/* Definitions to make GDB run on a mips box under 4.3bsd. Copyright (C) 1986, 1987, 1989, 1991, 1992 Free Software Foundation, Inc. Contributed by Per Bothner (bothner@cs.wisc.edu) at U.Wisconsin and by Alessandro Forin (af@cs.cmu.edu) at CMU. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "coff/sym.h" /* Needed for PDR below. */ #include "coff/symconst.h" #if !defined (TARGET_BYTE_ORDER) #define TARGET_BYTE_ORDER LITTLE_ENDIAN #endif /* FIXME, this triggers host-and-target (``native'') dependent code which currently sits in mips-xdep.c. Needs to be moved out to mips-nat.c or some such. */ #define GDB_TARGET_IS_MIPS /* Floating point is IEEE compliant */ #define IEEE_FLOAT /* Define this if the C compiler puts an underscore at the front of external names before giving them to the linker. */ /*#define NAMES_HAVE_UNDERSCORE*/ /* Offset from address of function to start of its code. Zero on most machines. */ #define FUNCTION_START_OFFSET 0 /* Advance PC across any function entry prologue instructions to reach some "real" code. */ #define SKIP_PROLOGUE(pc) pc = mips_skip_prologue(pc) /* Immediately after a function call, return the saved pc. Can't always go through the frames for this because on some machines the new frame is not set up until the new function executes some instructions. */ #define SAVED_PC_AFTER_CALL(frame) read_register(RA_REGNUM) /* Are we currently handling a signal */ #define IN_SIGTRAMP(pc, name) in_sigtramp(pc, name) /* Address of end of stack space. */ #define STACK_END_ADDR (0x7ffff000) /* Stack grows downward. */ #define INNER_THAN < #define BIG_ENDIAN 4321 #if TARGET_BYTE_ORDER == BIG_ENDIAN #define BREAKPOINT {0, 0x5, 0, 0xd} #else #define BREAKPOINT {0xd, 0, 0x5, 0} #endif /* Amount PC must be decremented by after a breakpoint. This is often the number of bytes in BREAKPOINT but not always. */ #define DECR_PC_AFTER_BREAK 0 /* Nonzero if instruction at PC is a return instruction. "j ra" on mips. */ #define ABOUT_TO_RETURN(pc) (read_memory_integer (pc, 4) == 0x3e00008) /* Return 1 if P points to an invalid floating point value. */ #define INVALID_FLOAT(p,l) isa_NAN(p,l) /* Say how long (all) registers are. */ #define REGISTER_TYPE long /* Number of machine registers */ #define NUM_REGS 80 /* Initializer for an array of names of registers. There should be NUM_REGS strings in this initializer. */ #define REGISTER_NAMES \ { "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", \ "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", \ "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", \ "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", \ "sr", "lo", "hi", "bad", "cause","pc", \ "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \ "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \ "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",\ "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",\ "fsr", "fir", "fp", "inx", "rand", "tlblo","ctxt", "tlbhi",\ "epc", "prid"\ } /* Register numbers of various important registers. Note that some of these values are "real" register numbers, and correspond to the general registers of the machine, and some are "phony" register numbers which are too large to be actual register numbers as far as the user is concerned but do serve to get the desired values when passed to read_register. */ #define ZERO_REGNUM 0 /* read-only register, always 0 */ #define A0_REGNUM 4 /* Loc of first arg during a subr call */ #define SP_REGNUM 29 /* Contains address of top of stack */ #define RA_REGNUM 31 /* Contains return address value */ #define PS_REGNUM 32 /* Contains processor status */ #define HI_REGNUM 34 /* Multiple/divide temp */ #define LO_REGNUM 33 /* ... */ #define BADVADDR_REGNUM 35 /* bad vaddr for addressing exception */ #define CAUSE_REGNUM 36 /* describes last exception */ #define PC_REGNUM 37 /* Contains program counter */ #define FP0_REGNUM 38 /* Floating point register 0 (single float) */ #define FCRCS_REGNUM 70 /* FP control/status */ #define FCRIR_REGNUM 71 /* FP implementation/revision */ #define FP_REGNUM 72 /* Pseudo register that contains true address of executing stack frame */ #define FIRST_EMBED_REGNUM 73 /* First supervisor register for embedded use */ #define LAST_EMBED_REGNUM 79 /* Last one */ /* Define DO_REGISTERS_INFO() to do machine-specific formatting of register dumps. */ #define DO_REGISTERS_INFO(_regnum, fp) mips_do_registers_info(_regnum, fp) /* Total amount of space needed to store our copies of the machine's register state, the array `registers'. */ #define REGISTER_BYTES (NUM_REGS*4) /* Index within `registers' of the first byte of the space for register N. */ #define REGISTER_BYTE(N) ((N) * 4) /* Number of bytes of storage in the actual machine representation for register N. On mips, all regs are 4 bytes. */ #define REGISTER_RAW_SIZE(N) 4 /* Number of bytes of storage in the program's representation for register N. On mips, all regs are 4 bytes. */ #define REGISTER_VIRTUAL_SIZE(N) 4 /* Largest value REGISTER_RAW_SIZE can have. */ #define MAX_REGISTER_RAW_SIZE 4 /* Largest value REGISTER_VIRTUAL_SIZE can have. */ #define MAX_REGISTER_VIRTUAL_SIZE 4 /* Nonzero if register N requires conversion from raw format to virtual format. */ #define REGISTER_CONVERTIBLE(N) 0 /* Convert data from raw format for register REGNUM to virtual format for register REGNUM. */ #define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) \ bcopy ((FROM), (TO), 4); /* Convert data from virtual format for register REGNUM to raw format for register REGNUM. */ #define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) \ bcopy ((FROM), (TO), 4); /* Return the GDB type object for the "standard" data type of data in register N. */ #define REGISTER_VIRTUAL_TYPE(N) \ (((N) >= FP0_REGNUM && (N) < FP0_REGNUM+32) \ ? builtin_type_float : builtin_type_int) \ /* Store the address of the place in which to copy the structure the subroutine will return. This is called from call_function. */ #define STORE_STRUCT_RETURN(addr, sp) \ { sp = push_word(sp, addr);} /* Extract from an array REGBUF containing the (raw) register state a function return value of type TYPE, and copy that, in virtual format, into VALBUF. XXX floats */ #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \ bcopy (REGBUF+REGISTER_BYTE (TYPE_CODE (TYPE) == TYPE_CODE_FLT ? FP0_REGNUM : 2), VALBUF, TYPE_LENGTH (TYPE)) /* Write into appropriate registers a function return value of type TYPE, given in virtual format. */ #define STORE_RETURN_VALUE(TYPE,VALBUF) \ write_register_bytes (REGISTER_BYTE (TYPE_CODE (TYPE) == TYPE_CODE_FLT ? FP0_REGNUM : 2), VALBUF, TYPE_LENGTH (TYPE)) /* Extract from an array REGBUF containing the (raw) register state the address in which a function should return its structure value, as a CORE_ADDR (or an expression that can be used as one). */ #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(int *)(REGBUF+16)) /* Structures are returned by ref in extra arg0 */ #define USE_STRUCT_CONVENTION(gcc_p, type) 1 /* Describe the pointer in each stack frame to the previous stack frame (its caller). */ /* FRAME_CHAIN takes a frame's nominal address and produces the frame's chain-pointer. */ #define FRAME_CHAIN(thisframe) (FRAME_ADDR)mips_frame_chain(thisframe) /* Define other aspects of the stack frame. */ /* A macro that tells us whether the function invocation represented by FI does not have a frame on the stack associated with it. If it does not, FRAMELESS is set to 1, else 0. */ /* We handle this differently for mips, and maybe we should not */ #define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) {(FRAMELESS) = 0;} /* Saved Pc. */ #define FRAME_SAVED_PC(FRAME) (mips_frame_saved_pc(FRAME)) #define FRAME_ARGS_ADDRESS(fi) (fi)->frame #define FRAME_LOCALS_ADDRESS(fi) (fi)->frame /* Return number of args passed to a frame. Can return -1, meaning no way to tell. */ #define FRAME_NUM_ARGS(num, fi) (num = mips_frame_num_args(fi)) /* Return number of bytes at start of arglist that are not really args. */ #define FRAME_ARGS_SKIP 0 /* Put here the code to store, into a struct frame_saved_regs, the addresses of the saved registers of frame described by FRAME_INFO. This includes special registers such as pc and fp saved in special ways in the stack frame. sp is even more special: the address we return for it IS the sp for the next frame. */ #define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) ( \ (frame_saved_regs) = *(frame_info)->saved_regs, \ (frame_saved_regs).regs[SP_REGNUM] = (frame_info)->frame) /* Things needed for making the inferior call functions. */ /* Stack has strict alignment. However, use PUSH_ARGUMENTS to take care of it. */ /*#define STACK_ALIGN(addr) (((addr)+3)&~3)*/ #define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \ sp = mips_push_arguments(nargs, args, sp, struct_return, struct_addr) /* Push an empty stack frame, to record the current PC, etc. */ #define PUSH_DUMMY_FRAME mips_push_dummy_frame() /* Discard from the stack the innermost frame, restoring all registers. */ #define POP_FRAME mips_pop_frame() #define MK_OP(op,rs,rt,offset) (((op)<<26)|((rs)<<21)|((rt)<<16)|(offset)) #define CALL_DUMMY_SIZE (16*4) #define Dest_Reg 2 #define CALL_DUMMY {\ MK_OP(0,RA_REGNUM,0,8), /* jr $ra # Fake ABOUT_TO_RETURN ...*/\ 0, /* nop # ... to stop raw backtrace*/\ 0x27bd0000, /* addu sp,?0 # Pseudo prologue */\ /* Start here: */\ MK_OP(061,SP_REGNUM,12,0), /* lwc1 $f12,0(sp) # Reload first 4 args*/\ MK_OP(061,SP_REGNUM,13,4), /* lwc1 $f13,4(sp) */\ MK_OP(061,SP_REGNUM,14,8), /* lwc1 $f14,8(sp) */\ MK_OP(061,SP_REGNUM,15,12), /* lwc1 $f15,12(sp) */\ MK_OP(043,SP_REGNUM,4,0), /* lw $r4,0(sp) # Re-load FP regs*/\ MK_OP(043,SP_REGNUM,5,4), /* lw $r5,4(sp) */\ MK_OP(043,SP_REGNUM,6,8), /* lw $r6,8(sp) */\ MK_OP(043,SP_REGNUM,7,12), /* lw $r7,12(sp) */\ (017<<26)| (Dest_Reg << 16), /* lui $r31,*/\ MK_OP(13,Dest_Reg,Dest_Reg,0), /* ori $r31,$r31,*/ \ (Dest_Reg<<21) | (31<<11) | 9, /* jalr $r31 */\ MK_OP(043,SP_REGNUM,7,12), /* lw $r7,12(sp) */\ 0x5000d, /* bpt */\ } #define CALL_DUMMY_START_OFFSET 12 /* Insert the specified number of args and function address into a call sequence of the above form stored at DUMMYNAME. */ #define FIX_CALL_DUMMY(dummyname, start_sp, fun, nargs, args, rettype, gcc_p)\ (((int*)dummyname)[11] |= (((unsigned long)(fun)) >> 16), \ ((int*)dummyname)[12] |= (unsigned short)(fun)) /* Specific information about a procedure. This overlays the MIPS's PDR records, mipsread.c (ab)uses this to save memory */ typedef struct mips_extra_func_info { long numargs; /* number of args to procedure (was iopt) */ PDR pdr; /* Procedure descriptor record */ } *mips_extra_func_info_t; #define EXTRA_FRAME_INFO \ mips_extra_func_info_t proc_desc; \ int num_args;\ struct frame_saved_regs *saved_regs; #define INIT_EXTRA_FRAME_INFO(fromleaf, fci) init_extra_frame_info(fci) #define STAB_REG_TO_REGNUM(num) ((num) < 32 ? (num) : (num)+FP0_REGNUM-32) /* Size of elements in jmpbuf */ #define JB_ELEMENT_SIZE 4 /* Figure out where the longjmp will land. We expect that we have just entered longjmp and haven't yet setup the stack frame, so the args are still in the argument regs. a0 (CALL_ARG0) points at the jmp_buf structure from which we extract the pc (JB_PC) that we will land at. The pc is copied into ADDR. This routine returns true on success */ /* Note that caller must #include in order to get def of JB_* */ #define GET_LONGJMP_TARGET(ADDR) get_longjmp_target(ADDR)