsyms, 1, symtab_hdr->sh_size, abfd) != symtab_hdr->sh_size)) goto error_return; } } /* Get the value of the symbol referred to by the reloc. */ if (ELF64_R_SYM (irel->r_info) < symtab_hdr->sh_info) { /* A local symbol. */ bfd_elf64_swap_symbol_in (abfd, extsyms + ELF64_R_SYM (irel->r_info), &isym); if (isym.st_shndx == SHN_UNDEF) info.tsec = bfd_und_section_ptr; else if (isym.st_shndx > 0 && isym.st_shndx < SHN_LORESERVE) info.tsec = bfd_section_from_elf_index (abfd, isym.st_shndx); else if (isym.st_shndx == SHN_ABS) info.tsec = bfd_abs_section_ptr; else if (isym.st_shndx == SHN_COMMON) info.tsec = bfd_com_section_ptr; else continue; /* who knows. */ info.h = NULL; info.other = isym.st_other; gotent = local_got_entries[ELF64_R_SYM(irel->r_info)]; symval = isym.st_value; } else { unsigned long indx; struct alpha_elf_link_hash_entry *h; indx = ELF64_R_SYM (irel->r_info) - symtab_hdr->sh_info; h = alpha_elf_sym_hashes (abfd)[indx]; BFD_ASSERT (h != NULL); while (h->root.root.type == bfd_link_hash_indirect || h->root.root.type == bfd_link_hash_warning) h = (struct alpha_elf_link_hash_entry *)h->root.root.u.i.link; /* We can't do anthing with undefined or dynamic symbols. */ if (h->root.root.type == bfd_link_hash_undefined || h->root.root.type == bfd_link_hash_undefweak || alpha_elf_dynamic_symbol_p (&h->root, link_info)) continue; info.h = h; info.tsec = h->root.root.u.def.section; info.other = h->root.other; gotent = h->got_entries; symval = h->root.root.u.def.value; } /* Search for the got entry to be used by this relocation. */ while (gotent->gotobj != info.gotobj || gotent->addend != irel->r_addend) gotent = gotent->next; info.gotent = gotent; symval += info.tsec->output_section->vma + info.tsec->output_offset; symval += irel->r_addend; BFD_ASSERT(info.gotent != NULL); /* If there exist LITUSE relocations immediately following, this opens up all sorts of interesting optimizations, because we now know every location that this address load is used. */ if (irel+1 < irelend && ELF64_R_TYPE (irel[1].r_info) == R_ALPHA_LITUSE) { irel = elf64_alpha_relax_with_lituse (&info, symval, irel, irelend); if (irel == NULL) goto error_return; } else { if (!elf64_alpha_relax_without_lituse (&info, symval, irel)) goto error_return; } } if (!elf64_alpha_size_got_sections (abfd, link_info)) return false; if (info.changed_relocs) { elf_section_data (sec)->relocs = internal_relocs; } else if (free_relocs != NULL) { free (free_relocs); } if (info.changed_contents) { elf_section_data (sec)->this_hdr.contents = info.contents; } else if (free_contents != NULL) { if (! link_info->keep_memory) free (free_contents); else { /* Cache the section contents for elf_link_input_bfd. */ elf_section_data (sec)->this_hdr.contents = info.contents; } } if (free_extsyms != NULL) { if (! link_info->keep_memory) free (free_extsyms); else { /* Cache the symbols for elf_link_input_bfd. */ symtab_hdr->contents = extsyms; } } *again = info.changed_contents || info.changed_relocs; return true; error_return: if (free_relocs != NULL) free (free_relocs); if (free_contents != NULL) free (free_contents); if (free_extsyms != NULL) free (free_extsyms); return false; } /* PLT/GOT Stuff */ #define PLT_HEADER_SIZE 32 #define PLT_HEADER_WORD1 0xc3600000 /* br $27,.+4 */ #define PLT_HEADER_WORD2 0xa77b000c /* ldq $27,12($27) */ #define PLT_HEADER_WORD3 0x47ff041f /* nop */ #define PLT_HEADER_WORD4 0x6b7b0000 /* jmp $27,($27) */ #define PLT_ENTRY_SIZE 12 #define PLT_ENTRY_WORD1 0xc3800000 /* br $28, plt0 */ #define PLT_ENTRY_WORD2 0 #define PLT_ENTRY_WORD3 0 #define MAX_GOT_ENTRIES (64*1024 / 8) #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so" /* Handle an Alpha specific section when reading an object file. This is called when elfcode.h finds a section with an unknown type. FIXME: We need to handle the SHF_ALPHA_GPREL flag, but I'm not sure how to. */ static boolean elf64_alpha_section_from_shdr (abfd, hdr, name) bfd *abfd; Elf64_Internal_Shdr *hdr; char *name; { asection *newsect; /* There ought to be a place to keep ELF backend specific flags, but at the moment there isn't one. We just keep track of the sections by their name, instead. Fortunately, the ABI gives suggested names for all the MIPS specific sections, so we will probably get away with this. */ switch (hdr->sh_type) { case SHT_ALPHA_DEBUG: if (strcmp (name, ".mdebug") != 0) return false; break; default: return false; } if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name)) return false; newsect = hdr->bfd_section; if (hdr->sh_type == SHT_ALPHA_DEBUG) { if (! bfd_set_section_flags (abfd, newsect, (bfd_get_section_flags (abfd, newsect) | SEC_DEBUGGING))) return false; } return true; } /* Set the correct type for an Alpha ELF section. We do this by the section name, which is a hack, but ought to work. */ static boolean elf64_alpha_fake_sections (abfd, hdr, sec) bfd *abfd; Elf64_Internal_Shdr *hdr; asection *sec; { register const char *name; name = bfd_get_section_name (abfd, sec); if (strcmp (name, ".mdebug") == 0) { hdr->sh_type = SHT_ALPHA_DEBUG; /* In a shared object on Irix 5.3, the .mdebug section has an entsize of 0. FIXME: Does this matter? */ if ((abfd->flags & DYNAMIC) != 0 ) hdr->sh_entsize = 0; else hdr->sh_entsize = 1; } else if (strcmp (name, ".sdata") == 0 || strcmp (name, ".sbss") == 0 || strcmp (name, ".lit4") == 0 || strcmp (name, ".lit8") == 0) hdr->sh_flags |= SHF_ALPHA_GPREL; return true; } /* Hook called by the linker routine which adds symbols from an object file. We use it to put .comm items in .sbss, and not .bss. */ static boolean elf64_alpha_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp) bfd *abfd; struct bfd_link_info *info; const Elf_Internal_Sym *sym; const char **namep ATTRIBUTE_UNUSED; flagword *flagsp ATTRIBUTE_UNUSED; asection **secp; bfd_vma *valp; { if (sym->st_shndx == SHN_COMMON && !info->relocateable && sym->st_size <= elf_gp_size (abfd)) { /* Common symbols less than or equal to -G nn bytes are automatically put into .sbss. */ asection *scomm = bfd_get_section_by_name (abfd, ".scommon"); if (scomm == NULL) { scomm = bfd_make_section (abfd, ".scommon"); if (scomm == NULL || !bfd_set_section_flags (abfd, scomm, (SEC_ALLOC | SEC_IS_COMMON | SEC_LINKER_CREATED))) return false; } *secp = scomm; *valp = sym->st_size; } return true; } /* Create the .got section. */ static boolean elf64_alpha_create_got_section(abfd, info) bfd *abfd; struct bfd_link_info *info ATTRIBUTE_UNUSED; { asection *s; if (bfd_get_section_by_name (abfd, ".got")) return true; s = bfd_make_section (abfd, ".got"); if (s == NULL || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)) || !bfd_set_section_alignment (abfd, s, 3)) return false; alpha_elf_tdata (abfd)->got = s; return true; } /* Create all the dynamic sections. */ static boolean elf64_alpha_create_dynamic_sections (abfd, info) bfd *abfd; struct bfd_link_info *info; { asection *s; struct elf_link_hash_entry *h; /* We need to create .plt, .rela.plt, .got, and .rela.got sections. */ s = bfd_make_section (abfd, ".plt"); if (s == NULL || ! bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED | SEC_CODE)) || ! bfd_set_section_alignment (abfd, s, 3)) return false; /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the .plt section. */ h = NULL; if (! (_bfd_generic_link_add_one_symbol (info, abfd, "_PROCEDURE_LINKAGE_TABLE_", BSF_GLOBAL, s, (bfd_vma) 0, (const char *) NULL, false, get_elf_backend_data (abfd)->collect, (struct bfd_link_hash_entry **) &h))) return false; h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; h->type = STT_OBJECT; if (info->shared && ! _bfd_elf_link_record_dynamic_symbol (info, h)) return false; s = bfd_make_section (abfd, ".rela.plt"); if (s == NULL || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED | SEC_READONLY)) || ! bfd_set_section_alignment (abfd, s, 3)) return false; /* We may or may not have created a .got section for this object, but we definitely havn't done the rest of the work. */ if (!elf64_alpha_create_got_section (abfd, info)) return false; s = bfd_make_section(abfd, ".rela.got"); if (s == NULL || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED | SEC_READONLY)) || !bfd_set_section_alignment (abfd, s, 3)) return false; /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the dynobj's .got section. We don't do this in the linker script because we don't want to define the symbol if we are not creating a global offset table. */ h = NULL; if (!(_bfd_generic_link_add_one_symbol (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, alpha_elf_tdata(abfd)->got, (bfd_vma) 0, (const char *) NULL, false, get_elf_backend_data (abfd)->collect, (struct bfd_link_hash_entry **) &h))) return false; h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; h->type = STT_OBJECT; if (info->shared && ! _bfd_elf_link_record_dynamic_symbol (info, h)) return false; elf_hash_table (info)->hgot = h; return true; } /* Read ECOFF debugging information from a .mdebug section into a ecoff_debug_info structure. */ static boolean elf64_alpha_read_ecoff_info (abfd, section, debug) bfd *abfd; asection *section; struct ecoff_debug_info *debug; { HDRR *symhdr; const struct ecoff_debug_swap *swap; char *ext_hdr = NULL; swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; memset (debug, 0, sizeof (*debug)); ext_hdr = (char *) bfd_malloc ((size_t) swap->external_hdr_size); if (ext_hdr == NULL && swap->external_hdr_size != 0) goto error_return; if (bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0, swap->external_hdr_size) == false) goto error_return; symhdr = &debug->symbolic_header; (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr); /* The symbolic header contains absolute file offsets and sizes to read. */ #define READ(ptr, offset, count, size, type) \ if (symhdr->count == 0) \ debug->ptr = NULL; \ else \ { \ debug->ptr = (type) bfd_malloc ((size_t) (size * symhdr->count)); \ if (debug->ptr == NULL) \ goto error_return; \ if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \ || (bfd_read (debug->ptr, size, symhdr->count, \ abfd) != size * symhdr->count)) \ goto error_return; \ } READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *); READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, PTR); READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, PTR); READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, PTR); READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, PTR); READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext), union aux_ext *); READ (ss, cbSsOffset, issMax, sizeof (char), char *); READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *); READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, PTR); READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, PTR); READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, PTR); #undef READ debug->fdr = NULL; debug->adjust = NULL; return true; error_return: if (ext_hdr != NULL) free (ext_hdr); if (debug->line != NULL) free (debug->line); if (debug->external_dnr != NULL) free (debug->external_dnr); if (debug->external_pdr != NULL) free (debug->external_pdr); if (debug->external_sym != NULL) free (debug->external_sym); if (debug->external_opt != NULL) free (debug->external_opt); if (debug->external_aux != NULL) free (debug->external_aux); if (debug->ss != NULL) free (debug->ss); if (debug->ssext != NULL) free (debug->ssext); if (debug->external_fdr != NULL) free (debug->external_fdr); if (debug->external_rfd != NULL) free (debug->external_rfd); if (debug->external_ext != NULL) free (debug->external_ext); return false; } /* Alpha ELF local labels start with '$'. */ static boolean elf64_alpha_is_local_label_name (abfd, name) bfd *abfd ATTRIBUTE_UNUSED; const char *name; { return name[0] == '$'; } /* Alpha ELF follows MIPS ELF in using a special find_nearest_line routine in order to handle the ECOFF debugging information. We still call this mips_elf_find_line because of the slot find_line_info in elf_obj_tdata is declared that way. */ struct mips_elf_find_line { struct ecoff_debug_info d; struct ecoff_find_line i; }; static boolean elf64_alpha_find_nearest_line (abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr) bfd *abfd; asection *section; asymbol **symbols; bfd_vma offset; const char **filename_ptr; const char **functionname_ptr; unsigned int *line_ptr; { asection *msec; if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr, 0, &elf_tdata (abfd)->dwarf2_find_line_info)) return true; msec = bfd_get_section_by_name (abfd, ".mdebug"); if (msec != NULL) { flagword origflags; struct mips_elf_find_line *fi; const struct ecoff_debug_swap * const swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; /* If we are called during a link, alpha_elf_final_link may have cleared the SEC_HAS_CONTENTS field. We force it back on here if appropriate (which it normally will be). */ origflags = msec->flags; if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS) msec->flags |= SEC_HAS_CONTENTS; fi = elf_tdata (abfd)->find_line_info; if (fi == NULL) { bfd_size_type external_fdr_size; char *fraw_src; char *fraw_end; struct fdr *fdr_ptr; fi = ((struct mips_elf_find_line *) bfd_zalloc (abfd, sizeof (struct mips_elf_find_line))); if (fi == NULL) { msec->flags = origflags; return false; } if (!elf64_alpha_read_ecoff_info (abfd, msec, &fi->d)) { msec->flags = origflags; return false; } /* Swap in the FDR information. */ fi->d.fdr = ((struct fdr *) bfd_alloc (abfd, (fi->d.symbolic_header.ifdMax * sizeof (struct fdr)))); if (fi->d.fdr == NULL) { msec->flags = origflags; return false; } external_fdr_size = swap->external_fdr_size; fdr_ptr = fi->d.fdr; fraw_src = (char *) fi->d.external_fdr; fraw_end = (fraw_src + fi->d.symbolic_header.ifdMax * external_fdr_size); for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++) (*swap->swap_fdr_in) (abfd, (PTR) fraw_src, fdr_ptr); elf_tdata (abfd)->find_line_info = fi; /* Note that we don't bother to ever free this information. find_nearest_line is either called all the time, as in objdump -l, so the information should be saved, or it is rarely called, as in ld error messages, so the memory wasted is unimportant. Still, it would probably be a good idea for free_cached_info to throw it away. */ } if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap, &fi->i, filename_ptr, functionname_ptr, line_ptr)) { msec->flags = origflags; return true; } msec->flags = origflags; } /* Fall back on the generic ELF find_nearest_line routine. */ return _bfd_elf_find_nearest_line (abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr); } /* Structure used to pass information to alpha_elf_output_extsym. */ struct extsym_info { bfd *abfd; struct bfd_link_info *info; struct ecoff_debug_info *debug; const struct ecoff_debug_swap *swap; boolean failed; }; static boolean elf64_alpha_output_extsym (h, data) struct alpha_elf_link_hash_entry *h; PTR data; { struct extsym_info *einfo = (struct extsym_info *) data; boolean strip; asection *sec, *output_section; if (h->root.indx == -2) strip = false; else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0) && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0) strip = true; else if (einfo->info->strip == strip_all || (einfo->info->strip == strip_some && bfd_hash_lookup (einfo->info->keep_hash, h->root.root.root.string, false, false) == NULL)) strip = true; else strip = false; if (strip) return true; if (h->esym.ifd == -2) { h->esym.jmptbl = 0; h->esym.cobol_main = 0; h->esym.weakext = 0; h->esym.reserved = 0; h->esym.ifd = ifdNil; h->esym.asym.value = 0; h->esym.asym.st = stGlobal; if (h->root.root.type != bfd_link_hash_defined && h->root.root.type != bfd_link_hash_defweak) h->esym.asym.sc = scAbs; else { const char *name; sec = h->root.root.u.def.section; output_section = sec->output_section; /* When making a shared library and symbol h is the one from the another shared library, OUTPUT_SECTION may be null. */ if (output_section == NULL) h->esym.asym.sc = scUndefined; else { name = bfd_section_name (output_section->owner, output_section); if (strcmp (name, ".text") == 0) h->esym.asym.sc = scText; else if (strcmp (name, ".data") == 0) h->esym.asym.sc = scData; else if (strcmp (name, ".sdata") == 0) h->esym.asym.sc = scSData; else if (strcmp (name, ".rodata") == 0 || strcmp (name, ".rdata") == 0) h->esym.asym.sc = scRData; else if (strcmp (name, ".bss") == 0) h->esym.asym.sc = scBss; else if (strcmp (name, ".sbss") == 0) h->esym.asym.sc = scSBss; else if (strcmp (name, ".init") == 0) h->esym.asym.sc = scInit; else if (strcmp (name, ".fini") == 0) h->esym.asym.sc = scFini; else h->esym.asym.sc = scAbs; } } h->esym.asym.reserved = 0; h->esym.asym.index = indexNil; } if (h->root.root.type == bfd_link_hash_common) h->esym.asym.value = h->root.root.u.c.size; else if (h->root.root.type == bfd_link_hash_defined || h->root.root.type == bfd_link_hash_defweak) { if (h->esym.asym.sc == scCommon) h->esym.asym.sc = scBss; else if (h->esym.asym.sc == scSCommon) h->esym.asym.sc = scSBss; sec = h->root.root.u.def.section; output_section = sec->output_section; if (output_section != NULL) h->esym.asym.value = (h->root.root.u.def.value + sec->output_offset + output_section->vma); else h->esym.asym.value = 0; } else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0) { /* Set type and value for a symbol with a function stub. */ h->esym.asym.st = stProc; sec = bfd_get_section_by_name (einfo->abfd, ".plt"); if (sec == NULL) h->esym.asym.value = 0; else { output_section = sec->output_section; if (output_section != NULL) h->esym.asym.value = (h->root.plt.offset + sec->output_offset + output_section->vma); else h->esym.asym.value = 0; } } if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap, h->root.root.root.string, &h->esym)) { einfo->failed = true; return false; } return true; } /* FIXME: Create a runtime procedure table from the .mdebug section. static boolean mips_elf_create_procedure_table (handle, abfd, info, s, debug) PTR handle; bfd *abfd; struct bfd_link_info *info; asection *s; struct ecoff_debug_info *debug; */ /* Handle dynamic relocations when doing an Alpha ELF link. */ static boolean elf64_alpha_check_relocs (abfd, info, sec, relocs) bfd *abfd; struct bfd_link_info *info; asection *sec; const Elf_Internal_Rela *relocs; { bfd *dynobj; asection *sreloc; const char *rel_sec_name; Elf_Internal_Shdr *symtab_hdr; struct alpha_elf_link_hash_entry **sym_hashes; struct alpha_elf_got_entry **local_got_entries; const Elf_Internal_Rela *rel, *relend; int got_created; if (info->relocateable) return true; dynobj = elf_hash_table(info)->dynobj; if (dynobj == NULL) elf_hash_table(info)->dynobj = dynobj = abfd; sreloc = NULL; rel_sec_name = NULL; symtab_hdr = &elf_tdata(abfd)->symtab_hdr; sym_hashes = alpha_elf_sym_hashes(abfd); local_got_entries = alpha_elf_tdata(abfd)->local_got_entries; got_created = 0; relend = relocs + sec->reloc_count; for (rel = relocs; rel < relend; ++rel) { unsigned long r_symndx, r_type; struct alpha_elf_link_hash_entry *h; r_symndx = ELF64_R_SYM (rel->r_info); if (r_symndx < symtab_hdr->sh_info) h = NULL; else { h = sym_hashes[r_symndx - symtab_hdr->sh_info]; while (h->root.root.type == bfd_link_hash_indirect || h->root.root.type == bfd_link_hash_warning) h = (struct alpha_elf_link_hash_entry *)h->root.root.u.i.link; h->root.elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR; } r_type = ELF64_R_TYPE (rel->r_info); switch (r_type) { case R_ALPHA_LITERAL: { struct alpha_elf_got_entry *gotent; int flags = 0; if (h) { /* Search for and possibly create a got entry. */ for (gotent = h->got_entries; gotent ; gotent = gotent->next) if (gotent->gotobj == abfd && gotent->addend == rel->r_addend) break; if (!gotent) { gotent = ((struct alpha_elf_got_entry *) bfd_alloc (abfd, sizeof (struct alpha_elf_got_entry))); if (!gotent) return false; gotent->gotobj = abfd; gotent->addend = rel->r_addend; gotent->got_offset = -1; gotent->flags = 0; gotent->use_count = 1; gotent->next = h->got_entries; h->got_entries = gotent; alpha_elf_tdata (abfd)->total_got_entries++; } else gotent->use_count += 1; } else { /* This is a local .got entry -- record for merge. */ if (!local_got_entries) { size_t size; size = (symtab_hdr->sh_info * sizeof (struct alpha_elf_got_entry *)); local_got_entries = ((struct alpha_elf_got_entry **) bfd_alloc (abfd, size)); if (!local_got_entries) return false; memset (local_got_entries, 0, size); alpha_elf_tdata (abfd)->local_got_entries = local_got_entries; } for (gotent = local_got_entries[ELF64_R_SYM(rel->r_info)]; gotent != NULL && gotent->addend != rel->r_addend; gotent = gotent->next) continue; if (!gotent) { gotent = ((struct alpha_elf_got_entry *) bfd_alloc (abfd, sizeof (struct alpha_elf_got_entry))); if (!gotent) return false; gotent->gotobj = abfd; gotent->addend = rel->r_addend; gotent->got_offset = -1; gotent->flags = 0; gotent->use_count = 1; gotent->next = local_got_entries[ELF64_R_SYM(rel->r_info)]; local_got_entries[ELF64_R_SYM(rel->r_info)] = gotent; alpha_elf_tdata(abfd)->total_got_entries++; alpha_elf_tdata(abfd)->n_local_got_entries++; } else gotent->use_count += 1; } /* Remember how this literal is used from its LITUSEs. This will be important when it comes to decide if we can create a .plt entry for a function symbol. */ if (rel+1 < relend && ELF64_R_TYPE (rel[1].r_info) == R_ALPHA_LITUSE) { do { ++rel; if (rel->r_addend >= 1 && rel->r_addend <= 3) flags |= 1 << rel->r_addend; } while (rel+1 < relend && ELF64_R_TYPE (rel[1].r_info) == R_ALPHA_LITUSE); } else { /* No LITUSEs -- presumably the address is not being loaded for nothing. */ flags = ALPHA_ELF_LINK_HASH_LU_ADDR; } gotent->flags |= flags; if (h) { /* Make a guess as to whether a .plt entry will be needed. */ if ((h->flags |= flags) == ALPHA_ELF_LINK_HASH_LU_FUNC) h->root.elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT; else h->root.elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT; } } /* FALLTHRU */ case R_ALPHA_GPDISP: case R_ALPHA_GPREL16: case R_ALPHA_GPREL32: case R_ALPHA_GPRELHIGH: case R_ALPHA_GPRELLOW: /* We don't actually use the .got here, but the sections must be created before the linker maps input sections to output sections. */ if (!got_created) { if (!elf64_alpha_create_got_section (abfd, info)) return false; /* Make sure the object's gotobj is set to itself so that we default to every object with its own .got. We'll merge .gots later once we've collected each object's info. */ alpha_elf_tdata(abfd)->gotobj = abfd; got_created = 1; } break; case R_ALPHA_SREL16: case R_ALPHA_SREL32: case R_ALPHA_SREL64: if (h == NULL) break; /* FALLTHRU */ case R_ALPHA_REFLONG: case R_ALPHA_REFQUAD: if (rel_sec_name == NULL) { rel_sec_name = (bfd_elf_string_from_elf_section (abfd, elf_elfheader(abfd)->e_shstrndx, elf_section_data(sec)->rel_hdr.sh_name)); if (rel_sec_name == NULL) return false; BFD_ASSERT (strncmp (rel_sec_name, ".rela", 5) == 0 && strcmp (bfd_get_section_name (abfd, sec), rel_sec_name+5) == 0); } /* We need to create the section here now whether we eventually use it or not so that it gets mapped to an output section by the linker. If not used, we'll kill it in size_dynamic_sections. */ if (sreloc == NULL) { sreloc = bfd_get_section_by_name (dynobj, rel_sec_name); if (sreloc == NULL) { sreloc = bfd_make_section (dynobj, rel_sec_name); if (sreloc == NULL || !bfd_set_section_flags (dynobj, sreloc, (((sec->flags & SEC_ALLOC) ? (SEC_ALLOC | SEC_LOAD) : 0) | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED | SEC_READONLY)) || !bfd_set_section_alignment (dynobj, sreloc, 3)) return false; } } if (h) { /* Since we havn't seen all of the input symbols yet, we don't know whether we'll actually need a dynamic relocation entry for this reloc. So make a record of it. Once we find out if this thing needs dynamic relocation we'll expand the relocation sections by the appropriate amount. */ struct alpha_elf_reloc_entry *rent; for (rent = h->reloc_entries; rent; rent = rent->next) if (rent->rtype == r_type && rent->srel == sreloc) break; if (!rent) { rent = ((struct alpha_elf_reloc_entry *) bfd_alloc (abfd, sizeof (struct alpha_elf_reloc_entry))); if (!rent) return false; rent->srel = sreloc; rent->rtype = r_type; rent->count = 1; rent->reltext = (sec->flags & SEC_READONLY) != 0; rent->next = h->reloc_entries; h->reloc_entries = rent; } else rent->count++; } else if (info->shared && (sec->flags & SEC_ALLOC)) { /* If this is a shared library, and the section is to be loaded into memory, we need a RELATIVE reloc. */ sreloc->_raw_size += sizeof (Elf64_External_Rela); if (sec->flags & SEC_READONLY) info->flags |= DF_TEXTREL; } break; } } return true; } /* Adjust a symbol defined by a dynamic object and referenced by a regular object. The current definition is in some section of the dynamic object, but we're not including those sections. We have to change the definition to something the rest of the link can understand. */ static boolean elf64_alpha_adjust_dynamic_symbol (info, h) struct bfd_link_info *info; struct elf_link_hash_entry *h; { bfd *dynobj; asection *s; struct alpha_elf_link_hash_entry *ah; dynobj = elf_hash_table(info)->dynobj; ah = (struct alpha_elf_link_hash_entry *)h; /* Now that we've seen all of the input symbols, finalize our decision about whether this symbol should get a .plt entry. */ if (h->root.type != bfd_link_hash_undefweak && alpha_elf_dynamic_symbol_p (h, info) && ((h->type == STT_FUNC && !(ah->flags & ALPHA_ELF_LINK_HASH_LU_ADDR)) || (h->type == STT_NOTYPE && ah->flags == ALPHA_ELF_LINK_HASH_LU_FUNC)) /* Don't prevent otherwise valid programs from linking by attempting to create a new .got entry somewhere. A Correct Solution would be to add a new .got section to a new object file and let it be merged somewhere later. But for now don't bother. */ && ah->got_entries) { h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT; s = bfd_get_section_by_name(dynobj, ".plt"); if (!s && !elf64_alpha_create_dynamic_sections (dynobj, info)) return false; /* The first bit of the .plt is reserved. */ if (s->_raw_size == 0) s->_raw_size = PLT_HEADER_SIZE; h->plt.offset = s->_raw_size; s->_raw_size += PLT_ENTRY_SIZE; /* If this symbol is not defined in a regular file, and we are not generating a shared library, then set the symbol to the location in the .plt. This is required to make function pointers compare equal between the normal executable and the shared library. */ if (! info->shared && h->root.type != bfd_link_hash_defweak) { h->root.u.def.section = s; h->root.u.def.value = h->plt.offset; } /* We also need a JMP_SLOT entry in the .rela.plt section. */ s = bfd_get_section_by_name (dynobj, ".rela.plt"); BFD_ASSERT (s != NULL); s->_raw_size += sizeof (Elf64_External_Rela); return true; } else h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT; /* If this is a weak symbol, and there is a real definition, the processor independent code will have arranged for us to see the real definition first, and we can just use the same value. */ if (h->weakdef != NULL) { BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined || h->weakdef->root.type == bfd_link_hash_defweak); h->root.u.def.section = h->weakdef->root.u.def.section; h->root.u.def.value = h->weakdef->root.u.def.value; return true; } /* This is a reference to a symbol defined by a dynamic object which is not a function. The Alpha, since it uses .got entries for all symbols even in regular objects, does not need the hackery of a .dynbss section and COPY dynamic relocations. */ return true; } /* Symbol versioning can create new symbols, and make our old symbols indirect to the new ones. Consolidate the got and reloc information in these situations. */ static boolean elf64_alpha_merge_ind_symbols (hi, dummy) struct alpha_elf_link_hash_entry *hi; PTR dummy ATTRIBUTE_UNUSED; { struct alpha_elf_link_hash_entry *hs; if (hi->root.root.type != bfd_link_hash_indirect) return true; hs = hi; do { hs = (struct alpha_elf_link_hash_entry *)hs->root.root.u.i.link; } while (hs->root.root.type == bfd_link_hash_indirect); /* Merge the flags. Whee. */ hs->flags |= hi->flags; /* Merge the .got entries. Cannibalize the old symbol's list in doing so, since we don't need it anymore. */ if (hs->got_entries == NULL) hs->got_entries = hi->got_entries; else { struct alpha_elf_got_entry *gi, *gs, *gin, *gsh; gsh = hs->got_entries; for (gi = hi->got_entries; gi ; gi = gin) { gin = gi->next; for (gs = gsh; gs ; gs = gs->next) if (gi->gotobj == gs->gotobj && gi->addend == gs->addend) goto got_found; gi->next = hs->got_entries; hs->got_entries = gi; got_found:; } } hi->got_entries = NULL; /* And similar for the reloc entries. */ if (hs->reloc_entries == NULL) hs->reloc_entries = hi->reloc_entries; else { struct alpha_elf_reloc_entry *ri, *rs, *rin, *rsh; rsh = hs->reloc_entries; for (ri = hi->reloc_entries; ri ; ri = rin) { rin = ri->next; for (rs = rsh; rs ; rs = rs->next) if (ri->rtype == rs->rtype) { rs->count += ri->count; goto found_reloc; } ri->next = hs->reloc_entries; hs->reloc_entries = ri; found_reloc:; } } hi->reloc_entries = NULL; return true; } /* Is it possible to merge two object file's .got tables? */ static boolean elf64_alpha_can_merge_gots (a, b) bfd *a, *b; { int total = alpha_elf_tdata (a)->total_got_entries; bfd *bsub; /* Trivial quick fallout test. */ if (total + alpha_elf_tdata (b)->total_got_entries <= MAX_GOT_ENTRIES) return true; /* By their nature, local .got entries cannot be merged. */ if ((total += alpha_elf_tdata (b)->n_local_got_entries) > MAX_GOT_ENTRIES) return false; /* Failing the common trivial comparison, we must effectively perform the merge. Not actually performing the merge means that we don't have to store undo information in case we fail. */ for (bsub = b; bsub ; bsub = alpha_elf_tdata (bsub)->in_got_link_next) { struct alpha_elf_link_hash_entry **hashes = alpha_elf_sym_hashes (bsub); Elf_Internal_Shdr *symtab_hdr = &elf_tdata (bsub)->symtab_hdr; int i, n; n = NUM_SHDR_ENTRIES (symtab_hdr) - symtab_hdr->sh_info; for (i = 0; i < n; ++i) { struct alpha_elf_got_entry *ae, *be; struct alpha_elf_link_hash_entry *h; h = hashes[i]; while (h->root.root.type == bfd_link_hash_indirect || h->root.root.type == bfd_link_hash_warning) h = (struct alpha_elf_link_hash_entry *)h->root.root.u.i.link; for (be = h->got_entries; be ; be = be->next) { if (be->use_count == 0) continue; if (be->gotobj != b) continue; for (ae = h->got_entries; ae ; ae = ae->next) if (ae->gotobj == a && ae->addend == be->addend) goto global_found; if (++total > MAX_GOT_ENTRIES) return false; global_found:; } } } return true; } /* Actually merge two .got tables. */ static void elf64_alpha_merge_gots (a, b) bfd *a, *b; { int total = alpha_elf_tdata (a)->total_got_entries; bfd *bsub; /* Remember local expansion. */ { int e = alpha_elf_tdata (b)->n_local_got_entries; total += e; alpha_elf_tdata (a)->n_local_got_entries += e; } for (bsub = b; bsub ; bsub = alpha_elf_tdata (bsub)->in_got_link_next) { struct alpha_elf_got_entry **local_got_entries; struct alpha_elf_link_hash_entry **hashes; Elf_Internal_Shdr *symtab_hdr; int i, n; /* Let the local .got entries know they are part of a new subsegment. */ local_got_entries = alpha_elf_tdata (bsub)->local_got_entries; if (local_got_entries) { n = elf_tdata (bsub)->symtab_hdr.sh_info; for (i = 0; i < n; ++i) { struct alpha_elf_got_entry *ent; for (ent = local_got_entries[i]; ent; ent = ent->next) ent->gotobj = a; } } /* Merge the global .got entries. */ hashes = alpha_elf_sym_hashes (bsub); symtab_hdr = &elf_tdata (bsub)->symtab_hdr; n = NUM_SHDR_ENTRIES (symtab_hdr) - symtab_hdr->sh_info; for (i = 0; i < n; ++i) { struct alpha_elf_got_entry *ae, *be, **pbe, **start; struct alpha_elf_link_hash_entry *h; h = hashes[i]; while (h->root.root.type == bfd_link_hash_indirect || h->root.root.type == bfd_link_hash_warning) h = (struct alpha_elf_link_hash_entry *)h->root.root.u.i.link; start = &h->got_entries; for (pbe = start, be = *start; be ; pbe = &be->next, be = be->next) { if (be->use_count == 0) { *pbe = be->next; continue; } if (be->gotobj != b) continue; for (ae = *start; ae ; ae = ae->next) if (ae->gotobj == a && ae->addend == be->addend) { ae->flags |= be->flags; ae->use_count += be->use_count; *pbe = be->next; goto global_found; } be->gotobj = a; total += 1; global_found:; } } alpha_elf_tdata (bsub)->gotobj = a; } alpha_elf_tdata (a)->total_got_entries = total; /* Merge the two in_got chains. */ { bfd *next; bsub = a; while ((next = alpha_elf_tdata (bsub)->in_got_link_next) != NULL) bsub = next; alpha_elf_tdata (bsub)->in_got_link_next = b; } } /* Calculate the offsets for the got entries. */ static boolean elf64_alpha_calc_got_offsets_for_symbol (h, arg) struct alpha_elf_link_hash_entry *h; PTR arg ATTRIBUTE_UNUSED; { struct alpha_elf_got_entry *gotent; for (gotent = h->got_entries; gotent; gotent = gotent->next) if (gotent->use_count > 0) { bfd_size_type *plge = &alpha_elf_tdata (gotent->gotobj)->got->_raw_size; gotent->got_offset = *plge; *plge += 8; } return true; } static void elf64_alpha_calc_got_offsets (info) struct bfd_link_info *info; { bfd *i, *got_list = alpha_elf_hash_table(info)->got_list; /* First, zero out the .got sizes, as we may be recalculating the .got after optimizing it. */ for (i = got_list; i ; i = alpha_elf_tdata(i)->got_link_next) alpha_elf_tdata(i)->got->_raw_size = 0; /* Next, fill in the offsets for all the global entries. */ alpha_elf_link_hash_traverse (alpha_elf_hash_table (info), elf64_alpha_calc_got_offsets_for_symbol, NULL); /* Finally, fill in the offsets for the local entries. */ for (i = got_list; i ; i = alpha_elf_tdata(i)->got_link_next) { bfd_size_type got_offset = alpha_elf_tdata(i)->got->_raw_size; bfd *j; for (j = i; j ; j = alpha_elf_tdata(j)->in_got_link_next) { struct alpha_elf_got_entry **local_got_entries, *gotent; int k, n; local_got_entries = alpha_elf_tdata(j)->local_got_entries; if (!local_got_entries) continue; for (k = 0, n = elf_tdata(j)->symtab_hdr.sh_info; k < n; ++k) for (gotent = local_got_entries[k]; gotent; gotent = gotent->next) if (gotent->use_count > 0) { gotent->got_offset = got_offset; got_offset += 8; } } alpha_elf_tdata(i)->got->_raw_size = got_offset; alpha_elf_tdata(i)->got->_cooked_size = got_offset; } } /* Constructs the gots. */ static boolean elf64_alpha_size_got_sections (output_bfd, info) bfd *output_bfd ATTRIBUTE_UNUSED; struct bfd_link_info *info; { bfd *i, *got_list, *cur_got_obj = NULL; int something_changed = 0; got_list = alpha_elf_hash_table (info)->got_list; /* On the first time through, pretend we have an existing got list consisting of all of the input files. */ if (got_list == NULL) { for (i = info->input_bfds; i ; i = i->link_next) { bfd *this_got = alpha_elf_tdata (i)->gotobj; if (this_got == NULL) continue; /* We are assuming no merging has yet ocurred. */ BFD_ASSERT (this_got == i); if (alpha_elf_tdata (this_got)->total_got_entries > MAX_GOT_ENTRIES) { /* Yikes! A single object file has too many entries. */ (*_bfd_error_handler) (_("%s: .got subsegment exceeds 64K (size %d)"), bfd_get_filename (i), alpha_elf_tdata (this_got)->total_got_entries * 8); return false; } if (got_list == NULL) got_list = this_got; else alpha_elf_tdata(cur_got_obj)->got_link_next = this_got; cur_got_obj = this_got; } /* Strange degenerate case of no got references. */ if (got_list == NULL) return true; alpha_elf_hash_table (info)->got_list = got_list; /* Force got offsets to be recalculated. */ something_changed = 1; } cur_got_obj = got_list; i = alpha_elf_tdata(cur_got_obj)->got_link_next; while (i != NULL) { if (elf64_alpha_can_merge_gots (cur_got_obj, i)) { elf64_alpha_merge_gots (cur_got_obj, i); i = alpha_elf_tdata(i)->got_link_next; alpha_elf_tdata(cur_got_obj)->got_link_next = i; something_changed = 1; } else { cur_got_obj = i; i = alpha_elf_tdata(i)->got_link_next; } } /* Once the gots have been merged, fill in the got offsets for everything therein. */ if (1 || something_changed) elf64_alpha_calc_got_offsets (info); return true; } static boolean elf64_alpha_always_size_sections (output_bfd, info) bfd *output_bfd; struct bfd_link_info *info; { bfd *i; if (info->relocateable) return true; /* First, take care of the indirect symbols created by versioning. */ alpha_elf_link_hash_traverse (alpha_elf_hash_table (info), elf64_alpha_merge_ind_symbols, NULL); if (!elf64_alpha_size_got_sections (output_bfd, info)) return false; /* Allocate space for all of the .got subsections. */ i = alpha_elf_hash_table (info)->got_list; for ( ; i ; i = alpha_elf_tdata(i)->got_link_next) { asection *s = alpha_elf_tdata(i)->got; if (s->_raw_size > 0) { s->contents = (bfd_byte *) bfd_zalloc (i, s->_raw_size); if (s->contents == NULL) return false; } } return true; } /* Work out the sizes of the dynamic relocation entries. */ static boolean elf64_alpha_calc_dynrel_sizes (h, info) struct alpha_elf_link_hash_entry *h; struct bfd_link_info *info; { /* If the symbol was defined as a common symbol in a regular object file, and there was no definition in any dynamic object, then the linker will have allocated space for the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR flag will not have been set. This is done for dynamic symbols in elf_adjust_dynamic_symbol but this is not done for non-dynamic symbols, somehow. */ if (((h->root.elf_link_hash_flags & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR | ELF_LINK_HASH_DEF_DYNAMIC)) == ELF_LINK_HASH_REF_REGULAR) && (h->root.root.type == bfd_link_hash_defined || h->root.root.type == bfd_link_hash_defweak) && !(h->root.root.u.def.section->owner->flags & DYNAMIC)) { h->root.elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; } /* If the symbol is dynamic, we'll need all the relocations in their natural form. If this is a shared object, and it has been forced local, we'll need the same number of RELATIVE relocations. */ if (alpha_elf_dynamic_symbol_p (&h->root, info) || info->shared) { struct alpha_elf_reloc_entry *relent; bfd *dynobj; struct alpha_elf_got_entry *gotent; bfd_size_type count; asection *srel; for (relent = h->reloc_entries; relent; relent = relent->next) if (relent->rtype == R_ALPHA_REFLONG || relent->rtype == R_ALPHA_REFQUAD) { relent->srel->_raw_size += sizeof (Elf64_External_Rela) * relent->count; if (relent->reltext) info->flags |= DT_TEXTREL; } dynobj = elf_hash_table(info)->dynobj; count = 0; for (gotent = h->got_entries; gotent ; gotent = gotent->next) count++; /* If we are using a .plt entry, subtract one, as the first reference uses a .rela.plt entry instead. */ if (h->root.plt.offset != MINUS_ONE) count--; if (count > 0) { srel = bfd_get_section_by_name (dynobj, ".rela.got"); BFD_ASSERT (srel != NULL); srel->_raw_size += sizeof (Elf64_External_Rela) * count; } } return true; } /* Set the sizes of the dynamic sections. */ static boolean elf64_alpha_size_dynamic_sections (output_bfd, info) bfd *output_bfd ATTRIBUTE_UNUSED; struct bfd_link_info *info; { bfd *dynobj; asection *s; boolean relplt; dynobj = elf_hash_table(info)->dynobj; BFD_ASSERT(dynobj != NULL); if (elf_hash_table (info)->dynamic_sections_created) { /* Set the contents of the .interp section to the interpreter. */ if (!info->shared) { s = bfd_get_section_by_name (dynobj, ".interp"); BFD_ASSERT (s != NULL); s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER; s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; } /* Now that we've seen all of the input files, we can decide which symbols need dynamic relocation entries and which don't. We've collected information in check_relocs that we can now apply to size the dynamic relocation sections. */ alpha_elf_link_hash_traverse (alpha_elf_hash_table (info), elf64_alpha_calc_dynrel_sizes, info); /* When building shared libraries, each local .got entry needs a RELATIVE reloc. */ if (info->shared) { bfd *i; asection *srel; bfd_size_type count; srel = bfd_get_section_by_name (dynobj, ".rela.got"); BFD_ASSERT (srel != NULL); for (i = alpha_elf_hash_table(info)->got_list, count = 0; i != NULL; i = alpha_elf_tdata(i)->got_link_next) count += alpha_elf_tdata(i)->n_local_got_entries; srel->_raw_size += count * sizeof (Elf64_External_Rela); } } /* else we're not dynamic and by definition we don't need such things. */ /* The check_relocs and adjust_dynamic_symbol entry points have determined the sizes of the various dynamic sections. Allocate memory for them. */ relplt = false; for (s = dynobj->sections; s != NULL; s = s->next) { const char *name; boolean strip; if (!(s->flags & SEC_LINKER_CREATED)) continue; /* It's OK to base decisions on the section name, because none of the dynobj section names depend upon the input files. */ name = bfd_get_section_name (dynobj, s); /* If we don't need this section, strip it from the output file. This is to handle .rela.bss and .rela.plt. We must create it in create_dynamic_sections, because it must be created before the linker maps input sections to output sections. The linker does that before adjust_dynamic_symbol is called, and it is that function which decides whether anything needs to go into these sections. */ strip = false; if (strncmp (name, ".rela", 5) == 0) { strip = (s->_raw_size == 0); if (!strip) { if (strcmp(name, ".rela.plt") == 0) relplt = true; /* We use the reloc_count field as a counter if we need to copy relocs into the output file. */ s->reloc_count = 0; } } else if (strcmp (name, ".plt") != 0) { /* It's not one of our dynamic sections, so don't allocate space. */ continue; } if (strip) _bfd_strip_section_from_output (info, s); else { /* Allocate memory for the section contents. */ s->contents = (bfd_byte *) bfd_zalloc(dynobj, s->_raw_size); if (s->contents == NULL && s->_raw_size != 0) return false; } } if (elf_hash_table (info)->dynamic_sections_created) { /* Add some entries to the .dynamic section. We fill in the values later, in elf64_alpha_finish_dynamic_sections, but we must add the entries now so that we get the correct size for the .dynamic section. The DT_DEBUG entry is filled in by the dynamic linker and used by the debugger. */ if (!info->shared) { if (!bfd_elf64_add_dynamic_entry (info, DT_DEBUG, 0)) return false; } if (! bfd_elf64_add_dynamic_entry (info, DT_PLTGOT, 0)) return false; if (relplt) { if (! bfd_elf64_add_dynamic_entry (info, DT_PLTRELSZ, 0) || ! bfd_elf64_add_dynamic_entry (info, DT_PLTREL, DT_RELA) || ! bfd_elf64_add_dynamic_entry (info, DT_JMPREL, 0)) return false; } if (! bfd_elf64_add_dynamic_entry (info, DT_RELA, 0) || ! bfd_elf64_add_dynamic_entry (info, DT_RELASZ, 0) || ! bfd_elf64_add_dynamic_entry (info, DT_RELAENT, sizeof (Elf64_External_Rela))) return false; if (info->flags & DF_TEXTREL) { if (! bfd_elf64_add_dynamic_entry (info, DT_TEXTREL, 0)) return false; } } return true; } /* Relocate an Alpha ELF section. */ static boolean elf64_alpha_relocate_section (output_bfd, info, input_bfd, input_section, contents, relocs, local_syms, local_sections) bfd *output_bfd; struct bfd_link_info *info; bfd *input_bfd; asection *input_section; bfd_byte *contents; Elf_Internal_Rela *relocs; Elf_Internal_Sym *local_syms; asection **local_sections; { Elf_Internal_Shdr *symtab_hdr; Elf_Internal_Rela *rel; Elf_Internal_Rela *relend; asection *sec, *sgot, *srel, *srelgot; bfd *dynobj, *gotobj; bfd_vma gp; boolean ret_val = true; srelgot = srel = NULL; symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; dynobj = elf_hash_table (info)->dynobj; if (dynobj) { srelgot = bfd_get_section_by_name (dynobj, ".rela.got"); } /* Find the gp value for this input bfd. */ sgot = NULL; gp = 0; gotobj = alpha_elf_tdata (input_bfd)->gotobj; if (gotobj) { sgot = alpha_elf_tdata (gotobj)->got; gp = _bfd_get_gp_value (gotobj); if (gp == 0) { gp = (sgot->output_section->vma + sgot->output_offset + 0x8000); _bfd_set_gp_value (gotobj, gp); } } rel = relocs; relend = relocs + input_section->reloc_count; for (; rel < relend; rel++) { int r_type; reloc_howto_type *howto; unsigned long r_symndx; struct alpha_elf_link_hash_entry *h; Elf_Internal_Sym *sym; bfd_vma relocation; bfd_signed_vma addend; bfd_reloc_status_type r; r_type = ELF64_R_TYPE(rel->r_info); if (r_type < 0 || r_type >= (int) R_ALPHA_max) { bfd_set_error (bfd_error_bad_value); return false; } howto = elf64_alpha_howto_table + r_type; r_symndx = ELF64_R_SYM(rel->r_info); if (info->relocateable) { /* This is a relocateable link. We don't have to change anything, unless the reloc is against a section symbol, in which case we have to adjust according to where the section symbol winds up in the output section. */ /* The symbol associated with GPDISP and LITUSE is immaterial. Only the addend is significant. */ if (r_type == R_ALPHA_GPDISP || r_type == R_ALPHA_LITUSE) continue; if (r_symndx < symtab_hdr->sh_info) { sym = local_syms + r_symndx; if (ELF_ST_TYPE(sym->st_info) == STT_SECTION) { sec = local_sections[r_symndx]; rel->r_addend += sec->output_offset + sym->st_value; } } continue; } /* This is a final link. */ h = NULL; sym = NULL; sec = NULL; if (r_symndx < symtab_hdr->sh_info) { sym = local_syms + r_symndx; sec = local_sections[r_symndx]; relocation = (sec->output_section->vma + sec->output_offset + sym->st_value); } else { h = alpha_elf_sym_hashes (input_bfd)[r_symndx - symtab_hdr->sh_info]; while (h->root.root.type == bfd_link_hash_indirect || h->root.root.type == bfd_link_hash_warning) h = (struct alpha_elf_link_hash_entry *)h->root.root.u.i.link; if (h->root.root.type == bfd_link_hash_defined || h->root.root.type == bfd_link_hash_defweak) { sec = h->root.root.u.def.section; if (sec->output_section == NULL) relocation = 0; else { relocation = (h->root.root.u.def.value + sec->output_section->vma + sec->output_offset); } } else if (h->root.root.type == bfd_link_hash_undefweak) relocation = 0; else if (info->shared && !info->symbolic && !info->no_undefined && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT) relocation = 0; else { if (!((*info->callbacks->undefined_symbol) (info, h->root.root.root.string, input_bfd, input_section, rel->r_offset, (!info->shared || info->no_undefined || ELF_ST_VISIBILITY (h->root.other))))) ret_val = false; relocation = 0; } } addend = rel->r_addend; switch (r_type) { case R_ALPHA_GPDISP: { bfd_byte *p_ldah, *p_lda; BFD_ASSERT(gp != 0); relocation = (input_section->output_section->vma + input_section->output_offset + rel->r_offset); p_ldah = contents + rel->r_offset - input_section->vma; p_lda = p_ldah + rel->r_addend; r = elf64_alpha_do_reloc_gpdisp (input_bfd, gp - relocation, p_ldah, p_lda); } break; case R_ALPHA_LITERAL: { struct alpha_elf_got_entry *gotent; boolean dynamic_symbol; BFD_ASSERT(sgot != NULL); BFD_ASSERT(gp != 0); if (h != NULL) { gotent = h->got_entries; dynamic_symbol = alpha_elf_dynamic_symbol_p (&h->root, info); } else { gotent = (alpha_elf_tdata(input_bfd)-> local_got_entries[r_symndx]); dynamic_symbol = false; } BFD_ASSERT(gotent != NULL); while (gotent->gotobj != gotobj || gotent->addend != addend) gotent = gotent->next; BFD_ASSERT(gotent->use_count >= 1); /* Initialize the .got entry's value. */ if (!(gotent->flags & ALPHA_ELF_GOT_ENTRY_RELOCS_DONE)) { bfd_put_64 (output_bfd, relocation+addend, sgot->contents + gotent->got_offset); /* If the symbol has been forced local, output a RELATIVE reloc, otherwise it will be handled in finish_dynamic_symbol. */ if (info->shared && !dynamic_symbol) { Elf_Internal_Rela outrel; BFD_ASSERT(srelgot != NULL); outrel.r_offset = (sgot->output_section->vma + sgot->output_offset + gotent->got_offset); outrel.r_info = ELF64_R_INFO(0, R_ALPHA_RELATIVE); outrel.r_addend = relocation+addend; bfd_elf64_swap_reloca_out (output_bfd, &outrel, ((Elf64_External_Rela *) srelgot->contents) + srelgot->reloc_count++); BFD_ASSERT (sizeof (Elf64_External_Rela) * srelgot->reloc_count <= srelgot->_cooked_size); } gotent->flags |= ALPHA_ELF_GOT_ENTRY_RELOCS_DONE; } /* Figure the gprel relocation. */ addend = 0; relocation = (sgot->output_section->vma + sgot->output_offset + gotent->got_offset); relocation -= gp; } /* overflow handled by _bfd_final_link_relocate */ goto default_reloc; case R_ALPHA_GPREL16: case R_ALPHA_GPREL32: case R_ALPHA_GPRELLOW: if (h && alpha_elf_dynamic_symbol_p (&h->root, info)) { (*_bfd_error_handler) (_("%s: gp-relative relocation against dynamic symbol %s"), bfd_get_filename (input_bfd), h->root.root.root.string); ret_val = false; } BFD_ASSERT(gp != 0); relocation -= gp; goto default_reloc; case R_ALPHA_GPRELHIGH: if (h && alpha_elf_dynamic_symbol_p (&h->root, info)) { (*_bfd_error_handler) (_("%s: gp-relative relocation against dynamic symbol %s"), bfd_get_filename (input_bfd), h->root.root.root.string); ret_val = false; } BFD_ASSERT(gp != 0); relocation -= gp; relocation += addend; addend = 0; relocation = (((bfd_signed_vma) relocation >> 16) + ((relocation >> 15) & 1)); goto default_reloc; case R_ALPHA_BRADDR: case R_ALPHA_HINT: /* The regular PC-relative stuff measures from the start of the instruction rather than the end. */ addend -= 4; goto default_reloc; case R_ALPHA_REFLONG: case R_ALPHA_REFQUAD: { Elf_Internal_Rela outrel; boolean skip; /* Careful here to remember RELATIVE relocations for global variables for symbolic shared objects. */ if (h && alpha_elf_dynamic_symbol_p (&h->root, info)) { BFD_ASSERT(h->root.dynindx != -1); outrel.r_info = ELF64_R_INFO(h->root.dynindx, r_type); outrel.r_addend = addend; addend = 0, relocation = 0; } else if (info->shared && (input_section->flags & SEC_ALLOC)) { outrel.r_info = ELF64_R_INFO(0, R_ALPHA_RELATIVE); outrel.r_addend = relocation + addend; } else goto default_reloc; if (!srel) { const char *name; name = (bfd_elf_string_from_elf_section (input_bfd, elf_elfheader(input_bfd)->e_shstrndx, elf_section_data(input_section)->rel_hdr.sh_name)); BFD_ASSERT(name != NULL); srel = bfd_get_section_by_name (dynobj, name); BFD_ASSERT(srel != NULL); } skip = false; if (elf_section_data (input_section)->stab_info == NULL) outrel.r_offset = rel->r_offset; else { bfd_vma off; off = (_bfd_stab_section_offset (output_bfd, &elf_hash_table (info)->stab_info, input_section, &elf_section_data (input_section)->stab_info, rel->r_offset)); if (off == (bfd_vma) -1) skip = true; outrel.r_offset = off; } if (! skip) outrel.r_offset += (input_section->output_section->vma + input_section->output_offset); else memset (&outrel, 0, sizeof outrel); bfd_elf64_swap_reloca_out (output_bfd, &outrel, ((Elf64_External_Rela *) srel->contents) + srel->reloc_count++); BFD_ASSERT (sizeof (Elf64_External_Rela) * srel->reloc_count <= srel->_cooked_size); } goto default_reloc; default: default_reloc: r = _bfd_final_link_relocate (howto, input_bfd, input_section, contents, rel->r_offset, relocation, addend); break; } switch (r) { case bfd_reloc_ok: break; case bfd_reloc_overflow: { const char *name; if (h != NULL) name = h->root.root.root.string; else { name = (bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, sym->st_name)); if (name == NULL) return false; if (*name == '\0') name = bfd_section_name (input_bfd, sec); } if (! ((*info->callbacks->reloc_overflow) (info, name, howto->name, (bfd_vma) 0, input_bfd, input_section, rel->r_offset))) ret_val = false; } break; default: case bfd_reloc_outofrange: abort (); } } return ret_val; } /* Finish up dynamic symbol handling. We set the contents of various dynamic sections here. */ static boolean elf64_alpha_finish_dynamic_symbol (output_bfd, info, h, sym) bfd *output_bfd; struct bfd_link_info *info; struct elf_link_hash_entry *h; Elf_Internal_Sym *sym; { bfd *dynobj = elf_hash_table(info)->dynobj; if (h->plt.offset != MINUS_ONE) { /* Fill in the .plt entry for this symbol. */ asection *splt, *sgot, *srel; Elf_Internal_Rela outrel; bfd_vma got_addr, plt_addr; bfd_vma plt_index; struct alpha_elf_got_entry *gotent; BFD_ASSERT (h->dynindx != -1); /* The first .got entry will be updated by the .plt with the address of the target function. */ gotent = ((struct alpha_elf_link_hash_entry *) h)->got_entries; BFD_ASSERT (gotent && gotent->addend == 0); splt = bfd_get_section_by_name (dynobj, ".plt"); BFD_ASSERT (splt != NULL); srel = bfd_get_section_by_name (dynobj, ".rela.plt"); BFD_ASSERT (srel != NULL); sgot = alpha_elf_tdata (gotent->gotobj)->got; BFD_ASSERT (sgot != NULL); got_addr = (sgot->output_section->vma + sgot->output_offset + gotent->got_offset); plt_addr = (splt->output_section->vma + splt->output_offset + h->plt.offset); plt_index = (h->plt.offset - PLT_HEADER_SIZE) / PLT_ENTRY_SIZE; /* Fill in the entry in the procedure linkage table. */ { unsigned insn1, insn2, insn3; insn1 = PLT_ENTRY_WORD1 | ((-(h->plt.offset + 4) >> 2) & 0x1fffff); insn2 = PLT_ENTRY_WORD2; insn3 = PLT_ENTRY_WORD3; bfd_put_32 (output_bfd, insn1, splt->contents + h->plt.offset); bfd_put_32 (output_bfd, insn2, splt->contents + h->plt.offset + 4); bfd_put_32 (output_bfd, insn3, splt->contents + h->plt.offset + 8); } /* Fill in the entry in the .rela.plt section. */ outrel.r_offset = got_addr; outrel.r_info = ELF64_R_INFO(h->dynindx, R_ALPHA_JMP_SLOT); outrel.r_addend = 0; bfd_elf64_swap_reloca_out (output_bfd, &outrel, ((Elf64_External_Rela *)srel->contents + plt_index)); if (!(h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)) { /* Mark the symbol as undefined, rather than as defined in the .plt section. Leave the value alone. */ sym->st_shndx = SHN_UNDEF; } /* Fill in the entries in the .got. */ bfd_put_64 (output_bfd, plt_addr, sgot->contents + gotent->got_offset); /* Subsequent .got entries will continue to bounce through the .plt. */ if (gotent->next) { srel = bfd_get_section_by_name (dynobj, ".rela.got"); BFD_ASSERT (! info->shared || srel != NULL); gotent = gotent->next; do { sgot = alpha_elf_tdata(gotent->gotobj)->got; BFD_ASSERT(sgot != NULL); BFD_ASSERT(gotent->addend == 0); bfd_put_64 (output_bfd, plt_addr, sgot->contents + gotent->got_offset); if (info->shared) { outrel.r_offset = (sgot->output_section->vma + sgot->output_offset + gotent->got_offset); outrel.r_info = ELF64_R_INFO(0, R_ALPHA_RELATIVE); outrel.r_addend = plt_addr; bfd_elf64_swap_reloca_out (output_bfd, &outrel, ((Elf64_External_Rela *) srel->contents) + srel->reloc_count++); BFD_ASSERT (sizeof (Elf64_External_Rela) * srel->reloc_count <= srel->_cooked_size); } gotent = gotent->next; } while (gotent != NULL); } } else if (alpha_elf_dynamic_symbol_p (h, info)) { /* Fill in the dynamic relocations for this symbol's .got entries. */ asection *srel; Elf_Internal_Rela outrel; struct alpha_elf_got_entry *gotent; srel = bfd_get_section_by_name (dynobj, ".rela.got"); BFD_ASSERT (srel != NULL); outrel.r_info = ELF64_R_INFO (h->dynindx, R_ALPHA_GLOB_DAT); for (gotent = ((struct alpha_elf_link_hash_entry *) h)->got_entries; gotent != NULL; gotent = gotent->next) { asection *sgot = alpha_elf_tdata (gotent->gotobj)->got; outrel.r_offset = (sgot->output_section->vma + sgot->output_offset + gotent->got_offset); outrel.r_addend = gotent->addend; bfd_elf64_swap_reloca_out (output_bfd, &outrel, ((Elf64_External_Rela *)srel->contents + srel->reloc_count++)); BFD_ASSERT (sizeof (Elf64_External_Rela) * srel->reloc_count <= srel->_cooked_size); } } /* Mark some specially defined symbols as absolute. */ if (strcmp (h->root.root.string, "_DYNAMIC") == 0 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0) sym->st_shndx = SHN_ABS; return true; } /* Finish up the dynamic sections. */ static boolean elf64_alpha_finish_dynamic_sections (output_bfd, info) bfd *output_bfd; struct bfd_link_info *info; { bfd *dynobj; asection *sdyn; dynobj = elf_hash_table (info)->dynobj; sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); if (elf_hash_table (info)->dynamic_sections_created) { asection *splt; Elf64_External_Dyn *dyncon, *dynconend; splt = bfd_get_section_by_name (dynobj, ".plt"); BFD_ASSERT (splt != NULL && sdyn != NULL); dyncon = (Elf64_External_Dyn *) sdyn->contents; dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size); for (; dyncon < dynconend; dyncon++) { Elf_Internal_Dyn dyn; const char *name; asection *s; bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn); switch (dyn.d_tag) { case DT_PLTGOT: name = ".plt"; goto get_vma; case DT_PLTRELSZ: name = ".rela.plt"; goto get_size; case DT_JMPREL: name = ".rela.plt"; goto get_vma; case DT_RELASZ: /* My interpretation of the TIS v1.1 ELF document indicates that RELASZ should not include JMPREL. This is not what the rest of the BFD does. It is, however, what the glibc ld.so wants. Do this fixup here until we found out who is right. */ s = bfd_get_section_by_name (output_bfd, ".rela.plt"); if (s) { dyn.d_un.d_val -= (s->_cooked_size ? s->_cooked_size : s->_raw_size); } break; get_vma: s = bfd_get_section_by_name (output_bfd, name); dyn.d_un.d_ptr = (s ? s->vma : 0); break; get_size: s = bfd_get_section_by_name (output_bfd, name); dyn.d_un.d_val = (s->_cooked_size ? s->_cooked_size : s->_raw_size); break; } bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); } /* Initialize the PLT0 entry */ if (splt->_raw_size > 0) { bfd_put_32 (output_bfd, PLT_HEADER_WORD1, splt->contents); bfd_put_32 (output_bfd, PLT_HEADER_WORD2, splt->contents + 4); bfd_put_32 (output_bfd, PLT_HEADER_WORD3, splt->contents + 8); bfd_put_32 (output_bfd, PLT_HEADER_WORD4, splt->contents + 12); /* The next two words will be filled in by ld.so */ bfd_put_64 (output_bfd, 0, splt->contents + 16); bfd_put_64 (output_bfd, 0, splt->contents + 24); elf_section_data (splt->output_section)->this_hdr.sh_entsize = PLT_HEADER_SIZE; } } return true; } /* We need to use a special link routine to handle the .mdebug section. We need to merge all instances of these sections together, not write them all out sequentially. */ static boolean elf64_alpha_final_link (abfd, info) bfd *abfd; struct bfd_link_info *info; { asection *o; struct bfd_link_order *p; asection *mdebug_sec; struct ecoff_debug_info debug; const struct ecoff_debug_swap *swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; HDRR *symhdr = &debug.symbolic_header; PTR mdebug_handle = NULL; /* Go through the sections and collect the mdebug information. */ mdebug_sec = NULL; for (o = abfd->sections; o != (asection *) NULL; o = o->next) { if (strcmp (o->name, ".mdebug") == 0) { struct extsym_info einfo; /* We have found the .mdebug section in the output file. Look through all the link_orders comprising it and merge the information together. */ symhdr->magic = swap->sym_magic; /* FIXME: What should the version stamp be? */ symhdr->vstamp = 0; symhdr->ilineMax = 0; symhdr->cbLine = 0; symhdr->idnMax = 0; symhdr->ipdMax = 0; symhdr->isymMax = 0; symhdr->ioptMax = 0; symhdr->iauxMax = 0; symhdr->issMax = 0; symhdr->issExtMax = 0; symhdr->ifdMax = 0; symhdr->crfd = 0; symhdr->iextMax = 0; /* We accumulate the debugging information itself in the debug_info structure. */ debug.line = NULL; debug.external_dnr = NULL; debug.external_pdr = NULL; debug.external_sym = NULL; debug.external_opt = NULL; debug.external_aux = NULL; debug.ss = NULL; debug.ssext = debug.ssext_end = NULL; debug.external_fdr = NULL; debug.external_rfd = NULL; debug.external_ext = debug.external_ext_end = NULL; mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info); if (mdebug_handle == (PTR) NULL) return false; if (1) { asection *s; EXTR esym; bfd_vma last = 0; unsigned int i; static const char * const name[] = { ".text", ".init", ".fini", ".data", ".rodata", ".sdata", ".sbss", ".bss" }; static const int sc[] = { scText, scInit, scFini, scData, scRData, scSData, scSBss, scBss }; esym.jmptbl = 0; esym.cobol_main = 0; esym.weakext = 0; esym.reserved = 0; esym.ifd = ifdNil; esym.asym.iss = issNil; esym.asym.st = stLocal; esym.asym.reserved = 0; esym.asym.index = indexNil; for (i = 0; i < 8; i++) { esym.asym.sc = sc[i]; s = bfd_get_section_by_name (abfd, name[i]); if (s != NULL) { esym.asym.value = s->vma; last = s->vma + s->_raw_size; } else esym.asym.value = last; if (! bfd_ecoff_debug_one_external (abfd, &debug, swap, name[i], &esym)) return false; } } for (p = o->link_order_head; p != (struct bfd_link_order *) NULL; p = p->next) { asection *input_section; bfd *input_bfd; const struct ecoff_debug_swap *input_swap; struct ecoff_debug_info input_debug; char *eraw_src; char *eraw_end; if (p->type != bfd_indirect_link_order) { if (p->type == bfd_fill_link_order) continue; abort (); } input_section = p->u.indirect.section; input_bfd = input_section->owner; if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour || (get_elf_backend_data (input_bfd) ->elf_backend_ecoff_debug_swap) == NULL) { /* I don't know what a non ALPHA ELF bfd would be doing with a .mdebug section, but I don't really want to deal with it. */ continue; } input_swap = (get_elf_backend_data (input_bfd) ->elf_backend_ecoff_debug_swap); BFD_ASSERT (p->size == input_section->_raw_size); /* The ECOFF linking code expects that we have already read in the debugging information and set up an ecoff_debug_info structure, so we do that now. */ if (!elf64_alpha_read_ecoff_info (input_bfd, input_section, &input_debug)) return false; if (! (bfd_ecoff_debug_accumulate (mdebug_handle, abfd, &debug, swap, input_bfd, &input_debug, input_swap, info))) return false; /* Loop through the external symbols. For each one with interesting information, try to find the symbol in the linker global hash table and save the information for the output external symbols. */ eraw_src = input_debug.external_ext; eraw_end = (eraw_src + (input_debug.symbolic_header.iextMax * input_swap->external_ext_size)); for (; eraw_src < eraw_end; eraw_src += input_swap->external_ext_size) { EXTR ext; const char *name; struct alpha_elf_link_hash_entry *h; (*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext); if (ext.asym.sc == scNil || ext.asym.sc == scUndefined || ext.asym.sc == scSUndefined) continue; name = input_debug.ssext + ext.asym.iss; h = alpha_elf_link_hash_lookup (alpha_elf_hash_table (info), name, false, false, true); if (h == NULL || h->esym.ifd != -2) continue; if (ext.ifd != -1) { BFD_ASSERT (ext.ifd < input_debug.symbolic_header.ifdMax); ext.ifd = input_debug.ifdmap[ext.ifd]; } h->esym = ext; } /* Free up the information we just read. */ free (input_debug.line); free (input_debug.external_dnr); free (input_debug.external_pdr); free (input_debug.external_sym); free (input_debug.external_opt); free (input_debug.external_aux); free (input_debug.ss); free (input_debug.ssext); free (input_debug.external_fdr); free (input_debug.external_rfd); free (input_debug.external_ext); /* Hack: reset the SEC_HAS_CONTENTS flag so that elf_link_input_bfd ignores this section. */ input_section->flags &=~ SEC_HAS_CONTENTS; } /* Build the external symbol information. */ einfo.abfd = abfd; einfo.info = info; einfo.debug = &debug; einfo.swap = swap; einfo.failed = false; elf_link_hash_traverse (elf_hash_table (info), elf64_alpha_output_extsym, (PTR) &einfo); if (einfo.failed) return false; /* Set the size of the .mdebug section. */ o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap); /* Skip this section later on (I don't think this currently matters, but someday it might). */ o->link_order_head = (struct bfd_link_order *) NULL; mdebug_sec = o; } } /* Invoke the regular ELF backend linker to do all the work. */ if (! bfd_elf64_bfd_final_link (abfd, info)) return false; /* Now write out the computed sections. */ /* The .got subsections... */ { bfd *i, *dynobj = elf_hash_table(info)->dynobj; for (i = alpha_elf_hash_table(info)->got_list; i != NULL; i = alpha_elf_tdata(i)->got_link_next) { asection *sgot; /* elf_bfd_final_link already did everything in dynobj. */ if (i == dynobj) continue; sgot = alpha_elf_tdata(i)->got; if (! bfd_set_section_contents (abfd, sgot->output_section, sgot->contents, sgot->output_offset, sgot->_raw_size)) return false; } } if (mdebug_sec != (asection *) NULL) { BFD_ASSERT (abfd->output_has_begun); if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug, swap, info, mdebug_sec->filepos)) return false; bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info); } return true; } static enum elf_reloc_type_class elf64_alpha_reloc_type_class (type) int type; { switch (type) { case R_ALPHA_RELATIVE: return reloc_class_relative; case R_ALPHA_JMP_SLOT: return reloc_class_plt; case R_ALPHA_COPY: return reloc_class_copy; default: return reloc_class_normal; } } /* ECOFF swapping routines. These are used when dealing with the .mdebug section, which is in the ECOFF debugging format. Copied from elf32-mips.c. */ static const struct ecoff_debug_swap elf64_alpha_ecoff_debug_swap = { /* Symbol table magic number. */ magicSym2, /* Alignment of debugging information. E.g., 4. */ 8, /* Sizes of external symbolic information. */ sizeof (struct hdr_ext), sizeof (struct dnr_ext), sizeof (struct pdr_ext), sizeof (struct sym_ext), sizeof (struct opt_ext), sizeof (struct fdr_ext), sizeof (struct rfd_ext), sizeof (struct ext_ext), /* Functions to swap in external symbolic data. */ ecoff_swap_hdr_in, ecoff_swap_dnr_in, ecoff_swap_pdr_in, ecoff_swap_sym_in, ecoff_swap_opt_in, ecoff_swap_fdr_in, ecoff_swap_rfd_in, ecoff_swap_ext_in, _bfd_ecoff_swap_tir_in, _bfd_ecoff_swap_rndx_in, /* Functions to swap out external symbolic data. */ ecoff_swap_hdr_out, ecoff_swap_dnr_out, ecoff_swap_pdr_out, ecoff_swap_sym_out, ecoff_swap_opt_out, ecoff_swap_fdr_out, ecoff_swap_rfd_out, ecoff_swap_ext_out, _bfd_ecoff_swap_tir_out, _bfd_ecoff_swap_rndx_out, /* Function to read in symbolic data. */ elf64_alpha_read_ecoff_info }; /* Use a non-standard hash bucket size of 8. */ const struct elf_size_info alpha_elf_size_info = { sizeof (Elf64_External_Ehdr), sizeof (Elf64_External_Phdr), sizeof (Elf64_External_Shdr), sizeof (Elf64_External_Rel), sizeof (Elf64_External_Rela), sizeof (Elf64_External_Sym), sizeof (Elf64_External_Dyn), sizeof (Elf_External_Note), 8, 1, 64, 8, ELFCLASS64, EV_CURRENT, bfd_elf64_write_out_phdrs, bfd_elf64_write_shdrs_and_ehdr, bfd_elf64_write_relocs, bfd_elf64_swap_symbol_out, bfd_elf64_slurp_reloc_table, bfd_elf64_slurp_symbol_table, bfd_elf64_swap_dyn_in, bfd_elf64_swap_dyn_out, NULL, NULL, NULL, NULL }; #define TARGET_LITTLE_SYM bfd_elf64_alpha_vec #define TARGET_LITTLE_NAME "elf64-alpha" #define ELF_ARCH bfd_arch_alpha #define ELF_MACHINE_CODE EM_ALPHA #define ELF_MAXPAGESIZE 0x10000 #define bfd_elf64_bfd_link_hash_table_create \ elf64_alpha_bfd_link_hash_table_create #define bfd_elf64_bfd_reloc_type_lookup \ elf64_alpha_bfd_reloc_type_lookup #define elf_info_to_howto \ elf64_alpha_info_to_howto #define bfd_elf64_mkobject \ elf64_alpha_mkobject #define elf_backend_object_p \ elf64_alpha_object_p #define elf_backend_section_from_shdr \ elf64_alpha_section_from_shdr #define elf_backend_fake_sections \ elf64_alpha_fake_sections #define bfd_elf64_bfd_is_local_label_name \ elf64_alpha_is_local_label_name #define bfd_elf64_find_nearest_line \ elf64_alpha_find_nearest_line #define bfd_elf64_bfd_relax_section \ elf64_alpha_relax_section #define elf_backend_add_symbol_hook \ elf64_alpha_add_symbol_hook #define elf_backend_check_relocs \ elf64_alpha_check_relocs #define elf_backend_create_dynamic_sections \ elf64_alpha_create_dynamic_sections #define elf_backend_adjust_dynamic_symbol \ elf64_alpha_adjust_dynamic_symbol #define elf_backend_always_size_sections \ elf64_alpha_always_size_sections #define elf_backend_size_dynamic_sections \ elf64_alpha_size_dynamic_sections #define elf_backend_relocate_section \ elf64_alpha_relocate_section #define elf_backend_finish_dynamic_symbol \ elf64_alpha_finish_dynamic_symbol #define elf_backend_finish_dynamic_sections \ elf64_alpha_finish_dynamic_sections #define bfd_elf64_bfd_final_link \ elf64_alpha_final_link #define elf_backend_reloc_type_class \ elf64_alpha_reloc_type_class #define elf_backend_ecoff_debug_swap \ &elf64_alpha_ecoff_debug_swap #define elf_backend_size_info \ alpha_elf_size_info /* A few constants that determine how the .plt section is set up. */ #define elf_backend_want_got_plt 0 #define elf_backend_plt_readonly 0 #define elf_backend_want_plt_sym 1 #define elf_backend_got_header_size 0 #define elf_backend_plt_header_size PLT_HEADER_SIZE #include "elf64-target.h"