/* MIPS-specific support for ELF Copyright 1993-2013 Free Software Foundation, Inc. Most of the information added by Ian Lance Taylor, Cygnus Support, . N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC. Traditional MIPS targets support added by Koundinya.K, Dansk Data Elektronik & Operations Research Group. This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ /* This file handles functionality common to the different MIPS ABI's. */ #include "sysdep.h" #include "bfd.h" #include "libbfd.h" #include "libiberty.h" #include "elf-bfd.h" #include "elfxx-mips.h" #include "elf/mips.h" #include "elf-vxworks.h" /* Get the ECOFF swapping routines. */ #include "coff/sym.h" #include "coff/symconst.h" #include "coff/ecoff.h" #include "coff/mips.h" #include "hashtab.h" /* Types of TLS GOT entry. */ enum mips_got_tls_type { GOT_TLS_NONE, GOT_TLS_GD, GOT_TLS_LDM, GOT_TLS_IE }; /* This structure is used to hold information about one GOT entry. There are four types of entry: (1) an absolute address requires: abfd == NULL fields: d.address (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM fields: abfd, symndx, d.addend, tls_type (3) a SYMBOL address, where SYMBOL is not local to an input bfd requires: abfd != NULL, symndx == -1 fields: d.h, tls_type (4) a TLS LDM slot requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM fields: none; there's only one of these per GOT. */ struct mips_got_entry { /* One input bfd that needs the GOT entry. */ bfd *abfd; /* The index of the symbol, as stored in the relocation r_info, if we have a local symbol; -1 otherwise. */ long symndx; union { /* If abfd == NULL, an address that must be stored in the got. */ bfd_vma address; /* If abfd != NULL && symndx != -1, the addend of the relocation that should be added to the symbol value. */ bfd_vma addend; /* If abfd != NULL && symndx == -1, the hash table entry corresponding to a symbol in the GOT. The symbol's entry is in the local area if h->global_got_area is GGA_NONE, otherwise it is in the global area. */ struct mips_elf_link_hash_entry *h; } d; /* The TLS type of this GOT entry. An LDM GOT entry will be a local symbol entry with r_symndx == 0. */ unsigned char tls_type; /* True if we have filled in the GOT contents for a TLS entry, and created the associated relocations. */ unsigned char tls_initialized; /* The offset from the beginning of the .got section to the entry corresponding to this symbol+addend. If it's a global symbol whose offset is yet to be decided, it's going to be -1. */ long gotidx; }; /* This structure represents a GOT page reference from an input bfd. Each instance represents a symbol + ADDEND, where the representation of the symbol depends on whether it is local to the input bfd. If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD. Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry. Page references with SYMNDX >= 0 always become page references in the output. Page references with SYMNDX < 0 only become page references if the symbol binds locally; in other cases, the page reference decays to a global GOT reference. */ struct mips_got_page_ref { long symndx; union { struct mips_elf_link_hash_entry *h; bfd *abfd; } u; bfd_vma addend; }; /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND]. The structures form a non-overlapping list that is sorted by increasing MIN_ADDEND. */ struct mips_got_page_range { struct mips_got_page_range *next; bfd_signed_vma min_addend; bfd_signed_vma max_addend; }; /* This structure describes the range of addends that are applied to page relocations against a given section. */ struct mips_got_page_entry { /* The section that these entries are based on. */ asection *sec; /* The ranges for this page entry. */ struct mips_got_page_range *ranges; /* The maximum number of page entries needed for RANGES. */ bfd_vma num_pages; }; /* This structure is used to hold .got information when linking. */ struct mips_got_info { /* The number of global .got entries. */ unsigned int global_gotno; /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */ unsigned int reloc_only_gotno; /* The number of .got slots used for TLS. */ unsigned int tls_gotno; /* The first unused TLS .got entry. Used only during mips_elf_initialize_tls_index. */ unsigned int tls_assigned_gotno; /* The number of local .got entries, eventually including page entries. */ unsigned int local_gotno; /* The maximum number of page entries needed. */ unsigned int page_gotno; /* The number of relocations needed for the GOT entries. */ unsigned int relocs; /* The number of local .got entries we have used. */ unsigned int assigned_gotno; /* A hash table holding members of the got. */ struct htab *got_entries; /* A hash table holding mips_got_page_ref structures. */ struct htab *got_page_refs; /* A hash table of mips_got_page_entry structures. */ struct htab *got_page_entries; /* In multi-got links, a pointer to the next got (err, rather, most of the time, it points to the previous got). */ struct mips_got_info *next; }; /* Structure passed when merging bfds' gots. */ struct mips_elf_got_per_bfd_arg { /* The output bfd. */ bfd *obfd; /* The link information. */ struct bfd_link_info *info; /* A pointer to the primary got, i.e., the one that's going to get the implicit relocations from DT_MIPS_LOCAL_GOTNO and DT_MIPS_GOTSYM. */ struct mips_got_info *primary; /* A non-primary got we're trying to merge with other input bfd's gots. */ struct mips_got_info *current; /* The maximum number of got entries that can be addressed with a 16-bit offset. */ unsigned int max_count; /* The maximum number of page entries needed by each got. */ unsigned int max_pages; /* The total number of global entries which will live in the primary got and be automatically relocated. This includes those not referenced by the primary GOT but included in the "master" GOT. */ unsigned int global_count; }; /* A structure used to pass information to htab_traverse callbacks when laying out the GOT. */ struct mips_elf_traverse_got_arg { struct bfd_link_info *info; struct mips_got_info *g; int value; }; struct _mips_elf_section_data { struct bfd_elf_section_data elf; union { bfd_byte *tdata; } u; }; #define mips_elf_section_data(sec) \ ((struct _mips_elf_section_data *) elf_section_data (sec)) #define is_mips_elf(bfd) \ (bfd_get_flavour (bfd) == bfd_target_elf_flavour \ && elf_tdata (bfd) != NULL \ && elf_object_id (bfd) == MIPS_ELF_DATA) /* The ABI says that every symbol used by dynamic relocations must have a global GOT entry. Among other things, this provides the dynamic linker with a free, directly-indexed cache. The GOT can therefore contain symbols that are not referenced by GOT relocations themselves (in other words, it may have symbols that are not referenced by things like R_MIPS_GOT16 and R_MIPS_GOT_PAGE). GOT relocations are less likely to overflow if we put the associated GOT entries towards the beginning. We therefore divide the global GOT entries into two areas: "normal" and "reloc-only". Entries in the first area can be used for both dynamic relocations and GP-relative accesses, while those in the "reloc-only" area are for dynamic relocations only. These GGA_* ("Global GOT Area") values are organised so that lower values are more general than higher values. Also, non-GGA_NONE values are ordered by the position of the area in the GOT. */ #define GGA_NORMAL 0 #define GGA_RELOC_ONLY 1 #define GGA_NONE 2 /* Information about a non-PIC interface to a PIC function. There are two ways of creating these interfaces. The first is to add: lui $25,%hi(func) addiu $25,$25,%lo(func) immediately before a PIC function "func". The second is to add: lui $25,%hi(func) j func addiu $25,$25,%lo(func) to a separate trampoline section. Stubs of the first kind go in a new section immediately before the target function. Stubs of the second kind go in a single section pointed to by the hash table's "strampoline" field. */ struct mips_elf_la25_stub { /* The generated section that contains this stub. */ asection *stub_section; /* The offset of the stub from the start of STUB_SECTION. */ bfd_vma offset; /* One symbol for the original function. Its location is available in H->root.root.u.def. */ struct mips_elf_link_hash_entry *h; }; /* Macros for populating a mips_elf_la25_stub. */ #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */ #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */ #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */ #define LA25_LUI_MICROMIPS(VAL) \ (0x41b90000 | (VAL)) /* lui t9,VAL */ #define LA25_J_MICROMIPS(VAL) \ (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */ #define LA25_ADDIU_MICROMIPS(VAL) \ (0x33390000 | (VAL)) /* addiu t9,t9,VAL */ /* This structure is passed to mips_elf_sort_hash_table_f when sorting the dynamic symbols. */ struct mips_elf_hash_sort_data { /* The symbol in the global GOT with the lowest dynamic symbol table index. */ struct elf_link_hash_entry *low; /* The least dynamic symbol table index corresponding to a non-TLS symbol with a GOT entry. */ long min_got_dynindx; /* The greatest dynamic symbol table index corresponding to a symbol with a GOT entry that is not referenced (e.g., a dynamic symbol with dynamic relocations pointing to it from non-primary GOTs). */ long max_unref_got_dynindx; /* The greatest dynamic symbol table index not corresponding to a symbol without a GOT entry. */ long max_non_got_dynindx; }; /* We make up to two PLT entries if needed, one for standard MIPS code and one for compressed code, either a MIPS16 or microMIPS one. We keep a separate record of traditional lazy-binding stubs, for easier processing. */ struct plt_entry { /* Traditional SVR4 stub offset, or -1 if none. */ bfd_vma stub_offset; /* Standard PLT entry offset, or -1 if none. */ bfd_vma mips_offset; /* Compressed PLT entry offset, or -1 if none. */ bfd_vma comp_offset; /* The corresponding .got.plt index, or -1 if none. */ bfd_vma gotplt_index; /* Whether we need a standard PLT entry. */ unsigned int need_mips : 1; /* Whether we need a compressed PLT entry. */ unsigned int need_comp : 1; }; /* The MIPS ELF linker needs additional information for each symbol in the global hash table. */ struct mips_elf_link_hash_entry { struct elf_link_hash_entry root; /* External symbol information. */ EXTR esym; /* The la25 stub we have created for ths symbol, if any. */ struct mips_elf_la25_stub *la25_stub; /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against this symbol. */ unsigned int possibly_dynamic_relocs; /* If there is a stub that 32 bit functions should use to call this 16 bit function, this points to the section containing the stub. */ asection *fn_stub; /* If there is a stub that 16 bit functions should use to call this 32 bit function, this points to the section containing the stub. */ asection *call_stub; /* This is like the call_stub field, but it is used if the function being called returns a floating point value. */ asection *call_fp_stub; /* The highest GGA_* value that satisfies all references to this symbol. */ unsigned int global_got_area : 2; /* True if all GOT relocations against this symbol are for calls. This is a looser condition than no_fn_stub below, because there may be other non-call non-GOT relocations against the symbol. */ unsigned int got_only_for_calls : 1; /* True if one of the relocations described by possibly_dynamic_relocs is against a readonly section. */ unsigned int readonly_reloc : 1; /* True if there is a relocation against this symbol that must be resolved by the static linker (in other words, if the relocation cannot possibly be made dynamic). */ unsigned int has_static_relocs : 1; /* True if we must not create a .MIPS.stubs entry for this symbol. This is set, for example, if there are relocations related to taking the function's address, i.e. any but R_MIPS_CALL*16 ones. See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */ unsigned int no_fn_stub : 1; /* Whether we need the fn_stub; this is true if this symbol appears in any relocs other than a 16 bit call. */ unsigned int need_fn_stub : 1; /* True if this symbol is referenced by branch relocations from any non-PIC input file. This is used to determine whether an la25 stub is required. */ unsigned int has_nonpic_branches : 1; /* Does this symbol need a traditional MIPS lazy-binding stub (as opposed to a PLT entry)? */ unsigned int needs_lazy_stub : 1; /* Does this symbol resolve to a PLT entry? */ unsigned int use_plt_entry : 1; }; /* MIPS ELF linker hash table. */ struct mips_elf_link_hash_table { struct elf_link_hash_table root; /* The number of .rtproc entries. */ bfd_size_type procedure_count; /* The size of the .compact_rel section (if SGI_COMPAT). */ bfd_size_type compact_rel_size; /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */ bfd_boolean use_rld_obj_head; /* The __rld_map or __rld_obj_head symbol. */ struct elf_link_hash_entry *rld_symbol; /* This is set if we see any mips16 stub sections. */ bfd_boolean mips16_stubs_seen; /* True if we can generate copy relocs and PLTs. */ bfd_boolean use_plts_and_copy_relocs; /* True if we can only use 32-bit microMIPS instructions. */ bfd_boolean insn32; /* True if we're generating code for VxWorks. */ bfd_boolean is_vxworks; /* True if we already reported the small-data section overflow. */ bfd_boolean small_data_overflow_reported; /* Shortcuts to some dynamic sections, or NULL if they are not being used. */ asection *srelbss; asection *sdynbss; asection *srelplt; asection *srelplt2; asection *sgotplt; asection *splt; asection *sstubs; asection *sgot; /* The master GOT information. */ struct mips_got_info *got_info; /* The global symbol in the GOT with the lowest index in the dynamic symbol table. */ struct elf_link_hash_entry *global_gotsym; /* The size of the PLT header in bytes. */ bfd_vma plt_header_size; /* The size of a standard PLT entry in bytes. */ bfd_vma plt_mips_entry_size; /* The size of a compressed PLT entry in bytes. */ bfd_vma plt_comp_entry_size; /* The offset of the next standard PLT entry to create. */ bfd_vma plt_mips_offset; /* The offset of the next compressed PLT entry to create. */ bfd_vma plt_comp_offset; /* The index of the next .got.plt entry to create. */ bfd_vma plt_got_index; /* The number of functions that need a lazy-binding stub. */ bfd_vma lazy_stub_count; /* The size of a function stub entry in bytes. */ bfd_vma function_stub_size; /* The number of reserved entries at the beginning of the GOT. */ unsigned int reserved_gotno; /* The section used for mips_elf_la25_stub trampolines. See the comment above that structure for details. */ asection *strampoline; /* A table of mips_elf_la25_stubs, indexed by (input_section, offset) pairs. */ htab_t la25_stubs; /* A function FN (NAME, IS, OS) that creates a new input section called NAME and links it to output section OS. If IS is nonnull, the new section should go immediately before it, otherwise it should go at the (current) beginning of OS. The function returns the new section on success, otherwise it returns null. */ asection *(*add_stub_section) (const char *, asection *, asection *); /* Small local sym cache. */ struct sym_cache sym_cache; /* Is the PLT header compressed? */ unsigned int plt_header_is_comp : 1; }; /* Get the MIPS ELF linker hash table from a link_info structure. */ #define mips_elf_hash_table(p) \ (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \ == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL) /* A structure used to communicate with htab_traverse callbacks. */ struct mips_htab_traverse_info { /* The usual link-wide information. */ struct bfd_link_info *info; bfd *output_bfd; /* Starts off FALSE and is set to TRUE if the link should be aborted. */ bfd_boolean error; }; /* MIPS ELF private object data. */ struct mips_elf_obj_tdata { /* Generic ELF private object data. */ struct elf_obj_tdata root; /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */ bfd *abi_fp_bfd; /* The GOT requirements of input bfds. */ struct mips_got_info *got; /* Used by _bfd_mips_elf_find_nearest_line. The structure could be included directly in this one, but there's no point to wasting the memory just for the infrequently called find_nearest_line. */ struct mips_elf_find_line *find_line_info; /* An array of stub sections indexed by symbol number. */ asection **local_stubs; asection **local_call_stubs; /* The Irix 5 support uses two virtual sections, which represent text/data symbols defined in dynamic objects. */ asymbol *elf_data_symbol; asymbol *elf_text_symbol; asection *elf_data_section; asection *elf_text_section; }; /* Get MIPS ELF private object data from BFD's tdata. */ #define mips_elf_tdata(bfd) \ ((struct mips_elf_obj_tdata *) (bfd)->tdata.any) #define TLS_RELOC_P(r_type) \ (r_type == R_MIPS_TLS_DTPMOD32 \ || r_type == R_MIPS_TLS_DTPMOD64 \ || r_type == R_MIPS_TLS_DTPREL32 \ || r_type == R_MIPS_TLS_DTPREL64 \ || r_type == R_MIPS_TLS_GD \ || r_type == R_MIPS_TLS_LDM \ || r_type == R_MIPS_TLS_DTPREL_HI16 \ || r_type == R_MIPS_TLS_DTPREL_LO16 \ || r_type == R_MIPS_TLS_GOTTPREL \ || r_type == R_MIPS_TLS_TPREL32 \ || r_type == R_MIPS_TLS_TPREL64 \ || r_type == R_MIPS_TLS_TPREL_HI16 \ || r_type == R_MIPS_TLS_TPREL_LO16 \ || r_type == R_MIPS16_TLS_GD \ || r_type == R_MIPS16_TLS_LDM \ || r_type == R_MIPS16_TLS_DTPREL_HI16 \ || r_type == R_MIPS16_TLS_DTPREL_LO16 \ || r_type == R_MIPS16_TLS_GOTTPREL \ || r_type == R_MIPS16_TLS_TPREL_HI16 \ || r_type == R_MIPS16_TLS_TPREL_LO16 \ || r_type == R_MICROMIPS_TLS_GD \ || r_type == R_MICROMIPS_TLS_LDM \ || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \ || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \ || r_type == R_MICROMIPS_TLS_GOTTPREL \ || r_type == R_MICROMIPS_TLS_TPREL_HI16 \ || r_type == R_MICROMIPS_TLS_TPREL_LO16) /* Structure used to pass information to mips_elf_output_extsym. */ struct extsym_info { bfd *abfd; struct bfd_link_info *info; struct ecoff_debug_info *debug; const struct ecoff_debug_swap *swap; bfd_boolean failed; }; /* The names of the runtime procedure table symbols used on IRIX5. */ static const char * const mips_elf_dynsym_rtproc_names[] = { "_procedure_table", "_procedure_string_table", "_procedure_table_size", NULL }; /* These structures are used to generate the .compact_rel section on IRIX5. */ typedef struct { unsigned long id1; /* Always one? */ unsigned long num; /* Number of compact relocation entries. */ unsigned long id2; /* Always two? */ unsigned long offset; /* The file offset of the first relocation. */ unsigned long reserved0; /* Zero? */ unsigned long reserved1; /* Zero? */ } Elf32_compact_rel; typedef struct { bfd_byte id1[4]; bfd_byte num[4]; bfd_byte id2[4]; bfd_byte offset[4]; bfd_byte reserved0[4]; bfd_byte reserved1[4]; } Elf32_External_compact_rel; typedef struct { unsigned int ctype : 1; /* 1: long 0: short format. See below. */ unsigned int rtype : 4; /* Relocation types. See below. */ unsigned int dist2to : 8; unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ unsigned long konst; /* KONST field. See below. */ unsigned long vaddr; /* VADDR to be relocated. */ } Elf32_crinfo; typedef struct { unsigned int ctype : 1; /* 1: long 0: short format. See below. */ unsigned int rtype : 4; /* Relocation types. See below. */ unsigned int dist2to : 8; unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ unsigned long konst; /* KONST field. See below. */ } Elf32_crinfo2; typedef struct { bfd_byte info[4]; bfd_byte konst[4]; bfd_byte vaddr[4]; } Elf32_External_crinfo; typedef struct { bfd_byte info[4]; bfd_byte konst[4]; } Elf32_External_crinfo2; /* These are the constants used to swap the bitfields in a crinfo. */ #define CRINFO_CTYPE (0x1) #define CRINFO_CTYPE_SH (31) #define CRINFO_RTYPE (0xf) #define CRINFO_RTYPE_SH (27) #define CRINFO_DIST2TO (0xff) #define CRINFO_DIST2TO_SH (19) #define CRINFO_RELVADDR (0x7ffff) #define CRINFO_RELVADDR_SH (0) /* A compact relocation info has long (3 words) or short (2 words) formats. A short format doesn't have VADDR field and relvaddr fields contains ((VADDR - vaddr of the previous entry) >> 2). */ #define CRF_MIPS_LONG 1 #define CRF_MIPS_SHORT 0 /* There are 4 types of compact relocation at least. The value KONST has different meaning for each type: (type) (konst) CT_MIPS_REL32 Address in data CT_MIPS_WORD Address in word (XXX) CT_MIPS_GPHI_LO GP - vaddr CT_MIPS_JMPAD Address to jump */ #define CRT_MIPS_REL32 0xa #define CRT_MIPS_WORD 0xb #define CRT_MIPS_GPHI_LO 0xc #define CRT_MIPS_JMPAD 0xd #define mips_elf_set_cr_format(x,format) ((x).ctype = (format)) #define mips_elf_set_cr_type(x,type) ((x).rtype = (type)) #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v)) #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2) /* The structure of the runtime procedure descriptor created by the loader for use by the static exception system. */ typedef struct runtime_pdr { bfd_vma adr; /* Memory address of start of procedure. */ long regmask; /* Save register mask. */ long regoffset; /* Save register offset. */ long fregmask; /* Save floating point register mask. */ long fregoffset; /* Save floating point register offset. */ long frameoffset; /* Frame size. */ short framereg; /* Frame pointer register. */ short pcreg; /* Offset or reg of return pc. */ long irpss; /* Index into the runtime string table. */ long reserved; struct exception_info *exception_info;/* Pointer to exception array. */ } RPDR, *pRPDR; #define cbRPDR sizeof (RPDR) #define rpdNil ((pRPDR) 0) static struct mips_got_entry *mips_elf_create_local_got_entry (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long, struct mips_elf_link_hash_entry *, int); static bfd_boolean mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *, void *); static bfd_vma mips_elf_high (bfd_vma); static bfd_boolean mips_elf_create_dynamic_relocation (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *, struct mips_elf_link_hash_entry *, asection *, bfd_vma, bfd_vma *, asection *); static bfd_vma mips_elf_adjust_gp (bfd *, struct mips_got_info *, bfd *); /* This will be used when we sort the dynamic relocation records. */ static bfd *reldyn_sorting_bfd; /* True if ABFD is for CPUs with load interlocking that include non-MIPS1 CPUs and R3900. */ #define LOAD_INTERLOCKS_P(abfd) \ ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \ || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900)) /* True if ABFD is for CPUs that are faster if JAL is converted to BAL. This should be safe for all architectures. We enable this predicate for RM9000 for now. */ #define JAL_TO_BAL_P(abfd) \ ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000) /* True if ABFD is for CPUs that are faster if JALR is converted to BAL. This should be safe for all architectures. We enable this predicate for all CPUs. */ #define JALR_TO_BAL_P(abfd) 1 /* True if ABFD is for CPUs that are faster if JR is converted to B. This should be safe for all architectures. We enable this predicate for all CPUs. */ #define JR_TO_B_P(abfd) 1 /* True if ABFD is a PIC object. */ #define PIC_OBJECT_P(abfd) \ ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0) /* Nonzero if ABFD is using the N32 ABI. */ #define ABI_N32_P(abfd) \ ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0) /* Nonzero if ABFD is using the N64 ABI. */ #define ABI_64_P(abfd) \ (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64) /* Nonzero if ABFD is using NewABI conventions. */ #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd)) /* Nonzero if ABFD has microMIPS code. */ #define MICROMIPS_P(abfd) \ ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0) /* The IRIX compatibility level we are striving for. */ #define IRIX_COMPAT(abfd) \ (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd)) /* Whether we are trying to be compatible with IRIX at all. */ #define SGI_COMPAT(abfd) \ (IRIX_COMPAT (abfd) != ict_none) /* The name of the options section. */ #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \ (NEWABI_P (abfd) ? ".MIPS.options" : ".options") /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section. Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */ #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \ (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0) /* Whether the section is readonly. */ #define MIPS_ELF_READONLY_SECTION(sec) \ ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \ == (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) /* The name of the stub section. */ #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs" /* The size of an external REL relocation. */ #define MIPS_ELF_REL_SIZE(abfd) \ (get_elf_backend_data (abfd)->s->sizeof_rel) /* The size of an external RELA relocation. */ #define MIPS_ELF_RELA_SIZE(abfd) \ (get_elf_backend_data (abfd)->s->sizeof_rela) /* The size of an external dynamic table entry. */ #define MIPS_ELF_DYN_SIZE(abfd) \ (get_elf_backend_data (abfd)->s->sizeof_dyn) /* The size of a GOT entry. */ #define MIPS_ELF_GOT_SIZE(abfd) \ (get_elf_backend_data (abfd)->s->arch_size / 8) /* The size of the .rld_map section. */ #define MIPS_ELF_RLD_MAP_SIZE(abfd) \ (get_elf_backend_data (abfd)->s->arch_size / 8) /* The size of a symbol-table entry. */ #define MIPS_ELF_SYM_SIZE(abfd) \ (get_elf_backend_data (abfd)->s->sizeof_sym) /* The default alignment for sections, as a power of two. */ #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \ (get_elf_backend_data (abfd)->s->log_file_align) /* Get word-sized data. */ #define MIPS_ELF_GET_WORD(abfd, ptr) \ (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr)) /* Put out word-sized data. */ #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \ (ABI_64_P (abfd) \ ? bfd_put_64 (abfd, val, ptr) \ : bfd_put_32 (abfd, val, ptr)) /* The opcode for word-sized loads (LW or LD). */ #define MIPS_ELF_LOAD_WORD(abfd) \ (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000) /* Add a dynamic symbol table-entry. */ #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \ _bfd_elf_add_dynamic_entry (info, tag, val) #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \ (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela)) /* The name of the dynamic relocation section. */ #define MIPS_ELF_REL_DYN_NAME(INFO) \ (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn") /* In case we're on a 32-bit machine, construct a 64-bit "-1" value from smaller values. Start with zero, widen, *then* decrement. */ #define MINUS_ONE (((bfd_vma)0) - 1) #define MINUS_TWO (((bfd_vma)0) - 2) /* The value to write into got[1] for SVR4 targets, to identify it is a GNU object. The dynamic linker can then use got[1] to store the module pointer. */ #define MIPS_ELF_GNU_GOT1_MASK(abfd) \ ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31)) /* The offset of $gp from the beginning of the .got section. */ #define ELF_MIPS_GP_OFFSET(INFO) \ (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0) /* The maximum size of the GOT for it to be addressable using 16-bit offsets from $gp. */ #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff) /* Instructions which appear in a stub. */ #define STUB_LW(abfd) \ ((ABI_64_P (abfd) \ ? 0xdf998010 /* ld t9,0x8010(gp) */ \ : 0x8f998010)) /* lw t9,0x8010(gp) */ #define STUB_MOVE(abfd) \ ((ABI_64_P (abfd) \ ? 0x03e0782d /* daddu t7,ra */ \ : 0x03e07821)) /* addu t7,ra */ #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */ #define STUB_JALR 0x0320f809 /* jalr t9,ra */ #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */ #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */ #define STUB_LI16S(abfd, VAL) \ ((ABI_64_P (abfd) \ ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \ : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */ /* Likewise for the microMIPS ASE. */ #define STUB_LW_MICROMIPS(abfd) \ (ABI_64_P (abfd) \ ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \ : 0xff3c8010) /* lw t9,0x8010(gp) */ #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */ #define STUB_MOVE32_MICROMIPS(abfd) \ (ABI_64_P (abfd) \ ? 0x581f7950 /* daddu t7,ra,zero */ \ : 0x001f7950) /* addu t7,ra,zero */ #define STUB_LUI_MICROMIPS(VAL) \ (0x41b80000 + (VAL)) /* lui t8,VAL */ #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */ #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */ #define STUB_ORI_MICROMIPS(VAL) \ (0x53180000 + (VAL)) /* ori t8,t8,VAL */ #define STUB_LI16U_MICROMIPS(VAL) \ (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */ #define STUB_LI16S_MICROMIPS(abfd, VAL) \ (ABI_64_P (abfd) \ ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \ : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */ #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16 #define MIPS_FUNCTION_STUB_BIG_SIZE 20 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20 /* The name of the dynamic interpreter. This is put in the .interp section. */ #define ELF_DYNAMIC_INTERPRETER(abfd) \ (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \ : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \ : "/usr/lib/libc.so.1") #ifdef BFD64 #define MNAME(bfd,pre,pos) \ (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos)) #define ELF_R_SYM(bfd, i) \ (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i)) #define ELF_R_TYPE(bfd, i) \ (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i)) #define ELF_R_INFO(bfd, s, t) \ (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t)) #else #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos) #define ELF_R_SYM(bfd, i) \ (ELF32_R_SYM (i)) #define ELF_R_TYPE(bfd, i) \ (ELF32_R_TYPE (i)) #define ELF_R_INFO(bfd, s, t) \ (ELF32_R_INFO (s, t)) #endif /* The mips16 compiler uses a couple of special sections to handle floating point arguments. Section names that look like .mips16.fn.FNNAME contain stubs that copy floating point arguments from the fp regs to the gp regs and then jump to FNNAME. If any 32 bit function calls FNNAME, the call should be redirected to the stub instead. If no 32 bit function calls FNNAME, the stub should be discarded. We need to consider any reference to the function, not just a call, because if the address of the function is taken we will need the stub, since the address might be passed to a 32 bit function. Section names that look like .mips16.call.FNNAME contain stubs that copy floating point arguments from the gp regs to the fp regs and then jump to FNNAME. If FNNAME is a 32 bit function, then any 16 bit function that calls FNNAME should be redirected to the stub instead. If FNNAME is not a 32 bit function, the stub should be discarded. .mips16.call.fp.FNNAME sections are similar, but contain stubs which call FNNAME and then copy the return value from the fp regs to the gp regs. These stubs store the return value in $18 while calling FNNAME; any function which might call one of these stubs must arrange to save $18 around the call. (This case is not needed for 32 bit functions that call 16 bit functions, because 16 bit functions always return floating point values in both $f0/$f1 and $2/$3.) Note that in all cases FNNAME might be defined statically. Therefore, FNNAME is not used literally. Instead, the relocation information will indicate which symbol the section is for. We record any stubs that we find in the symbol table. */ #define FN_STUB ".mips16.fn." #define CALL_STUB ".mips16.call." #define CALL_FP_STUB ".mips16.call.fp." #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB) #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB) #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB) /* The format of the first PLT entry in an O32 executable. */ static const bfd_vma mips_o32_exec_plt0_entry[] = { 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */ 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */ 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */ 0x031cc023, /* subu $24, $24, $28 */ 0x03e07821, /* move $15, $31 # 32-bit move (addu) */ 0x0018c082, /* srl $24, $24, 2 */ 0x0320f809, /* jalr $25 */ 0x2718fffe /* subu $24, $24, 2 */ }; /* The format of the first PLT entry in an N32 executable. Different because gp ($28) is not available; we use t2 ($14) instead. */ static const bfd_vma mips_n32_exec_plt0_entry[] = { 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */ 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */ 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */ 0x030ec023, /* subu $24, $24, $14 */ 0x03e07821, /* move $15, $31 # 32-bit move (addu) */ 0x0018c082, /* srl $24, $24, 2 */ 0x0320f809, /* jalr $25 */ 0x2718fffe /* subu $24, $24, 2 */ }; /* The format of the first PLT entry in an N64 executable. Different from N32 because of the increased size of GOT entries. */ static const bfd_vma mips_n64_exec_plt0_entry[] = { 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */ 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */ 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */ 0x030ec023, /* subu $24, $24, $14 */ 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */ 0x0018c0c2, /* srl $24, $24, 3 */ 0x0320f809, /* jalr $25 */ 0x2718fffe /* subu $24, $24, 2 */ }; /* The format of the microMIPS first PLT entry in an O32 executable. We rely on v0 ($2) rather than t8 ($24) to contain the address of the GOTPLT entry handled, so this stub may only be used when all the subsequent PLT entries are microMIPS code too. The trailing NOP is for alignment and correct disassembly only. */ static const bfd_vma micromips_o32_exec_plt0_entry[] = { 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */ 0xff23, 0x0000, /* lw $25, 0($3) */ 0x0535, /* subu $2, $2, $3 */ 0x2525, /* srl $2, $2, 2 */ 0x3302, 0xfffe, /* subu $24, $2, 2 */ 0x0dff, /* move $15, $31 */ 0x45f9, /* jalrs $25 */ 0x0f83, /* move $28, $3 */ 0x0c00 /* nop */ }; /* The format of the microMIPS first PLT entry in an O32 executable in the insn32 mode. */ static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] = { 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */ 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */ 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */ 0x0398, 0xc1d0, /* subu $24, $24, $28 */ 0x001f, 0x7950, /* move $15, $31 */ 0x0318, 0x1040, /* srl $24, $24, 2 */ 0x03f9, 0x0f3c, /* jalr $25 */ 0x3318, 0xfffe /* subu $24, $24, 2 */ }; /* The format of subsequent standard PLT entries. */ static const bfd_vma mips_exec_plt_entry[] = { 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */ 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */ 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */ 0x03200008 /* jr $25 */ }; /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2) and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not directly addressable. */ static const bfd_vma mips16_o32_exec_plt_entry[] = { 0xb203, /* lw $2, 12($pc) */ 0x9a60, /* lw $3, 0($2) */ 0x651a, /* move $24, $2 */ 0xeb00, /* jr $3 */ 0x653b, /* move $25, $3 */ 0x6500, /* nop */ 0x0000, 0x0000 /* .word (.got.plt entry) */ }; /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2) as a temporary because t8 ($24) is not addressable with ADDIUPC. */ static const bfd_vma micromips_o32_exec_plt_entry[] = { 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */ 0xff22, 0x0000, /* lw $25, 0($2) */ 0x4599, /* jr $25 */ 0x0f02 /* move $24, $2 */ }; /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */ static const bfd_vma micromips_insn32_o32_exec_plt_entry[] = { 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */ 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */ 0x0019, 0x0f3c, /* jr $25 */ 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */ }; /* The format of the first PLT entry in a VxWorks executable. */ static const bfd_vma mips_vxworks_exec_plt0_entry[] = { 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */ 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */ 0x8f390008, /* lw t9, 8(t9) */ 0x00000000, /* nop */ 0x03200008, /* jr t9 */ 0x00000000 /* nop */ }; /* The format of subsequent PLT entries. */ static const bfd_vma mips_vxworks_exec_plt_entry[] = { 0x10000000, /* b .PLT_resolver */ 0x24180000, /* li t8, */ 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */ 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */ 0x8f390000, /* lw t9, 0(t9) */ 0x00000000, /* nop */ 0x03200008, /* jr t9 */ 0x00000000 /* nop */ }; /* The format of the first PLT entry in a VxWorks shared object. */ static const bfd_vma mips_vxworks_shared_plt0_entry[] = { 0x8f990008, /* lw t9, 8(gp) */ 0x00000000, /* nop */ 0x03200008, /* jr t9 */ 0x00000000, /* nop */ 0x00000000, /* nop */ 0x00000000 /* nop */ }; /* The format of subsequent PLT entries. */ static const bfd_vma mips_vxworks_shared_plt_entry[] = { 0x10000000, /* b .PLT_resolver */ 0x24180000 /* li t8, */ }; /* microMIPS 32-bit opcode helper installer. */ static void bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr) { bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr); bfd_put_16 (abfd, opcode & 0xffff, ptr + 2); } /* microMIPS 32-bit opcode helper retriever. */ static bfd_vma bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr) { return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2); } /* Look up an entry in a MIPS ELF linker hash table. */ #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \ ((struct mips_elf_link_hash_entry *) \ elf_link_hash_lookup (&(table)->root, (string), (create), \ (copy), (follow))) /* Traverse a MIPS ELF linker hash table. */ #define mips_elf_link_hash_traverse(table, func, info) \ (elf_link_hash_traverse \ (&(table)->root, \ (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \ (info))) /* Find the base offsets for thread-local storage in this object, for GD/LD and IE/LE respectively. */ #define TP_OFFSET 0x7000 #define DTP_OFFSET 0x8000 static bfd_vma dtprel_base (struct bfd_link_info *info) { /* If tls_sec is NULL, we should have signalled an error already. */ if (elf_hash_table (info)->tls_sec == NULL) return 0; return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET; } static bfd_vma tprel_base (struct bfd_link_info *info) { /* If tls_sec is NULL, we should have signalled an error already. */ if (elf_hash_table (info)->tls_sec == NULL) return 0; return elf_hash_table (info)->tls_sec->vma + TP_OFFSET; } /* Create an entry in a MIPS ELF linker hash table. */ static struct bfd_hash_entry * mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table, const char *string) { struct mips_elf_link_hash_entry *ret = (struct mips_elf_link_hash_entry *) entry; /* Allocate the structure if it has not already been allocated by a subclass. */ if (ret == NULL) ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry)); if (ret == NULL) return (struct bfd_hash_entry *) ret; /* Call the allocation method of the superclass. */ ret = ((struct mips_elf_link_hash_entry *) _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret, table, string)); if (ret != NULL) { /* Set local fields. */ memset (&ret->esym, 0, sizeof (EXTR)); /* We use -2 as a marker to indicate that the information has not been set. -1 means there is no associated ifd. */ ret->esym.ifd = -2; ret->la25_stub = 0; ret->possibly_dynamic_relocs = 0; ret->fn_stub = NULL; ret->call_stub = NULL; ret->call_fp_stub = NULL; ret->global_got_area = GGA_NONE; ret->got_only_for_calls = TRUE; ret->readonly_reloc = FALSE; ret->has_static_relocs = FALSE; ret->no_fn_stub = FALSE; ret->need_fn_stub = FALSE; ret->has_nonpic_branches = FALSE; ret->needs_lazy_stub = FALSE; ret->use_plt_entry = FALSE; } return (struct bfd_hash_entry *) ret; } /* Allocate MIPS ELF private object data. */ bfd_boolean _bfd_mips_elf_mkobject (bfd *abfd) { return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata), MIPS_ELF_DATA); } bfd_boolean _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec) { if (!sec->used_by_bfd) { struct _mips_elf_section_data *sdata; bfd_size_type amt = sizeof (*sdata); sdata = bfd_zalloc (abfd, amt); if (sdata == NULL) return FALSE; sec->used_by_bfd = sdata; } return _bfd_elf_new_section_hook (abfd, sec); } /* Read ECOFF debugging information from a .mdebug section into a ecoff_debug_info structure. */ bfd_boolean _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section, struct ecoff_debug_info *debug) { HDRR *symhdr; const struct ecoff_debug_swap *swap; char *ext_hdr; swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; memset (debug, 0, sizeof (*debug)); ext_hdr = bfd_malloc (swap->external_hdr_size); if (ext_hdr == NULL && swap->external_hdr_size != 0) goto error_return; if (! bfd_get_section_contents (abfd, section, ext_hdr, 0, swap->external_hdr_size)) goto error_return; symhdr = &debug->symbolic_header; (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr); /* The symbolic header contains absolute file offsets and sizes to read. */ #define READ(ptr, offset, count, size, type) \ if (symhdr->count == 0) \ debug->ptr = NULL; \ else \ { \ bfd_size_type amt = (bfd_size_type) size * symhdr->count; \ debug->ptr = bfd_malloc (amt); \ if (debug->ptr == NULL) \ goto error_return; \ if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \ || bfd_bread (debug->ptr, amt, abfd) != amt) \ goto error_return; \ } READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *); READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *); READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *); READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *); READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *); READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext), union aux_ext *); READ (ss, cbSsOffset, issMax, sizeof (char), char *); READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *); READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *); READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *); READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *); #undef READ debug->fdr = NULL; return TRUE; error_return: if (ext_hdr != NULL) free (ext_hdr); if (debug->line != NULL) free (debug->line); if (debug->external_dnr != NULL) free (debug->external_dnr); if (debug->external_pdr != NULL) free (debug->external_pdr); if (debug->external_sym != NULL) free (debug->external_sym); if (debug->external_opt != NULL) free (debug->external_opt); if (debug->external_aux != NULL) free (debug->external_aux); if (debug->ss != NULL) free (debug->ss); if (debug->ssext != NULL) free (debug->ssext); if (debug->external_fdr != NULL) free (debug->external_fdr); if (debug->external_rfd != NULL) free (debug->external_rfd); if (debug->external_ext != NULL) free (debug->external_ext); return FALSE; } /* Swap RPDR (runtime procedure table entry) for output. */ static void ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex) { H_PUT_S32 (abfd, in->adr, ex->p_adr); H_PUT_32 (abfd, in->regmask, ex->p_regmask); H_PUT_32 (abfd, in->regoffset, ex->p_regoffset); H_PUT_32 (abfd, in->fregmask, ex->p_fregmask); H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset); H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset); H_PUT_16 (abfd, in->framereg, ex->p_framereg); H_PUT_16 (abfd, in->pcreg, ex->p_pcreg); H_PUT_32 (abfd, in->irpss, ex->p_irpss); } /* Create a runtime procedure table from the .mdebug section. */ static bfd_boolean mips_elf_create_procedure_table (void *handle, bfd *abfd, struct bfd_link_info *info, asection *s, struct ecoff_debug_info *debug) { const struct ecoff_debug_swap *swap; HDRR *hdr = &debug->symbolic_header; RPDR *rpdr, *rp; struct rpdr_ext *erp; void *rtproc; struct pdr_ext *epdr; struct sym_ext *esym; char *ss, **sv; char *str; bfd_size_type size; bfd_size_type count; unsigned long sindex; unsigned long i; PDR pdr; SYMR sym; const char *no_name_func = _("static procedure (no name)"); epdr = NULL; rpdr = NULL; esym = NULL; ss = NULL; sv = NULL; swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; sindex = strlen (no_name_func) + 1; count = hdr->ipdMax; if (count > 0) { size = swap->external_pdr_size; epdr = bfd_malloc (size * count); if (epdr == NULL) goto error_return; if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr)) goto error_return; size = sizeof (RPDR); rp = rpdr = bfd_malloc (size * count); if (rpdr == NULL) goto error_return; size = sizeof (char *); sv = bfd_malloc (size * count); if (sv == NULL) goto error_return; count = hdr->isymMax; size = swap->external_sym_size; esym = bfd_malloc (size * count); if (esym == NULL) goto error_return; if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym)) goto error_return; count = hdr->issMax; ss = bfd_malloc (count); if (ss == NULL) goto error_return; if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss)) goto error_return; count = hdr->ipdMax; for (i = 0; i < (unsigned long) count; i++, rp++) { (*swap->swap_pdr_in) (abfd, epdr + i, &pdr); (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym); rp->adr = sym.value; rp->regmask = pdr.regmask; rp->regoffset = pdr.regoffset; rp->fregmask = pdr.fregmask; rp->fregoffset = pdr.fregoffset; rp->frameoffset = pdr.frameoffset; rp->framereg = pdr.framereg; rp->pcreg = pdr.pcreg; rp->irpss = sindex; sv[i] = ss + sym.iss; sindex += strlen (sv[i]) + 1; } } size = sizeof (struct rpdr_ext) * (count + 2) + sindex; size = BFD_ALIGN (size, 16); rtproc = bfd_alloc (abfd, size); if (rtproc == NULL) { mips_elf_hash_table (info)->procedure_count = 0; goto error_return; } mips_elf_hash_table (info)->procedure_count = count + 2; erp = rtproc; memset (erp, 0, sizeof (struct rpdr_ext)); erp++; str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2); strcpy (str, no_name_func); str += strlen (no_name_func) + 1; for (i = 0; i < count; i++) { ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i); strcpy (str, sv[i]); str += strlen (sv[i]) + 1; } H_PUT_S32 (abfd, -1, (erp + count)->p_adr); /* Set the size and contents of .rtproc section. */ s->size = size; s->contents = rtproc; /* Skip this section later on (I don't think this currently matters, but someday it might). */ s->map_head.link_order = NULL; if (epdr != NULL) free (epdr); if (rpdr != NULL) free (rpdr); if (esym != NULL) free (esym); if (ss != NULL) free (ss); if (sv != NULL) free (sv); return TRUE; error_return: if (epdr != NULL) free (epdr); if (rpdr != NULL) free (rpdr); if (esym != NULL) free (esym); if (ss != NULL) free (ss); if (sv != NULL) free (sv); return FALSE; } /* We're going to create a stub for H. Create a symbol for the stub's value and size, to help make the disassembly easier to read. */ static bfd_boolean mips_elf_create_stub_symbol (struct bfd_link_info *info, struct mips_elf_link_hash_entry *h, const char *prefix, asection *s, bfd_vma value, bfd_vma size) { struct bfd_link_hash_entry *bh; struct elf_link_hash_entry *elfh; const char *name; if (ELF_ST_IS_MICROMIPS (h->root.other)) value |= 1; /* Create a new symbol. */ name = ACONCAT ((prefix, h->root.root.root.string, NULL)); bh = NULL; if (!_bfd_generic_link_add_one_symbol (info, s->owner, name, BSF_LOCAL, s, value, NULL, TRUE, FALSE, &bh)) return FALSE; /* Make it a local function. */ elfh = (struct elf_link_hash_entry *) bh; elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC); elfh->size = size; elfh->forced_local = 1; return TRUE; } /* We're about to redefine H. Create a symbol to represent H's current value and size, to help make the disassembly easier to read. */ static bfd_boolean mips_elf_create_shadow_symbol (struct bfd_link_info *info, struct mips_elf_link_hash_entry *h, const char *prefix) { struct bfd_link_hash_entry *bh; struct elf_link_hash_entry *elfh; const char *name; asection *s; bfd_vma value; /* Read the symbol's value. */ BFD_ASSERT (h->root.root.type == bfd_link_hash_defined || h->root.root.type == bfd_link_hash_defweak); s = h->root.root.u.def.section; value = h->root.root.u.def.value; /* Create a new symbol. */ name = ACONCAT ((prefix, h->root.root.root.string, NULL)); bh = NULL; if (!_bfd_generic_link_add_one_symbol (info, s->owner, name, BSF_LOCAL, s, value, NULL, TRUE, FALSE, &bh)) return FALSE; /* Make it local and copy the other attributes from H. */ elfh = (struct elf_link_hash_entry *) bh; elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type)); elfh->other = h->root.other; elfh->size = h->root.size; elfh->forced_local = 1; return TRUE; } /* Return TRUE if relocations in SECTION can refer directly to a MIPS16 function rather than to a hard-float stub. */ static bfd_boolean section_allows_mips16_refs_p (asection *section) { const char *name; name = bfd_get_section_name (section->owner, section); return (FN_STUB_P (name) || CALL_STUB_P (name) || CALL_FP_STUB_P (name) || strcmp (name, ".pdr") == 0); } /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16 stub section of some kind. Return the R_SYMNDX of the target function, or 0 if we can't decide which function that is. */ static unsigned long mips16_stub_symndx (const struct elf_backend_data *bed, asection *sec ATTRIBUTE_UNUSED, const Elf_Internal_Rela *relocs, const Elf_Internal_Rela *relend) { int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel; const Elf_Internal_Rela *rel; /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent one in a compound relocation. */ for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel) if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE) return ELF_R_SYM (sec->owner, rel->r_info); /* Otherwise trust the first relocation, whatever its kind. This is the traditional behavior. */ if (relocs < relend) return ELF_R_SYM (sec->owner, relocs->r_info); return 0; } /* Check the mips16 stubs for a particular symbol, and see if we can discard them. */ static void mips_elf_check_mips16_stubs (struct bfd_link_info *info, struct mips_elf_link_hash_entry *h) { /* Dynamic symbols must use the standard call interface, in case other objects try to call them. */ if (h->fn_stub != NULL && h->root.dynindx != -1) { mips_elf_create_shadow_symbol (info, h, ".mips16."); h->need_fn_stub = TRUE; } if (h->fn_stub != NULL && ! h->need_fn_stub) { /* We don't need the fn_stub; the only references to this symbol are 16 bit calls. Clobber the size to 0 to prevent it from being included in the link. */ h->fn_stub->size = 0; h->fn_stub->flags &= ~SEC_RELOC; h->fn_stub->reloc_count = 0; h->fn_stub->flags |= SEC_EXCLUDE; } if (h->call_stub != NULL && ELF_ST_IS_MIPS16 (h->root.other)) { /* We don't need the call_stub; this is a 16 bit function, so calls from other 16 bit functions are OK. Clobber the size to 0 to prevent it from being included in the link. */ h->call_stub->size = 0; h->call_stub->flags &= ~SEC_RELOC; h->call_stub->reloc_count = 0; h->call_stub->flags |= SEC_EXCLUDE; } if (h->call_fp_stub != NULL && ELF_ST_IS_MIPS16 (h->root.other)) { /* We don't need the call_stub; this is a 16 bit function, so calls from other 16 bit functions are OK. Clobber the size to 0 to prevent it from being included in the link. */ h->call_fp_stub->size = 0; h->call_fp_stub->flags &= ~SEC_RELOC; h->call_fp_stub->reloc_count = 0; h->call_fp_stub->flags |= SEC_EXCLUDE; } } /* Hashtable callbacks for mips_elf_la25_stubs. */ static hashval_t mips_elf_la25_stub_hash (const void *entry_) { const struct mips_elf_la25_stub *entry; entry = (struct mips_elf_la25_stub *) entry_; return entry->h->root.root.u.def.section->id + entry->h->root.root.u.def.value; } static int mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_) { const struct mips_elf_la25_stub *entry1, *entry2; entry1 = (struct mips_elf_la25_stub *) entry1_; entry2 = (struct mips_elf_la25_stub *) entry2_; return ((entry1->h->root.root.u.def.section == entry2->h->root.root.u.def.section) && (entry1->h->root.root.u.def.value == entry2->h->root.root.u.def.value)); } /* Called by the linker to set up the la25 stub-creation code. FN is the linker's implementation of add_stub_function. Return true on success. */ bfd_boolean _bfd_mips_elf_init_stubs (struct bfd_link_info *info, asection *(*fn) (const char *, asection *, asection *)) { struct mips_elf_link_hash_table *htab; htab = mips_elf_hash_table (info); if (htab == NULL) return FALSE; htab->add_stub_section = fn; htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash, mips_elf_la25_stub_eq, NULL); if (htab->la25_stubs == NULL) return FALSE; return TRUE; } /* Return true if H is a locally-defined PIC function, in the sense that it or its fn_stub might need $25 to be valid on entry. Note that MIPS16 functions set up $gp using PC-relative instructions, so they themselves never need $25 to be valid. Only non-MIPS16 entry points are of interest here. */ static bfd_boolean mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h) { return ((h->root.root.type == bfd_link_hash_defined || h->root.root.type == bfd_link_hash_defweak) && h->root.def_regular && !bfd_is_abs_section (h->root.root.u.def.section) && (!ELF_ST_IS_MIPS16 (h->root.other) || (h->fn_stub && h->need_fn_stub)) && (PIC_OBJECT_P (h->root.root.u.def.section->owner) || ELF_ST_IS_MIPS_PIC (h->root.other))); } /* Set *SEC to the input section that contains the target of STUB. Return the offset of the target from the start of that section. */ static bfd_vma mips_elf_get_la25_target (struct mips_elf_la25_stub *stub, asection **sec) { if (ELF_ST_IS_MIPS16 (stub->h->root.other)) { BFD_ASSERT (stub->h->need_fn_stub); *sec = stub->h->fn_stub; return 0; } else { *sec = stub->h->root.root.u.def.section; return stub->h->root.root.u.def.value; } } /* STUB describes an la25 stub that we have decided to implement by inserting an LUI/ADDIU pair before the target function. Create the section and redirect the function symbol to it. */ static bfd_boolean mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub, struct bfd_link_info *info) { struct mips_elf_link_hash_table *htab; char *name; asection *s, *input_section; unsigned int align; htab = mips_elf_hash_table (info); if (htab == NULL) return FALSE; /* Create a unique name for the new section. */ name = bfd_malloc (11 + sizeof (".text.stub.")); if (name == NULL) return FALSE; sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs)); /* Create the section. */ mips_elf_get_la25_target (stub, &input_section); s = htab->add_stub_section (name, input_section, input_section->output_section); if (s == NULL) return FALSE; /* Make sure that any padding goes before the stub. */ align = input_section->alignment_power; if (!bfd_set_section_alignment (s->owner, s, align)) return FALSE; if (align > 3) s->size = (1 << align) - 8; /* Create a symbol for the stub. */ mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8); stub->stub_section = s; stub->offset = s->size; /* Allocate room for it. */ s->size += 8; return TRUE; } /* STUB describes an la25 stub that we have decided to implement with a separate trampoline. Allocate room for it and redirect the function symbol to it. */ static bfd_boolean mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub, struct bfd_link_info *info) { struct mips_elf_link_hash_table *htab; asection *s; htab = mips_elf_hash_table (info); if (htab == NULL) return FALSE; /* Create a trampoline section, if we haven't already. */ s = htab->strampoline; if (s == NULL) { asection *input_section = stub->h->root.root.u.def.section; s = htab->add_stub_section (".text", NULL, input_section->output_section); if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4)) return FALSE; htab->strampoline = s; } /* Create a symbol for the stub. */ mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16); stub->stub_section = s; stub->offset = s->size; /* Allocate room for it. */ s->size += 16; return TRUE; } /* H describes a symbol that needs an la25 stub. Make sure that an appropriate stub exists and point H at it. */ static bfd_boolean mips_elf_add_la25_stub (struct bfd_link_info *info, struct mips_elf_link_hash_entry *h) { struct mips_elf_link_hash_table *htab; struct mips_elf_la25_stub search, *stub; bfd_boolean use_trampoline_p; asection *s; bfd_vma value; void **slot; /* Describe the stub we want. */ search.stub_section = NULL; search.offset = 0; search.h = h; /* See if we've already created an equivalent stub. */ htab = mips_elf_hash_table (info); if (htab == NULL) return FALSE; slot = htab_find_slot (htab->la25_stubs, &search, INSERT); if (slot == NULL) return FALSE; stub = (struct mips_elf_la25_stub *) *slot; if (stub != NULL) { /* We can reuse the existing stub. */ h->la25_stub = stub; return TRUE; } /* Create a permanent copy of ENTRY and add it to the hash table. */ stub = bfd_malloc (sizeof (search)); if (stub == NULL) return FALSE; *stub = search; *slot = stub; /* Prefer to use LUI/ADDIU stubs if the function is at the beginning of the section and if we would need no more than 2 nops. */ value = mips_elf_get_la25_target (stub, &s); use_trampoline_p = (value != 0 || s->alignment_power > 4); h->la25_stub = stub; return (use_trampoline_p ? mips_elf_add_la25_trampoline (stub, info) : mips_elf_add_la25_intro (stub, info)); } /* A mips_elf_link_hash_traverse callback that is called before sizing sections. DATA points to a mips_htab_traverse_info structure. */ static bfd_boolean mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data) { struct mips_htab_traverse_info *hti; hti = (struct mips_htab_traverse_info *) data; if (!hti->info->relocatable) mips_elf_check_mips16_stubs (hti->info, h); if (mips_elf_local_pic_function_p (h)) { /* PR 12845: If H is in a section that has been garbage collected it will have its output section set to *ABS*. */ if (bfd_is_abs_section (h->root.root.u.def.section->output_section)) return TRUE; /* H is a function that might need $25 to be valid on entry. If we're creating a non-PIC relocatable object, mark H as being PIC. If we're creating a non-relocatable object with non-PIC branches and jumps to H, make sure that H has an la25 stub. */ if (hti->info->relocatable) { if (!PIC_OBJECT_P (hti->output_bfd)) h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other); } else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h)) { hti->error = TRUE; return FALSE; } } return TRUE; } /* R_MIPS16_26 is used for the mips16 jal and jalx instructions. Most mips16 instructions are 16 bits, but these instructions are 32 bits. The format of these instructions is: +--------------+--------------------------------+ | JALX | X| Imm 20:16 | Imm 25:21 | +--------------+--------------------------------+ | Immediate 15:0 | +-----------------------------------------------+ JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx. Note that the immediate value in the first word is swapped. When producing a relocatable object file, R_MIPS16_26 is handled mostly like R_MIPS_26. In particular, the addend is stored as a straight 26-bit value in a 32-bit instruction. (gas makes life simpler for itself by never adjusting a R_MIPS16_26 reloc to be against a section, so the addend is always zero). However, the 32 bit instruction is stored as 2 16-bit values, rather than a single 32-bit value. In a big-endian file, the result is the same; in a little-endian file, the two 16-bit halves of the 32 bit value are swapped. This is so that a disassembler can recognize the jal instruction. When doing a final link, R_MIPS16_26 is treated as a 32 bit instruction stored as two 16-bit values. The addend A is the contents of the targ26 field. The calculation is the same as R_MIPS_26. When storing the calculated value, reorder the immediate value as shown above, and don't forget to store the value as two 16-bit values. To put it in MIPS ABI terms, the relocation field is T-targ26-16, defined as big-endian: +--------+----------------------+ | | | | | targ26-16 | |31 26|25 0| +--------+----------------------+ little-endian: +----------+------+-------------+ | | | | | sub1 | | sub2 | |0 9|10 15|16 31| +----------+--------------------+ where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is ((sub1 << 16) | sub2)). When producing a relocatable object file, the calculation is (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) When producing a fully linked file, the calculation is let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) The table below lists the other MIPS16 instruction relocations. Each one is calculated in the same way as the non-MIPS16 relocation given on the right, but using the extended MIPS16 layout of 16-bit immediate fields: R_MIPS16_GPREL R_MIPS_GPREL16 R_MIPS16_GOT16 R_MIPS_GOT16 R_MIPS16_CALL16 R_MIPS_CALL16 R_MIPS16_HI16 R_MIPS_HI16 R_MIPS16_LO16 R_MIPS_LO16 A typical instruction will have a format like this: +--------------+--------------------------------+ | EXTEND | Imm 10:5 | Imm 15:11 | +--------------+--------------------------------+ | Major | rx | ry | Imm 4:0 | +--------------+--------------------------------+ EXTEND is the five bit value 11110. Major is the instruction opcode. All we need to do here is shuffle the bits appropriately. As above, the two 16-bit halves must be swapped on a little-endian system. */ static inline bfd_boolean mips16_reloc_p (int r_type) { switch (r_type) { case R_MIPS16_26: case R_MIPS16_GPREL: case R_MIPS16_GOT16: case R_MIPS16_CALL16: case R_MIPS16_HI16: case R_MIPS16_LO16: case R_MIPS16_TLS_GD: case R_MIPS16_TLS_LDM: case R_MIPS16_TLS_DTPREL_HI16: case R_MIPS16_TLS_DTPREL_LO16: case R_MIPS16_TLS_GOTTPREL: case R_MIPS16_TLS_TPREL_HI16: case R_MIPS16_TLS_TPREL_LO16: return TRUE; default: return FALSE; } } /* Check if a microMIPS reloc. */ static inline bfd_boolean micromips_reloc_p (unsigned int r_type) { return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max; } /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */ static inline bfd_boolean micromips_reloc_shuffle_p (unsigned int r_type) { return (micromips_reloc_p (r_type) && r_type != R_MICROMIPS_PC7_S1 && r_type != R_MICROMIPS_PC10_S1); } static inline bfd_boolean got16_reloc_p (int r_type) { return (r_type == R_MIPS_GOT16 || r_type == R_MIPS16_GOT16 || r_type == R_MICROMIPS_GOT16); } static inline bfd_boolean call16_reloc_p (int r_type) { return (r_type == R_MIPS_CALL16 || r_type == R_MIPS16_CALL16 || r_type == R_MICROMIPS_CALL16); } static inline bfd_boolean got_disp_reloc_p (unsigned int r_type) { return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP; } static inline bfd_boolean got_page_reloc_p (unsigned int r_type) { return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE; } static inline bfd_boolean got_ofst_reloc_p (unsigned int r_type) { return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST; } static inline bfd_boolean got_hi16_reloc_p (unsigned int r_type) { return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16; } static inline bfd_boolean got_lo16_reloc_p (unsigned int r_type) { return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16; } static inline bfd_boolean call_hi16_reloc_p (unsigned int r_type) { return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16; } static inline bfd_boolean call_lo16_reloc_p (unsigned int r_type) { return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16; } static inline bfd_boolean hi16_reloc_p (int r_type) { return (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16 || r_type == R_MICROMIPS_HI16); } static inline bfd_boolean lo16_reloc_p (int r_type) { return (r_type == R_MIPS_LO16 || r_type == R_MIPS16_LO16 || r_type == R_MICROMIPS_LO16); } static inline bfd_boolean mips16_call_reloc_p (int r_type) { return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16; } static inline bfd_boolean jal_reloc_p (int r_type) { return (r_type == R_MIPS_26 || r_type == R_MIPS16_26 || r_type == R_MICROMIPS_26_S1); } static inline bfd_boolean micromips_branch_reloc_p (int r_type) { return (r_type == R_MICROMIPS_26_S1 || r_type == R_MICROMIPS_PC16_S1 || r_type == R_MICROMIPS_PC10_S1 || r_type == R_MICROMIPS_PC7_S1); } static inline bfd_boolean tls_gd_reloc_p (unsigned int r_type) { return (r_type == R_MIPS_TLS_GD || r_type == R_MIPS16_TLS_GD || r_type == R_MICROMIPS_TLS_GD); } static inline bfd_boolean tls_ldm_reloc_p (unsigned int r_type) { return (r_type == R_MIPS_TLS_LDM || r_type == R_MIPS16_TLS_LDM || r_type == R_MICROMIPS_TLS_LDM); } static inline bfd_boolean tls_gottprel_reloc_p (unsigned int r_type) { return (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS16_TLS_GOTTPREL || r_type == R_MICROMIPS_TLS_GOTTPREL); } void _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type, bfd_boolean jal_shuffle, bfd_byte *data) { bfd_vma first, second, val; if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type)) return; /* Pick up the first and second halfwords of the instruction. */ first = bfd_get_16 (abfd, data); second = bfd_get_16 (abfd, data + 2); if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle)) val = first << 16 | second; else if (r_type != R_MIPS16_26) val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11) | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f)); else val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11) | ((first & 0x1f) << 21) | second); bfd_put_32 (abfd, val, data); } void _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type, bfd_boolean jal_shuffle, bfd_byte *data) { bfd_vma first, second, val; if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type)) return; val = bfd_get_32 (abfd, data); if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle)) { second = val & 0xffff; first = val >> 16; } else if (r_type != R_MIPS16_26) { second = ((val >> 11) & 0xffe0) | (val & 0x1f); first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0); } else { second = val & 0xffff; first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0) | ((val >> 21) & 0x1f); } bfd_put_16 (abfd, second, data + 2); bfd_put_16 (abfd, first, data); } bfd_reloc_status_type _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol, arelent *reloc_entry, asection *input_section, bfd_boolean relocatable, void *data, bfd_vma gp) { bfd_vma relocation; bfd_signed_vma val; bfd_reloc_status_type status; if (bfd_is_com_section (symbol->section)) relocation = 0; else relocation = symbol->value; relocation += symbol->section->output_section->vma; relocation += symbol->section->output_offset; if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) return bfd_reloc_outofrange; /* Set val to the offset into the section or symbol. */ val = reloc_entry->addend; _bfd_mips_elf_sign_extend (val, 16); /* Adjust val for the final section location and GP value. If we are producing relocatable output, we don't want to do this for an external symbol. */ if (! relocatable || (symbol->flags & BSF_SECTION_SYM) != 0) val += relocation - gp; if (reloc_entry->howto->partial_inplace) { status = _bfd_relocate_contents (reloc_entry->howto, abfd, val, (bfd_byte *) data + reloc_entry->address); if (status != bfd_reloc_ok) return status; } else reloc_entry->addend = val; if (relocatable) reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } /* Used to store a REL high-part relocation such as R_MIPS_HI16 or R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section that contains the relocation field and DATA points to the start of INPUT_SECTION. */ struct mips_hi16 { struct mips_hi16 *next; bfd_byte *data; asection *input_section; arelent rel; }; /* FIXME: This should not be a static variable. */ static struct mips_hi16 *mips_hi16_list; /* A howto special_function for REL *HI16 relocations. We can only calculate the correct value once we've seen the partnering *LO16 relocation, so just save the information for later. The ABI requires that the *LO16 immediately follow the *HI16. However, as a GNU extension, we permit an arbitrary number of *HI16s to be associated with a single *LO16. This significantly simplies the relocation handling in gcc. */ bfd_reloc_status_type _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, asymbol *symbol ATTRIBUTE_UNUSED, void *data, asection *input_section, bfd *output_bfd, char **error_message ATTRIBUTE_UNUSED) { struct mips_hi16 *n; if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) return bfd_reloc_outofrange; n = bfd_malloc (sizeof *n); if (n == NULL) return bfd_reloc_outofrange; n->next = mips_hi16_list; n->data = data; n->input_section = input_section; n->rel = *reloc_entry; mips_hi16_list = n; if (output_bfd != NULL) reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just like any other 16-bit relocation when applied to global symbols, but is treated in the same as R_MIPS_HI16 when applied to local symbols. */ bfd_reloc_status_type _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, void *data, asection *input_section, bfd *output_bfd, char **error_message) { if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0 || bfd_is_und_section (bfd_get_section (symbol)) || bfd_is_com_section (bfd_get_section (symbol))) /* The relocation is against a global symbol. */ return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message); return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message); } /* A howto special_function for REL *LO16 relocations. The *LO16 itself is a straightforward 16 bit inplace relocation, but we must deal with any partnering high-part relocations as well. */ bfd_reloc_status_type _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, void *data, asection *input_section, bfd *output_bfd, char **error_message) { bfd_vma vallo; bfd_byte *location = (bfd_byte *) data + reloc_entry->address; if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) return bfd_reloc_outofrange; _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE, location); vallo = bfd_get_32 (abfd, location); _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE, location); while (mips_hi16_list != NULL) { bfd_reloc_status_type ret; struct mips_hi16 *hi; hi = mips_hi16_list; /* R_MIPS*_GOT16 relocations are something of a special case. We want to install the addend in the same way as for a R_MIPS*_HI16 relocation (with a rightshift of 16). However, since GOT16 relocations can also be used with global symbols, their howto has a rightshift of 0. */ if (hi->rel.howto->type == R_MIPS_GOT16) hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE); else if (hi->rel.howto->type == R_MIPS16_GOT16) hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE); else if (hi->rel.howto->type == R_MICROMIPS_GOT16) hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE); /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any carry or borrow will induce a change of +1 or -1 in the high part. */ hi->rel.addend += (vallo + 0x8000) & 0xffff; ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data, hi->input_section, output_bfd, error_message); if (ret != bfd_reloc_ok) return ret; mips_hi16_list = hi->next; free (hi); } return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data, input_section, output_bfd, error_message); } /* A generic howto special_function. This calculates and installs the relocation itself, thus avoiding the oft-discussed problems in bfd_perform_relocation and bfd_install_relocation. */ bfd_reloc_status_type _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, asymbol *symbol, void *data ATTRIBUTE_UNUSED, asection *input_section, bfd *output_bfd, char **error_message ATTRIBUTE_UNUSED) { bfd_signed_vma val; bfd_reloc_status_type status; bfd_boolean relocatable; relocatable = (output_bfd != NULL); if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) return bfd_reloc_outofrange; /* Build up the field adjustment in VAL. */ val = 0; if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0) { /* Either we're calculating the final field value or we have a relocation against a section symbol. Add in the section's offset or address. */ val += symbol->section->output_section->vma; val += symbol->section->output_offset; } if (!relocatable) { /* We're calculating the final field value. Add in the symbol's value and, if pc-relative, subtract the address of the field itself. */ val += symbol->value; if (reloc_entry->howto->pc_relative) { val -= input_section->output_section->vma; val -= input_section->output_offset; val -= reloc_entry->address; } } /* VAL is now the final adjustment. If we're keeping this relocation in the output file, and if the relocation uses a separate addend, we just need to add VAL to that addend. Otherwise we need to add VAL to the relocation field itself. */ if (relocatable && !reloc_entry->howto->partial_inplace) reloc_entry->addend += val; else { bfd_byte *location = (bfd_byte *) data + reloc_entry->address; /* Add in the separate addend, if any. */ val += reloc_entry->addend; /* Add VAL to the relocation field. */ _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE, location); status = _bfd_relocate_contents (reloc_entry->howto, abfd, val, location); _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE, location); if (status != bfd_reloc_ok) return status; } if (relocatable) reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } /* Swap an entry in a .gptab section. Note that these routines rely on the equivalence of the two elements of the union. */ static void bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex, Elf32_gptab *in) { in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value); in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes); } static void bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in, Elf32_External_gptab *ex) { H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value); H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes); } static void bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in, Elf32_External_compact_rel *ex) { H_PUT_32 (abfd, in->id1, ex->id1); H_PUT_32 (abfd, in->num, ex->num); H_PUT_32 (abfd, in->id2, ex->id2); H_PUT_32 (abfd, in->offset, ex->offset); H_PUT_32 (abfd, in->reserved0, ex->reserved0); H_PUT_32 (abfd, in->reserved1, ex->reserved1); } static void bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in, Elf32_External_crinfo *ex) { unsigned long l; l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH) | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH) | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH) | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH)); H_PUT_32 (abfd, l, ex->info); H_PUT_32 (abfd, in->konst, ex->konst); H_PUT_32 (abfd, in->vaddr, ex->vaddr); } /* A .reginfo section holds a single Elf32_RegInfo structure. These routines swap this structure in and out. They are used outside of BFD, so they are globally visible. */ void bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex, Elf32_RegInfo *in) { in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask); in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]); in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]); in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]); in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]); in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value); } void bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in, Elf32_External_RegInfo *ex) { H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask); H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]); H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]); H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]); H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]); H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value); } /* In the 64 bit ABI, the .MIPS.options section holds register information in an Elf64_Reginfo structure. These routines swap them in and out. They are globally visible because they are used outside of BFD. These routines are here so that gas can call them without worrying about whether the 64 bit ABI has been included. */ void bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex, Elf64_Internal_RegInfo *in) { in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask); in->ri_pad = H_GET_32 (abfd, ex->ri_pad); in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]); in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]); in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]); in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]); in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value); } void bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in, Elf64_External_RegInfo *ex) { H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask); H_PUT_32 (abfd, in->ri_pad, ex->ri_pad); H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]); H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]); H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]); H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]); H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value); } /* Swap in an options header. */ void bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex, Elf_Internal_Options *in) { in->kind = H_GET_8 (abfd, ex->kind); in->size = H_GET_8 (abfd, ex->size); in->section = H_GET_16 (abfd, ex->section); in->info = H_GET_32 (abfd, ex->info); } /* Swap out an options header. */ void bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in, Elf_External_Options *ex) { H_PUT_8 (abfd, in->kind, ex->kind); H_PUT_8 (abfd, in->size, ex->size); H_PUT_16 (abfd, in->section, ex->section); H_PUT_32 (abfd, in->info, ex->info); } /* This function is called via qsort() to sort the dynamic relocation entries by increasing r_symndx value. */ static int sort_dynamic_relocs (const void *arg1, const void *arg2) { Elf_Internal_Rela int_reloc1; Elf_Internal_Rela int_reloc2; int diff; bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1); bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2); diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info); if (diff != 0) return diff; if (int_reloc1.r_offset < int_reloc2.r_offset) return -1; if (int_reloc1.r_offset > int_reloc2.r_offset) return 1; return 0; } /* Like sort_dynamic_relocs, but used for elf64 relocations. */ static int sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED, const void *arg2 ATTRIBUTE_UNUSED) { #ifdef BFD64 Elf_Internal_Rela int_reloc1[3]; Elf_Internal_Rela int_reloc2[3]; (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in) (reldyn_sorting_bfd, arg1, int_reloc1); (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in) (reldyn_sorting_bfd, arg2, int_reloc2); if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info)) return -1; if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info)) return 1; if (int_reloc1[0].r_offset < int_reloc2[0].r_offset) return -1; if (int_reloc1[0].r_offset > int_reloc2[0].r_offset) return 1; return 0; #else abort (); #endif } /* This routine is used to write out ECOFF debugging external symbol information. It is called via mips_elf_link_hash_traverse. The ECOFF external symbol information must match the ELF external symbol information. Unfortunately, at this point we don't know whether a symbol is required by reloc information, so the two tables may wind up being different. We must sort out the external symbol information before we can set the final size of the .mdebug section, and we must set the size of the .mdebug section before we can relocate any sections, and we can't know which symbols are required by relocation until we relocate the sections. Fortunately, it is relatively unlikely that any symbol will be stripped but required by a reloc. In particular, it can not happen when generating a final executable. */ static bfd_boolean mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data) { struct extsym_info *einfo = data; bfd_boolean strip; asection *sec, *output_section; if (h->root.indx == -2) strip = FALSE; else if ((h->root.def_dynamic || h->root.ref_dynamic || h->root.type == bfd_link_hash_new) && !h->root.def_regular && !h->root.ref_regular) strip = TRUE; else if (einfo->info->strip == strip_all || (einfo->info->strip == strip_some && bfd_hash_lookup (einfo->info->keep_hash, h->root.root.root.string, FALSE, FALSE) == NULL)) strip = TRUE; else strip = FALSE; if (strip) return TRUE; if (h->esym.ifd == -2) { h->esym.jmptbl = 0; h->esym.cobol_main = 0; h->esym.weakext = 0; h->esym.reserved = 0; h->esym.ifd = ifdNil; h->esym.asym.value = 0; h->esym.asym.st = stGlobal; if (h->root.root.type == bfd_link_hash_undefined || h->root.root.type == bfd_link_hash_undefweak) { const char *name; /* Use undefined class. Also, set class and type for some special symbols. */ name = h->root.root.root.string; if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) { h->esym.asym.sc = scData; h->esym.asym.st = stLabel; h->esym.asym.value = 0; } else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) { h->esym.asym.sc = scAbs; h->esym.asym.st = stLabel; h->esym.asym.value = mips_elf_hash_table (einfo->info)->procedure_count; } else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd)) { h->esym.asym.sc = scAbs; h->esym.asym.st = stLabel; h->esym.asym.value = elf_gp (einfo->abfd); } else h->esym.asym.sc = scUndefined; } else if (h->root.root.type != bfd_link_hash_defined && h->root.root.type != bfd_link_hash_defweak) h->esym.asym.sc = scAbs; else { const char *name; sec = h->root.root.u.def.section; output_section = sec->output_section; /* When making a shared library and symbol h is the one from the another shared library, OUTPUT_SECTION may be null. */ if (output_section == NULL) h->esym.asym.sc = scUndefined; else { name = bfd_section_name (output_section->owner, output_section); if (strcmp (name, ".text") == 0) h->esym.asym.sc = scText; else if (strcmp (name, ".data") == 0) h->esym.asym.sc = scData; else if (strcmp (name, ".sdata") == 0) h->esym.asym.sc = scSData; else if (strcmp (name, ".rodata") == 0 || strcmp (name, ".rdata") == 0) h->esym.asym.sc = scRData; else if (strcmp (name, ".bss") == 0) h->esym.asym.sc = scBss; else if (strcmp (name, ".sbss") == 0) h->esym.asym.sc = scSBss; else if (strcmp (name, ".init") == 0) h->esym.asym.sc = scInit; else if (strcmp (name, ".fini") == 0) h->esym.asym.sc = scFini; else h->esym.asym.sc = scAbs; } } h->esym.asym.reserved = 0; h->esym.asym.index = indexNil; } if (h->root.root.type == bfd_link_hash_common) h->esym.asym.value = h->root.root.u.c.size; else if (h->root.root.type == bfd_link_hash_defined || h->root.root.type == bfd_link_hash_defweak) { if (h->esym.asym.sc == scCommon) h->esym.asym.sc = scBss; else if (h->esym.asym.sc == scSCommon) h->esym.asym.sc = scSBss; sec = h->root.root.u.def.section; output_section = sec->output_section; if (output_section != NULL) h->esym.asym.value = (h->root.root.u.def.value + sec->output_offset + output_section->vma); else h->esym.asym.value = 0; } else { struct mips_elf_link_hash_entry *hd = h; while (hd->root.root.type == bfd_link_hash_indirect) hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link; if (hd->needs_lazy_stub) { BFD_ASSERT (hd->root.plt.plist != NULL); BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE); /* Set type and value for a symbol with a function stub. */ h->esym.asym.st = stProc; sec = hd->root.root.u.def.section; if (sec == NULL) h->esym.asym.value = 0; else { output_section = sec->output_section; if (output_section != NULL) h->esym.asym.value = (hd->root.plt.plist->stub_offset + sec->output_offset + output_section->vma); else h->esym.asym.value = 0; } } } if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap, h->root.root.root.string, &h->esym)) { einfo->failed = TRUE; return FALSE; } return TRUE; } /* A comparison routine used to sort .gptab entries. */ static int gptab_compare (const void *p1, const void *p2) { const Elf32_gptab *a1 = p1; const Elf32_gptab *a2 = p2; return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value; } /* Functions to manage the got entry hash table. */ /* Use all 64 bits of a bfd_vma for the computation of a 32-bit hash number. */ static INLINE hashval_t mips_elf_hash_bfd_vma (bfd_vma addr) { #ifdef BFD64 return addr + (addr >> 32); #else return addr; #endif } static hashval_t mips_elf_got_entry_hash (const void *entry_) { const struct mips_got_entry *entry = (struct mips_got_entry *)entry_; return (entry->symndx + ((entry->tls_type == GOT_TLS_LDM) << 18) + (entry->tls_type == GOT_TLS_LDM ? 0 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address) : entry->symndx >= 0 ? (entry->abfd->id + mips_elf_hash_bfd_vma (entry->d.addend)) : entry->d.h->root.root.root.hash)); } static int mips_elf_got_entry_eq (const void *entry1, const void *entry2) { const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1; const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2; return (e1->symndx == e2->symndx && e1->tls_type == e2->tls_type && (e1->tls_type == GOT_TLS_LDM ? TRUE : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address : e1->symndx >= 0 ? (e1->abfd == e2->abfd && e1->d.addend == e2->d.addend) : e2->abfd && e1->d.h == e2->d.h)); } static hashval_t mips_got_page_ref_hash (const void *ref_) { const struct mips_got_page_ref *ref; ref = (const struct mips_got_page_ref *) ref_; return ((ref->symndx >= 0 ? (hashval_t) (ref->u.abfd->id + ref->symndx) : ref->u.h->root.root.root.hash) + mips_elf_hash_bfd_vma (ref->addend)); } static int mips_got_page_ref_eq (const void *ref1_, const void *ref2_) { const struct mips_got_page_ref *ref1, *ref2; ref1 = (const struct mips_got_page_ref *) ref1_; ref2 = (const struct mips_got_page_ref *) ref2_; return (ref1->symndx == ref2->symndx && (ref1->symndx < 0 ? ref1->u.h == ref2->u.h : ref1->u.abfd == ref2->u.abfd) && ref1->addend == ref2->addend); } static hashval_t mips_got_page_entry_hash (const void *entry_) { const struct mips_got_page_entry *entry; entry = (const struct mips_got_page_entry *) entry_; return entry->sec->id; } static int mips_got_page_entry_eq (const void *entry1_, const void *entry2_) { const struct mips_got_page_entry *entry1, *entry2; entry1 = (const struct mips_got_page_entry *) entry1_; entry2 = (const struct mips_got_page_entry *) entry2_; return entry1->sec == entry2->sec; } /* Create and return a new mips_got_info structure. */ static struct mips_got_info * mips_elf_create_got_info (bfd *abfd) { struct mips_got_info *g; g = bfd_zalloc (abfd, sizeof (struct mips_got_info)); if (g == NULL) return NULL; g->got_entries = htab_try_create (1, mips_elf_got_entry_hash, mips_elf_got_entry_eq, NULL); if (g->got_entries == NULL) return NULL; g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash, mips_got_page_ref_eq, NULL); if (g->got_page_refs == NULL) return NULL; return g; } /* Return the GOT info for input bfd ABFD, trying to create a new one if CREATE_P and if ABFD doesn't already have a GOT. */ static struct mips_got_info * mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p) { struct mips_elf_obj_tdata *tdata; if (!is_mips_elf (abfd)) return NULL; tdata = mips_elf_tdata (abfd); if (!tdata->got && create_p) tdata->got = mips_elf_create_got_info (abfd); return tdata->got; } /* Record that ABFD should use output GOT G. */ static void mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g) { struct mips_elf_obj_tdata *tdata; BFD_ASSERT (is_mips_elf (abfd)); tdata = mips_elf_tdata (abfd); if (tdata->got) { /* The GOT structure itself and the hash table entries are allocated to a bfd, but the hash tables aren't. */ htab_delete (tdata->got->got_entries); htab_delete (tdata->got->got_page_refs); if (tdata->got->got_page_entries) htab_delete (tdata->got->got_page_entries); } tdata->got = g; } /* Return the dynamic relocation section. If it doesn't exist, try to create a new it if CREATE_P, otherwise return NULL. Also return NULL if creation fails. */ static asection * mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p) { const char *dname; asection *sreloc; bfd *dynobj; dname = MIPS_ELF_REL_DYN_NAME (info); dynobj = elf_hash_table (info)->dynobj; sreloc = bfd_get_linker_section (dynobj, dname); if (sreloc == NULL && create_p) { sreloc = bfd_make_section_anyway_with_flags (dynobj, dname, (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED | SEC_READONLY)); if (sreloc == NULL || ! bfd_set_section_alignment (dynobj, sreloc, MIPS_ELF_LOG_FILE_ALIGN (dynobj))) return NULL; } return sreloc; } /* Return the GOT_TLS_* type required by relocation type R_TYPE. */ static int mips_elf_reloc_tls_type (unsigned int r_type) { if (tls_gd_reloc_p (r_type)) return GOT_TLS_GD; if (tls_ldm_reloc_p (r_type)) return GOT_TLS_LDM; if (tls_gottprel_reloc_p (r_type)) return GOT_TLS_IE; return GOT_TLS_NONE; } /* Return the number of GOT slots needed for GOT TLS type TYPE. */ static int mips_tls_got_entries (unsigned int type) { switch (type) { case GOT_TLS_GD: case GOT_TLS_LDM: return 2; case GOT_TLS_IE: return 1; case GOT_TLS_NONE: return 0; } abort (); } /* Count the number of relocations needed for a TLS GOT entry, with access types from TLS_TYPE, and symbol H (or a local symbol if H is NULL). */ static int mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type, struct elf_link_hash_entry *h) { int indx = 0; bfd_boolean need_relocs = FALSE; bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created; if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h) && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h))) indx = h->dynindx; if ((info->shared || indx != 0) && (h == NULL || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT || h->root.type != bfd_link_hash_undefweak)) need_relocs = TRUE; if (!need_relocs) return 0; switch (tls_type) { case GOT_TLS_GD: return indx != 0 ? 2 : 1; case GOT_TLS_IE: return 1; case GOT_TLS_LDM: return info->shared ? 1 : 0; default: return 0; } } /* Add the number of GOT entries and TLS relocations required by ENTRY to G. */ static void mips_elf_count_got_entry (struct bfd_link_info *info, struct mips_got_info *g, struct mips_got_entry *entry) { if (entry->tls_type) { g->tls_gotno += mips_tls_got_entries (entry->tls_type); g->relocs += mips_tls_got_relocs (info, entry->tls_type, entry->symndx < 0 ? &entry->d.h->root : NULL); } else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE) g->local_gotno += 1; else g->global_gotno += 1; } /* Output a simple dynamic relocation into SRELOC. */ static void mips_elf_output_dynamic_relocation (bfd *output_bfd, asection *sreloc, unsigned long reloc_index, unsigned long indx, int r_type, bfd_vma offset) { Elf_Internal_Rela rel[3]; memset (rel, 0, sizeof (rel)); rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type); rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset; if (ABI_64_P (output_bfd)) { (*get_elf_backend_data (output_bfd)->s->swap_reloc_out) (output_bfd, &rel[0], (sreloc->contents + reloc_index * sizeof (Elf64_Mips_External_Rel))); } else bfd_elf32_swap_reloc_out (output_bfd, &rel[0], (sreloc->contents + reloc_index * sizeof (Elf32_External_Rel))); } /* Initialize a set of TLS GOT entries for one symbol. */ static void mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info, struct mips_got_entry *entry, struct mips_elf_link_hash_entry *h, bfd_vma value) { struct mips_elf_link_hash_table *htab; int indx; asection *sreloc, *sgot; bfd_vma got_offset, got_offset2; bfd_boolean need_relocs = FALSE; htab = mips_elf_hash_table (info); if (htab == NULL) return; sgot = htab->sgot; indx = 0; if (h != NULL) { bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created; if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root) && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root))) indx = h->root.dynindx; } if (entry->tls_initialized) return; if ((info->shared || indx != 0) && (h == NULL || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT || h->root.type != bfd_link_hash_undefweak)) need_relocs = TRUE; /* MINUS_ONE means the symbol is not defined in this object. It may not be defined at all; assume that the value doesn't matter in that case. Otherwise complain if we would use the value. */ BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs) || h->root.root.type == bfd_link_hash_undefweak); /* Emit necessary relocations. */ sreloc = mips_elf_rel_dyn_section (info, FALSE); got_offset = entry->gotidx; switch (entry->tls_type) { case GOT_TLS_GD: /* General Dynamic. */ got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd); if (need_relocs) { mips_elf_output_dynamic_relocation (abfd, sreloc, sreloc->reloc_count++, indx, ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32, sgot->output_offset + sgot->output_section->vma + got_offset); if (indx) mips_elf_output_dynamic_relocation (abfd, sreloc, sreloc->reloc_count++, indx, ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32, sgot->output_offset + sgot->output_section->vma + got_offset2); else MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info), sgot->contents + got_offset2); } else { MIPS_ELF_PUT_WORD (abfd, 1, sgot->contents + got_offset); MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info), sgot->contents + got_offset2); } break; case GOT_TLS_IE: /* Initial Exec model. */ if (need_relocs) { if (indx == 0) MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma, sgot->contents + got_offset); else MIPS_ELF_PUT_WORD (abfd, 0, sgot->contents + got_offset); mips_elf_output_dynamic_relocation (abfd, sreloc, sreloc->reloc_count++, indx, ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32, sgot->output_offset + sgot->output_section->vma + got_offset); } else MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info), sgot->contents + got_offset); break; case GOT_TLS_LDM: /* The initial offset is zero, and the LD offsets will include the bias by DTP_OFFSET. */ MIPS_ELF_PUT_WORD (abfd, 0, sgot->contents + got_offset + MIPS_ELF_GOT_SIZE (abfd)); if (!info->shared) MIPS_ELF_PUT_WORD (abfd, 1, sgot->contents + got_offset); else mips_elf_output_dynamic_relocation (abfd, sreloc, sreloc->reloc_count++, indx, ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32, sgot->output_offset + sgot->output_section->vma + got_offset); break; default: abort (); } entry->tls_initialized = TRUE; } /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry for global symbol H. .got.plt comes before the GOT, so the offset will be negative. */ static bfd_vma mips_elf_gotplt_index (struct bfd_link_info *info, struct elf_link_hash_entry *h) { bfd_vma got_address, got_value; struct mips_elf_link_hash_table *htab; htab = mips_elf_hash_table (info); BFD_ASSERT (htab != NULL); BFD_ASSERT (h->plt.plist != NULL); BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE); /* Calculate the address of the associated .got.plt entry. */ got_address = (htab->sgotplt->output_section->vma + htab->sgotplt->output_offset + (h->plt.plist->gotplt_index * MIPS_ELF_GOT_SIZE (info->output_bfd))); /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */ got_value = (htab->root.hgot->root.u.def.section->output_section->vma + htab->root.hgot->root.u.def.section->output_offset + htab->root.hgot->root.u.def.value); return got_address - got_value; } /* Return the GOT offset for address VALUE. If there is not yet a GOT entry for this value, create one. If R_SYMNDX refers to a TLS symbol, create a TLS GOT entry instead. Return -1 if no satisfactory GOT offset can be found. */ static bfd_vma mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, bfd_vma value, unsigned long r_symndx, struct mips_elf_link_hash_entry *h, int r_type) { struct mips_elf_link_hash_table *htab; struct mips_got_entry *entry; htab = mips_elf_hash_table (info); BFD_ASSERT (htab != NULL); entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, r_symndx, h, r_type); if (!entry) return MINUS_ONE; if (entry->tls_type) mips_elf_initialize_tls_slots (abfd, info, entry, h, value); return entry->gotidx; } /* Return the GOT index of global symbol H in the primary GOT. */ static bfd_vma mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info, struct elf_link_hash_entry *h) { struct mips_elf_link_hash_table *htab; long global_got_dynindx; struct mips_got_info *g; bfd_vma got_index; htab = mips_elf_hash_table (info); BFD_ASSERT (htab != NULL); global_got_dynindx = 0; if (htab->global_gotsym != NULL) global_got_dynindx = htab->global_gotsym->dynindx; /* Once we determine the global GOT entry with the lowest dynamic symbol table index, we must put all dynamic symbols with greater indices into the primary GOT. That makes it easy to calculate the GOT offset. */ BFD_ASSERT (h->dynindx >= global_got_dynindx); g = mips_elf_bfd_got (obfd, FALSE); got_index = ((h->dynindx - global_got_dynindx + g->local_gotno) * MIPS_ELF_GOT_SIZE (obfd)); BFD_ASSERT (got_index < htab->sgot->size); return got_index; } /* Return the GOT index for the global symbol indicated by H, which is referenced by a relocation of type R_TYPE in IBFD. */ static bfd_vma mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd, struct elf_link_hash_entry *h, int r_type) { struct mips_elf_link_hash_table *htab; struct mips_got_info *g; struct mips_got_entry lookup, *entry; bfd_vma gotidx; htab = mips_elf_hash_table (info); BFD_ASSERT (htab != NULL); g = mips_elf_bfd_got (ibfd, FALSE); BFD_ASSERT (g); lookup.tls_type = mips_elf_reloc_tls_type (r_type); if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE)) return mips_elf_primary_global_got_index (obfd, info, h); lookup.abfd = ibfd; lookup.symndx = -1; lookup.d.h = (struct mips_elf_link_hash_entry *) h; entry = htab_find (g->got_entries, &lookup); BFD_ASSERT (entry); gotidx = entry->gotidx; BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size); if (lookup.tls_type) { bfd_vma value = MINUS_ONE; if ((h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak) && h->root.u.def.section->output_section) value = (h->root.u.def.value + h->root.u.def.section->output_offset + h->root.u.def.section->output_section->vma); mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value); } return gotidx; } /* Find a GOT page entry that points to within 32KB of VALUE. These entries are supposed to be placed at small offsets in the GOT, i.e., within 32KB of GP. Return the index of the GOT entry, or -1 if no entry could be created. If OFFSETP is nonnull, use it to return the offset of the GOT entry from VALUE. */ static bfd_vma mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, bfd_vma value, bfd_vma *offsetp) { bfd_vma page, got_index; struct mips_got_entry *entry; page = (value + 0x8000) & ~(bfd_vma) 0xffff; entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0, NULL, R_MIPS_GOT_PAGE); if (!entry) return MINUS_ONE; got_index = entry->gotidx; if (offsetp) *offsetp = value - entry->d.address; return got_index; } /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE. EXTERNAL is true if the relocation was originally against a global symbol that binds locally. */ static bfd_vma mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, bfd_vma value, bfd_boolean external) { struct mips_got_entry *entry; /* GOT16 relocations against local symbols are followed by a LO16 relocation; those against global symbols are not. Thus if the symbol was originally local, the GOT16 relocation should load the equivalent of %hi(VALUE), otherwise it should load VALUE itself. */ if (! external) value = mips_elf_high (value) << 16; /* It doesn't matter whether the original relocation was R_MIPS_GOT16, R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the same in all cases. */ entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0, NULL, R_MIPS_GOT16); if (entry) return entry->gotidx; else return MINUS_ONE; } /* Returns the offset for the entry at the INDEXth position in the GOT. */ static bfd_vma mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd, bfd *input_bfd, bfd_vma got_index) { struct mips_elf_link_hash_table *htab; asection *sgot; bfd_vma gp; htab = mips_elf_hash_table (info); BFD_ASSERT (htab != NULL); sgot = htab->sgot; gp = _bfd_get_gp_value (output_bfd) + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd); return sgot->output_section->vma + sgot->output_offset + got_index - gp; } /* Create and return a local GOT entry for VALUE, which was calculated from a symbol belonging to INPUT_SECTON. Return NULL if it could not be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry instead. */ static struct mips_got_entry * mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info, bfd *ibfd, bfd_vma value, unsigned long r_symndx, struct mips_elf_link_hash_entry *h, int r_type) { struct mips_got_entry lookup, *entry; void **loc; struct mips_got_info *g; struct mips_elf_link_hash_table *htab; bfd_vma gotidx; htab = mips_elf_hash_table (info); BFD_ASSERT (htab != NULL); g = mips_elf_bfd_got (ibfd, FALSE); if (g == NULL) { g = mips_elf_bfd_got (abfd, FALSE); BFD_ASSERT (g != NULL); } /* This function shouldn't be called for symbols that live in the global area of the GOT. */ BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE); lookup.tls_type = mips_elf_reloc_tls_type (r_type); if (lookup.tls_type) { lookup.abfd = ibfd; if (tls_ldm_reloc_p (r_type)) { lookup.symndx = 0; lookup.d.addend = 0; } else if (h == NULL) { lookup.symndx = r_symndx; lookup.d.addend = 0; } else { lookup.symndx = -1; lookup.d.h = h; } entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup); BFD_ASSERT (entry); gotidx = entry->gotidx; BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size); return entry; } lookup.abfd = NULL; lookup.symndx = -1; lookup.d.address = value; loc = htab_find_slot (g->got_entries, &lookup, INSERT); if (!loc) return NULL; entry = (struct mips_got_entry *) *loc; if (entry) return entry; if (g->assigned_gotno >= g->local_gotno) { /* We didn't allocate enough space in the GOT. */ (*_bfd_error_handler) (_("not enough GOT space for local GOT entries")); bfd_set_error (bfd_error_bad_value); return NULL; } entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry)); if (!entry) return NULL; lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++; *entry = lookup; *loc = entry; MIPS_ELF_PUT_WORD (abfd, value, htab->sgot->contents + entry->gotidx); /* These GOT entries need a dynamic relocation on VxWorks. */ if (htab->is_vxworks) { Elf_Internal_Rela outrel; asection *s; bfd_byte *rloc; bfd_vma got_address; s = mips_elf_rel_dyn_section (info, FALSE); got_address = (htab->sgot->output_section->vma + htab->sgot->output_offset + entry->gotidx); rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela)); outrel.r_offset = got_address; outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32); outrel.r_addend = value; bfd_elf32_swap_reloca_out (abfd, &outrel, rloc); } return entry; } /* Return the number of dynamic section symbols required by OUTPUT_BFD. The number might be exact or a worst-case estimate, depending on how much information is available to elf_backend_omit_section_dynsym at the current linking stage. */ static bfd_size_type count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info) { bfd_size_type count; count = 0; if (info->shared || elf_hash_table (info)->is_relocatable_executable) { asection *p; const struct elf_backend_data *bed; bed = get_elf_backend_data (output_bfd); for (p = output_bfd->sections; p ; p = p->next) if ((p->flags & SEC_EXCLUDE) == 0 && (p->flags & SEC_ALLOC) != 0 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p)) ++count; } return count; } /* Sort the dynamic symbol table so that symbols that need GOT entries appear towards the end. */ static bfd_boolean mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info) { struct mips_elf_link_hash_table *htab; struct mips_elf_hash_sort_data hsd; struct mips_got_info *g; if (elf_hash_table (info)->dynsymcount == 0) return TRUE; htab = mips_elf_hash_table (info); BFD_ASSERT (htab != NULL); g = htab->got_info; if (g == NULL) return TRUE; hsd.low = NULL; hsd.max_unref_got_dynindx = hsd.min_got_dynindx = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno); hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1; mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *) elf_hash_table (info)), mips_elf_sort_hash_table_f, &hsd); /* There should have been enough room in the symbol table to accommodate both the GOT and non-GOT symbols. */ BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx); BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx == elf_hash_table (info)->dynsymcount); BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx == g->global_gotno); /* Now we know which dynamic symbol has the lowest dynamic symbol table index in the GOT. */ htab->global_gotsym = hsd.low; return TRUE; } /* If H needs a GOT entry, assign it the highest available dynamic index. Otherwise, assign it the lowest available dynamic index. */ static bfd_boolean mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data) { struct mips_elf_hash_sort_data *hsd = data; /* Symbols without dynamic symbol table entries aren't interesting at all. */ if (h->root.dynindx == -1) return TRUE; switch (h->global_got_area) { case GGA_NONE: h->root.dynindx = hsd->max_non_got_dynindx++; break; case GGA_NORMAL: h->root.dynindx = --hsd->min_got_dynindx; hsd->low = (struct elf_link_hash_entry *) h; break; case GGA_RELOC_ONLY: if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx) hsd->low = (struct elf_link_hash_entry *) h; h->root.dynindx = hsd->max_unref_got_dynindx++; break; } return TRUE; } /* Record that input bfd ABFD requires a GOT entry like *LOOKUP (which is owned by the caller and shouldn't be added to the hash table directly). */ static bfd_boolean mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd, struct mips_got_entry *lookup) { struct mips_elf_link_hash_table *htab; struct mips_got_entry *entry; struct mips_got_info *g; void **loc, **bfd_loc; /* Make sure there's a slot for this entry in the master GOT. */ htab = mips_elf_hash_table (info); g = htab->got_info; loc = htab_find_slot (g->got_entries, lookup, INSERT); if (!loc) return FALSE; /* Populate the entry if it isn't already. */ entry = (struct mips_got_entry *) *loc; if (!entry) { entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry)); if (!entry) return FALSE; lookup->tls_initialized = FALSE; lookup->gotidx = -1; *entry = *lookup; *loc = entry; } /* Reuse the same GOT entry for the BFD's GOT. */ g = mips_elf_bfd_got (abfd, TRUE); if (!g) return FALSE; bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT); if (!bfd_loc) return FALSE; if (!*bfd_loc) *bfd_loc = entry; return TRUE; } /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT entry for it. FOR_CALL is true if the caller is only interested in using the GOT entry for calls. */ static bfd_boolean mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h, bfd *abfd, struct bfd_link_info *info, bfd_boolean for_call, int r_type) { struct mips_elf_link_hash_table *htab; struct mips_elf_link_hash_entry *hmips; struct mips_got_entry entry; unsigned char tls_type; htab = mips_elf_hash_table (info); BFD_ASSERT (htab != NULL); hmips = (struct mips_elf_link_hash_entry *) h; if (!for_call) hmips->got_only_for_calls = FALSE; /* A global symbol in the GOT must also be in the dynamic symbol table. */ if (h->dynindx == -1) { switch (ELF_ST_VISIBILITY (h->other)) { case STV_INTERNAL: case STV_HIDDEN: _bfd_elf_link_hash_hide_symbol (info, h, TRUE); break; } if (!bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; } tls_type = mips_elf_reloc_tls_type (r_type); if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL) hmips->global_got_area = GGA_NORMAL; entry.abfd = abfd; entry.symndx = -1; entry.d.h = (struct mips_elf_link_hash_entry *) h; entry.tls_type = tls_type; return mips_elf_record_got_entry (info, abfd, &entry); } /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND, where SYMNDX is a local symbol. Reserve a GOT entry for it. */ static bfd_boolean mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend, struct bfd_link_info *info, int r_type) { struct mips_elf_link_hash_table *htab; struct mips_got_info *g; struct mips_got_entry entry; htab = mips_elf_hash_table (info); BFD_ASSERT (htab != NULL); g = htab->got_info; BFD_ASSERT (g != NULL); entry.abfd = abfd; entry.symndx = symndx; entry.d.addend = addend; entry.tls_type = mips_elf_reloc_tls_type (r_type); return mips_elf_record_got_entry (info, abfd, &entry); } /* Record that ABFD has a page relocation against SYMNDX + ADDEND. H is the symbol's hash table entry, or null if SYMNDX is local to ABFD. */ static bfd_boolean mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd, long symndx, struct elf_link_hash_entry *h, bfd_signed_vma addend) { struct mips_elf_link_hash_table *htab; struct mips_got_info *g1, *g2; struct mips_got_page_ref lookup, *entry; void **loc, **bfd_loc; htab = mips_elf_hash_table (info); BFD_ASSERT (htab != NULL); g1 = htab->got_info; BFD_ASSERT (g1 != NULL); if (h) { lookup.symndx = -1; lookup.u.h = (struct mips_elf_link_hash_entry *) h; } else { lookup.symndx = symndx; lookup.u.abfd = abfd; } lookup.addend = addend; loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT); if (loc == NULL) return FALSE; entry = (struct mips_got_page_ref *) *loc; if (!entry) { entry = bfd_alloc (abfd, sizeof (*entry)); if (!entry) return FALSE; *entry = lookup; *loc = entry; } /* Add the same entry to the BFD's GOT. */ g2 = mips_elf_bfd_got (abfd, TRUE); if (!g2) return FALSE; bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT); if (!bfd_loc) return FALSE; if (!*bfd_loc) *bfd_loc = entry; return TRUE; } /* Add room for N relocations to the .rel(a).dyn section in ABFD. */ static void mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info, unsigned int n) { asection *s; struct mips_elf_link_hash_table *htab; htab = mips_elf_hash_table (info); BFD_ASSERT (htab != NULL); s = mips_elf_rel_dyn_section (info, FALSE); BFD_ASSERT (s != NULL); if (htab->is_vxworks) s->size += n * MIPS_ELF_RELA_SIZE (abfd); else { if (s->size == 0) { /* Make room for a null element. */ s->size += MIPS_ELF_REL_SIZE (abfd); ++s->reloc_count; } s->size += n * MIPS_ELF_REL_SIZE (abfd); } } /* A htab_traverse callback for GOT entries, with DATA pointing to a mips_elf_traverse_got_arg structure. Count the number of GOT entries and TLS relocs. Set DATA->value to true if we need to resolve indirect or warning symbols and then recreate the GOT. */ static int mips_elf_check_recreate_got (void **entryp, void *data) { struct mips_got_entry *entry; struct mips_elf_traverse_got_arg *arg; entry = (struct mips_got_entry *) *entryp; arg = (struct mips_elf_traverse_got_arg *) data; if (entry->abfd != NULL && entry->symndx == -1) { struct mips_elf_link_hash_entry *h; h = entry->d.h; if (h->root.root.type == bfd_link_hash_indirect || h->root.root.type == bfd_link_hash_warning) { arg->value = TRUE; return 0; } } mips_elf_count_got_entry (arg->info, arg->g, entry); return 1; } /* A htab_traverse callback for GOT entries, with DATA pointing to a mips_elf_traverse_got_arg structure. Add all entries to DATA->g, converting entries for indirect and warning symbols into entries for the target symbol. Set DATA->g to null on error. */ static int mips_elf_recreate_got (void **entryp, void *data) { struct mips_got_entry new_entry, *entry; struct mips_elf_traverse_got_arg *arg; void **slot; entry = (struct mips_got_entry *) *entryp; arg = (struct mips_elf_traverse_got_arg *) data; if (entry->abfd != NULL && entry->symndx == -1 && (entry->d.h->root.root.type == bfd_link_hash_indirect || entry->d.h->root.root.type == bfd_link_hash_warning)) { struct mips_elf_link_hash_entry *h; new_entry = *entry; entry = &new_entry; h = entry->d.h; do { BFD_ASSERT (h->global_got_area == GGA_NONE); h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; } while (h->root.root.type == bfd_link_hash_indirect || h->root.root.type == bfd_link_hash_warning); entry->d.h = h; } slot = htab_find_slot (arg->g->got_entries, entry, INSERT); if (slot == NULL) { arg->g = NULL; return 0; } if (*slot == NULL) { if (entry == &new_entry) { entry = bfd_alloc (entry->abfd, sizeof (*entry)); if (!entry) { arg->g = NULL; return 0; } *entry = new_entry; } *slot = entry; mips_elf_count_got_entry (arg->info, arg->g, entry); } return 1; } /* Return the maximum number of GOT page entries required for RANGE. */ static bfd_vma mips_elf_pages_for_range (const struct mips_got_page_range *range) { return (range->max_addend - range->min_addend + 0x1ffff) >> 16; } /* Record that G requires a page entry that can reach SEC + ADDEND. */ static bfd_boolean mips_elf_record_got_page_entry (struct mips_got_info *g, asection *sec, bfd_signed_vma addend) { struct mips_got_page_entry lookup, *entry; struct mips_got_page_range **range_ptr, *range; bfd_vma old_pages, new_pages; void **loc; /* Find the mips_got_page_entry hash table entry for this section. */ lookup.sec = sec; loc = htab_find_slot (g->got_page_entries, &lookup, INSERT); if (loc == NULL) return FALSE; /* Create a mips_got_page_entry if this is the first time we've seen the section. */ entry = (struct mips_got_page_entry *) *loc; if (!entry) { entry = bfd_zalloc (sec->owner, sizeof (*entry)); if (!entry) return FALSE; entry->sec = sec; *loc = entry; } /* Skip over ranges whose maximum extent cannot share a page entry with ADDEND. */ range_ptr = &entry->ranges; while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff) range_ptr = &(*range_ptr)->next; /* If we scanned to the end of the list, or found a range whose minimum extent cannot share a page entry with ADDEND, create a new singleton range. */ range = *range_ptr; if (!range || addend < range->min_addend - 0xffff) { range = bfd_zalloc (sec->owner, sizeof (*range)); if (!range) return FALSE; range->next = *range_ptr; range->min_addend = addend; range->max_addend = addend; *range_ptr = range; entry->num_pages++; g->page_gotno++; return TRUE; } /* Remember how many pages the old range contributed. */ old_pages = mips_elf_pages_for_range (range); /* Update the ranges. */ if (addend < range->min_addend) range->min_addend = addend; else if (addend > range->max_addend) { if (range->next && addend >= range->next->min_addend - 0xffff) { old_pages += mips_elf_pages_for_range (range->next); range->max_addend = range->next->max_addend; range->next = range->next->next; } else range->max_addend = addend; } /* Record any change in the total estimate. */ new_pages = mips_elf_pages_for_range (range); if (old_pages != new_pages) { entry->num_pages += new_pages - old_pages; g->page_gotno += new_pages - old_pages; } return TRUE; } /* A htab_traverse callback for which *REFP points to a mips_got_page_ref and for which DATA points to a mips_elf_traverse_got_arg. Work out whether the page reference described by *REFP needs a GOT page entry, and record that entry in DATA->g if so. Set DATA->g to null on failure. */ static bfd_boolean mips_elf_resolve_got_page_ref (void **refp, void *data) { struct mips_got_page_ref *ref; struct mips_elf_traverse_got_arg *arg; struct mips_elf_link_hash_table *htab; asection *sec; bfd_vma addend; ref = (struct mips_got_page_ref *) *refp; arg = (struct mips_elf_traverse_got_arg *) data; htab = mips_elf_hash_table (arg->info); if (ref->symndx < 0) { struct mips_elf_link_hash_entry *h; /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */ h = ref->u.h; if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root)) return 1; /* Ignore undefined symbols; we'll issue an error later if appropriate. */ if (!((h->root.root.type == bfd_link_hash_defined || h->root.root.type == bfd_link_hash_defweak) && h->root.root.u.def.section)) return 1; sec = h->root.root.u.def.section; addend = h->root.root.u.def.value + ref->addend; } else { Elf_Internal_Sym *isym; /* Read in the symbol. */ isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd, ref->symndx); if (isym == NULL) { arg->g = NULL; return 0; } /* Get the associated input section. */ sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx); if (sec == NULL) { arg->g = NULL; return 0; } /* If this is a mergable section, work out the section and offset of the merged data. For section symbols, the addend specifies of the offset _of_ the first byte in the data, otherwise it specifies the offset _from_ the first byte. */ if (sec->flags & SEC_MERGE) { void *secinfo; secinfo = elf_section_data (sec)->sec_info; if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo, isym->st_value + ref->addend); else addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo, isym->st_value) + ref->addend; } else addend = isym->st_value + ref->addend; } if (!mips_elf_record_got_page_entry (arg->g, sec, addend)) { arg->g = NULL; return 0; } return 1; } /* If any entries in G->got_entries are for indirect or warning symbols, replace them with entries for the target symbol. Convert g->got_page_refs into got_page_entry structures and estimate the number of page entries that they require. */ static bfd_boolean mips_elf_resolve_final_got_entries (struct bfd_link_info *info, struct mips_got_info *g) { struct mips_elf_traverse_got_arg tga; struct mips_got_info oldg; oldg = *g; tga.info = info; tga.g = g; tga.value = FALSE; htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga); if (tga.value) { *g = oldg; g->got_entries = htab_create (htab_size (oldg.got_entries), mips_elf_got_entry_hash, mips_elf_got_entry_eq, NULL); if (!g->got_entries) return FALSE; htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga); if (!tga.g) return FALSE; htab_delete (oldg.got_entries); } g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash, mips_got_page_entry_eq, NULL); if (g->got_page_entries == NULL) return FALSE; tga.info = info; tga.g = g; htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga); return TRUE; } /* A mips_elf_link_hash_traverse callback for which DATA points to the link_info structure. Decide whether the hash entry needs an entry in the global part of the primary GOT, setting global_got_area accordingly. Count the number of global symbols that are in the primary GOT only because they have relocations against them (reloc_only_gotno). */ static int mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data) { struct bfd_link_info *info; struct mips_elf_link_hash_table *htab; struct mips_got_info *g; info = (struct bfd_link_info *) data; htab = mips_elf_hash_table (info); g = htab->got_info; if (h->global_got_area != GGA_NONE) { /* Make a final decision about whether the symbol belongs in the local or global GOT. Symbols that bind locally can (and in the case of forced-local symbols, must) live in the local GOT. Those that are aren't in the dynamic symbol table must also live in the local GOT. Note that the former condition does not always imply the latter: symbols do not bind locally if they are completely undefined. We'll report undefined symbols later if appropriate. */ if (h->root.dynindx == -1 || (h->got_only_for_calls ? SYMBOL_CALLS_LOCAL (info, &h->root) : SYMBOL_REFERENCES_LOCAL (info, &h->root))) /* The symbol belongs in the local GOT. We no longer need this entry if it was only used for relocations; those relocations will be against the null or section symbol instead of H. */ h->global_got_area = GGA_NONE; else if (htab->is_vxworks && h->got_only_for_calls && h->root.plt.plist->mips_offset != MINUS_ONE) /* On VxWorks, calls can refer directly to the .got.plt entry; they don't need entries in the regular GOT. .got.plt entries will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */ h->global_got_area = GGA_NONE; else if (h->global_got_area == GGA_RELOC_ONLY) { g->reloc_only_gotno++; g->global_gotno++; } } return 1; } /* A htab_traverse callback for GOT entries. Add each one to the GOT given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */ static int mips_elf_add_got_entry (void **entryp, void *data) { struct mips_got_entry *entry; struct mips_elf_traverse_got_arg *arg; void **slot; entry = (struct mips_got_entry *) *entryp; arg = (struct mips_elf_traverse_got_arg *) data; slot = htab_find_slot (arg->g->got_entries, entry, INSERT); if (!slot) { arg->g = NULL; return 0; } if (!*slot) { *slot = entry; mips_elf_count_got_entry (arg->info, arg->g, entry); } return 1; } /* A htab_traverse callback for GOT page entries. Add each one to the GOT given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */ static int mips_elf_add_got_page_entry (void **entryp, void *data) { struct mips_got_page_entry *entry; struct mips_elf_traverse_got_arg *arg; void **slot; entry = (struct mips_got_page_entry *) *entryp; arg = (struct mips_elf_traverse_got_arg *) data; slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT); if (!slot) { arg->g = NULL; return 0; } if (!*slot) { *slot = entry; arg->g->page_gotno += entry->num_pages; } return 1; } /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if this would lead to overflow, 1 if they were merged successfully, and 0 if a merge failed due to lack of memory. (These values are chosen so that nonnegative return values can be returned by a htab_traverse callback.) */ static int mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from, struct mips_got_info *to, struct mips_elf_got_per_bfd_arg *arg) { struct mips_elf_traverse_got_arg tga; unsigned int estimate; /* Work out how many page entries we would need for the combined GOT. */ estimate = arg->max_pages; if (estimate >= from->page_gotno + to->page_gotno) estimate = from->page_gotno + to->page_gotno; /* And conservatively estimate how many local and TLS entries would be needed. */ estimate += from->local_gotno + to->local_gotno; estimate += from->tls_gotno + to->tls_gotno; /* If we're merging with the primary got, any TLS relocations will come after the full set of global entries. Otherwise estimate those conservatively as well. */ if (to == arg->primary && from->tls_gotno + to->tls_gotno) estimate += arg->global_count; else estimate += from->global_gotno + to->global_gotno; /* Bail out if the combined GOT might be too big. */ if (estimate > arg->max_count) return -1; /* Transfer the bfd's got information from FROM to TO. */ tga.info = arg->info; tga.g = to; htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga); if (!tga.g) return 0; htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga); if (!tga.g) return 0; mips_elf_replace_bfd_got (abfd, to); return 1; } /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much as possible of the primary got, since it doesn't require explicit dynamic relocations, but don't use bfds that would reference global symbols out of the addressable range. Failing the primary got, attempt to merge with the current got, or finish the current got and then make make the new got current. */ static bfd_boolean mips_elf_merge_got (bfd *abfd, struct mips_got_info *g, struct mips_elf_got_per_bfd_arg *arg) { unsigned int estimate; int result; if (!mips_elf_resolve_final_got_entries (arg->info, g)) return FALSE; /* Work out the number of page, local and TLS entries. */ estimate = arg->max_pages; if (estimate > g->page_gotno) estimate = g->page_gotno; estimate += g->local_gotno + g->tls_gotno; /* We place TLS GOT entries after both locals and globals. The globals for the primary GOT may overflow the normal GOT size limit, so be sure not to merge a GOT which requires TLS with the primary GOT in that case. This doesn't affect non-primary GOTs. */ estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno); if (estimate <= arg->max_count) { /* If we don't have a primary GOT, use it as a starting point for the primary GOT. */ if (!arg->primary) { arg->primary = g; return TRUE; } /* Try merging with the primary GOT. */ result = mips_elf_merge_got_with (abfd, g, arg->primary, arg); if (result >= 0) return result; } /* If we can merge with the last-created got, do it. */ if (arg->current) { result = mips_elf_merge_got_with (abfd, g, arg->current, arg); if (result >= 0) return result; } /* Well, we couldn't merge, so create a new GOT. Don't check if it fits; if it turns out that it doesn't, we'll get relocation overflows anyway. */ g->next = arg->current; arg->current = g; return TRUE; } /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx to GOTIDX, duplicating the entry if it has already been assigned an index in a different GOT. */ static bfd_boolean mips_elf_set_gotidx (void **entryp, long gotidx) { struct mips_got_entry *entry; entry = (struct mips_got_entry *) *entryp; if (entry->gotidx > 0) { struct mips_got_entry *new_entry; new_entry = bfd_alloc (entry->abfd, sizeof (*entry)); if (!new_entry) return FALSE; *new_entry = *entry; *entryp = new_entry; entry = new_entry; } entry->gotidx = gotidx; return TRUE; } /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a mips_elf_traverse_got_arg in which DATA->value is the size of one GOT entry. Set DATA->g to null on failure. */ static int mips_elf_initialize_tls_index (void **entryp, void *data) { struct mips_got_entry *entry; struct mips_elf_traverse_got_arg *arg; /* We're only interested in TLS symbols. */ entry = (struct mips_got_entry *) *entryp; if (entry->tls_type == GOT_TLS_NONE) return 1; arg = (struct mips_elf_traverse_got_arg *) data; if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno)) { arg->g = NULL; return 0; } /* Account for the entries we've just allocated. */ arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type); return 1; } /* A htab_traverse callback for GOT entries, where DATA points to a mips_elf_traverse_got_arg. Set the global_got_area of each global symbol to DATA->value. */ static int mips_elf_set_global_got_area (void **entryp, void *data) { struct mips_got_entry *entry; struct mips_elf_traverse_got_arg *arg; entry = (struct mips_got_entry *) *entryp; arg = (struct mips_elf_traverse_got_arg *) data; if (entry->abfd != NULL && entry->symndx == -1 && entry->d.h->global_got_area != GGA_NONE) entry->d.h->global_got_area = arg->value; return 1; } /* A htab_traverse callback for secondary GOT entries, where DATA points to a mips_elf_traverse_got_arg. Assign GOT indices to global entries and record the number of relocations they require. DATA->value is the size of one GOT entry. Set DATA->g to null on failure. */ static int mips_elf_set_global_gotidx (void **entryp, void *data) { struct mips_got_entry *entry; struct mips_elf_traverse_got_arg *arg; entry = (struct mips_got_entry *) *entryp; arg = (struct mips_elf_traverse_got_arg *) data; if (entry->abfd != NULL && entry->symndx == -1 && entry->d.h->global_got_area != GGA_NONE) { if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_gotno)) { arg->g = NULL; return 0; } arg->g->assigned_gotno += 1; if (arg->info->shared || (elf_hash_table (arg->info)->dynamic_sections_created && entry->d.h->root.def_dynamic && !entry->d.h->root.def_regular)) arg->g->relocs += 1; } return 1; } /* A htab_traverse callback for GOT entries for which DATA is the bfd_link_info. Forbid any global symbols from having traditional lazy-binding stubs. */ static int mips_elf_forbid_lazy_stubs (void **entryp, void *data) { struct bfd_link_info *info; struct mips_elf_link_hash_table *htab; struct mips_got_entry *entry; entry = (struct mips_got_entry *) *entryp; info = (struct bfd_link_info *) data; htab = mips_elf_hash_table (info); BFD_ASSERT (htab != NULL); if (entry->abfd != NULL && entry->symndx == -1 && entry->d.h->needs_lazy_stub) { entry->d.h->needs_lazy_stub = FALSE; htab->lazy_stub_count--; } return 1; } /* Return the offset of an input bfd IBFD's GOT from the beginning of the primary GOT. */ static bfd_vma mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd) { if (!g->next) return 0; g = mips_elf_bfd_got (ibfd, FALSE); if (! g) return 0; BFD_ASSERT (g->next); g = g->next; return (g->local_gotno + g->global_gotno + g->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd); } /* Turn a single GOT that is too big for 16-bit addressing into a sequence of GOTs, each one 16-bit addressable. */ static bfd_boolean mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info, asection *got, bfd_size_type pages) { struct mips_elf_link_hash_table *htab; struct mips_elf_got_per_bfd_arg got_per_bfd_arg; struct mips_elf_traverse_got_arg tga; struct mips_got_info *g, *gg; unsigned int assign, needed_relocs; bfd *dynobj, *ibfd; dynobj = elf_hash_table (info)->dynobj; htab = mips_elf_hash_table (info); BFD_ASSERT (htab != NULL); g = htab->got_info; got_per_bfd_arg.obfd = abfd; got_per_bfd_arg.info = info; got_per_bfd_arg.current = NULL; got_per_bfd_arg.primary = NULL; got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info) / MIPS_ELF_GOT_SIZE (abfd)) - htab->reserved_gotno); got_per_bfd_arg.max_pages = pages; /* The number of globals that will be included in the primary GOT. See the calls to mips_elf_set_global_got_area below for more information. */ got_per_bfd_arg.global_count = g->global_gotno; /* Try to merge the GOTs of input bfds together, as long as they don't seem to exceed the maximum GOT size, choosing one of them to be the primary GOT. */ for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link_next) { gg = mips_elf_bfd_got (ibfd, FALSE); if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg)) return FALSE; } /* If we do not find any suitable primary GOT, create an empty one. */ if (got_per_bfd_arg.primary == NULL) g->next = mips_elf_create_got_info (abfd); else g->next = got_per_bfd_arg.primary; g->next->next = got_per_bfd_arg.current; /* GG is now the master GOT, and G is the primary GOT. */ gg = g; g = g->next; /* Map the output bfd to the primary got. That's what we're going to use for bfds that use GOT16 or GOT_PAGE relocations that we didn't mark in check_relocs, and we want a quick way to find it. We can't just use gg->next because we're going to reverse the list. */ mips_elf_replace_bfd_got (abfd, g); /* Every symbol that is referenced in a dynamic relocation must be present in the primary GOT, so arrange for them to appear after those that are actually referenced. */ gg->reloc_only_gotno = gg->global_gotno - g->global_gotno; g->global_gotno = gg->global_gotno; tga.info = info; tga.value = GGA_RELOC_ONLY; htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga); tga.value = GGA_NORMAL; htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga); /* Now go through the GOTs assigning them offset ranges. [assigned_gotno, local_gotno[ will be set to the range of local entries in each GOT. We can then compute the end of a GOT by adding local_gotno to global_gotno. We reverse the list and make it circular since then we'll be able to quickly compute the beginning of a GOT, by computing the end of its predecessor. To avoid special cases for the primary GOT, while still preserving assertions that are valid for both single- and multi-got links, we arrange for the main got struct to have the right number of global entries, but set its local_gotno such that the initial offset of the primary GOT is zero. Remember that the primary GOT will become the last item in the circular linked list, so it points back to the master GOT. */ gg->local_gotno = -g->global_gotno; gg->global_gotno = g->global_gotno; gg->tls_gotno = 0; assign = 0; gg->next = gg; do { struct mips_got_info *gn; assign += htab->reserved_gotno; g->assigned_gotno = assign; g->local_gotno += assign; g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno); assign = g->local_gotno + g->global_gotno + g->tls_gotno; /* Take g out of the direct list, and push it onto the reversed list that gg points to. g->next is guaranteed to be nonnull after this operation, as required by mips_elf_initialize_tls_index. */ gn = g->next; g->next = gg->next; gg->next = g; /* Set up any TLS entries. We always place the TLS entries after all non-TLS entries. */ g->tls_assigned_gotno = g->local_gotno + g->global_gotno; tga.g = g; tga.value = MIPS_ELF_GOT_SIZE (abfd); htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga); if (!tga.g) return FALSE; BFD_ASSERT (g->tls_assigned_gotno == assign); /* Move onto the next GOT. It will be a secondary GOT if nonull. */ g = gn; /* Forbid global symbols in every non-primary GOT from having lazy-binding stubs. */ if (g) htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info); } while (g); got->size = assign * MIPS_ELF_GOT_SIZE (abfd); needed_relocs = 0; for (g = gg->next; g && g->next != gg; g = g->next) { unsigned int save_assign; /* Assign offsets to global GOT entries and count how many relocations they need. */ save_assign = g->assigned_gotno; g->assigned_gotno = g->local_gotno; tga.info = info; tga.value = MIPS_ELF_GOT_SIZE (abfd); tga.g = g; htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga); if (!tga.g) return FALSE; BFD_ASSERT (g->assigned_gotno == g->local_gotno + g->global_gotno); g->assigned_gotno = save_assign; if (info->shared) { g->relocs += g->local_gotno - g->assigned_gotno; BFD_ASSERT (g->assigned_gotno == g->next->local_gotno + g->next->global_gotno + g->next->tls_gotno + htab->reserved_gotno); } needed_relocs += g->relocs; } needed_relocs += g->relocs; if (needed_relocs) mips_elf_allocate_dynamic_relocations (dynobj, info, needed_relocs); return TRUE; } /* Returns the first relocation of type r_type found, beginning with RELOCATION. RELEND is one-past-the-end of the relocation table. */ static const Elf_Internal_Rela * mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type, const Elf_Internal_Rela *relocation, const Elf_Internal_Rela *relend) { unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info); while (relocation < relend) { if (ELF_R_TYPE (abfd, relocation->r_info) == r_type && ELF_R_SYM (abfd, relocation->r_info) == r_symndx) return relocation; ++relocation; } /* We didn't find it. */ return NULL; } /* Return whether an input relocation is against a local symbol. */ static bfd_boolean mips_elf_local_relocation_p (bfd *input_bfd, const Elf_Internal_Rela *relocation, asection **local_sections) { unsigned long r_symndx; Elf_Internal_Shdr *symtab_hdr; size_t extsymoff; r_symndx = ELF_R_SYM (input_bfd, relocation->r_info); symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info; if (r_symndx < extsymoff) return TRUE; if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL) return TRUE; return FALSE; } /* Sign-extend VALUE, which has the indicated number of BITS. */ bfd_vma _bfd_mips_elf_sign_extend (bfd_vma value, int bits) { if (value & ((bfd_vma) 1 << (bits - 1))) /* VALUE is negative. */ value |= ((bfd_vma) - 1) << bits; return value; } /* Return non-zero if the indicated VALUE has overflowed the maximum range expressible by a signed number with the indicated number of BITS. */ static bfd_boolean mips_elf_overflow_p (bfd_vma value, int bits) { bfd_signed_vma svalue = (bfd_signed_vma) value; if (svalue > (1 << (bits - 1)) - 1) /* The value is too big. */ return TRUE; else if (svalue < -(1 << (bits - 1))) /* The value is too small. */ return TRUE; /* All is well. */ return FALSE; } /* Calculate the %high function. */ static bfd_vma mips_elf_high (bfd_vma value) { return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff; } /* Calculate the %higher function. */ static bfd_vma mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED) { #ifdef BFD64 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff; #else abort (); return MINUS_ONE; #endif } /* Calculate the %highest function. */ static bfd_vma mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED) { #ifdef BFD64 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff; #else abort (); return MINUS_ONE; #endif } /* Create the .compact_rel section. */ static bfd_boolean mips_elf_create_compact_rel_section (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED) { flagword flags; register asection *s; if (bfd_get_linker_section (abfd, ".compact_rel") == NULL) { flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED | SEC_READONLY); s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags); if (s == NULL || ! bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd))) return FALSE; s->size = sizeof (Elf32_External_compact_rel); } return TRUE; } /* Create the .got section to hold the global offset table. */ static bfd_boolean mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info) { flagword flags; register asection *s; struct elf_link_hash_entry *h; struct bfd_link_hash_entry *bh; struct mips_elf_link_hash_table *htab; htab = mips_elf_hash_table (info); BFD_ASSERT (htab != NULL); /* This function may be called more than once. */ if (htab->sgot) return TRUE; flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED); /* We have to use an alignment of 2**4 here because this is hardcoded in the function stub generation and in the linker script. */ s = bfd_make_section_anyway_with_flags (abfd, ".got", flags); if (s == NULL || ! bfd_set_section_alignment (abfd, s, 4)) return FALSE; htab->sgot = s; /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the linker script because we don't want to define the symbol if we are not creating a global offset table. */ bh = NULL; if (! (_bfd_generic_link_add_one_symbol (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s, 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) return FALSE; h = (struct elf_link_hash_entry *) bh; h->non_elf = 0; h->def_regular = 1; h->type = STT_OBJECT; elf_hash_table (info)->hgot = h; if (info->shared && ! bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; htab->got_info = mips_elf_create_got_info (abfd); mips_elf_section_data (s)->elf.this_hdr.sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; /* We also need a .got.plt section when generating PLTs. */ s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED); if (s == NULL) return FALSE; htab->sgotplt = s; return TRUE; } /* Return true if H refers to the special VxWorks __GOTT_BASE__ or __GOTT_INDEX__ symbols. These symbols are only special for shared objects; they are not used in executables. */ static bfd_boolean is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h) { return (mips_elf_hash_table (info)->is_vxworks && info->shared && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0)); } /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might require an la25 stub. See also mips_elf_local_pic_function_p, which determines whether the destination function ever requires a stub. */ static bfd_boolean mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type, bfd_boolean target_is_16_bit_code_p) { /* We specifically ignore branches and jumps from EF_PIC objects, where the onus is on the compiler or programmer to perform any necessary initialization of $25. Sometimes such initialization is unnecessary; for example, -mno-shared functions do not use the incoming value of $25, and may therefore be called directly. */ if (PIC_OBJECT_P (input_bfd)) return FALSE; switch (r_type) { case R_MIPS_26: case R_MIPS_PC16: case R_MICROMIPS_26_S1: case R_MICROMIPS_PC7_S1: case R_MICROMIPS_PC10_S1: case R_MICROMIPS_PC16_S1: case R_MICROMIPS_PC23_S2: return TRUE; case R_MIPS16_26: return !target_is_16_bit_code_p; default: return FALSE; } } /* Calculate the value produced by the RELOCATION (which comes from the INPUT_BFD). The ADDEND is the addend to use for this RELOCATION; RELOCATION->R_ADDEND is ignored. The result of the relocation calculation is stored in VALUEP. On exit, set *CROSS_MODE_JUMP_P to true if the relocation field is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa. This function returns bfd_reloc_continue if the caller need take no further action regarding this relocation, bfd_reloc_notsupported if something goes dramatically wrong, bfd_reloc_overflow if an overflow occurs, and bfd_reloc_ok to indicate success. */ static bfd_reloc_status_type mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd, asection *input_section, struct bfd_link_info *info, const Elf_Internal_Rela *relocation, bfd_vma addend, reloc_howto_type *howto, Elf_Internal_Sym *local_syms, asection **local_sections, bfd_vma *valuep, const char **namep, bfd_boolean *cross_mode_jump_p, bfd_boolean save_addend) { /* The eventual value we will return. */ bfd_vma value; /* The address of the symbol against which the relocation is occurring. */ bfd_vma symbol = 0; /* The final GP value to be used for the relocatable, executable, or shared object file being produced. */ bfd_vma gp; /* The place (section offset or address) of the storage unit being relocated. */ bfd_vma p; /* The value of GP used to create the relocatable object. */ bfd_vma gp0; /* The offset into the global offset table at which the address of the relocation entry symbol, adjusted by the addend, resides during execution. */ bfd_vma g = MINUS_ONE; /* The section in which the symbol referenced by the relocation is located. */ asection *sec = NULL; struct mips_elf_link_hash_entry *h = NULL; /* TRUE if the symbol referred to by this relocation is a local symbol. */ bfd_boolean local_p, was_local_p; /* TRUE if the symbol referred to by this relocation is "_gp_disp". */ bfd_boolean gp_disp_p = FALSE; /* TRUE if the symbol referred to by this relocation is "__gnu_local_gp". */ bfd_boolean gnu_local_gp_p = FALSE; Elf_Internal_Shdr *symtab_hdr; size_t extsymoff; unsigned long r_symndx; int r_type; /* TRUE if overflow occurred during the calculation of the relocation value. */ bfd_boolean overflowed_p; /* TRUE if this relocation refers to a MIPS16 function. */ bfd_boolean target_is_16_bit_code_p = FALSE; bfd_boolean target_is_micromips_code_p = FALSE; struct mips_elf_link_hash_table *htab; bfd *dynobj; dynobj = elf_hash_table (info)->dynobj; htab = mips_elf_hash_table (info); BFD_ASSERT (htab != NULL); /* Parse the relocation. */ r_symndx = ELF_R_SYM (input_bfd, relocation->r_info); r_type = ELF_R_TYPE (input_bfd, relocation->r_info); p = (input_section->output_section->vma + input_section->output_offset + relocation->r_offset); /* Assume that there will be no overflow. */ overflowed_p = FALSE; /* Figure out whether or not the symbol is local, and get the offset used in the array of hash table entries. */ symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; local_p = mips_elf_local_relocation_p (input_bfd, relocation, local_sections); was_local_p = local_p; if (! elf_bad_symtab (input_bfd)) extsymoff = symtab_hdr->sh_info; else { /* The symbol table does not follow the rule that local symbols must come before globals. */ extsymoff = 0; } /* Figure out the value of the symbol. */ if (local_p) { Elf_Internal_Sym *sym; sym = local_syms + r_symndx; sec = local_sections[r_symndx]; symbol = sec->output_section->vma + sec->output_offset; if (ELF_ST_TYPE (sym->st_info) != STT_SECTION || (sec->flags & SEC_MERGE)) symbol += sym->st_value; if ((sec->flags & SEC_MERGE) && ELF_ST_TYPE (sym->st_info) == STT_SECTION) { addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend); addend -= symbol; addend += sec->output_section->vma + sec->output_offset; } /* MIPS16/microMIPS text labels should be treated as odd. */ if (ELF_ST_IS_COMPRESSED (sym->st_other)) ++symbol; /* Record the name of this symbol, for our caller. */ *namep = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, sym->st_name); if (*namep == '\0') *namep = bfd_section_name (input_bfd, sec); target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other); target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other); } else { /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */ /* For global symbols we look up the symbol in the hash-table. */ h = ((struct mips_elf_link_hash_entry *) elf_sym_hashes (input_bfd) [r_symndx - extsymoff]); /* Find the real hash-table entry for this symbol. */ while (h->root.root.type == bfd_link_hash_indirect || h->root.root.type == bfd_link_hash_warning) h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; /* Record the name of this symbol, for our caller. */ *namep = h->root.root.root.string; /* See if this is the special _gp_disp symbol. Note that such a symbol must always be a global symbol. */ if (strcmp (*namep, "_gp_disp") == 0 && ! NEWABI_P (input_bfd)) { /* Relocations against _gp_disp are permitted only with R_MIPS_HI16 and R_MIPS_LO16 relocations. */ if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type)) return bfd_reloc_notsupported; gp_disp_p = TRUE; } /* See if this is the special _gp symbol. Note that such a symbol must always be a global symbol. */ else if (strcmp (*namep, "__gnu_local_gp") == 0) gnu_local_gp_p = TRUE; /* If this symbol is defined, calculate its address. Note that _gp_disp is a magic symbol, always implicitly defined by the linker, so it's inappropriate to check to see whether or not its defined. */ else if ((h->root.root.type == bfd_link_hash_defined || h->root.root.type == bfd_link_hash_defweak) && h->root.root.u.def.section) { sec = h->root.root.u.def.section; if (sec->output_section) symbol = (h->root.root.u.def.value + sec->output_section->vma + sec->output_offset); else symbol = h->root.root.u.def.value; } else if (h->root.root.type == bfd_link_hash_undefweak) /* We allow relocations against undefined weak symbols, giving it the value zero, so that you can undefined weak functions and check to see if they exist by looking at their addresses. */ symbol = 0; else if (info->unresolved_syms_in_objects == RM_IGNORE && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT) symbol = 0; else if (strcmp (*namep, SGI_COMPAT (input_bfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0) { /* If this is a dynamic link, we should have created a _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol in in _bfd_mips_elf_create_dynamic_sections. Otherwise, we should define the symbol with a value of 0. FIXME: It should probably get into the symbol table somehow as well. */ BFD_ASSERT (! info->shared); BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL); symbol = 0; } else if (ELF_MIPS_IS_OPTIONAL (h->root.other)) { /* This is an optional symbol - an Irix specific extension to the ELF spec. Ignore it for now. XXX - FIXME - there is more to the spec for OPTIONAL symbols than simply ignoring them, but we do not handle this for now. For information see the "64-bit ELF Object File Specification" which is available from here: http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */ symbol = 0; } else if ((*info->callbacks->undefined_symbol) (info, h->root.root.root.string, input_bfd, input_section, relocation->r_offset, (info->unresolved_syms_in_objects == RM_GENERATE_ERROR) || ELF_ST_VISIBILITY (h->root.other))) { return bfd_reloc_undefined; } else { return bfd_reloc_notsupported; } target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other); target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other); } /* If this is a reference to a 16-bit function with a stub, we need to redirect the relocation to the stub unless: (a) the relocation is for a MIPS16 JAL; (b) the relocation is for a MIPS16 PIC call, and there are no non-MIPS16 uses of the GOT slot; or (c) the section allows direct references to MIPS16 functions. */ if (r_type != R_MIPS16_26 && !info->relocatable && ((h != NULL && h->fn_stub != NULL && (r_type != R_MIPS16_CALL16 || h->need_fn_stub)) || (local_p && mips_elf_tdata (input_bfd)->local_stubs != NULL && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL)) && !section_allows_mips16_refs_p (input_section)) { /* This is a 32- or 64-bit call to a 16-bit function. We should have already noticed that we were going to need the stub. */ if (local_p) { sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx]; value = 0; } else { BFD_ASSERT (h->need_fn_stub); if (h->la25_stub) { /* If a LA25 header for the stub itself exists, point to the prepended LUI/ADDIU sequence. */ sec = h->la25_stub->stub_section; value = h->la25_stub->offset; } else { sec = h->fn_stub; value = 0; } } symbol = sec->output_section->vma + sec->output_offset + value; /* The target is 16-bit, but the stub isn't. */ target_is_16_bit_code_p = FALSE; } /* If this is a MIPS16 call with a stub, that is made through the PLT or to a standard MIPS function, we need to redirect the call to the stub. Note that we specifically exclude R_MIPS16_CALL16 from this behavior; indirect calls should use an indirect stub instead. */ else if (r_type == R_MIPS16_26 && !info->relocatable && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL)) || (local_p && mips_elf_tdata (input_bfd)->local_call_stubs != NULL && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL)) && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p)) { if (local_p) sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx]; else { /* If both call_stub and call_fp_stub are defined, we can figure out which one to use by checking which one appears in the input file. */ if (h->call_stub != NULL && h->call_fp_stub != NULL) { asection *o; sec = NULL; for (o = input_bfd->sections; o != NULL; o = o->next) { if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o))) { sec = h->call_fp_stub; break; } } if (sec == NULL) sec = h->call_stub; } else if (h->call_stub != NULL) sec = h->call_stub; else sec = h->call_fp_stub; } BFD_ASSERT (sec->size > 0); symbol = sec->output_section->vma + sec->output_offset; } /* If this is a direct call to a PIC function, redirect to the non-PIC stub. */ else if (h != NULL && h->la25_stub && mips_elf_relocation_needs_la25_stub (input_bfd, r_type, target_is_16_bit_code_p)) symbol = (h->la25_stub->stub_section->output_section->vma + h->la25_stub->stub_section->output_offset + h->la25_stub->offset); /* For direct MIPS16 and microMIPS calls make sure the compressed PLT entry is used if a standard PLT entry has also been made. In this case the symbol will have been set by mips_elf_set_plt_sym_value to point to the standard PLT entry, so redirect to the compressed one. */ else if ((r_type == R_MIPS16_26 || r_type == R_MICROMIPS_26_S1) && !info->relocatable && h != NULL && h->use_plt_entry && h->root.plt.plist->comp_offset != MINUS_ONE && h->root.plt.plist->mips_offset != MINUS_ONE) { bfd_boolean micromips_p = MICROMIPS_P (abfd); sec = htab->splt; symbol = (sec->output_section->vma + sec->output_offset + htab->plt_header_size + htab->plt_mips_offset + h->root.plt.plist->comp_offset + 1); target_is_16_bit_code_p = !micromips_p; target_is_micromips_code_p = micromips_p; } /* Make sure MIPS16 and microMIPS are not used together. */ if ((r_type == R_MIPS16_26 && target_is_micromips_code_p) || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p)) { (*_bfd_error_handler) (_("MIPS16 and microMIPS functions cannot call each other")); return bfd_reloc_notsupported; } /* Calls from 16-bit code to 32-bit code and vice versa require the mode change. However, we can ignore calls to undefined weak symbols, which should never be executed at runtime. This exception is important because the assembly writer may have "known" that any definition of the symbol would be 16-bit code, and that direct jumps were therefore acceptable. */ *cross_mode_jump_p = (!info->relocatable && !(h && h->root.root.type == bfd_link_hash_undefweak) && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p) || (r_type == R_MICROMIPS_26_S1 && !target_is_micromips_code_p) || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR) && (target_is_16_bit_code_p || target_is_micromips_code_p)))); local_p = (h == NULL || (h->got_only_for_calls ? SYMBOL_CALLS_LOCAL (info, &h->root) : SYMBOL_REFERENCES_LOCAL (info, &h->root))); gp0 = _bfd_get_gp_value (input_bfd); gp = _bfd_get_gp_value (abfd); if (htab->got_info) gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd); if (gnu_local_gp_p) symbol = gp; /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */ if (got_page_reloc_p (r_type) && !local_p) { r_type = (micromips_reloc_p (r_type) ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP); addend = 0; } /* If we haven't already determined the GOT offset, and we're going to need it, get it now. */ switch (r_type) { case R_MIPS16_CALL16: case R_MIPS16_GOT16: case R_MIPS_CALL16: case R_MIPS_GOT16: case R_MIPS_GOT_DISP: case R_MIPS_GOT_HI16: case R_MIPS_CALL_HI16: case R_MIPS_GOT_LO16: case R_MIPS_CALL_LO16: case R_MICROMIPS_CALL16: case R_MICROMIPS_GOT16: case R_MICROMIPS_GOT_DISP: case R_MICROMIPS_GOT_HI16: case R_MICROMIPS_CALL_HI16: case R_MICROMIPS_GOT_LO16: case R_MICROMIPS_CALL_LO16: case R_MIPS_TLS_GD: case R_MIPS_TLS_GOTTPREL: case R_MIPS_TLS_LDM: case R_MIPS16_TLS_GD: case R_MIPS16_TLS_GOTTPREL: case R_MIPS16_TLS_LDM: case R_MICROMIPS_TLS_GD: case R_MICROMIPS_TLS_GOTTPREL: case R_MICROMIPS_TLS_LDM: /* Find the index into the GOT where this value is located. */ if (tls_ldm_reloc_p (r_type)) { g = mips_elf_local_got_index (abfd, input_bfd, info, 0, 0, NULL, r_type); if (g == MINUS_ONE) return bfd_reloc_outofrange; } else if (!local_p) { /* On VxWorks, CALL relocations should refer to the .got.plt entry, which is initialized to point at the PLT stub. */ if (htab->is_vxworks && (call_hi16_reloc_p (r_type) || call_lo16_reloc_p (r_type) || call16_reloc_p (r_type))) { BFD_ASSERT (addend == 0); BFD_ASSERT (h->root.needs_plt); g = mips_elf_gotplt_index (info, &h->root); } else { BFD_ASSERT (addend == 0); g = mips_elf_global_got_index (abfd, info, input_bfd, &h->root, r_type); if (!TLS_RELOC_P (r_type) && !elf_hash_table (info)->dynamic_sections_created) /* This is a static link. We must initialize the GOT entry. */ MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g); } } else if (!htab->is_vxworks && (call16_reloc_p (r_type) || got16_reloc_p (r_type))) /* The calculation below does not involve "g". */ break; else { g = mips_elf_local_got_index (abfd, input_bfd, info, symbol + addend, r_symndx, h, r_type); if (g == MINUS_ONE) return bfd_reloc_outofrange; } /* Convert GOT indices to actual offsets. */ g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g); break; } /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__ symbols are resolved by the loader. Add them to .rela.dyn. */ if (h != NULL && is_gott_symbol (info, &h->root)) { Elf_Internal_Rela outrel; bfd_byte *loc; asection *s; s = mips_elf_rel_dyn_section (info, FALSE); loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela); outrel.r_offset = (input_section->output_section->vma + input_section->output_offset + relocation->r_offset); outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type); outrel.r_addend = addend; bfd_elf32_swap_reloca_out (abfd, &outrel, loc); /* If we've written this relocation for a readonly section, we need to set DF_TEXTREL again, so that we do not delete the DT_TEXTREL tag. */ if (MIPS_ELF_READONLY_SECTION (input_section)) info->flags |= DF_TEXTREL; *valuep = 0; return bfd_reloc_ok; } /* Figure out what kind of relocation is being performed. */ switch (r_type) { case R_MIPS_NONE: return bfd_reloc_continue; case R_MIPS_16: value = symbol + _bfd_mips_elf_sign_extend (addend, 16); overflowed_p = mips_elf_overflow_p (value, 16); break; case R_MIPS_32: case R_MIPS_REL32: case R_MIPS_64: if ((info->shared || (htab->root.dynamic_sections_created && h != NULL && h->root.def_dynamic && !h->root.def_regular && !h->has_static_relocs)) && r_symndx != STN_UNDEF && (h == NULL || h->root.root.type != bfd_link_hash_undefweak || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT) && (input_section->flags & SEC_ALLOC) != 0) { /* If we're creating a shared library, then we can't know where the symbol will end up. So, we create a relocation record in the output, and leave the job up to the dynamic linker. We must do the same for executable references to shared library symbols, unless we've decided to use copy relocs or PLTs instead. */ value = addend; if (!mips_elf_create_dynamic_relocation (abfd, info, relocation, h, sec, symbol, &value, input_section)) return bfd_reloc_undefined; } else { if (r_type != R_MIPS_REL32) value = symbol + addend; else value = addend; } value &= howto->dst_mask; break; case R_MIPS_PC32: value = symbol + addend - p; value &= howto->dst_mask; break; case R_MIPS16_26: /* The calculation for R_MIPS16_26 is just the same as for an R_MIPS_26. It's only the storage of the relocated field into the output file that's different. That's handled in mips_elf_perform_relocation. So, we just fall through to the R_MIPS_26 case here. */ case R_MIPS_26: case R_MICROMIPS_26_S1: { unsigned int shift; /* Make sure the target of JALX is word-aligned. Bit 0 must be the correct ISA mode selector and bit 1 must be 0. */ if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26)) return bfd_reloc_outofrange; /* Shift is 2, unusually, for microMIPS JALX. */ shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2; if (was_local_p) value = addend | ((p + 4) & (0xfc000000 << shift)); else value = _bfd_mips_elf_sign_extend (addend, 26 + shift); value = (value + symbol) >> shift; if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak) overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift)); value &= howto->dst_mask; } break; case R_MIPS_TLS_DTPREL_HI16: case R_MIPS16_TLS_DTPREL_HI16: case R_MICROMIPS_TLS_DTPREL_HI16: value = (mips_elf_high (addend + symbol - dtprel_base (info)) & howto->dst_mask); break; case R_MIPS_TLS_DTPREL_LO16: case R_MIPS_TLS_DTPREL32: case R_MIPS_TLS_DTPREL64: case R_MIPS16_TLS_DTPREL_LO16: case R_MICROMIPS_TLS_DTPREL_LO16: value = (symbol + addend - dtprel_base (info)) & howto->dst_mask; break; case R_MIPS_TLS_TPREL_HI16: case R_MIPS16_TLS_TPREL_HI16: case R_MICROMIPS_TLS_TPREL_HI16: value = (mips_elf_high (addend + symbol - tprel_base (info)) & howto->dst_mask); break; case R_MIPS_TLS_TPREL_LO16: case R_MIPS_TLS_TPREL32: case R_MIPS_TLS_TPREL64: case R_MIPS16_TLS_TPREL_LO16: case R_MICROMIPS_TLS_TPREL_LO16: value = (symbol + addend - tprel_base (info)) & howto->dst_mask; break; case R_MIPS_HI16: case R_MIPS16_HI16: case R_MICROMIPS_HI16: if (!gp_disp_p) { value = mips_elf_high (addend + symbol); value &= howto->dst_mask; } else { /* For MIPS16 ABI code we generate this sequence 0: li $v0,%hi(_gp_disp) 4: addiupc $v1,%lo(_gp_disp) 8: sll $v0,16 12: addu $v0,$v1 14: move $gp,$v0 So the offsets of hi and lo relocs are the same, but the base $pc is that used by the ADDIUPC instruction at $t9 + 4. ADDIUPC clears the low two bits of the instruction address, so the base is ($t9 + 4) & ~3. */ if (r_type == R_MIPS16_HI16) value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3)); /* The microMIPS .cpload sequence uses the same assembly instructions as the traditional psABI version, but the incoming $t9 has the low bit set. */ else if (r_type == R_MICROMIPS_HI16) value = mips_elf_high (addend + gp - p - 1); else value = mips_elf_high (addend + gp - p); overflowed_p = mips_elf_overflow_p (value, 16); } break; case R_MIPS_LO16: case R_MIPS16_LO16: case R_MICROMIPS_LO16: case R_MICROMIPS_HI0_LO16: if (!gp_disp_p) value = (symbol + addend) & howto->dst_mask; else { /* See the comment for R_MIPS16_HI16 above for the reason for this conditional. */ if (r_type == R_MIPS16_LO16) value = addend + gp - (p & ~(bfd_vma) 0x3); else if (r_type == R_MICROMIPS_LO16 || r_type == R_MICROMIPS_HI0_LO16) value = addend + gp - p + 3; else value = addend + gp - p + 4; /* The MIPS ABI requires checking the R_MIPS_LO16 relocation for overflow. But, on, say, IRIX5, relocations against _gp_disp are normally generated from the .cpload pseudo-op. It generates code that normally looks like this: lui $gp,%hi(_gp_disp) addiu $gp,$gp,%lo(_gp_disp) addu $gp,$gp,$t9 Here $t9 holds the address of the function being called, as required by the MIPS ELF ABI. The R_MIPS_LO16 relocation can easily overflow in this situation, but the R_MIPS_HI16 relocation will handle the overflow. Therefore, we consider this a bug in the MIPS ABI, and do not check for overflow here. */ } break; case R_MIPS_LITERAL: case R_MICROMIPS_LITERAL: /* Because we don't merge literal sections, we can handle this just like R_MIPS_GPREL16. In the long run, we should merge shared literals, and then we will need to additional work here. */ /* Fall through. */ case R_MIPS16_GPREL: /* The R_MIPS16_GPREL performs the same calculation as R_MIPS_GPREL16, but stores the relocated bits in a different order. We don't need to do anything special here; the differences are handled in mips_elf_perform_relocation. */ case R_MIPS_GPREL16: case R_MICROMIPS_GPREL7_S2: case R_MICROMIPS_GPREL16: /* Only sign-extend the addend if it was extracted from the instruction. If the addend was separate, leave it alone, otherwise we may lose significant bits. */ if (howto->partial_inplace) addend = _bfd_mips_elf_sign_extend (addend, 16); value = symbol + addend - gp; /* If the symbol was local, any earlier relocatable links will have adjusted its addend with the gp offset, so compensate for that now. Don't do it for symbols forced local in this link, though, since they won't have had the gp offset applied to them before. */ if (was_local_p) value += gp0; overflowed_p = mips_elf_overflow_p (value, 16); break; case R_MIPS16_GOT16: case R_MIPS16_CALL16: case R_MIPS_GOT16: case R_MIPS_CALL16: case R_MICROMIPS_GOT16: case R_MICROMIPS_CALL16: /* VxWorks does not have separate local and global semantics for R_MIPS*_GOT16; every relocation evaluates to "G". */ if (!htab->is_vxworks && local_p) { value = mips_elf_got16_entry (abfd, input_bfd, info, symbol + addend, !was_local_p); if (value == MINUS_ONE) return bfd_reloc_outofrange; value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value); overflowed_p = mips_elf_overflow_p (value, 16); break; } /* Fall through. */ case R_MIPS_TLS_GD: case R_MIPS_TLS_GOTTPREL: case R_MIPS_TLS_LDM: case R_MIPS_GOT_DISP: case R_MIPS16_TLS_GD: case R_MIPS16_TLS_GOTTPREL: case R_MIPS16_TLS_LDM: case R_MICROMIPS_TLS_GD: case R_MICROMIPS_TLS_GOTTPREL: case R_MICROMIPS_TLS_LDM: case R_MICROMIPS_GOT_DISP: value = g; overflowed_p = mips_elf_overflow_p (value, 16); break; case R_MIPS_GPREL32: value = (addend + symbol + gp0 - gp); if (!save_addend) value &= howto->dst_mask; break; case R_MIPS_PC16: case R_MIPS_GNU_REL16_S2: value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p; overflowed_p = mips_elf_overflow_p (value, 18); value >>= howto->rightshift; value &= howto->dst_mask; break; case R_MICROMIPS_PC7_S1: value = symbol + _bfd_mips_elf_sign_extend (addend, 8) - p; overflowed_p = mips_elf_overflow_p (value, 8); value >>= howto->rightshift; value &= howto->dst_mask; break; case R_MICROMIPS_PC10_S1: value = symbol + _bfd_mips_elf_sign_extend (addend, 11) - p; overflowed_p = mips_elf_overflow_p (value, 11); value >>= howto->rightshift; value &= howto->dst_mask; break; case R_MICROMIPS_PC16_S1: value = symbol + _bfd_mips_elf_sign_extend (addend, 17) - p; overflowed_p = mips_elf_overflow_p (value, 17); value >>= howto->rightshift; value &= howto->dst_mask; break; case R_MICROMIPS_PC23_S2: value = symbol + _bfd_mips_elf_sign_extend (addend, 25) - ((p | 3) ^ 3); overflowed_p = mips_elf_overflow_p (value, 25); value >>= howto->rightshift; value &= howto->dst_mask; break; case R_MIPS_GOT_HI16: case R_MIPS_CALL_HI16: case R_MICROMIPS_GOT_HI16: case R_MICROMIPS_CALL_HI16: /* We're allowed to handle these two relocations identically. The dynamic linker is allowed to handle the CALL relocations differently by creating a lazy evaluation stub. */ value = g; value = mips_elf_high (value); value &= howto->dst_mask; break; case R_MIPS_GOT_LO16: case R_MIPS_CALL_LO16: case R_MICROMIPS_GOT_LO16: case R_MICROMIPS_CALL_LO16: value = g & howto->dst_mask; break; case R_MIPS_GOT_PAGE: case R_MICROMIPS_GOT_PAGE: value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL); if (value == MINUS_ONE) return bfd_reloc_outofrange; value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value); overflowed_p = mips_elf_overflow_p (value, 16); break; case R_MIPS_GOT_OFST: case R_MICROMIPS_GOT_OFST: if (local_p) mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value); else value = addend; overflowed_p = mips_elf_overflow_p (value, 16); break; case R_MIPS_SUB: case R_MICROMIPS_SUB: value = symbol - addend; value &= howto->dst_mask; break; case R_MIPS_HIGHER: case R_MICROMIPS_HIGHER: value = mips_elf_higher (addend + symbol); value &= howto->dst_mask; break; case R_MIPS_HIGHEST: case R_MICROMIPS_HIGHEST: value = mips_elf_highest (addend + symbol); value &= howto->dst_mask; break; case R_MIPS_SCN_DISP: case R_MICROMIPS_SCN_DISP: value = symbol + addend - sec->output_offset; value &= howto->dst_mask; break; case R_MIPS_JALR: case R_MICROMIPS_JALR: /* This relocation is only a hint. In some cases, we optimize it into a bal instruction. But we don't try to optimize when the symbol does not resolve locally. */ if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root)) return bfd_reloc_continue; value = symbol + addend; break; case R_MIPS_PJUMP: case R_MIPS_GNU_VTINHERIT: case R_MIPS_GNU_VTENTRY: /* We don't do anything with these at present. */ return bfd_reloc_continue; default: /* An unrecognized relocation type. */ return bfd_reloc_notsupported; } /* Store the VALUE for our caller. */ *valuep = value; return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok; } /* Obtain the field relocated by RELOCATION. */ static bfd_vma mips_elf_obtain_contents (reloc_howto_type *howto, const Elf_Internal_Rela *relocation, bfd *input_bfd, bfd_byte *contents) { bfd_vma x; bfd_byte *location = contents + relocation->r_offset; /* Obtain the bytes. */ x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location); return x; } /* It has been determined that the result of the RELOCATION is the VALUE. Use HOWTO to place VALUE into the output file at the appropriate position. The SECTION is the section to which the relocation applies. CROSS_MODE_JUMP_P is true if the relocation field is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa. Returns FALSE if anything goes wrong. */ static bfd_boolean mips_elf_perform_relocation (struct bfd_link_info *info, reloc_howto_type *howto, const Elf_Internal_Rela *relocation, bfd_vma value, bfd *input_bfd, asection *input_section, bfd_byte *contents, bfd_boolean cross_mode_jump_p) { bfd_vma x; bfd_byte *location; int r_type = ELF_R_TYPE (input_bfd, relocation->r_info); /* Figure out where the relocation is occurring. */ location = contents + relocation->r_offset; _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location); /* Obtain the current value. */ x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents); /* Clear the field we are setting. */ x &= ~howto->dst_mask; /* Set the field. */ x |= (value & howto->dst_mask); /* If required, turn JAL into JALX. */ if (cross_mode_jump_p && jal_reloc_p (r_type)) { bfd_boolean ok; bfd_vma opcode = x >> 26; bfd_vma jalx_opcode; /* Check to see if the opcode is already JAL or JALX. */ if (r_type == R_MIPS16_26) { ok = ((opcode == 0x6) || (opcode == 0x7)); jalx_opcode = 0x7; } else if (r_type == R_MICROMIPS_26_S1) { ok = ((opcode == 0x3d) || (opcode == 0x3c)); jalx_opcode = 0x3c; } else { ok = ((opcode == 0x3) || (opcode == 0x1d)); jalx_opcode = 0x1d; } /* If the opcode is not JAL or JALX, there's a problem. We cannot convert J or JALS to JALX. */ if (!ok) { (*_bfd_error_handler) (_("%B: %A+0x%lx: Unsupported jump between ISA modes; consider recompiling with interlinking enabled."), input_bfd, input_section, (unsigned long) relocation->r_offset); bfd_set_error (bfd_error_bad_value); return FALSE; } /* Make this the JALX opcode. */ x = (x & ~(0x3f << 26)) | (jalx_opcode << 26); } /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in range. */ if (!info->relocatable && !cross_mode_jump_p && ((JAL_TO_BAL_P (input_bfd) && r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */ || (JALR_TO_BAL_P (input_bfd) && r_type == R_MIPS_JALR && x == 0x0320f809) /* jalr t9 */ || (JR_TO_B_P (input_bfd) && r_type == R_MIPS_JALR && x == 0x03200008))) /* jr t9 */ { bfd_vma addr; bfd_vma dest; bfd_signed_vma off; addr = (input_section->output_section->vma + input_section->output_offset + relocation->r_offset + 4); if (r_type == R_MIPS_26) dest = (value << 2) | ((addr >> 28) << 28); else dest = value; off = dest - addr; if (off <= 0x1ffff && off >= -0x20000) { if (x == 0x03200008) /* jr t9 */ x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */ else x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */ } } /* Put the value into the output. */ bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location); _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable, location); return TRUE; } /* Create a rel.dyn relocation for the dynamic linker to resolve. REL is the original relocation, which is now being transformed into a dynamic relocation. The ADDENDP is adjusted if necessary; the caller should store the result in place of the original addend. */ static bfd_boolean mips_elf_create_dynamic_relocation (bfd *output_bfd, struct bfd_link_info *info, const Elf_Internal_Rela *rel, struct mips_elf_link_hash_entry *h, asection *sec, bfd_vma symbol, bfd_vma *addendp, asection *input_section) { Elf_Internal_Rela outrel[3]; asection *sreloc; bfd *dynobj; int r_type; long indx; bfd_boolean defined_p; struct mips_elf_link_hash_table *htab; htab = mips_elf_hash_table (info); BFD_ASSERT (htab != NULL); r_type = ELF_R_TYPE (output_bfd, rel->r_info); dynobj = elf_hash_table (info)->dynobj; sreloc = mips_elf_rel_dyn_section (info, FALSE); BFD_ASSERT (sreloc != NULL); BFD_ASSERT (sreloc->contents != NULL); BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd) < sreloc->size); outrel[0].r_offset = _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset); if (ABI_64_P (output_bfd)) { outrel[1].r_offset = _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset); outrel[2].r_offset = _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset); } if (outrel[0].r_offset == MINUS_ONE) /* The relocation field has been deleted. */ return TRUE; if (outrel[0].r_offset == MINUS_TWO) { /* The relocation field has been converted into a relative value of some sort. Functions like _bfd_elf_write_section_eh_frame expect the field to be fully relocated, so add in the symbol's value. */ *addendp += symbol; return TRUE; } /* We must now calculate the dynamic symbol table index to use in the relocation. */ if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root)) { BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE); indx = h->root.dynindx; if (SGI_COMPAT (output_bfd)) defined_p = h->root.def_regular; else /* ??? glibc's ld.so just adds the final GOT entry to the relocation field. It therefore treats relocs against defined symbols in the same way as relocs against undefined symbols. */ defined_p = FALSE; } else { if (sec != NULL && bfd_is_abs_section (sec)) indx = 0; else if (sec == NULL || sec->owner == NULL) { bfd_set_error (bfd_error_bad_value); return FALSE; } else { indx = elf_section_data (sec->output_section)->dynindx; if (indx == 0) { asection *osec = htab->root.text_index_section; indx = elf_section_data (osec)->dynindx; } if (indx == 0) abort (); } /* Instead of generating a relocation using the section symbol, we may as well make it a fully relative relocation. We want to avoid generating relocations to local symbols because we used to generate them incorrectly, without adding the original symbol value, which is mandated by the ABI for section symbols. In order to give dynamic loaders and applications time to phase out the incorrect use, we refrain from emitting section-relative relocations. It's not like they're useful, after all. This should be a bit more efficient as well. */ /* ??? Although this behavior is compatible with glibc's ld.so, the ABI says that relocations against STN_UNDEF should have a symbol value of 0. Irix rld honors this, so relocations against STN_UNDEF have no effect. */ if (!SGI_COMPAT (output_bfd)) indx = 0; defined_p = TRUE; } /* If the relocation was previously an absolute relocation and this symbol will not be referred to by the relocation, we must adjust it by the value we give it in the dynamic symbol table. Otherwise leave the job up to the dynamic linker. */ if (defined_p && r_type != R_MIPS_REL32) *addendp += symbol; if (htab->is_vxworks) /* VxWorks uses non-relative relocations for this. */ outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32); else /* The relocation is always an REL32 relocation because we don't know where the shared library will wind up at load-time. */ outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx, R_MIPS_REL32); /* For strict adherence to the ABI specification, we should generate a R_MIPS_64 relocation record by itself before the _REL32/_64 record as well, such that the addend is read in as a 64-bit value (REL32 is a 32-bit relocation, after all). However, since none of the existing ELF64 MIPS dynamic loaders seems to care, we don't waste space with these artificial relocations. If this turns out to not be true, mips_elf_allocate_dynamic_relocation() should be tweaked so as to make room for a pair of dynamic relocations per invocation if ABI_64_P, and here we should generate an additional relocation record with R_MIPS_64 by itself for a NULL symbol before this relocation record. */ outrel[1].r_info = ELF_R_INFO (output_bfd, 0, ABI_64_P (output_bfd) ? R_MIPS_64 : R_MIPS_NONE); outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE); /* Adjust the output offset of the relocation to reference the correct location in the output file. */ outrel[0].r_offset += (input_section->output_section->vma + input_section->output_offset); outrel[1].r_offset += (input_section->output_section->vma + input_section->output_offset); outrel[2].r_offset += (input_section->output_section->vma + input_section->output_offset); /* Put the relocation back out. We have to use the special relocation outputter in the 64-bit case since the 64-bit relocation format is non-standard. */ if (ABI_64_P (output_bfd)) { (*get_elf_backend_data (output_bfd)->s->swap_reloc_out) (output_bfd, &outrel[0], (sreloc->contents + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel))); } else if (htab->is_vxworks) { /* VxWorks uses RELA rather than REL dynamic relocations. */ outrel[0].r_addend = *addendp; bfd_elf32_swap_reloca_out (output_bfd, &outrel[0], (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rela))); } else bfd_elf32_swap_reloc_out (output_bfd, &outrel[0], (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel))); /* We've now added another relocation. */ ++sreloc->reloc_count; /* Make sure the output section is writable. The dynamic linker will be writing to it. */ elf_section_data (input_section->output_section)->this_hdr.sh_flags |= SHF_WRITE; /* On IRIX5, make an entry of compact relocation info. */ if (IRIX_COMPAT (output_bfd) == ict_irix5) { asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel"); bfd_byte *cr; if (scpt) { Elf32_crinfo cptrel; mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG); cptrel.vaddr = (rel->r_offset + input_section->output_section->vma + input_section->output_offset); if (r_type == R_MIPS_REL32) mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32); else mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD); mips_elf_set_cr_dist2to (cptrel, 0); cptrel.konst = *addendp; cr = (scpt->contents + sizeof (Elf32_External_compact_rel)); mips_elf_set_cr_relvaddr (cptrel, 0); bfd_elf32_swap_crinfo_out (output_bfd, &cptrel, ((Elf32_External_crinfo *) cr + scpt->reloc_count)); ++scpt->reloc_count; } } /* If we've written this relocation for a readonly section, we need to set DF_TEXTREL again, so that we do not delete the DT_TEXTREL tag. */ if (MIPS_ELF_READONLY_SECTION (input_section)) info->flags |= DF_TEXTREL; return TRUE; } /* Return the MACH for a MIPS e_flags value. */ unsigned long _bfd_elf_mips_mach (flagword flags) { switch (flags & EF_MIPS_MACH) { case E_MIPS_MACH_3900: return bfd_mach_mips3900; case E_MIPS_MACH_4010: return bfd_mach_mips4010; case E_MIPS_MACH_4100: return bfd_mach_mips4100; case E_MIPS_MACH_4111: return bfd_mach_mips4111; case E_MIPS_MACH_4120: return bfd_mach_mips4120; case E_MIPS_MACH_4650: return bfd_mach_mips4650; case E_MIPS_MACH_5400: return bfd_mach_mips5400; case E_MIPS_MACH_5500: return bfd_mach_mips5500; case E_MIPS_MACH_5900: return bfd_mach_mips5900; case E_MIPS_MACH_9000: return bfd_mach_mips9000; case E_MIPS_MACH_SB1: return bfd_mach_mips_sb1; case E_MIPS_MACH_LS2E: return bfd_mach_mips_loongson_2e; case E_MIPS_MACH_LS2F: return bfd_mach_mips_loongson_2f; case E_MIPS_MACH_LS3A: return bfd_mach_mips_loongson_3a; case E_MIPS_MACH_OCTEON2: return bfd_mach_mips_octeon2; case E_MIPS_MACH_OCTEON: return bfd_mach_mips_octeon; case E_MIPS_MACH_XLR: return bfd_mach_mips_xlr; default: switch (flags & EF_MIPS_ARCH) { default: case E_MIPS_ARCH_1: return bfd_mach_mips3000; case E_MIPS_ARCH_2: return bfd_mach_mips6000; case E_MIPS_ARCH_3: return bfd_mach_mips4000; case E_MIPS_ARCH_4: return bfd_mach_mips8000; case E_MIPS_ARCH_5: return bfd_mach_mips5; case E_MIPS_ARCH_32: return bfd_mach_mipsisa32; case E_MIPS_ARCH_64: return bfd_mach_mipsisa64; case E_MIPS_ARCH_32R2: return bfd_mach_mipsisa32r2; case E_MIPS_ARCH_64R2: return bfd_mach_mipsisa64r2; } } return 0; } /* Return printable name for ABI. */ static INLINE char * elf_mips_abi_name (bfd *abfd) { flagword flags; flags = elf_elfheader (abfd)->e_flags; switch (flags & EF_MIPS_ABI) { case 0: if (ABI_N32_P (abfd)) return "N32"; else if (ABI_64_P (abfd)) return "64"; else return "none"; case E_MIPS_ABI_O32: return "O32"; case E_MIPS_ABI_O64: return "O64"; case E_MIPS_ABI_EABI32: return "EABI32"; case E_MIPS_ABI_EABI64: return "EABI64"; default: return "unknown abi"; } } /* MIPS ELF uses two common sections. One is the usual one, and the other is for small objects. All the small objects are kept together, and then referenced via the gp pointer, which yields faster assembler code. This is what we use for the small common section. This approach is copied from ecoff.c. */ static asection mips_elf_scom_section; static asymbol mips_elf_scom_symbol; static asymbol *mips_elf_scom_symbol_ptr; /* MIPS ELF also uses an acommon section, which represents an allocated common symbol which may be overridden by a definition in a shared library. */ static asection mips_elf_acom_section; static asymbol mips_elf_acom_symbol; static asymbol *mips_elf_acom_symbol_ptr; /* This is used for both the 32-bit and the 64-bit ABI. */ void _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym) { elf_symbol_type *elfsym; /* Handle the special MIPS section numbers that a symbol may use. */ elfsym = (elf_symbol_type *) asym; switch (elfsym->internal_elf_sym.st_shndx) { case SHN_MIPS_ACOMMON: /* This section is used in a dynamically linked executable file. It is an allocated common section. The dynamic linker can either resolve these symbols to something in a shared library, or it can just leave them here. For our purposes, we can consider these symbols to be in a new section. */ if (mips_elf_acom_section.name == NULL) { /* Initialize the acommon section. */ mips_elf_acom_section.name = ".acommon"; mips_elf_acom_section.flags = SEC_ALLOC; mips_elf_acom_section.output_section = &mips_elf_acom_section; mips_elf_acom_section.symbol = &mips_elf_acom_symbol; mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr; mips_elf_acom_symbol.name = ".acommon"; mips_elf_acom_symbol.flags = BSF_SECTION_SYM; mips_elf_acom_symbol.section = &mips_elf_acom_section; mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol; } asym->section = &mips_elf_acom_section; break; case SHN_COMMON: /* Common symbols less than the GP size are automatically treated as SHN_MIPS_SCOMMON symbols on IRIX5. */ if (asym->value > elf_gp_size (abfd) || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS || IRIX_COMPAT (abfd) == ict_irix6) break; /* Fall through. */ case SHN_MIPS_SCOMMON: if (mips_elf_scom_section.name == NULL) { /* Initialize the small common section. */ mips_elf_scom_section.name = ".scommon"; mips_elf_scom_section.flags = SEC_IS_COMMON; mips_elf_scom_section.output_section = &mips_elf_scom_section; mips_elf_scom_section.symbol = &mips_elf_scom_symbol; mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr; mips_elf_scom_symbol.name = ".scommon"; mips_elf_scom_symbol.flags = BSF_SECTION_SYM; mips_elf_scom_symbol.section = &mips_elf_scom_section; mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol; } asym->section = &mips_elf_scom_section; asym->value = elfsym->internal_elf_sym.st_size; break; case SHN_MIPS_SUNDEFINED: asym->section = bfd_und_section_ptr; break; case SHN_MIPS_TEXT: { asection *section = bfd_get_section_by_name (abfd, ".text"); if (section != NULL) { asym->section = section; /* MIPS_TEXT is a bit special, the address is not an offset to the base of the .text section. So substract the section base address to make it an offset. */ asym->value -= section->vma; } } break; case SHN_MIPS_DATA: { asection *section = bfd_get_section_by_name (abfd, ".data"); if (section != NULL) { asym->section = section; /* MIPS_DATA is a bit special, the address is not an offset to the base of the .data section. So substract the section base address to make it an offset. */ asym->value -= section->vma; } } break; } /* If this is an odd-valued function symbol, assume it's a MIPS16 or microMIPS one. */ if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC && (asym->value & 1) != 0) { asym->value--; if (MICROMIPS_P (abfd)) elfsym->internal_elf_sym.st_other = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other); else elfsym->internal_elf_sym.st_other = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other); } } /* Implement elf_backend_eh_frame_address_size. This differs from the default in the way it handles EABI64. EABI64 was originally specified as an LP64 ABI, and that is what -mabi=eabi normally gives on a 64-bit target. However, gcc has historically accepted the combination of -mabi=eabi and -mlong32, and this ILP32 variation has become semi-official over time. Both forms use elf32 and have pointer-sized FDE addresses. If an EABI object was generated by GCC 4.0 or above, it will have an empty .gcc_compiled_longXX section, where XX is the size of longs in bits. Unfortunately, ILP32 objects generated by earlier compilers have no special marking to distinguish them from LP64 objects. We don't want users of the official LP64 ABI to be punished for the existence of the ILP32 variant, but at the same time, we don't want to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects. We therefore take the following approach: - If ABFD contains a .gcc_compiled_longXX section, use it to determine the pointer size. - Otherwise check the type of the first relocation. Assume that the LP64 ABI is being used if the relocation is of type R_MIPS_64. - Otherwise punt. The second check is enough to detect LP64 objects generated by pre-4.0 compilers because, in the kind of output generated by those compilers, the first relocation will be associated with either a CIE personality routine or an FDE start address. Furthermore, the compilers never used a special (non-pointer) encoding for this ABI. Checking the relocation type should also be safe because there is no reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never did so. */ unsigned int _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec) { if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64) return 8; if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64) { bfd_boolean long32_p, long64_p; long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0; long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0; if (long32_p && long64_p) return 0; if (long32_p) return 4; if (long64_p) return 8; if (sec->reloc_count > 0 && elf_section_data (sec)->relocs != NULL && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info) == R_MIPS_64)) return 8; return 0; } return 4; } /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP relocations against two unnamed section symbols to resolve to the same address. For example, if we have code like: lw $4,%got_disp(.data)($gp) lw $25,%got_disp(.text)($gp) jalr $25 then the linker will resolve both relocations to .data and the program will jump there rather than to .text. We can work around this problem by giving names to local section symbols. This is also what the MIPSpro tools do. */ bfd_boolean _bfd_mips_elf_name_local_section_symbols (bfd *abfd) { return SGI_COMPAT (abfd); } /* Work over a section just before writing it out. This routine is used by both the 32-bit and the 64-bit ABI. FIXME: We recognize sections that need the SHF_MIPS_GPREL flag by name; there has to be a better way. */ bfd_boolean _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr) { if (hdr->sh_type == SHT_MIPS_REGINFO && hdr->sh_size > 0) { bfd_byte buf[4]; BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo)); BFD_ASSERT (hdr->contents == NULL); if (bfd_seek (abfd, hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4, SEEK_SET) != 0) return FALSE; H_PUT_32 (abfd, elf_gp (abfd), buf); if (bfd_bwrite (buf, 4, abfd) != 4) return FALSE; } if (hdr->sh_type == SHT_MIPS_OPTIONS && hdr->bfd_section != NULL && mips_elf_section_data (hdr->bfd_section) != NULL && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL) { bfd_byte *contents, *l, *lend; /* We stored the section contents in the tdata field in the set_section_contents routine. We save the section contents so that we don't have to read them again. At this point we know that elf_gp is set, so we can look through the section contents to see if there is an ODK_REGINFO structure. */ contents = mips_elf_section_data (hdr->bfd_section)->u.tdata; l = contents; lend = contents + hdr->sh_size; while (l + sizeof (Elf_External_Options) <= lend) { Elf_Internal_Options intopt; bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, &intopt); if (intopt.size < sizeof (Elf_External_Options)) { (*_bfd_error_handler) (_("%B: Warning: bad `%s' option size %u smaller than its header"), abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size); break; } if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO) { bfd_byte buf[8]; if (bfd_seek (abfd, (hdr->sh_offset + (l - contents) + sizeof (Elf_External_Options) + (sizeof (Elf64_External_RegInfo) - 8)), SEEK_SET) != 0) return FALSE; H_PUT_64 (abfd, elf_gp (abfd), buf); if (bfd_bwrite (buf, 8, abfd) != 8) return FALSE; } else if (intopt.kind == ODK_REGINFO) { bfd_byte buf[4]; if (bfd_seek (abfd, (hdr->sh_offset + (l - contents) + sizeof (Elf_External_Options) + (sizeof (Elf32_External_RegInfo) - 4)), SEEK_SET) != 0) return FALSE; H_PUT_32 (abfd, elf_gp (abfd), buf); if (bfd_bwrite (buf, 4, abfd) != 4) return FALSE; } l += intopt.size; } } if (hdr->bfd_section != NULL) { const char *name = bfd_get_section_name (abfd, hdr->bfd_section); /* .sbss is not handled specially here because the GNU/Linux prelinker can convert .sbss from NOBITS to PROGBITS and changing it back to NOBITS breaks the binary. The entry in _bfd_mips_elf_special_sections will ensure the correct flags are set on .sbss if BFD creates it without reading it from an input file, and without special handling here the flags set on it in an input file will be followed. */ if (strcmp (name, ".sdata") == 0 || strcmp (name, ".lit8") == 0 || strcmp (name, ".lit4") == 0) { hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; hdr->sh_type = SHT_PROGBITS; } else if (strcmp (name, ".srdata") == 0) { hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL; hdr->sh_type = SHT_PROGBITS; } else if (strcmp (name, ".compact_rel") == 0) { hdr->sh_flags = 0; hdr->sh_type = SHT_PROGBITS; } else if (strcmp (name, ".rtproc") == 0) { if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0) { unsigned int adjust; adjust = hdr->sh_size % hdr->sh_addralign; if (adjust != 0) hdr->sh_size += hdr->sh_addralign - adjust; } } } return TRUE; } /* Handle a MIPS specific section when reading an object file. This is called when elfcode.h finds a section with an unknown type. This routine supports both the 32-bit and 64-bit ELF ABI. FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure how to. */ bfd_boolean _bfd_mips_elf_section_from_shdr (bfd *abfd, Elf_Internal_Shdr *hdr, const char *name, int shindex) { flagword flags = 0; /* There ought to be a place to keep ELF backend specific flags, but at the moment there isn't one. We just keep track of the sections by their name, instead. Fortunately, the ABI gives suggested names for all the MIPS specific sections, so we will probably get away with this. */ switch (hdr->sh_type) { case SHT_MIPS_LIBLIST: if (strcmp (name, ".liblist") != 0) return FALSE; break; case SHT_MIPS_MSYM: if (strcmp (name, ".msym") != 0) return FALSE; break; case SHT_MIPS_CONFLICT: if (strcmp (name, ".conflict") != 0) return FALSE; break; case SHT_MIPS_GPTAB: if (! CONST_STRNEQ (name, ".gptab.")) return FALSE; break; case SHT_MIPS_UCODE: if (strcmp (name, ".ucode") != 0) return FALSE; break; case SHT_MIPS_DEBUG: if (strcmp (name, ".mdebug") != 0) return FALSE; flags = SEC_DEBUGGING; break; case SHT_MIPS_REGINFO: if (strcmp (name, ".reginfo") != 0 || hdr->sh_size != sizeof (Elf32_External_RegInfo)) return FALSE; flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE); break; case SHT_MIPS_IFACE: if (strcmp (name, ".MIPS.interfaces") != 0) return FALSE; break; case SHT_MIPS_CONTENT: if (! CONST_STRNEQ (name, ".MIPS.content")) return FALSE; break; case SHT_MIPS_OPTIONS: if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name)) return FALSE; break; case SHT_MIPS_DWARF: if (! CONST_STRNEQ (name, ".debug_") && ! CONST_STRNEQ (name, ".zdebug_")) return FALSE; break; case SHT_MIPS_SYMBOL_LIB: if (strcmp (name, ".MIPS.symlib") != 0) return FALSE; break; case SHT_MIPS_EVENTS: if (! CONST_STRNEQ (name, ".MIPS.events") && ! CONST_STRNEQ (name, ".MIPS.post_rel")) return FALSE; break; default: break; } if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) return FALSE; if (flags) { if (! bfd_set_section_flags (abfd, hdr->bfd_section, (bfd_get_section_flags (abfd, hdr->bfd_section) | flags))) return FALSE; } /* FIXME: We should record sh_info for a .gptab section. */ /* For a .reginfo section, set the gp value in the tdata information from the contents of this section. We need the gp value while processing relocs, so we just get it now. The .reginfo section is not used in the 64-bit MIPS ELF ABI. */ if (hdr->sh_type == SHT_MIPS_REGINFO) { Elf32_External_RegInfo ext; Elf32_RegInfo s; if (! bfd_get_section_contents (abfd, hdr->bfd_section, &ext, 0, sizeof ext)) return FALSE; bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s); elf_gp (abfd) = s.ri_gp_value; } /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and set the gp value based on what we find. We may see both SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case, they should agree. */ if (hdr->sh_type == SHT_MIPS_OPTIONS) { bfd_byte *contents, *l, *lend; contents = bfd_malloc (hdr->sh_size); if (contents == NULL) return FALSE; if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents, 0, hdr->sh_size)) { free (contents); return FALSE; } l = contents; lend = contents + hdr->sh_size; while (l + sizeof (Elf_External_Options) <= lend) { Elf_Internal_Options intopt; bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, &intopt); if (intopt.size < sizeof (Elf_External_Options)) { (*_bfd_error_handler) (_("%B: Warning: bad `%s' option size %u smaller than its header"), abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size); break; } if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO) { Elf64_Internal_RegInfo intreg; bfd_mips_elf64_swap_reginfo_in (abfd, ((Elf64_External_RegInfo *) (l + sizeof (Elf_External_Options))), &intreg); elf_gp (abfd) = intreg.ri_gp_value; } else if (intopt.kind == ODK_REGINFO) { Elf32_RegInfo intreg; bfd_mips_elf32_swap_reginfo_in (abfd, ((Elf32_External_RegInfo *) (l + sizeof (Elf_External_Options))), &intreg); elf_gp (abfd) = intreg.ri_gp_value; } l += intopt.size; } free (contents); } return TRUE; } /* Set the correct type for a MIPS ELF section. We do this by the section name, which is a hack, but ought to work. This routine is used by both the 32-bit and the 64-bit ABI. */ bfd_boolean _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec) { const char *name = bfd_get_section_name (abfd, sec); if (strcmp (name, ".liblist") == 0) { hdr->sh_type = SHT_MIPS_LIBLIST; hdr->sh_info = sec->size / sizeof (Elf32_Lib); /* The sh_link field is set in final_write_processing. */ } else if (strcmp (name, ".conflict") == 0) hdr->sh_type = SHT_MIPS_CONFLICT; else if (CONST_STRNEQ (name, ".gptab.")) { hdr->sh_type = SHT_MIPS_GPTAB; hdr->sh_entsize = sizeof (Elf32_External_gptab); /* The sh_info field is set in final_write_processing. */ } else if (strcmp (name, ".ucode") == 0) hdr->sh_type = SHT_MIPS_UCODE; else if (strcmp (name, ".mdebug") == 0) { hdr->sh_type = SHT_MIPS_DEBUG; /* In a shared object on IRIX 5.3, the .mdebug section has an entsize of 0. FIXME: Does this matter? */ if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0) hdr->sh_entsize = 0; else hdr->sh_entsize = 1; } else if (strcmp (name, ".reginfo") == 0) { hdr->sh_type = SHT_MIPS_REGINFO; /* In a shared object on IRIX 5.3, the .reginfo section has an entsize of 0x18. FIXME: Does this matter? */ if (SGI_COMPAT (abfd)) { if ((abfd->flags & DYNAMIC) != 0) hdr->sh_entsize = sizeof (Elf32_External_RegInfo); else hdr->sh_entsize = 1; } else hdr->sh_entsize = sizeof (Elf32_External_RegInfo); } else if (SGI_COMPAT (abfd) && (strcmp (name, ".hash") == 0 || strcmp (name, ".dynamic") == 0 || strcmp (name, ".dynstr") == 0)) { if (SGI_COMPAT (abfd)) hdr->sh_entsize = 0; #if 0 /* This isn't how the IRIX6 linker behaves. */ hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES; #endif } else if (strcmp (name, ".got") == 0 || strcmp (name, ".srdata") == 0 || strcmp (name, ".sdata") == 0 || strcmp (name, ".sbss") == 0 || strcmp (name, ".lit4") == 0 || strcmp (name, ".lit8") == 0) hdr->sh_flags |= SHF_MIPS_GPREL; else if (strcmp (name, ".MIPS.interfaces") == 0) { hdr->sh_type = SHT_MIPS_IFACE; hdr->sh_flags |= SHF_MIPS_NOSTRIP; } else if (CONST_STRNEQ (name, ".MIPS.content")) { hdr->sh_type = SHT_MIPS_CONTENT; hdr->sh_flags |= SHF_MIPS_NOSTRIP; /* The sh_info field is set in final_write_processing. */ } else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name)) { hdr->sh_type = SHT_MIPS_OPTIONS; hdr->sh_entsize = 1; hdr->sh_flags |= SHF_MIPS_NOSTRIP; } else if (CONST_STRNEQ (name, ".debug_") || CONST_STRNEQ (name, ".zdebug_")) { hdr->sh_type = SHT_MIPS_DWARF; /* Irix facilities such as libexc expect a single .debug_frame per executable, the system ones have NOSTRIP set and the linker doesn't merge sections with different flags so ... */ if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame")) hdr->sh_flags |= SHF_MIPS_NOSTRIP; } else if (strcmp (name, ".MIPS.symlib") == 0) { hdr->sh_type = SHT_MIPS_SYMBOL_LIB; /* The sh_link and sh_info fields are set in final_write_processing. */ } else if (CONST_STRNEQ (name, ".MIPS.events") || CONST_STRNEQ (name, ".MIPS.post_rel")) { hdr->sh_type = SHT_MIPS_EVENTS; hdr->sh_flags |= SHF_MIPS_NOSTRIP; /* The sh_link field is set in final_write_processing. */ } else if (strcmp (name, ".msym") == 0) { hdr->sh_type = SHT_MIPS_MSYM; hdr->sh_flags |= SHF_ALLOC; hdr->sh_entsize = 8; } /* The generic elf_fake_sections will set up REL_HDR using the default kind of relocations. We used to set up a second header for the non-default kind of relocations here, but only NewABI would use these, and the IRIX ld doesn't like resulting empty RELA sections. Thus we create those header only on demand now. */ return TRUE; } /* Given a BFD section, try to locate the corresponding ELF section index. This is used by both the 32-bit and the 64-bit ABI. Actually, it's not clear to me that the 64-bit ABI supports these, but for non-PIC objects we will certainly want support for at least the .scommon section. */ bfd_boolean _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, int *retval) { if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0) { *retval = SHN_MIPS_SCOMMON; return TRUE; } if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0) { *retval = SHN_MIPS_ACOMMON; return TRUE; } return FALSE; } /* Hook called by the linker routine which adds symbols from an object file. We must handle the special MIPS section numbers here. */ bfd_boolean _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info, Elf_Internal_Sym *sym, const char **namep, flagword *flagsp ATTRIBUTE_UNUSED, asection **secp, bfd_vma *valp) { if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0 && strcmp (*namep, "_rld_new_interface") == 0) { /* Skip IRIX5 rld entry name. */ *namep = NULL; return TRUE; } /* Shared objects may have a dynamic symbol '_gp_disp' defined as a SECTION *ABS*. This causes ld to think it can resolve _gp_disp by setting a DT_NEEDED for the shared object. Since _gp_disp is a magic symbol resolved by the linker, we ignore this bogus definition of _gp_disp. New ABI objects do not suffer from this problem so this is not done for them. */ if (!NEWABI_P(abfd) && (sym->st_shndx == SHN_ABS) && (strcmp (*namep, "_gp_disp") == 0)) { *namep = NULL; return TRUE; } switch (sym->st_shndx) { case SHN_COMMON: /* Common symbols less than the GP size are automatically treated as SHN_MIPS_SCOMMON symbols. */ if (sym->st_size > elf_gp_size (abfd) || ELF_ST_TYPE (sym->st_info) == STT_TLS || IRIX_COMPAT (abfd) == ict_irix6) break; /* Fall through. */ case SHN_MIPS_SCOMMON: *secp = bfd_make_section_old_way (abfd, ".scommon"); (*secp)->flags |= SEC_IS_COMMON; *valp = sym->st_size; break; case SHN_MIPS_TEXT: /* This section is used in a shared object. */ if (mips_elf_tdata (abfd)->elf_text_section == NULL) { asymbol *elf_text_symbol; asection *elf_text_section; bfd_size_type amt = sizeof (asection); elf_text_section = bfd_zalloc (abfd, amt); if (elf_text_section == NULL) return FALSE; amt = sizeof (asymbol); elf_text_symbol = bfd_zalloc (abfd, amt); if (elf_text_symbol == NULL) return FALSE; /* Initialize the section. */ mips_elf_tdata (abfd)->elf_text_section = elf_text_section; mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol; elf_text_section->symbol = elf_text_symbol; elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol; elf_text_section->name = ".text"; elf_text_section->flags = SEC_NO_FLAGS; elf_text_section->output_section = NULL; elf_text_section->owner = abfd; elf_text_symbol->name = ".text"; elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC; elf_text_symbol->section = elf_text_section; } /* This code used to do *secp = bfd_und_section_ptr if info->shared. I don't know why, and that doesn't make sense, so I took it out. */ *secp = mips_elf_tdata (abfd)->elf_text_section; break; case SHN_MIPS_ACOMMON: /* Fall through. XXX Can we treat this as allocated data? */ case SHN_MIPS_DATA: /* This section is used in a shared object. */ if (mips_elf_tdata (abfd)->elf_data_section == NULL) { asymbol *elf_data_symbol; asection *elf_data_section; bfd_size_type amt = sizeof (asection); elf_data_section = bfd_zalloc (abfd, amt); if (elf_data_section == NULL) return FALSE; amt = sizeof (asymbol); elf_data_symbol = bfd_zalloc (abfd, amt); if (elf_data_symbol == NULL) return FALSE; /* Initialize the section. */ mips_elf_tdata (abfd)->elf_data_section = elf_data_section; mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol; elf_data_section->symbol = elf_data_symbol; elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol; elf_data_section->name = ".data"; elf_data_section->flags = SEC_NO_FLAGS; elf_data_section->output_section = NULL; elf_data_section->owner = abfd; elf_data_symbol->name = ".data"; elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC; elf_data_symbol->section = elf_data_section; } /* This code used to do *secp = bfd_und_section_ptr if info->shared. I don't know why, and that doesn't make sense, so I took it out. */ *secp = mips_elf_tdata (abfd)->elf_data_section; break; case SHN_MIPS_SUNDEFINED: *secp = bfd_und_section_ptr; break; } if (SGI_COMPAT (abfd) && ! info->shared && info->output_bfd->xvec == abfd->xvec && strcmp (*namep, "__rld_obj_head") == 0) { struct elf_link_hash_entry *h; struct bfd_link_hash_entry *bh; /* Mark __rld_obj_head as dynamic. */ bh = NULL; if (! (_bfd_generic_link_add_one_symbol (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) return FALSE; h = (struct elf_link_hash_entry *) bh; h->non_elf = 0; h->def_regular = 1; h->type = STT_OBJECT; if (! bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; mips_elf_hash_table (info)->use_rld_obj_head = TRUE; mips_elf_hash_table (info)->rld_symbol = h; } /* If this is a mips16 text symbol, add 1 to the value to make it odd. This will cause something like .word SYM to come up with the right value when it is loaded into the PC. */ if (ELF_ST_IS_COMPRESSED (sym->st_other)) ++*valp; return TRUE; } /* This hook function is called before the linker writes out a global symbol. We mark symbols as small common if appropriate. This is also where we undo the increment of the value for a mips16 symbol. */ int _bfd_mips_elf_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED, const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym, asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED) { /* If we see a common symbol, which implies a relocatable link, then if a symbol was small common in an input file, mark it as small common in the output file. */ if (sym->st_shndx == SHN_COMMON && strcmp (input_sec->name, ".scommon") == 0) sym->st_shndx = SHN_MIPS_SCOMMON; if (ELF_ST_IS_COMPRESSED (sym->st_other)) sym->st_value &= ~1; return 1; } /* Functions for the dynamic linker. */ /* Create dynamic sections when linking against a dynamic object. */ bfd_boolean _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) { struct elf_link_hash_entry *h; struct bfd_link_hash_entry *bh; flagword flags; register asection *s; const char * const *namep; struct mips_elf_link_hash_table *htab; htab = mips_elf_hash_table (info); BFD_ASSERT (htab != NULL); flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED | SEC_READONLY); /* The psABI requires a read-only .dynamic section, but the VxWorks EABI doesn't. */ if (!htab->is_vxworks) { s = bfd_get_linker_section (abfd, ".dynamic"); if (s != NULL) { if (! bfd_set_section_flags (abfd, s, flags)) return FALSE; } } /* We need to create .got section. */ if (!mips_elf_create_got_section (abfd, info)) return FALSE; if (! mips_elf_rel_dyn_section (info, TRUE)) return FALSE; /* Create .stub section. */ s = bfd_make_section_anyway_with_flags (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd), flags | SEC_CODE); if (s == NULL || ! bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd))) return FALSE; htab->sstubs = s; if (!mips_elf_hash_table (info)->use_rld_obj_head && !info->shared && bfd_get_linker_section (abfd, ".rld_map") == NULL) { s = bfd_make_section_anyway_with_flags (abfd, ".rld_map", flags &~ (flagword) SEC_READONLY); if (s == NULL || ! bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd))) return FALSE; } /* On IRIX5, we adjust add some additional symbols and change the alignments of several sections. There is no ABI documentation indicating that this is necessary on IRIX6, nor any evidence that the linker takes such action. */ if (IRIX_COMPAT (abfd) == ict_irix5) { for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++) { bh = NULL; if (! (_bfd_generic_link_add_one_symbol (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) return FALSE; h = (struct elf_link_hash_entry *) bh; h->non_elf = 0; h->def_regular = 1; h->type = STT_SECTION; if (! bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; } /* We need to create a .compact_rel section. */ if (SGI_COMPAT (abfd)) { if (!mips_elf_create_compact_rel_section (abfd, info)) return FALSE; } /* Change alignments of some sections. */ s = bfd_get_linker_section (abfd, ".hash"); if (s != NULL) (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); s = bfd_get_linker_section (abfd, ".dynsym"); if (s != NULL) (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); s = bfd_get_linker_section (abfd, ".dynstr"); if (s != NULL) (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); /* ??? */ s = bfd_get_section_by_name (abfd, ".reginfo"); if (s != NULL) (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); s = bfd_get_linker_section (abfd, ".dynamic"); if (s != NULL) (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); } if (!info->shared) { const char *name; name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING"; bh = NULL; if (!(_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) return FALSE; h = (struct elf_link_hash_entry *) bh; h->non_elf = 0; h->def_regular = 1; h->type = STT_SECTION; if (! bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; if (! mips_elf_hash_table (info)->use_rld_obj_head) { /* __rld_map is a four byte word located in the .data section and is filled in by the rtld to contain a pointer to the _r_debug structure. Its symbol value will be set in _bfd_mips_elf_finish_dynamic_symbol. */ s = bfd_get_linker_section (abfd, ".rld_map"); BFD_ASSERT (s != NULL); name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP"; bh = NULL; if (!(_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) return FALSE; h = (struct elf_link_hash_entry *) bh; h->non_elf = 0; h->def_regular = 1; h->type = STT_OBJECT; if (! bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; mips_elf_hash_table (info)->rld_symbol = h; } } /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections. Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */ if (!_bfd_elf_create_dynamic_sections (abfd, info)) return FALSE; /* Cache the sections created above. */ htab->splt = bfd_get_linker_section (abfd, ".plt"); htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss"); if (htab->is_vxworks) { htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss"); htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt"); } else htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt"); if (!htab->sdynbss || (htab->is_vxworks && !htab->srelbss && !info->shared) || !htab->srelplt || !htab->splt) abort (); /* Do the usual VxWorks handling. */ if (htab->is_vxworks && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2)) return FALSE; return TRUE; } /* Return true if relocation REL against section SEC is a REL rather than RELA relocation. RELOCS is the first relocation in the section and ABFD is the bfd that contains SEC. */ static bfd_boolean mips_elf_rel_relocation_p (bfd *abfd, asection *sec, const Elf_Internal_Rela *relocs, const Elf_Internal_Rela *rel) { Elf_Internal_Shdr *rel_hdr; const struct elf_backend_data *bed; /* To determine which flavor of relocation this is, we depend on the fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */ rel_hdr = elf_section_data (sec)->rel.hdr; if (rel_hdr == NULL) return FALSE; bed = get_elf_backend_data (abfd); return ((size_t) (rel - relocs) < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel); } /* Read the addend for REL relocation REL, which belongs to bfd ABFD. HOWTO is the relocation's howto and CONTENTS points to the contents of the section that REL is against. */ static bfd_vma mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel, reloc_howto_type *howto, bfd_byte *contents) { bfd_byte *location; unsigned int r_type; bfd_vma addend; r_type = ELF_R_TYPE (abfd, rel->r_info); location = contents + rel->r_offset; /* Get the addend, which is stored in the input file. */ _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location); addend = mips_elf_obtain_contents (howto, rel, abfd, contents); _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location); return addend & howto->src_mask; } /* REL is a relocation in ABFD that needs a partnering LO16 relocation and *ADDEND is the addend for REL itself. Look for the LO16 relocation and update *ADDEND with the final addend. Return true on success or false if the LO16 could not be found. RELEND is the exclusive upper bound on the relocations for REL's section. */ static bfd_boolean mips_elf_add_lo16_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel, const Elf_Internal_Rela *relend, bfd_byte *contents, bfd_vma *addend) { unsigned int r_type, lo16_type; const Elf_Internal_Rela *lo16_relocation; reloc_howto_type *lo16_howto; bfd_vma l; r_type = ELF_R_TYPE (abfd, rel->r_info); if (mips16_reloc_p (r_type)) lo16_type = R_MIPS16_LO16; else if (micromips_reloc_p (r_type)) lo16_type = R_MICROMIPS_LO16; else lo16_type = R_MIPS_LO16; /* The combined value is the sum of the HI16 addend, left-shifted by sixteen bits, and the LO16 addend, sign extended. (Usually, the code does a `lui' of the HI16 value, and then an `addiu' of the LO16 value.) Scan ahead to find a matching LO16 relocation. According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be immediately following. However, for the IRIX6 ABI, the next relocation may be a composed relocation consisting of several relocations for the same address. In that case, the R_MIPS_LO16 relocation may occur as one of these. We permit a similar extension in general, as that is useful for GCC. In some cases GCC dead code elimination removes the LO16 but keeps the corresponding HI16. This is strictly speaking a violation of the ABI but not immediately harmful. */ lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend); if (lo16_relocation == NULL) return FALSE; /* Obtain the addend kept there. */ lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE); l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents); l <<= lo16_howto->rightshift; l = _bfd_mips_elf_sign_extend (l, 16); *addend <<= 16; *addend += l; return TRUE; } /* Try to read the contents of section SEC in bfd ABFD. Return true and store the contents in *CONTENTS on success. Assume that *CONTENTS already holds the contents if it is nonull on entry. */ static bfd_boolean mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents) { if (*contents) return TRUE; /* Get cached copy if it exists. */ if (elf_section_data (sec)->this_hdr.contents != NULL) { *contents = elf_section_data (sec)->this_hdr.contents; return TRUE; } return bfd_malloc_and_get_section (abfd, sec, contents); } /* Make a new PLT record to keep internal data. */ static struct plt_entry * mips_elf_make_plt_record (bfd *abfd) { struct plt_entry *entry; entry = bfd_zalloc (abfd, sizeof (*entry)); if (entry == NULL) return NULL; entry->stub_offset = MINUS_ONE; entry->mips_offset = MINUS_ONE; entry->comp_offset = MINUS_ONE; entry->gotplt_index = MINUS_ONE; return entry; } /* Look through the relocs for a section during the first phase, and allocate space in the global offset table and record the need for standard MIPS and compressed procedure linkage table entries. */ bfd_boolean _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info, asection *sec, const Elf_Internal_Rela *relocs) { const char *name; bfd *dynobj; Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; size_t extsymoff; const Elf_Internal_Rela *rel; const Elf_Internal_Rela *rel_end; asection *sreloc; const struct elf_backend_data *bed; struct mips_elf_link_hash_table *htab; bfd_byte *contents; bfd_vma addend; reloc_howto_type *howto; if (info->relocatable) return TRUE; htab = mips_elf_hash_table (info); BFD_ASSERT (htab != NULL); dynobj = elf_hash_table (info)->dynobj; symtab_hdr = &elf_tdata (abfd)->symtab_hdr; sym_hashes = elf_sym_hashes (abfd); extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info; bed = get_elf_backend_data (abfd); rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel; /* Check for the mips16 stub sections. */ name = bfd_get_section_name (abfd, sec); if (FN_STUB_P (name)) { unsigned long r_symndx; /* Look at the relocation information to figure out which symbol this is for. */ r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end); if (r_symndx == 0) { (*_bfd_error_handler) (_("%B: Warning: cannot determine the target function for" " stub section `%s'"), abfd, name); bfd_set_error (bfd_error_bad_value); return FALSE; } if (r_symndx < extsymoff || sym_hashes[r_symndx - extsymoff] == NULL) { asection *o; /* This stub is for a local symbol. This stub will only be needed if there is some relocation in this BFD, other than a 16 bit function call, which refers to this symbol. */ for (o = abfd->sections; o != NULL; o = o->next) { Elf_Internal_Rela *sec_relocs; const Elf_Internal_Rela *r, *rend; /* We can ignore stub sections when looking for relocs. */ if ((o->flags & SEC_RELOC) == 0 || o->reloc_count == 0 || section_allows_mips16_refs_p (o)) continue; sec_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, info->keep_memory); if (sec_relocs == NULL) return FALSE; rend = sec_relocs + o->reloc_count; for (r = sec_relocs; r < rend; r++) if (ELF_R_SYM (abfd, r->r_info) == r_symndx && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info))) break; if (elf_section_data (o)->relocs != sec_relocs) free (sec_relocs); if (r < rend) break; } if (o == NULL) { /* There is no non-call reloc for this stub, so we do not need it. Since this function is called before the linker maps input sections to output sections, we can easily discard it by setting the SEC_EXCLUDE flag. */ sec->flags |= SEC_EXCLUDE; return TRUE; } /* Record this stub in an array of local symbol stubs for this BFD. */ if (mips_elf_tdata (abfd)->local_stubs == NULL) { unsigned long symcount; asection **n; bfd_size_type amt; if (elf_bad_symtab (abfd)) symcount = NUM_SHDR_ENTRIES (symtab_hdr); else symcount = symtab_hdr->sh_info; amt = symcount * sizeof (asection *); n = bfd_zalloc (abfd, amt); if (n == NULL) return FALSE; mips_elf_tdata (abfd)->local_stubs = n; } sec->flags |= SEC_KEEP; mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec; /* We don't need to set mips16_stubs_seen in this case. That flag is used to see whether we need to look through the global symbol table for stubs. We don't need to set it here, because we just have a local stub. */ } else { struct mips_elf_link_hash_entry *h; h = ((struct mips_elf_link_hash_entry *) sym_hashes[r_symndx - extsymoff]); while (h->root.root.type == bfd_link_hash_indirect || h->root.root.type == bfd_link_hash_warning) h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; /* H is the symbol this stub is for. */ /* If we already have an appropriate stub for this function, we don't need another one, so we can discard this one. Since this function is called before the linker maps input sections to output sections, we can easily discard it by setting the SEC_EXCLUDE flag. */ if (h->fn_stub != NULL) { sec->flags |= SEC_EXCLUDE; return TRUE; } sec->flags |= SEC_KEEP; h->fn_stub = sec; mips_elf_hash_table (info)->mips16_stubs_seen = TRUE; } } else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name)) { unsigned long r_symndx; struct mips_elf_link_hash_entry *h; asection **loc; /* Look at the relocation information to figure out which symbol this is for. */ r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end); if (r_symndx == 0) { (*_bfd_error_handler) (_("%B: Warning: cannot determine the target function for" " stub section `%s'"), abfd, name); bfd_set_error (bfd_error_bad_value); return FALSE; } if (r_symndx < extsymoff || sym_hashes[r_symndx - extsymoff] == NULL) { asection *o; /* This stub is for a local symbol. This stub will only be needed if there is some relocation (R_MIPS16_26) in this BFD that refers to this symbol. */ for (o = abfd->sections; o != NULL; o = o->next) { Elf_Internal_Rela *sec_relocs; const Elf_Internal_Rela *r, *rend; /* We can ignore stub sections when looking for relocs. */ if ((o->flags & SEC_RELOC) == 0 || o->reloc_count == 0 || section_allows_mips16_refs_p (o)) continue; sec_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, info->keep_memory); if (sec_relocs == NULL) return FALSE; rend = sec_relocs + o->reloc_count; for (r = sec_relocs; r < rend; r++) if (ELF_R_SYM (abfd, r->r_info) == r_symndx && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26) break; if (elf_section_data (o)->relocs != sec_relocs) free (sec_relocs); if (r < rend) break; } if (o == NULL) { /* There is no non-call reloc for this stub, so we do not need it. Since this function is called before the linker maps input sections to output sections, we can easily discard it by setting the SEC_EXCLUDE flag. */ sec->flags |= SEC_EXCLUDE; return TRUE; } /* Record this stub in an array of local symbol call_stubs for this BFD. */ if (mips_elf_tdata (abfd)->local_call_stubs == NULL) { unsigned long symcount; asection **n; bfd_size_type amt; if (elf_bad_symtab (abfd)) symcount = NUM_SHDR_ENTRIES (symtab_hdr); else symcount = symtab_hdr->sh_info; amt = symcount * sizeof (asection *); n = bfd_zalloc (abfd, amt); if (n == NULL) return FALSE; mips_elf_tdata (abfd)->local_call_stubs = n; } sec->flags |= SEC_KEEP; mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec; /* We don't need to set mips16_stubs_seen in this case. That flag is used to see whether we need to look through the global symbol table for stubs. We don't need to set it here, because we just have a local stub. */ } else { h = ((struct mips_elf_link_hash_entry *) sym_hashes[r_symndx - extsymoff]); /* H is the symbol this stub is for. */ if (CALL_FP_STUB_P (name)) loc = &h->call_fp_stub; else loc = &h->call_stub; /* If we already have an appropriate stub for this function, we don't need another one, so we can discard this one. Since this function is called before the linker maps input sections to output sections, we can easily discard it by setting the SEC_EXCLUDE flag. */ if (*loc != NULL) { sec->flags |= SEC_EXCLUDE; return TRUE; } sec->flags |= SEC_KEEP; *loc = sec; mips_elf_hash_table (info)->mips16_stubs_seen = TRUE; } } sreloc = NULL; contents = NULL; for (rel = relocs; rel < rel_end; ++rel) { unsigned long r_symndx; unsigned int r_type; struct elf_link_hash_entry *h; bfd_boolean can_make_dynamic_p; r_symndx = ELF_R_SYM (abfd, rel->r_info); r_type = ELF_R_TYPE (abfd, rel->r_info); if (r_symndx < extsymoff) h = NULL; else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr)) { (*_bfd_error_handler) (_("%B: Malformed reloc detected for section %s"), abfd, name); bfd_set_error (bfd_error_bad_value); return FALSE; } else { h = sym_hashes[r_symndx - extsymoff]; if (h != NULL) { while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; /* PR15323, ref flags aren't set for references in the same object. */ h->root.non_ir_ref = 1; } } /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this relocation into a dynamic one. */ can_make_dynamic_p = FALSE; switch (r_type) { case R_MIPS_GOT16: case R_MIPS_CALL16: case R_MIPS_CALL_HI16: case R_MIPS_CALL_LO16: case R_MIPS_GOT_HI16: case R_MIPS_GOT_LO16: case R_MIPS_GOT_PAGE: case R_MIPS_GOT_OFST: case R_MIPS_GOT_DISP: case R_MIPS_TLS_GOTTPREL: case R_MIPS_TLS_GD: case R_MIPS_TLS_LDM: case R_MIPS16_GOT16: case R_MIPS16_CALL16: case R_MIPS16_TLS_GOTTPREL: case R_MIPS16_TLS_GD: case R_MIPS16_TLS_LDM: case R_MICROMIPS_GOT16: case R_MICROMIPS_CALL16: case R_MICROMIPS_CALL_HI16: case R_MICROMIPS_CALL_LO16: case R_MICROMIPS_GOT_HI16: case R_MICROMIPS_GOT_LO16: case R_MICROMIPS_GOT_PAGE: case R_MICROMIPS_GOT_OFST: case R_MICROMIPS_GOT_DISP: case R_MICROMIPS_TLS_GOTTPREL: case R_MICROMIPS_TLS_GD: case R_MICROMIPS_TLS_LDM: if (dynobj == NULL) elf_hash_table (info)->dynobj = dynobj = abfd; if (!mips_elf_create_got_section (dynobj, info)) return FALSE; if (htab->is_vxworks && !info->shared) { (*_bfd_error_handler) (_("%B: GOT reloc at 0x%lx not expected in executables"), abfd, (unsigned long) rel->r_offset); bfd_set_error (bfd_error_bad_value); return FALSE; } break; /* This is just a hint; it can safely be ignored. Don't set has_static_relocs for the corresponding symbol. */ case R_MIPS_JALR: case R_MICROMIPS_JALR: break; case R_MIPS_32: case R_MIPS_REL32: case R_MIPS_64: /* In VxWorks executables, references to external symbols must be handled using copy relocs or PLT entries; it is not possible to convert this relocation into a dynamic one. For executables that use PLTs and copy-relocs, we have a choice between converting the relocation into a dynamic one or using copy relocations or PLT entries. It is usually better to do the former, unless the relocation is against a read-only section. */ if ((info->shared || (h != NULL && !htab->is_vxworks && strcmp (h->root.root.string, "__gnu_local_gp") != 0 && !(!info->nocopyreloc && !PIC_OBJECT_P (abfd) && MIPS_ELF_READONLY_SECTION (sec)))) && (sec->flags & SEC_ALLOC) != 0) { can_make_dynamic_p = TRUE; if (dynobj == NULL) elf_hash_table (info)->dynobj = dynobj = abfd; break; } /* For sections that are not SEC_ALLOC a copy reloc would be output if possible (implying questionable semantics for read-only data objects) or otherwise the final link would fail as ld.so will not process them and could not therefore handle any outstanding dynamic relocations. For such sections that are also SEC_DEBUGGING, we can avoid these problems by simply ignoring any relocs as these sections have a predefined use and we know it is safe to do so. This is needed in cases such as a global symbol definition in a shared library causing a common symbol from an object file to be converted to an undefined reference. If that happens, then all the relocations against this symbol from SEC_DEBUGGING sections in the object file will resolve to nil. */ if ((sec->flags & SEC_DEBUGGING) != 0) break; /* Fall through. */ default: /* Most static relocations require pointer equality, except for branches. */ if (h) h->pointer_equality_needed = TRUE; /* Fall through. */ case R_MIPS_26: case R_MIPS_PC16: case R_MIPS16_26: case R_MICROMIPS_26_S1: case R_MICROMIPS_PC7_S1: case R_MICROMIPS_PC10_S1: case R_MICROMIPS_PC16_S1: case R_MICROMIPS_PC23_S2: if (h) ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE; break; } if (h) { /* Relocations against the special VxWorks __GOTT_BASE__ and __GOTT_INDEX__ symbols must be left to the loader. Allocate room for them in .rela.dyn. */ if (is_gott_symbol (info, h)) { if (sreloc == NULL) { sreloc = mips_elf_rel_dyn_section (info, TRUE); if (sreloc == NULL) return FALSE; } mips_elf_allocate_dynamic_relocations (dynobj, info, 1); if (MIPS_ELF_READONLY_SECTION (sec)) /* We tell the dynamic linker that there are relocations against the text segment. */ info->flags |= DF_TEXTREL; } } else if (call_lo16_reloc_p (r_type) || got_lo16_reloc_p (r_type) || got_disp_reloc_p (r_type) || (got16_reloc_p (r_type) && htab->is_vxworks)) { /* We may need a local GOT entry for this relocation. We don't count R_MIPS_GOT_PAGE because we can estimate the maximum number of pages needed by looking at the size of the segment. Similar comments apply to R_MIPS*_GOT16 and R_MIPS*_CALL16, except on VxWorks, where GOT relocations always evaluate to "G". We don't count R_MIPS_GOT_HI16, or R_MIPS_CALL_HI16 because these are always followed by an R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */ if (!mips_elf_record_local_got_symbol (abfd, r_symndx, rel->r_addend, info, r_type)) return FALSE; } if (h != NULL && mips_elf_relocation_needs_la25_stub (abfd, r_type, ELF_ST_IS_MIPS16 (h->other))) ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE; switch (r_type) { case R_MIPS_CALL16: case R_MIPS16_CALL16: case R_MICROMIPS_CALL16: if (h == NULL) { (*_bfd_error_handler) (_("%B: CALL16 reloc at 0x%lx not against global symbol"), abfd, (unsigned long) rel->r_offset); bfd_set_error (bfd_error_bad_value); return FALSE; } /* Fall through. */ case R_MIPS_CALL_HI16: case R_MIPS_CALL_LO16: case R_MICROMIPS_CALL_HI16: case R_MICROMIPS_CALL_LO16: if (h != NULL) { /* Make sure there is room in the regular GOT to hold the function's address. We may eliminate it in favour of a .got.plt entry later; see mips_elf_count_got_symbols. */ if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE, r_type)) return FALSE; /* We need a stub, not a plt entry for the undefined function. But we record it as if it needs plt. See _bfd_elf_adjust_dynamic_symbol. */ h->needs_plt = 1; h->type = STT_FUNC; } break; case R_MIPS_GOT_PAGE: case R_MICROMIPS_GOT_PAGE: case R_MIPS16_GOT16: case R_MIPS_GOT16: case R_MIPS_GOT_HI16: case R_MIPS_GOT_LO16: case R_MICROMIPS_GOT16: case R_MICROMIPS_GOT_HI16: case R_MICROMIPS_GOT_LO16: if (!h || got_page_reloc_p (r_type)) { /* This relocation needs (or may need, if h != NULL) a page entry in the GOT. For R_MIPS_GOT_PAGE we do not know for sure until we know whether the symbol is preemptible. */ if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel)) { if (!mips_elf_get_section_contents (abfd, sec, &contents)) return FALSE; howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE); addend = mips_elf_read_rel_addend (abfd, rel, howto, contents); if (got16_reloc_p (r_type)) mips_elf_add_lo16_rel_addend (abfd, rel, rel_end, contents, &addend); else addend <<= howto->rightshift; } else addend = rel->r_addend; if (!mips_elf_record_got_page_ref (info, abfd, r_symndx, h, addend)) return FALSE; if (h) { struct mips_elf_link_hash_entry *hmips = (struct mips_elf_link_hash_entry *) h; /* This symbol is definitely not overridable. */ if (hmips->root.def_regular && ! (info->shared && ! info->symbolic && ! hmips->root.forced_local)) h = NULL; } } /* If this is a global, overridable symbol, GOT_PAGE will decay to GOT_DISP, so we'll need a GOT entry for it. */ /* Fall through. */ case R_MIPS_GOT_DISP: case R_MICROMIPS_GOT_DISP: if (h && !mips_elf_record_global_got_symbol (h, abfd, info, FALSE, r_type)) return FALSE; break; case R_MIPS_TLS_GOTTPREL: case R_MIPS16_TLS_GOTTPREL: case R_MICROMIPS_TLS_GOTTPREL: if (info->shared) info->flags |= DF_STATIC_TLS; /* Fall through */ case R_MIPS_TLS_LDM: case R_MIPS16_TLS_LDM: case R_MICROMIPS_TLS_LDM: if (tls_ldm_reloc_p (r_type)) { r_symndx = STN_UNDEF; h = NULL; } /* Fall through */ case R_MIPS_TLS_GD: case R_MIPS16_TLS_GD: case R_MICROMIPS_TLS_GD: /* This symbol requires a global offset table entry, or two for TLS GD relocations. */ if (h != NULL) { if (!mips_elf_record_global_got_symbol (h, abfd, info, FALSE, r_type)) return FALSE; } else { if (!mips_elf_record_local_got_symbol (abfd, r_symndx, rel->r_addend, info, r_type)) return FALSE; } break; case R_MIPS_32: case R_MIPS_REL32: case R_MIPS_64: /* In VxWorks executables, references to external symbols are handled using copy relocs or PLT stubs, so there's no need to add a .rela.dyn entry for this relocation. */ if (can_make_dynamic_p) { if (sreloc == NULL) { sreloc = mips_elf_rel_dyn_section (info, TRUE); if (sreloc == NULL) return FALSE; } if (info->shared && h == NULL) { /* When creating a shared object, we must copy these reloc types into the output file as R_MIPS_REL32 relocs. Make room for this reloc in .rel(a).dyn. */ mips_elf_allocate_dynamic_relocations (dynobj, info, 1); if (MIPS_ELF_READONLY_SECTION (sec)) /* We tell the dynamic linker that there are relocations against the text segment. */ info->flags |= DF_TEXTREL; } else { struct mips_elf_link_hash_entry *hmips; /* For a shared object, we must copy this relocation unless the symbol turns out to be undefined and weak with non-default visibility, in which case it will be left as zero. We could elide R_MIPS_REL32 for locally binding symbols in shared libraries, but do not yet do so. For an executable, we only need to copy this reloc if the symbol is defined in a dynamic object. */ hmips = (struct mips_elf_link_hash_entry *) h; ++hmips->possibly_dynamic_relocs; if (MIPS_ELF_READONLY_SECTION (sec)) /* We need it to tell the dynamic linker if there are relocations against the text segment. */ hmips->readonly_reloc = TRUE; } } if (SGI_COMPAT (abfd)) mips_elf_hash_table (info)->compact_rel_size += sizeof (Elf32_External_crinfo); break; case R_MIPS_26: case R_MIPS_GPREL16: case R_MIPS_LITERAL: case R_MIPS_GPREL32: case R_MICROMIPS_26_S1: case R_MICROMIPS_GPREL16: case R_MICROMIPS_LITERAL: case R_MICROMIPS_GPREL7_S2: if (SGI_COMPAT (abfd)) mips_elf_hash_table (info)->compact_rel_size += sizeof (Elf32_External_crinfo); break; /* This relocation describes the C++ object vtable hierarchy. Reconstruct it for later use during GC. */ case R_MIPS_GNU_VTINHERIT: if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) return FALSE; break; /* This relocation describes which C++ vtable entries are actually used. Record for later use during GC. */ case R_MIPS_GNU_VTENTRY: BFD_ASSERT (h != NULL); if (h != NULL && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset)) return FALSE; break; default: break; } /* Record the need for a PLT entry. At this point we don't know yet if we are going to create a PLT in the first place, but we only record whether the relocation requires a standard MIPS or a compressed code entry anyway. If we don't make a PLT after all, then we'll just ignore these arrangements. Likewise if a PLT entry is not created because the symbol is satisfied locally. */ if (h != NULL && jal_reloc_p (r_type) && !SYMBOL_CALLS_LOCAL (info, h)) { if (h->plt.plist == NULL) h->plt.plist = mips_elf_make_plt_record (abfd); if (h->plt.plist == NULL) return FALSE; if (r_type == R_MIPS_26) h->plt.plist->need_mips = TRUE; else h->plt.plist->need_comp = TRUE; } /* We must not create a stub for a symbol that has relocations related to taking the function's address. This doesn't apply to VxWorks, where CALL relocs refer to a .got.plt entry instead of a normal .got entry. */ if (!htab->is_vxworks && h != NULL) switch (r_type) { default: ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE; break; case R_MIPS16_CALL16: case R_MIPS_CALL16: case R_MIPS_CALL_HI16: case R_MIPS_CALL_LO16: case R_MIPS_JALR: case R_MICROMIPS_CALL16: case R_MICROMIPS_CALL_HI16: case R_MICROMIPS_CALL_LO16: case R_MICROMIPS_JALR: break; } /* See if this reloc would need to refer to a MIPS16 hard-float stub, if there is one. We only need to handle global symbols here; we decide whether to keep or delete stubs for local symbols when processing the stub's relocations. */ if (h != NULL && !mips16_call_reloc_p (r_type) && !section_allows_mips16_refs_p (sec)) { struct mips_elf_link_hash_entry *mh; mh = (struct mips_elf_link_hash_entry *) h; mh->need_fn_stub = TRUE; } /* Refuse some position-dependent relocations when creating a shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're not PIC, but we can create dynamic relocations and the result will be fine. Also do not refuse R_MIPS_LO16, which can be combined with R_MIPS_GOT16. */ if (info->shared) { switch (r_type) { case R_MIPS16_HI16: case R_MIPS_HI16: case R_MIPS_HIGHER: case R_MIPS_HIGHEST: case R_MICROMIPS_HI16: case R_MICROMIPS_HIGHER: case R_MICROMIPS_HIGHEST: /* Don't refuse a high part relocation if it's against no symbol (e.g. part of a compound relocation). */ if (r_symndx == STN_UNDEF) break; /* R_MIPS_HI16 against _gp_disp is used for $gp setup, and has a special meaning. */ if (!NEWABI_P (abfd) && h != NULL && strcmp (h->root.root.string, "_gp_disp") == 0) break; /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */ if (is_gott_symbol (info, h)) break; /* FALLTHROUGH */ case R_MIPS16_26: case R_MIPS_26: case R_MICROMIPS_26_S1: howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE); (*_bfd_error_handler) (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"), abfd, howto->name, (h) ? h->root.root.string : "a local symbol"); bfd_set_error (bfd_error_bad_value); return FALSE; default: break; } } } return TRUE; } bfd_boolean _bfd_mips_relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info, bfd_boolean *again) { Elf_Internal_Rela *internal_relocs; Elf_Internal_Rela *irel, *irelend; Elf_Internal_Shdr *symtab_hdr; bfd_byte *contents = NULL; size_t extsymoff; bfd_boolean changed_contents = FALSE; bfd_vma sec_start = sec->output_section->vma + sec->output_offset; Elf_Internal_Sym *isymbuf = NULL; /* We are not currently changing any sizes, so only one pass. */ *again = FALSE; if (link_info->relocatable) return TRUE; internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, link_info->keep_memory); if (internal_relocs == NULL) return TRUE; irelend = internal_relocs + sec->reloc_count * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel; symtab_hdr = &elf_tdata (abfd)->symtab_hdr; extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info; for (irel = internal_relocs; irel < irelend; irel++) { bfd_vma symval; bfd_signed_vma sym_offset; unsigned int r_type; unsigned long r_symndx; asection *sym_sec; unsigned long instruction; /* Turn jalr into bgezal, and jr into beq, if they're marked with a JALR relocation, that indicate where they jump to. This saves some pipeline bubbles. */ r_type = ELF_R_TYPE (abfd, irel->r_info); if (r_type != R_MIPS_JALR) continue; r_symndx = ELF_R_SYM (abfd, irel->r_info); /* Compute the address of the jump target. */ if (r_symndx >= extsymoff) { struct mips_elf_link_hash_entry *h = ((struct mips_elf_link_hash_entry *) elf_sym_hashes (abfd) [r_symndx - extsymoff]); while (h->root.root.type == bfd_link_hash_indirect || h->root.root.type == bfd_link_hash_warning) h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; /* If a symbol is undefined, or if it may be overridden, skip it. */ if (! ((h->root.root.type == bfd_link_hash_defined || h->root.root.type == bfd_link_hash_defweak) && h->root.root.u.def.section) || (link_info->shared && ! link_info->symbolic && !h->root.forced_local)) continue; sym_sec = h->root.root.u.def.section; if (sym_sec->output_section) symval = (h->root.root.u.def.value + sym_sec->output_section->vma + sym_sec->output_offset); else symval = h->root.root.u.def.value; } else { Elf_Internal_Sym *isym; /* Read this BFD's symbols if we haven't done so already. */ if (isymbuf == NULL && symtab_hdr->sh_info != 0) { isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; if (isymbuf == NULL) isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, symtab_hdr->sh_info, 0, NULL, NULL, NULL); if (isymbuf == NULL) goto relax_return; } isym = isymbuf + r_symndx; if (isym->st_shndx == SHN_UNDEF) continue; else if (isym->st_shndx == SHN_ABS) sym_sec = bfd_abs_section_ptr; else if (isym->st_shndx == SHN_COMMON) sym_sec = bfd_com_section_ptr; else sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx); symval = isym->st_value + sym_sec->output_section->vma + sym_sec->output_offset; } /* Compute branch offset, from delay slot of the jump to the branch target. */ sym_offset = (symval + irel->r_addend) - (sec_start + irel->r_offset + 4); /* Branch offset must be properly aligned. */ if ((sym_offset & 3) != 0) continue; sym_offset >>= 2; /* Check that it's in range. */ if (sym_offset < -0x8000 || sym_offset >= 0x8000) continue; /* Get the section contents if we haven't done so already. */ if (!mips_elf_get_section_contents (abfd, sec, &contents)) goto relax_return; instruction = bfd_get_32 (abfd, contents + irel->r_offset); /* If it was jalr , turn it into bgezal $zero, . */ if ((instruction & 0xfc1fffff) == 0x0000f809) instruction = 0x04110000; /* If it was jr , turn it into b . */ else if ((instruction & 0xfc1fffff) == 0x00000008) instruction = 0x10000000; else continue; instruction |= (sym_offset & 0xffff); bfd_put_32 (abfd, instruction, contents + irel->r_offset); changed_contents = TRUE; } if (contents != NULL && elf_section_data (sec)->this_hdr.contents != contents) { if (!changed_contents && !link_info->keep_memory) free (contents); else { /* Cache the section contents for elf_link_input_bfd. */ elf_section_data (sec)->this_hdr.contents = contents; } } return TRUE; relax_return: if (contents != NULL && elf_section_data (sec)->this_hdr.contents != contents) free (contents); return FALSE; } /* Allocate space for global sym dynamic relocs. */ static bfd_boolean allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf) { struct bfd_link_info *info = inf; bfd *dynobj; struct mips_elf_link_hash_entry *hmips; struct mips_elf_link_hash_table *htab; htab = mips_elf_hash_table (info); BFD_ASSERT (htab != NULL); dynobj = elf_hash_table (info)->dynobj; hmips = (struct mips_elf_link_hash_entry *) h; /* VxWorks executables are handled elsewhere; we only need to allocate relocations in shared objects. */ if (htab->is_vxworks && !info->shared) return TRUE; /* Ignore indirect symbols. All relocations against such symbols will be redirected to the target symbol. */ if (h->root.type == bfd_link_hash_indirect) return TRUE; /* If this symbol is defined in a dynamic object, or we are creating a shared library, we will need to copy any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output file. */ if (! info->relocatable && hmips->possibly_dynamic_relocs != 0 && (h->root.type == bfd_link_hash_defweak || (!h->def_regular && !ELF_COMMON_DEF_P (h)) || info->shared)) { bfd_boolean do_copy = TRUE; if (h->root.type == bfd_link_hash_undefweak) { /* Do not copy relocations for undefined weak symbols with non-default visibility. */ if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) do_copy = FALSE; /* Make sure undefined weak symbols are output as a dynamic symbol in PIEs. */ else if (h->dynindx == -1 && !h->forced_local) { if (! bfd_elf_link_record_dynamic_symbol (info, h)) return FALSE; } } if (do_copy) { /* Even though we don't directly need a GOT entry for this symbol, the SVR4 psABI requires it to have a dynamic symbol table index greater that DT_MIPS_GOTSYM if there are dynamic relocations against it. VxWorks does not enforce the same mapping between the GOT and the symbol table, so the same requirement does not apply there. */ if (!htab->is_vxworks) { if (hmips->global_got_area > GGA_RELOC_ONLY) hmips->global_got_area = GGA_RELOC_ONLY; hmips->got_only_for_calls = FALSE; } mips_elf_allocate_dynamic_relocations (dynobj, info, hmips->possibly_dynamic_relocs); if (hmips->readonly_reloc) /* We tell the dynamic linker that there are relocations against the text segment. */ info->flags |= DF_TEXTREL; } } return TRUE; } /* Adjust a symbol defined by a dynamic object and referenced by a regular object. The current definition is in some section of the dynamic object, but we're not including those sections. We have to change the definition to something the rest of the link can understand. */ bfd_boolean _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h) { bfd *dynobj; struct mips_elf_link_hash_entry *hmips; struct mips_elf_link_hash_table *htab; htab = mips_elf_hash_table (info); BFD_ASSERT (htab != NULL); dynobj = elf_hash_table (info)->dynobj; hmips = (struct mips_elf_link_hash_entry *) h; /* Make sure we know what is going on here. */ BFD_ASSERT (dynobj != NULL && (h->needs_plt || h->u.weakdef != NULL || (h->def_dynamic && h->ref_regular && !h->def_regular))); hmips = (struct mips_elf_link_hash_entry *) h; /* If there are call relocations against an externally-defined symbol, see whether we can create a MIPS lazy-binding stub for it. We can only do this if all references to the function are through call relocations, and in that case, the traditional lazy-binding stubs are much more efficient than PLT entries. Traditional stubs are only available on SVR4 psABI-based systems; VxWorks always uses PLTs instead. */ if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub) { if (! elf_hash_table (info)->dynamic_sections_created) return TRUE; /* If this symbol is not defined in a regular file, then set the symbol to the stub location. This is required to make function pointers compare as equal between the normal executable and the shared library. */ if (!h->def_regular) { hmips->needs_lazy_stub = TRUE; htab->lazy_stub_count++; return TRUE; } } /* As above, VxWorks requires PLT entries for externally-defined functions that are only accessed through call relocations. Both VxWorks and non-VxWorks targets also need PLT entries if there are static-only relocations against an externally-defined function. This can technically occur for shared libraries if there are branches to the symbol, although it is unlikely that this will be used in practice due to the short ranges involved. It can occur for any relative or absolute relocation in executables; in that case, the PLT entry becomes the function's canonical address. */ else if (((h->needs_plt && !hmips->no_fn_stub) || (h->type == STT_FUNC && hmips->has_static_relocs)) && htab->use_plts_and_copy_relocs && !SYMBOL_CALLS_LOCAL (info, h) && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT && h->root.type == bfd_link_hash_undefweak)) { bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd); bfd_boolean newabi_p = NEWABI_P (info->output_bfd); /* If this is the first symbol to need a PLT entry, then make some basic setup. Also work out PLT entry sizes. We'll need them for PLT offset calculations. */ if (htab->plt_mips_offset + htab->plt_comp_offset == 0) { BFD_ASSERT (htab->sgotplt->size == 0); BFD_ASSERT (htab->plt_got_index == 0); /* If we're using the PLT additions to the psABI, each PLT entry is 16 bytes and the PLT0 entry is 32 bytes. Encourage better cache usage by aligning. We do this lazily to avoid pessimizing traditional objects. */ if (!htab->is_vxworks && !bfd_set_section_alignment (dynobj, htab->splt, 5)) return FALSE; /* Make sure that .got.plt is word-aligned. We do this lazily for the same reason as above. */ if (!bfd_set_section_alignment (dynobj, htab->sgotplt, MIPS_ELF_LOG_FILE_ALIGN (dynobj))) return FALSE; /* On non-VxWorks targets, the first two entries in .got.plt are reserved. */ if (!htab->is_vxworks) htab->plt_got_index += (get_elf_backend_data (dynobj)->got_header_size / MIPS_ELF_GOT_SIZE (dynobj)); /* On VxWorks, also allocate room for the header's .rela.plt.unloaded entries. */ if (htab->is_vxworks && !info->shared) htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela); /* Now work out the sizes of individual PLT entries. */ if (htab->is_vxworks && info->shared) htab->plt_mips_entry_size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry); else if (htab->is_vxworks) htab->plt_mips_entry_size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry); else if (newabi_p) htab->plt_mips_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry); else if (!micromips_p) { htab->plt_mips_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry); htab->plt_comp_entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry); } else if (htab->insn32) { htab->plt_mips_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry); htab->plt_comp_entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry); } else { htab->plt_mips_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry); htab->plt_comp_entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry); } } if (h->plt.plist == NULL) h->plt.plist = mips_elf_make_plt_record (dynobj); if (h->plt.plist == NULL) return FALSE; /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks, n32 or n64, so always use a standard entry there. If the symbol has a MIPS16 call stub and gets a PLT entry, then all MIPS16 calls will go via that stub, and there is no benefit to having a MIPS16 entry. And in the case of call_stub a standard entry actually has to be used as the stub ends with a J instruction. */ if (newabi_p || htab->is_vxworks || hmips->call_stub || hmips->call_fp_stub) { h->plt.plist->need_mips = TRUE; h->plt.plist->need_comp = FALSE; } /* Otherwise, if there are no direct calls to the function, we have a free choice of whether to use standard or compressed entries. Prefer microMIPS entries if the object is known to contain microMIPS code, so that it becomes possible to create pure microMIPS binaries. Prefer standard entries otherwise, because MIPS16 ones are no smaller and are usually slower. */ if (!h->plt.plist->need_mips && !h->plt.plist->need_comp) { if (micromips_p) h->plt.plist->need_comp = TRUE; else h->plt.plist->need_mips = TRUE; } if (h->plt.plist->need_mips) { h->plt.plist->mips_offset = htab->plt_mips_offset; htab->plt_mips_offset += htab->plt_mips_entry_size; } if (h->plt.plist->need_comp) { h->plt.plist->comp_offset = htab->plt_comp_offset; htab->plt_comp_offset += htab->plt_comp_entry_size; } /* Reserve the corresponding .got.plt entry now too. */ h->plt.plist->gotplt_index = htab->plt_got_index++; /* If the output file has no definition of the symbol, set the symbol's value to the address of the stub. */ if (!info->shared && !h->def_regular) hmips->use_plt_entry = TRUE; /* Make room for the R_MIPS_JUMP_SLOT relocation. */ htab->srelplt->size += (htab->is_vxworks ? MIPS_ELF_RELA_SIZE (dynobj) : MIPS_ELF_REL_SIZE (dynobj)); /* Make room for the .rela.plt.unloaded relocations. */ if (htab->is_vxworks && !info->shared) htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela); /* All relocations against this symbol that could have been made dynamic will now refer to the PLT entry instead. */ hmips->possibly_dynamic_relocs = 0; return TRUE; } /* If this is a weak symbol, and there is a real definition, the processor independent code will have arranged for us to see the real definition first, and we can just use the same value. */ if (h->u.weakdef != NULL) { BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined || h->u.weakdef->root.type == bfd_link_hash_defweak); h->root.u.def.section = h->u.weakdef->root.u.def.section; h->root.u.def.value = h->u.weakdef->root.u.def.value; return TRUE; } /* Otherwise, there is nothing further to do for symbols defined in regular objects. */ if (h->def_regular) return TRUE; /* There's also nothing more to do if we'll convert all relocations against this symbol into dynamic relocations. */ if (!hmips->has_static_relocs) return TRUE; /* We're now relying on copy relocations. Complain if we have some that we can't convert. */ if (!htab->use_plts_and_copy_relocs || info->shared) { (*_bfd_error_handler) (_("non-dynamic relocations refer to " "dynamic symbol %s"), h->root.root.string); bfd_set_error (bfd_error_bad_value); return FALSE; } /* We must allocate the symbol in our .dynbss section, which will become part of the .bss section of the executable. There will be an entry for this symbol in the .dynsym section. The dynamic object will contain position independent code, so all references from the dynamic object to this symbol will go through the global offset table. The dynamic linker will use the .dynsym entry to determine the address it must put in the global offset table, so both the dynamic object and the regular object will refer to the same memory location for the variable. */ if ((h->root.u.def.section->flags & SEC_ALLOC) != 0) { if (htab->is_vxworks) htab->srelbss->size += sizeof (Elf32_External_Rela); else mips_elf_allocate_dynamic_relocations (dynobj, info, 1); h->needs_copy = 1; } /* All relocations against this symbol that could have been made dynamic will now refer to the local copy instead. */ hmips->possibly_dynamic_relocs = 0; return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss); } /* This function is called after all the input files have been read, and the input sections have been assigned to output sections. We check for any mips16 stub sections that we can discard. */ bfd_boolean _bfd_mips_elf_always_size_sections (bfd *output_bfd, struct bfd_link_info *info) { asection *ri; struct mips_elf_link_hash_table *htab; struct mips_htab_traverse_info hti; htab = mips_elf_hash_table (info); BFD_ASSERT (htab != NULL); /* The .reginfo section has a fixed size. */ ri = bfd_get_section_by_name (output_bfd, ".reginfo"); if (ri != NULL) bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo)); hti.info = info; hti.output_bfd = output_bfd; hti.error = FALSE; mips_elf_link_hash_traverse (mips_elf_hash_table (info), mips_elf_check_symbols, &hti); if (hti.error) return FALSE; return TRUE; } /* If the link uses a GOT, lay it out and work out its size. */ static bfd_boolean mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info) { bfd *dynobj; asection *s; struct mips_got_info *g; bfd_size_type loadable_size = 0; bfd_size_type page_gotno; bfd *ibfd; struct mips_elf_traverse_got_arg tga; struct mips_elf_link_hash_table *htab; htab = mips_elf_hash_table (info); BFD_ASSERT (htab != NULL); s = htab->sgot; if (s == NULL) return TRUE; dynobj = elf_hash_table (info)->dynobj; g = htab->got_info; /* Allocate room for the reserved entries. VxWorks always reserves 3 entries; other objects only reserve 2 entries. */ BFD_ASSERT (g->assigned_gotno == 0); if (htab->is_vxworks) htab->reserved_gotno = 3; else htab->reserved_gotno = 2; g->local_gotno += htab->reserved_gotno; g->assigned_gotno = htab->reserved_gotno; /* Decide which symbols need to go in the global part of the GOT and count the number of reloc-only GOT symbols. */ mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info); if (!mips_elf_resolve_final_got_entries (info, g)) return FALSE; /* Calculate the total loadable size of the output. That will give us the maximum number of GOT_PAGE entries required. */ for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link_next) { asection *subsection; for (subsection = ibfd->sections; subsection; subsection = subsection->next) { if ((subsection->flags & SEC_ALLOC) == 0) continue; loadable_size += ((subsection->size + 0xf) &~ (bfd_size_type) 0xf); } } if (htab->is_vxworks) /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16 relocations against local symbols evaluate to "G", and the EABI does not include R_MIPS_GOT_PAGE. */ page_gotno = 0; else /* Assume there are two loadable segments consisting of contiguous sections. Is 5 enough? */ page_gotno = (loadable_size >> 16) + 5; /* Choose the smaller of the two page estimates; both are intended to be conservative. */ if (page_gotno > g->page_gotno) page_gotno = g->page_gotno; g->local_gotno += page_gotno; s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd); s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd); s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd); /* VxWorks does not support multiple GOTs. It initializes $gp to __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the dynamic loader. */ if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info)) { if (!mips_elf_multi_got (output_bfd, info, s, page_gotno)) return FALSE; } else { /* Record that all bfds use G. This also has the effect of freeing the per-bfd GOTs, which we no longer need. */ for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link_next) if (mips_elf_bfd_got (ibfd, FALSE)) mips_elf_replace_bfd_got (ibfd, g); mips_elf_replace_bfd_got (output_bfd, g); /* Set up TLS entries. */ g->tls_assigned_gotno = g->global_gotno + g->local_gotno; tga.info = info; tga.g = g; tga.value = MIPS_ELF_GOT_SIZE (output_bfd); htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga); if (!tga.g) return FALSE; BFD_ASSERT (g->tls_assigned_gotno == g->global_gotno + g->local_gotno + g->tls_gotno); /* Each VxWorks GOT entry needs an explicit relocation. */ if (htab->is_vxworks && info->shared) g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno; /* Allocate room for the TLS relocations. */ if (g->relocs) mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs); } return TRUE; } /* Estimate the size of the .MIPS.stubs section. */ static void mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info) { struct mips_elf_link_hash_table *htab; bfd_size_type dynsymcount; htab = mips_elf_hash_table (info); BFD_ASSERT (htab != NULL); if (htab->lazy_stub_count == 0) return; /* IRIX rld assumes that a function stub isn't at the end of the .text section, so add a dummy entry to the end. */ htab->lazy_stub_count++; /* Get a worst-case estimate of the number of dynamic symbols needed. At this point, dynsymcount does not account for section symbols and count_section_dynsyms may overestimate the number that will be needed. */ dynsymcount = (elf_hash_table (info)->dynsymcount + count_section_dynsyms (output_bfd, info)); /* Determine the size of one stub entry. There's no disadvantage from using microMIPS code here, so for the sake of pure-microMIPS binaries we prefer it whenever there's any microMIPS code in output produced at all. This has a benefit of stubs being shorter by 4 bytes each too, unless in the insn32 mode. */ if (!MICROMIPS_P (output_bfd)) htab->function_stub_size = (dynsymcount > 0x10000 ? MIPS_FUNCTION_STUB_BIG_SIZE : MIPS_FUNCTION_STUB_NORMAL_SIZE); else if (htab->insn32) htab->function_stub_size = (dynsymcount > 0x10000 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE); else htab->function_stub_size = (dynsymcount > 0x10000 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE); htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size; } /* A mips_elf_link_hash_traverse callback for which DATA points to a mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding stub, allocate an entry in the stubs section. */ static bfd_boolean mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data) { struct mips_htab_traverse_info *hti = data; struct mips_elf_link_hash_table *htab; struct bfd_link_info *info; bfd *output_bfd; info = hti->info; output_bfd = hti->output_bfd; htab = mips_elf_hash_table (info); BFD_ASSERT (htab != NULL); if (h->needs_lazy_stub) { bfd_boolean micromips_p = MICROMIPS_P (output_bfd); unsigned int other = micromips_p ? STO_MICROMIPS : 0; bfd_vma isa_bit = micromips_p; BFD_ASSERT (htab->root.dynobj != NULL); if (h->root.plt.plist == NULL) h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner); if (h->root.plt.plist == NULL) { hti->error = TRUE; return FALSE; } h->root.root.u.def.section = htab->sstubs; h->root.root.u.def.value = htab->sstubs->size + isa_bit; h->root.plt.plist->stub_offset = htab->sstubs->size; h->root.other = other; htab->sstubs->size += htab->function_stub_size; } return TRUE; } /* Allocate offsets in the stubs section to each symbol that needs one. Set the final size of the .MIPS.stub section. */ static bfd_boolean mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info) { bfd *output_bfd = info->output_bfd; bfd_boolean micromips_p = MICROMIPS_P (output_bfd); unsigned int other = micromips_p ? STO_MICROMIPS : 0; bfd_vma isa_bit = micromips_p; struct mips_elf_link_hash_table *htab; struct mips_htab_traverse_info hti; struct elf_link_hash_entry *h; bfd *dynobj; htab = mips_elf_hash_table (info); BFD_ASSERT (htab != NULL); if (htab->lazy_stub_count == 0) return TRUE; htab->sstubs->size = 0; hti.info = info; hti.output_bfd = output_bfd; hti.error = FALSE; mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti); if (hti.error) return FALSE; htab->sstubs->size += htab->function_stub_size; BFD_ASSERT (htab->sstubs->size == htab->lazy_stub_count * htab->function_stub_size); dynobj = elf_hash_table (info)->dynobj; BFD_ASSERT (dynobj != NULL); h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_"); if (h == NULL) return FALSE; h->root.u.def.value = isa_bit; h->other = other; h->type = STT_FUNC; return TRUE; } /* A mips_elf_link_hash_traverse callback for which DATA points to a bfd_link_info. If H uses the address of a PLT entry as the value of the symbol, then set the entry in the symbol table now. Prefer a standard MIPS PLT entry. */ static bfd_boolean mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data) { struct bfd_link_info *info = data; bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd); struct mips_elf_link_hash_table *htab; unsigned int other; bfd_vma isa_bit; bfd_vma val; htab = mips_elf_hash_table (info); BFD_ASSERT (htab != NULL); if (h->use_plt_entry) { BFD_ASSERT (h->root.plt.plist != NULL); BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE || h->root.plt.plist->comp_offset != MINUS_ONE); val = htab->plt_header_size; if (h->root.plt.plist->mips_offset != MINUS_ONE) { isa_bit = 0; val += h->root.plt.plist->mips_offset; other = 0; } else { isa_bit = 1; val += htab->plt_mips_offset + h->root.plt.plist->comp_offset; other = micromips_p ? STO_MICROMIPS : STO_MIPS16; } val += isa_bit; /* For VxWorks, point at the PLT load stub rather than the lazy resolution stub; this stub will become the canonical function address. */ if (htab->is_vxworks) val += 8; h->root.root.u.def.section = htab->splt; h->root.root.u.def.value = val; h->root.other = other; } return TRUE; } /* Set the sizes of the dynamic sections. */ bfd_boolean _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info) { bfd *dynobj; asection *s, *sreldyn; bfd_boolean reltext; struct mips_elf_link_hash_table *htab; htab = mips_elf_hash_table (info); BFD_ASSERT (htab != NULL); dynobj = elf_hash_table (info)->dynobj; BFD_ASSERT (dynobj != NULL); if (elf_hash_table (info)->dynamic_sections_created) { /* Set the contents of the .interp section to the interpreter. */ if (info->executable) { s = bfd_get_linker_section (dynobj, ".interp"); BFD_ASSERT (s != NULL); s->size = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1; s->contents = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd); } /* Figure out the size of the PLT header if we know that we are using it. For the sake of cache alignment always use a standard header whenever any standard entries are present even if microMIPS entries are present as well. This also lets the microMIPS header rely on the value of $v0 only set by microMIPS entries, for a small size reduction. Set symbol table entry values for symbols that use the address of their PLT entry now that we can calculate it. Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we haven't already in _bfd_elf_create_dynamic_sections. */ if (htab->splt && htab->plt_mips_offset + htab->plt_comp_offset != 0) { bfd_boolean micromips_p = (MICROMIPS_P (output_bfd) && !htab->plt_mips_offset); unsigned int other = micromips_p ? STO_MICROMIPS : 0; bfd_vma isa_bit = micromips_p; struct elf_link_hash_entry *h; bfd_vma size; BFD_ASSERT (htab->use_plts_and_copy_relocs); BFD_ASSERT (htab->sgotplt->size == 0); BFD_ASSERT (htab->splt->size == 0); if (htab->is_vxworks && info->shared) size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry); else if (htab->is_vxworks) size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry); else if (ABI_64_P (output_bfd)) size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry); else if (ABI_N32_P (output_bfd)) size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry); else if (!micromips_p) size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry); else if (htab->insn32) size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); else size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry); htab->plt_header_is_comp = micromips_p; htab->plt_header_size = size; htab->splt->size = (size + htab->plt_mips_offset + htab->plt_comp_offset); htab->sgotplt->size = (htab->plt_got_index * MIPS_ELF_GOT_SIZE (dynobj)); mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info); if (htab->root.hplt == NULL) { h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt, "_PROCEDURE_LINKAGE_TABLE_"); htab->root.hplt = h; if (h == NULL) return FALSE; } h = htab->root.hplt; h->root.u.def.value = isa_bit; h->other = other; h->type = STT_FUNC; } } /* Allocate space for global sym dynamic relocs. */ elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info); mips_elf_estimate_stub_size (output_bfd, info); if (!mips_elf_lay_out_got (output_bfd, info)) return FALSE; mips_elf_lay_out_lazy_stubs (info); /* The check_relocs and adjust_dynamic_symbol entry points have determined the sizes of the various dynamic sections. Allocate memory for them. */ reltext = FALSE; for (s = dynobj->sections; s != NULL; s = s->next) { const char *name; /* It's OK to base decisions on the section name, because none of the dynobj section names depend upon the input files. */ name = bfd_get_section_name (dynobj, s); if ((s->flags & SEC_LINKER_CREATED) == 0) continue; if (CONST_STRNEQ (name, ".rel")) { if (s->size != 0) { const char *outname; asection *target; /* If this relocation section applies to a read only section, then we probably need a DT_TEXTREL entry. If the relocation section is .rel(a).dyn, we always assert a DT_TEXTREL entry rather than testing whether there exists a relocation to a read only section or not. */ outname = bfd_get_section_name (output_bfd, s->output_section); target = bfd_get_section_by_name (output_bfd, outname + 4); if ((target != NULL && (target->flags & SEC_READONLY) != 0 && (target->flags & SEC_ALLOC) != 0) || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0) reltext = TRUE; /* We use the reloc_count field as a counter if we need to copy relocs into the output file. */ if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0) s->reloc_count = 0; /* If combreloc is enabled, elf_link_sort_relocs() will sort relocations, but in a different way than we do, and before we're done creating relocations. Also, it will move them around between input sections' relocation's contents, so our sorting would be broken, so don't let it run. */ info->combreloc = 0; } } else if (! info->shared && ! mips_elf_hash_table (info)->use_rld_obj_head && CONST_STRNEQ (name, ".rld_map")) { /* We add a room for __rld_map. It will be filled in by the rtld to contain a pointer to the _r_debug structure. */ s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd); } else if (SGI_COMPAT (output_bfd) && CONST_STRNEQ (name, ".compact_rel")) s->size += mips_elf_hash_table (info)->compact_rel_size; else if (s == htab->splt) { /* If the last PLT entry has a branch delay slot, allocate room for an extra nop to fill the delay slot. This is for CPUs without load interlocking. */ if (! LOAD_INTERLOCKS_P (output_bfd) && ! htab->is_vxworks && s->size > 0) s->size += 4; } else if (! CONST_STRNEQ (name, ".init") && s != htab->sgot && s != htab->sgotplt && s != htab->sstubs && s != htab->sdynbss) { /* It's not one of our sections, so don't allocate space. */ continue; } if (s->size == 0) { s->flags |= SEC_EXCLUDE; continue; } if ((s->flags & SEC_HAS_CONTENTS) == 0) continue; /* Allocate memory for the section contents. */ s->contents = bfd_zalloc (dynobj, s->size); if (s->contents == NULL) { bfd_set_error (bfd_error_no_memory); return FALSE; } } if (elf_hash_table (info)->dynamic_sections_created) { /* Add some entries to the .dynamic section. We fill in the values later, in _bfd_mips_elf_finish_dynamic_sections, but we must add the entries now so that we get the correct size for the .dynamic section. */ /* SGI object has the equivalence of DT_DEBUG in the DT_MIPS_RLD_MAP entry. This must come first because glibc only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools may only look at the first one they see. */ if (!info->shared && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0)) return FALSE; /* The DT_DEBUG entry may be filled in by the dynamic linker and used by the debugger. */ if (info->executable && !SGI_COMPAT (output_bfd) && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0)) return FALSE; if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks)) info->flags |= DF_TEXTREL; if ((info->flags & DF_TEXTREL) != 0) { if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0)) return FALSE; /* Clear the DF_TEXTREL flag. It will be set again if we write out an actual text relocation; we may not, because at this point we do not know whether e.g. any .eh_frame absolute relocations have been converted to PC-relative. */ info->flags &= ~DF_TEXTREL; } if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0)) return FALSE; sreldyn = mips_elf_rel_dyn_section (info, FALSE); if (htab->is_vxworks) { /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not use any of the DT_MIPS_* tags. */ if (sreldyn && sreldyn->size > 0) { if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0)) return FALSE; if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0)) return FALSE; if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0)) return FALSE; } } else { if (sreldyn && sreldyn->size > 0) { if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0)) return FALSE; if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0)) return FALSE; if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0)) return FALSE; } if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0)) return FALSE; if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0)) return FALSE; if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0)) return FALSE; if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0)) return FALSE; if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0)) return FALSE; if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0)) return FALSE; if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0)) return FALSE; if (IRIX_COMPAT (dynobj) == ict_irix5 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0)) return FALSE; if (IRIX_COMPAT (dynobj) == ict_irix6 && (bfd_get_section_by_name (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj))) && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0)) return FALSE; } if (htab->splt->size > 0) { if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0)) return FALSE; if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0)) return FALSE; if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0)) return FALSE; if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0)) return FALSE; } if (htab->is_vxworks && !elf_vxworks_add_dynamic_entries (output_bfd, info)) return FALSE; } return TRUE; } /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD. Adjust its R_ADDEND field so that it is correct for the output file. LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols and sections respectively; both use symbol indexes. */ static void mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info, bfd *input_bfd, Elf_Internal_Sym *local_syms, asection **local_sections, Elf_Internal_Rela *rel) { unsigned int r_type, r_symndx; Elf_Internal_Sym *sym; asection *sec; if (mips_elf_local_relocation_p (input_bfd, rel, local_sections)) { r_type = ELF_R_TYPE (output_bfd, rel->r_info); if (gprel16_reloc_p (r_type) || r_type == R_MIPS_GPREL32 || literal_reloc_p (r_type)) { rel->r_addend += _bfd_get_gp_value (input_bfd); rel->r_addend -= _bfd_get_gp_value (output_bfd); } r_symndx = ELF_R_SYM (output_bfd, rel->r_info); sym = local_syms + r_symndx; /* Adjust REL's addend to account for section merging. */ if (!info->relocatable) { sec = local_sections[r_symndx]; _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); } /* This would normally be done by the rela_normal code in elflink.c. */ if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) rel->r_addend += local_sections[r_symndx]->output_offset; } } /* Handle relocations against symbols from removed linkonce sections, or sections discarded by a linker script. We use this wrapper around RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs on 64-bit ELF targets. In this case for any relocation handled, which always be the first in a triplet, the remaining two have to be processed together with the first, even if they are R_MIPS_NONE. It is the symbol index referred by the first reloc that applies to all the three and the remaining two never refer to an object symbol. And it is the final relocation (the last non-null one) that determines the output field of the whole relocation so retrieve the corresponding howto structure for the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION. Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue" and therefore requires to be pasted in a loop. It also defines a block and does not protect any of its arguments, hence the extra brackets. */ static void mips_reloc_against_discarded_section (bfd *output_bfd, struct bfd_link_info *info, bfd *input_bfd, asection *input_section, Elf_Internal_Rela **rel, const Elf_Internal_Rela **relend, bfd_boolean rel_reloc, reloc_howto_type *howto, bfd_byte *contents) { const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); int count = bed->s->int_rels_per_ext_rel; unsigned int r_type; int i; for (i = count - 1; i > 0; i--) { r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info); if (r_type != R_MIPS_NONE) { howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc); break; } } do { RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, (*rel), count, (*relend), howto, i, contents); } while (0); } /* Relocate a MIPS ELF section. */ bfd_boolean _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info, bfd *input_bfd, asection *input_section, bfd_byte *contents, Elf_Internal_Rela *relocs, Elf_Internal_Sym *local_syms, asection **local_sections) { Elf_Internal_Rela *rel; const Elf_Internal_Rela *relend; bfd_vma addend = 0; bfd_boolean use_saved_addend_p = FALSE; const struct elf_backend_data *bed; bed = get_elf_backend_data (output_bfd); relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel; for (rel = relocs; rel < relend; ++rel) { const char *name; bfd_vma value = 0; reloc_howto_type *howto; bfd_boolean cross_mode_jump_p = FALSE; /* TRUE if the relocation is a RELA relocation, rather than a REL relocation. */ bfd_boolean rela_relocation_p = TRUE; unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info); const char *msg; unsigned long r_symndx; asection *sec; Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry *h; bfd_boolean rel_reloc; rel_reloc = (NEWABI_P (input_bfd) && mips_elf_rel_relocation_p (input_bfd, input_section, relocs, rel)); /* Find the relocation howto for this relocation. */ howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc); r_symndx = ELF_R_SYM (input_bfd, rel->r_info); symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; if (mips_elf_local_relocation_p (input_bfd, rel, local_sections)) { sec = local_sections[r_symndx]; h = NULL; } else { unsigned long extsymoff; extsymoff = 0; if (!elf_bad_symtab (input_bfd)) extsymoff = symtab_hdr->sh_info; h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff]; while (h->root.type == bfd_link_hash_indirect || h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; sec = NULL; if (h->root.type == bfd_link_hash_defined || h->root.type == bfd_link_hash_defweak) sec = h->root.u.def.section; } if (sec != NULL && discarded_section (sec)) { mips_reloc_against_discarded_section (output_bfd, info, input_bfd, input_section, &rel, &relend, rel_reloc, howto, contents); continue; } if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd)) { /* Some 32-bit code uses R_MIPS_64. In particular, people use 64-bit code, but make sure all their addresses are in the lowermost or uppermost 32-bit section of the 64-bit address space. Thus, when they use an R_MIPS_64 they mean what is usually meant by R_MIPS_32, with the exception that the stored value is sign-extended to 64 bits. */ howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE); /* On big-endian systems, we need to lie about the position of the reloc. */ if (bfd_big_endian (input_bfd)) rel->r_offset += 4; } if (!use_saved_addend_p) { /* If these relocations were originally of the REL variety, we must pull the addend out of the field that will be relocated. Otherwise, we simply use the contents of the RELA relocation. */ if (mips_elf_rel_relocation_p (input_bfd, input_section, relocs, rel)) { rela_relocation_p = FALSE; addend = mips_elf_read_rel_addend (input_bfd, rel, howto, contents); if (hi16_reloc_p (r_type) || (got16_reloc_p (r_type) && mips_elf_local_relocation_p (input_bfd, rel, local_sections))) { if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend, contents, &addend)) { if (h) name = h->root.root.string; else name = bfd_elf_sym_name (input_bfd, symtab_hdr, local_syms + r_symndx, sec); (*_bfd_error_handler) (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"), input_bfd, input_section, name, howto->name, rel->r_offset); } } else addend <<= howto->rightshift; } else addend = rel->r_addend; mips_elf_adjust_addend (output_bfd, info, input_bfd, local_syms, local_sections, rel); } if (info->relocatable) { if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd) && bfd_big_endian (input_bfd)) rel->r_offset -= 4; if (!rela_relocation_p && rel->r_addend) { addend += rel->r_addend; if (hi16_reloc_p (r_type) || got16_reloc_p (r_type)) addend = mips_elf_high (addend); else if (r_type == R_MIPS_HIGHER) addend = mips_elf_higher (addend); else if (r_type == R_MIPS_HIGHEST) addend = mips_elf_highest (addend); else addend >>= howto->rightshift; /* We use the source mask, rather than the destination mask because the place to which we are writing will be source of the addend in the final link. */ addend &= howto->src_mask; if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)) /* See the comment above about using R_MIPS_64 in the 32-bit ABI. Here, we need to update the addend. It would be possible to get away with just using the R_MIPS_32 reloc but for endianness. */ { bfd_vma sign_bits; bfd_vma low_bits; bfd_vma high_bits; if (addend & ((bfd_vma) 1 << 31)) #ifdef BFD64 sign_bits = ((bfd_vma) 1 << 32) - 1; #else sign_bits = -1; #endif else sign_bits = 0; /* If we don't know that we have a 64-bit type, do two separate stores. */ if (bfd_big_endian (input_bfd)) { /* Store the sign-bits (which are most significant) first. */ low_bits = sign_bits; high_bits = addend; } else { low_bits = addend; high_bits = sign_bits; } bfd_put_32 (input_bfd, low_bits, contents + rel->r_offset); bfd_put_32 (input_bfd, high_bits, contents + rel->r_offset + 4); continue; } if (! mips_elf_perform_relocation (info, howto, rel, addend, input_bfd, input_section, contents, FALSE)) return FALSE; } /* Go on to the next relocation. */ continue; } /* In the N32 and 64-bit ABIs there may be multiple consecutive relocations for the same offset. In that case we are supposed to treat the output of each relocation as the addend for the next. */ if (rel + 1 < relend && rel->r_offset == rel[1].r_offset && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE) use_saved_addend_p = TRUE; else use_saved_addend_p = FALSE; /* Figure out what value we are supposed to relocate. */ switch (mips_elf_calculate_relocation (output_bfd, input_bfd, input_section, info, rel, addend, howto, local_syms, local_sections, &value, &name, &cross_mode_jump_p, use_saved_addend_p)) { case bfd_reloc_continue: /* There's nothing to do. */ continue; case bfd_reloc_undefined: /* mips_elf_calculate_relocation already called the undefined_symbol callback. There's no real point in trying to perform the relocation at this point, so we just skip ahead to the next relocation. */ continue; case bfd_reloc_notsupported: msg = _("internal error: unsupported relocation error"); info->callbacks->warning (info, msg, name, input_bfd, input_section, rel->r_offset); return FALSE; case bfd_reloc_overflow: if (use_saved_addend_p) /* Ignore overflow until we reach the last relocation for a given location. */ ; else { struct mips_elf_link_hash_table *htab; htab = mips_elf_hash_table (info); BFD_ASSERT (htab != NULL); BFD_ASSERT (name != NULL); if (!htab->small_data_overflow_reported && (gprel16_reloc_p (howto->type) || literal_reloc_p (howto->type))) { msg = _("small-data section exceeds 64KB;" " lower small-data size limit (see option -G)"); htab->small_data_overflow_reported = TRUE; (*info->callbacks->einfo) ("%P: %s\n", msg); } if (! ((*info->callbacks->reloc_overflow) (info, NULL, name, howto->name, (bfd_vma) 0, input_bfd, input_section, rel->r_offset))) return FALSE; } break; case bfd_reloc_ok: break; case bfd_reloc_outofrange: if (jal_reloc_p (howto->type)) { msg = _("JALX to a non-word-aligned address"); info->callbacks->warning (info, msg, name, input_bfd, input_section, rel->r_offset); return FALSE; } /* Fall through. */ default: abort (); break; } /* If we've got another relocation for the address, keep going until we reach the last one. */ if (use_saved_addend_p) { addend = value; continue; } if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)) /* See the comment above about using R_MIPS_64 in the 32-bit ABI. Until now, we've been using the HOWTO for R_MIPS_32; that calculated the right value. Now, however, we sign-extend the 32-bit result to 64-bits, and store it as a 64-bit value. We are especially generous here in that we go to extreme lengths to support this usage on systems with only a 32-bit VMA. */ { bfd_vma sign_bits; bfd_vma low_bits; bfd_vma high_bits; if (value & ((bfd_vma) 1 << 31)) #ifdef BFD64 sign_bits = ((bfd_vma) 1 << 32) - 1; #else sign_bits = -1; #endif else sign_bits = 0; /* If we don't know that we have a 64-bit type, do two separate stores. */ if (bfd_big_endian (input_bfd)) { /* Undo what we did above. */ rel->r_offset -= 4; /* Store the sign-bits (which are most significant) first. */ low_bits = sign_bits; high_bits = value; } else { low_bits = value; high_bits = sign_bits; } bfd_put_32 (input_bfd, low_bits, contents + rel->r_offset); bfd_put_32 (input_bfd, high_bits, contents + rel->r_offset + 4); continue; } /* Actually perform the relocation. */ if (! mips_elf_perform_relocation (info, howto, rel, value, input_bfd, input_section, contents, cross_mode_jump_p)) return FALSE; } return TRUE; } /* A function that iterates over each entry in la25_stubs and fills in the code for each one. DATA points to a mips_htab_traverse_info. */ static int mips_elf_create_la25_stub (void **slot, void *data) { struct mips_htab_traverse_info *hti; struct mips_elf_link_hash_table *htab; struct mips_elf_la25_stub *stub; asection *s; bfd_byte *loc; bfd_vma offset, target, target_high, target_low; stub = (struct mips_elf_la25_stub *) *slot; hti = (struct mips_htab_traverse_info *) data; htab = mips_elf_hash_table (hti->info); BFD_ASSERT (htab != NULL); /* Create the section contents, if we haven't already. */ s = stub->stub_section; loc = s->contents; if (loc == NULL) { loc = bfd_malloc (s->size); if (loc == NULL) { hti->error = TRUE; return FALSE; } s->contents = loc; } /* Work out where in the section this stub should go. */ offset = stub->offset; /* Work out the target address. */ target = mips_elf_get_la25_target (stub, &s); target += s->output_section->vma + s->output_offset; target_high = ((target + 0x8000) >> 16) & 0xffff; target_low = (target & 0xffff); if (stub->stub_section != htab->strampoline) { /* This is a simple LUI/ADDIU stub. Zero out the beginning of the section and write the two instructions at the end. */ memset (loc, 0, offset); loc += offset; if (ELF_ST_IS_MICROMIPS (stub->h->root.other)) { bfd_put_micromips_32 (hti->output_bfd, LA25_LUI_MICROMIPS (target_high), loc); bfd_put_micromips_32 (hti->output_bfd, LA25_ADDIU_MICROMIPS (target_low), loc + 4); } else { bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc); bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4); } } else { /* This is trampoline. */ loc += offset; if (ELF_ST_IS_MICROMIPS (stub->h->root.other)) { bfd_put_micromips_32 (hti->output_bfd, LA25_LUI_MICROMIPS (target_high), loc); bfd_put_micromips_32 (hti->output_bfd, LA25_J_MICROMIPS (target), loc + 4); bfd_put_micromips_32 (hti->output_bfd, LA25_ADDIU_MICROMIPS (target_low), loc + 8); bfd_put_32 (hti->output_bfd, 0, loc + 12); } else { bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc); bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4); bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8); bfd_put_32 (hti->output_bfd, 0, loc + 12); } } return TRUE; } /* If NAME is one of the special IRIX6 symbols defined by the linker, adjust it appropriately now. */ static void mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED, const char *name, Elf_Internal_Sym *sym) { /* The linker script takes care of providing names and values for these, but we must place them into the right sections. */ static const char* const text_section_symbols[] = { "_ftext", "_etext", "__dso_displacement", "__elf_header", "__program_header_table", NULL }; static const char* const data_section_symbols[] = { "_fdata", "_edata", "_end", "_fbss", NULL }; const char* const *p; int i; for (i = 0; i < 2; ++i) for (p = (i == 0) ? text_section_symbols : data_section_symbols; *p; ++p) if (strcmp (*p, name) == 0) { /* All of these symbols are given type STT_SECTION by the IRIX6 linker. */ sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); sym->st_other = STO_PROTECTED; /* The IRIX linker puts these symbols in special sections. */ if (i == 0) sym->st_shndx = SHN_MIPS_TEXT; else sym->st_shndx = SHN_MIPS_DATA; break; } } /* Finish up dynamic symbol handling. We set the contents of various dynamic sections here. */ bfd_boolean _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd, struct bfd_link_info *info, struct elf_link_hash_entry *h, Elf_Internal_Sym *sym) { bfd *dynobj; asection *sgot; struct mips_got_info *g, *gg; const char *name; int idx; struct mips_elf_link_hash_table *htab; struct mips_elf_link_hash_entry *hmips; htab = mips_elf_hash_table (info); BFD_ASSERT (htab != NULL); dynobj = elf_hash_table (info)->dynobj; hmips = (struct mips_elf_link_hash_entry *) h; BFD_ASSERT (!htab->is_vxworks); if (h->plt.plist != NULL && (h->plt.plist->mips_offset != MINUS_ONE || h->plt.plist->comp_offset != MINUS_ONE)) { /* We've decided to create a PLT entry for this symbol. */ bfd_byte *loc; bfd_vma header_address, got_address; bfd_vma got_address_high, got_address_low, load; bfd_vma got_index; bfd_vma isa_bit; got_index = h->plt.plist->gotplt_index; BFD_ASSERT (htab->use_plts_and_copy_relocs); BFD_ASSERT (h->dynindx != -1); BFD_ASSERT (htab->splt != NULL); BFD_ASSERT (got_index != MINUS_ONE); BFD_ASSERT (!h->def_regular); /* Calculate the address of the PLT header. */ isa_bit = htab->plt_header_is_comp; header_address = (htab->splt->output_section->vma + htab->splt->output_offset + isa_bit); /* Calculate the address of the .got.plt entry. */ got_address = (htab->sgotplt->output_section->vma + htab->sgotplt->output_offset + got_index * MIPS_ELF_GOT_SIZE (dynobj)); got_address_high = ((got_address + 0x8000) >> 16) & 0xffff; got_address_low = got_address & 0xffff; /* Initially point the .got.plt entry at the PLT header. */ loc = (htab->sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj)); if (ABI_64_P (output_bfd)) bfd_put_64 (output_bfd, header_address, loc); else bfd_put_32 (output_bfd, header_address, loc); /* Now handle the PLT itself. First the standard entry (the order does not matter, we just have to pick one). */ if (h->plt.plist->mips_offset != MINUS_ONE) { const bfd_vma *plt_entry; bfd_vma plt_offset; plt_offset = htab->plt_header_size + h->plt.plist->mips_offset; BFD_ASSERT (plt_offset <= htab->splt->size); /* Find out where the .plt entry should go. */ loc = htab->splt->contents + plt_offset; /* Pick the load opcode. */ load = MIPS_ELF_LOAD_WORD (output_bfd); /* Fill in the PLT entry itself. */ plt_entry = mips_exec_plt_entry; bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc); bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4); if (! LOAD_INTERLOCKS_P (output_bfd)) { bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8); bfd_put_32 (output_bfd, plt_entry[3], loc + 12); } else { bfd_put_32 (output_bfd, plt_entry[3], loc + 8); bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12); } } /* Now the compressed entry. They come after any standard ones. */ if (h->plt.plist->comp_offset != MINUS_ONE) { bfd_vma plt_offset; plt_offset = (htab->plt_header_size + htab->plt_mips_offset + h->plt.plist->comp_offset); BFD_ASSERT (plt_offset <= htab->splt->size); /* Find out where the .plt entry should go. */ loc = htab->splt->contents + plt_offset; /* Fill in the PLT entry itself. */ if (!MICROMIPS_P (output_bfd)) { const bfd_vma *plt_entry = mips16_o32_exec_plt_entry; bfd_put_16 (output_bfd, plt_entry[0], loc); bfd_put_16 (output_bfd, plt_entry[1], loc + 2); bfd_put_16 (output_bfd, plt_entry[2], loc + 4); bfd_put_16 (output_bfd, plt_entry[3], loc + 6); bfd_put_16 (output_bfd, plt_entry[4], loc + 8); bfd_put_16 (output_bfd, plt_entry[5], loc + 10); bfd_put_32 (output_bfd, got_address, loc + 12); } else if (htab->insn32) { const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry; bfd_put_16 (output_bfd, plt_entry[0], loc); bfd_put_16 (output_bfd, got_address_high, loc + 2); bfd_put_16 (output_bfd, plt_entry[2], loc + 4); bfd_put_16 (output_bfd, got_address_low, loc + 6); bfd_put_16 (output_bfd, plt_entry[4], loc + 8); bfd_put_16 (output_bfd, plt_entry[5], loc + 10); bfd_put_16 (output_bfd, plt_entry[6], loc + 12); bfd_put_16 (output_bfd, got_address_low, loc + 14); } else { const bfd_vma *plt_entry = micromips_o32_exec_plt_entry; bfd_signed_vma gotpc_offset; bfd_vma loc_address; BFD_ASSERT (got_address % 4 == 0); loc_address = (htab->splt->output_section->vma + htab->splt->output_offset + plt_offset); gotpc_offset = got_address - ((loc_address | 3) ^ 3); /* ADDIUPC has a span of +/-16MB, check we're in range. */ if (gotpc_offset + 0x1000000 >= 0x2000000) { (*_bfd_error_handler) (_("%B: `%A' offset of %ld from `%A' " "beyond the range of ADDIUPC"), output_bfd, htab->sgotplt->output_section, htab->splt->output_section, (long) gotpc_offset); bfd_set_error (bfd_error_no_error); return FALSE; } bfd_put_16 (output_bfd, plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc); bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2); bfd_put_16 (output_bfd, plt_entry[2], loc + 4); bfd_put_16 (output_bfd, plt_entry[3], loc + 6); bfd_put_16 (output_bfd, plt_entry[4], loc + 8); bfd_put_16 (output_bfd, plt_entry[5], loc + 10); } } /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */ mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt, got_index - 2, h->dynindx, R_MIPS_JUMP_SLOT, got_address); /* We distinguish between PLT entries and lazy-binding stubs by giving the former an st_other value of STO_MIPS_PLT. Set the flag and leave the value if there are any relocations in the binary where pointer equality matters. */ sym->st_shndx = SHN_UNDEF; if (h->pointer_equality_needed) sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other); else { sym->st_value = 0; sym->st_other = 0; } } if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE) { /* We've decided to create a lazy-binding stub. */ bfd_boolean micromips_p = MICROMIPS_P (output_bfd); unsigned int other = micromips_p ? STO_MICROMIPS : 0; bfd_vma stub_size = htab->function_stub_size; bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE]; bfd_vma isa_bit = micromips_p; bfd_vma stub_big_size; if (!micromips_p) stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE; else if (htab->insn32) stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE; else stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE; /* This symbol has a stub. Set it up. */ BFD_ASSERT (h->dynindx != -1); BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff); /* Values up to 2^31 - 1 are allowed. Larger values would cause sign extension at runtime in the stub, resulting in a negative index value. */ if (h->dynindx & ~0x7fffffff) return FALSE; /* Fill the stub. */ if (micromips_p) { idx = 0; bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd), stub + idx); idx += 4; if (htab->insn32) { bfd_put_micromips_32 (output_bfd, STUB_MOVE32_MICROMIPS (output_bfd), stub + idx); idx += 4; } else { bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx); idx += 2; } if (stub_size == stub_big_size) { long dynindx_hi = (h->dynindx >> 16) & 0x7fff; bfd_put_micromips_32 (output_bfd, STUB_LUI_MICROMIPS (dynindx_hi), stub + idx); idx += 4; } if (htab->insn32) { bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS, stub + idx); idx += 4; } else { bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx); idx += 2; } /* If a large stub is not required and sign extension is not a problem, then use legacy code in the stub. */ if (stub_size == stub_big_size) bfd_put_micromips_32 (output_bfd, STUB_ORI_MICROMIPS (h->dynindx & 0xffff), stub + idx); else if (h->dynindx & ~0x7fff) bfd_put_micromips_32 (output_bfd, STUB_LI16U_MICROMIPS (h->dynindx & 0xffff), stub + idx); else bfd_put_micromips_32 (output_bfd, STUB_LI16S_MICROMIPS (output_bfd, h->dynindx), stub + idx); } else { idx = 0; bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx); idx += 4; bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx); idx += 4; if (stub_size == stub_big_size) { bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff), stub + idx); idx += 4; } bfd_put_32 (output_bfd, STUB_JALR, stub + idx); idx += 4; /* If a large stub is not required and sign extension is not a problem, then use legacy code in the stub. */ if (stub_size == stub_big_size) bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx); else if (h->dynindx & ~0x7fff) bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx); else bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx), stub + idx); } BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size); memcpy (htab->sstubs->contents + h->plt.plist->stub_offset, stub, stub_size); /* Mark the symbol as undefined. stub_offset != -1 occurs only for the referenced symbol. */ sym->st_shndx = SHN_UNDEF; /* The run-time linker uses the st_value field of the symbol to reset the global offset table entry for this external to its stub address when unlinking a shared object. */ sym->st_value = (htab->sstubs->output_section->vma + htab->sstubs->output_offset + h->plt.plist->stub_offset + isa_bit); sym->st_other = other; } /* If we have a MIPS16 function with a stub, the dynamic symbol must refer to the stub, since only the stub uses the standard calling conventions. */ if (h->dynindx != -1 && hmips->fn_stub != NULL) { BFD_ASSERT (hmips->need_fn_stub); sym->st_value = (hmips->fn_stub->output_section->vma + hmips->fn_stub->output_offset); sym->st_size = hmips->fn_stub->size; sym->st_other = ELF_ST_VISIBILITY (sym->st_other); } BFD_ASSERT (h->dynindx != -1 || h->forced_local); sgot = htab->sgot; g = htab->got_info; BFD_ASSERT (g != NULL); /* Run through the global symbol table, creating GOT entries for all the symbols that need them. */ if (hmips->global_got_area != GGA_NONE) { bfd_vma offset; bfd_vma value; value = sym->st_value; offset = mips_elf_primary_global_got_index (output_bfd, info, h); MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset); } if (hmips->global_got_area != GGA_NONE && g->next) { struct mips_got_entry e, *p; bfd_vma entry; bfd_vma offset; gg = g; e.abfd = output_bfd; e.symndx = -1; e.d.h = hmips; e.tls_type = GOT_TLS_NONE; for (g = g->next; g->next != gg; g = g->next) { if (g->got_entries && (p = (struct mips_got_entry *) htab_find (g->got_entries, &e))) { offset = p->gotidx; BFD_ASSERT (offset > 0 && offset < htab->sgot->size); if (info->shared || (elf_hash_table (info)->dynamic_sections_created && p->d.h != NULL && p->d.h->root.def_dynamic && !p->d.h->root.def_regular)) { /* Create an R_MIPS_REL32 relocation for this entry. Due to the various compatibility problems, it's easier to mock up an R_MIPS_32 or R_MIPS_64 relocation and leave mips_elf_create_dynamic_relocation to calculate the appropriate addend. */ Elf_Internal_Rela rel[3]; memset (rel, 0, sizeof (rel)); if (ABI_64_P (output_bfd)) rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64); else rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32); rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset; entry = 0; if (! (mips_elf_create_dynamic_relocation (output_bfd, info, rel, e.d.h, NULL, sym->st_value, &entry, sgot))) return FALSE; } else entry = sym->st_value; MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset); } } } /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ name = h->root.root.string; if (h == elf_hash_table (info)->hdynamic || h == elf_hash_table (info)->hgot) sym->st_shndx = SHN_ABS; else if (strcmp (name, "_DYNAMIC_LINK") == 0 || strcmp (name, "_DYNAMIC_LINKING") == 0) { sym->st_shndx = SHN_ABS; sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); sym->st_value = 1; } else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd)) { sym->st_shndx = SHN_ABS; sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); sym->st_value = elf_gp (output_bfd); } else if (SGI_COMPAT (output_bfd)) { if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) { sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); sym->st_other = STO_PROTECTED; sym->st_value = 0; sym->st_shndx = SHN_MIPS_DATA; } else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) { sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); sym->st_other = STO_PROTECTED; sym->st_value = mips_elf_hash_table (info)->procedure_count; sym->st_shndx = SHN_ABS; } else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS) { if (h->type == STT_FUNC) sym->st_shndx = SHN_MIPS_TEXT; else if (h->type == STT_OBJECT) sym->st_shndx = SHN_MIPS_DATA; } } /* Emit a copy reloc, if needed. */ if (h->needs_copy) { asection *s; bfd_vma symval; BFD_ASSERT (h->dynindx != -1); BFD_ASSERT (htab->use_plts_and_copy_relocs); s = mips_elf_rel_dyn_section (info, FALSE); symval = (h->root.u.def.section->output_section->vma + h->root.u.def.section->output_offset + h->root.u.def.value); mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++, h->dynindx, R_MIPS_COPY, symval); } /* Handle the IRIX6-specific symbols. */ if (IRIX_COMPAT (output_bfd) == ict_irix6) mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym); /* Keep dynamic compressed symbols odd. This allows the dynamic linker to treat compressed symbols like any other. */ if (ELF_ST_IS_MIPS16 (sym->st_other)) { BFD_ASSERT (sym->st_value & 1); sym->st_other -= STO_MIPS16; } else if (ELF_ST_IS_MICROMIPS (sym->st_other)) { BFD_ASSERT (sym->st_value & 1); sym->st_other -= STO_MICROMIPS; } return TRUE; } /* Likewise, for VxWorks. */ bfd_boolean _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd, struct bfd_link_info *info, struct elf_link_hash_entry *h, Elf_Internal_Sym *sym) { bfd *dynobj; asection *sgot; struct mips_got_info *g; struct mips_elf_link_hash_table *htab; struct mips_elf_link_hash_entry *hmips; htab = mips_elf_hash_table (info); BFD_ASSERT (htab != NULL); dynobj = elf_hash_table (info)->dynobj; hmips = (struct mips_elf_link_hash_entry *) h; if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE) { bfd_byte *loc; bfd_vma plt_address, got_address, got_offset, branch_offset; Elf_Internal_Rela rel; static const bfd_vma *plt_entry; bfd_vma gotplt_index; bfd_vma plt_offset; plt_offset = htab->plt_header_size + h->plt.plist->mips_offset; gotplt_index = h->plt.plist->gotplt_index; BFD_ASSERT (h->dynindx != -1); BFD_ASSERT (htab->splt != NULL); BFD_ASSERT (gotplt_index != MINUS_ONE); BFD_ASSERT (plt_offset <= htab->splt->size); /* Calculate the address of the .plt entry. */ plt_address = (htab->splt->output_section->vma + htab->splt->output_offset + plt_offset); /* Calculate the address of the .got.plt entry. */ got_address = (htab->sgotplt->output_section->vma + htab->sgotplt->output_offset + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)); /* Calculate the offset of the .got.plt entry from _GLOBAL_OFFSET_TABLE_. */ got_offset = mips_elf_gotplt_index (info, h); /* Calculate the offset for the branch at the start of the PLT entry. The branch jumps to the beginning of .plt. */ branch_offset = -(plt_offset / 4 + 1) & 0xffff; /* Fill in the initial value of the .got.plt entry. */ bfd_put_32 (output_bfd, plt_address, (htab->sgotplt->contents + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd))); /* Find out where the .plt entry should go. */ loc = htab->splt->contents + plt_offset; if (info->shared) { plt_entry = mips_vxworks_shared_plt_entry; bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc); bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4); } else { bfd_vma got_address_high, got_address_low; plt_entry = mips_vxworks_exec_plt_entry; got_address_high = ((got_address + 0x8000) >> 16) & 0xffff; got_address_low = got_address & 0xffff; bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc); bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4); bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8); bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12); bfd_put_32 (output_bfd, plt_entry[4], loc + 16); bfd_put_32 (output_bfd, plt_entry[5], loc + 20); bfd_put_32 (output_bfd, plt_entry[6], loc + 24); bfd_put_32 (output_bfd, plt_entry[7], loc + 28); loc = (htab->srelplt2->contents + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela)); /* Emit a relocation for the .got.plt entry. */ rel.r_offset = got_address; rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32); rel.r_addend = plt_offset; bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); /* Emit a relocation for the lui of %hi(<.got.plt slot>). */ loc += sizeof (Elf32_External_Rela); rel.r_offset = plt_address + 8; rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); rel.r_addend = got_offset; bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */ loc += sizeof (Elf32_External_Rela); rel.r_offset += 4; rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); } /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */ loc = (htab->srelplt->contents + gotplt_index * sizeof (Elf32_External_Rela)); rel.r_offset = got_address; rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT); rel.r_addend = 0; bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); if (!h->def_regular) sym->st_shndx = SHN_UNDEF; } BFD_ASSERT (h->dynindx != -1 || h->forced_local); sgot = htab->sgot; g = htab->got_info; BFD_ASSERT (g != NULL); /* See if this symbol has an entry in the GOT. */ if (hmips->global_got_area != GGA_NONE) { bfd_vma offset; Elf_Internal_Rela outrel; bfd_byte *loc; asection *s; /* Install the symbol value in the GOT. */ offset = mips_elf_primary_global_got_index (output_bfd, info, h); MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset); /* Add a dynamic relocation for it. */ s = mips_elf_rel_dyn_section (info, FALSE); loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela)); outrel.r_offset = (sgot->output_section->vma + sgot->output_offset + offset); outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32); outrel.r_addend = 0; bfd_elf32_swap_reloca_out (dynobj, &outrel, loc); } /* Emit a copy reloc, if needed. */ if (h->needs_copy) { Elf_Internal_Rela rel; BFD_ASSERT (h->dynindx != -1); rel.r_offset = (h->root.u.def.section->output_section->vma + h->root.u.def.section->output_offset + h->root.u.def.value); rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY); rel.r_addend = 0; bfd_elf32_swap_reloca_out (output_bfd, &rel, htab->srelbss->contents + (htab->srelbss->reloc_count * sizeof (Elf32_External_Rela))); ++htab->srelbss->reloc_count; } /* If this is a mips16/microMIPS symbol, force the value to be even. */ if (ELF_ST_IS_COMPRESSED (sym->st_other)) sym->st_value &= ~1; return TRUE; } /* Write out a plt0 entry to the beginning of .plt. */ static bfd_boolean mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info) { bfd_byte *loc; bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low; static const bfd_vma *plt_entry; struct mips_elf_link_hash_table *htab; htab = mips_elf_hash_table (info); BFD_ASSERT (htab != NULL); if (ABI_64_P (output_bfd)) plt_entry = mips_n64_exec_plt0_entry; else if (ABI_N32_P (output_bfd)) plt_entry = mips_n32_exec_plt0_entry; else if (!htab->plt_header_is_comp) plt_entry = mips_o32_exec_plt0_entry; else if (htab->insn32) plt_entry = micromips_insn32_o32_exec_plt0_entry; else plt_entry = micromips_o32_exec_plt0_entry; /* Calculate the value of .got.plt. */ gotplt_value = (htab->sgotplt->output_section->vma + htab->sgotplt->output_offset); gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff; gotplt_value_low = gotplt_value & 0xffff; /* The PLT sequence is not safe for N64 if .got.plt's address can not be loaded in two instructions. */ BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0 || ~(gotplt_value | 0x7fffffff) == 0); /* Install the PLT header. */ loc = htab->splt->contents; if (plt_entry == micromips_o32_exec_plt0_entry) { bfd_vma gotpc_offset; bfd_vma loc_address; size_t i; BFD_ASSERT (gotplt_value % 4 == 0); loc_address = (htab->splt->output_section->vma + htab->splt->output_offset); gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3); /* ADDIUPC has a span of +/-16MB, check we're in range. */ if (gotpc_offset + 0x1000000 >= 0x2000000) { (*_bfd_error_handler) (_("%B: `%A' offset of %ld from `%A' beyond the range of ADDIUPC"), output_bfd, htab->sgotplt->output_section, htab->splt->output_section, (long) gotpc_offset); bfd_set_error (bfd_error_no_error); return FALSE; } bfd_put_16 (output_bfd, plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc); bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2); for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++) bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2)); } else if (plt_entry == micromips_insn32_o32_exec_plt0_entry) { size_t i; bfd_put_16 (output_bfd, plt_entry[0], loc); bfd_put_16 (output_bfd, gotplt_value_high, loc + 2); bfd_put_16 (output_bfd, plt_entry[2], loc + 4); bfd_put_16 (output_bfd, gotplt_value_low, loc + 6); bfd_put_16 (output_bfd, plt_entry[4], loc + 8); bfd_put_16 (output_bfd, gotplt_value_low, loc + 10); for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++) bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2)); } else { bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc); bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4); bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8); bfd_put_32 (output_bfd, plt_entry[3], loc + 12); bfd_put_32 (output_bfd, plt_entry[4], loc + 16); bfd_put_32 (output_bfd, plt_entry[5], loc + 20); bfd_put_32 (output_bfd, plt_entry[6], loc + 24); bfd_put_32 (output_bfd, plt_entry[7], loc + 28); } return TRUE; } /* Install the PLT header for a VxWorks executable and finalize the contents of .rela.plt.unloaded. */ static void mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info) { Elf_Internal_Rela rela; bfd_byte *loc; bfd_vma got_value, got_value_high, got_value_low, plt_address; static const bfd_vma *plt_entry; struct mips_elf_link_hash_table *htab; htab = mips_elf_hash_table (info); BFD_ASSERT (htab != NULL); plt_entry = mips_vxworks_exec_plt0_entry; /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */ got_value = (htab->root.hgot->root.u.def.section->output_section->vma + htab->root.hgot->root.u.def.section->output_offset + htab->root.hgot->root.u.def.value); got_value_high = ((got_value + 0x8000) >> 16) & 0xffff; got_value_low = got_value & 0xffff; /* Calculate the address of the PLT header. */ plt_address = htab->splt->output_section->vma + htab->splt->output_offset; /* Install the PLT header. */ loc = htab->splt->contents; bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc); bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4); bfd_put_32 (output_bfd, plt_entry[2], loc + 8); bfd_put_32 (output_bfd, plt_entry[3], loc + 12); bfd_put_32 (output_bfd, plt_entry[4], loc + 16); bfd_put_32 (output_bfd, plt_entry[5], loc + 20); /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */ loc = htab->srelplt2->contents; rela.r_offset = plt_address; rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); rela.r_addend = 0; bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); loc += sizeof (Elf32_External_Rela); /* Output the relocation for the following addiu of %lo(_GLOBAL_OFFSET_TABLE_). */ rela.r_offset += 4; rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); loc += sizeof (Elf32_External_Rela); /* Fix up the remaining relocations. They may have the wrong symbol index for _G_O_T_ or _P_L_T_ depending on the order in which symbols were output. */ while (loc < htab->srelplt2->contents + htab->srelplt2->size) { Elf_Internal_Rela rel; bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32); bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); loc += sizeof (Elf32_External_Rela); bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); loc += sizeof (Elf32_External_Rela); bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); loc += sizeof (Elf32_External_Rela); } } /* Install the PLT header for a VxWorks shared library. */ static void mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info) { unsigned int i; struct mips_elf_link_hash_table *htab; htab = mips_elf_hash_table (info); BFD_ASSERT (htab != NULL); /* We just need to copy the entry byte-by-byte. */ for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++) bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i], htab->splt->contents + i * 4); } /* Finish up the dynamic sections. */ bfd_boolean _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info) { bfd *dynobj; asection *sdyn; asection *sgot; struct mips_got_info *gg, *g; struct mips_elf_link_hash_table *htab; htab = mips_elf_hash_table (info); BFD_ASSERT (htab != NULL); dynobj = elf_hash_table (info)->dynobj; sdyn = bfd_get_linker_section (dynobj, ".dynamic"); sgot = htab->sgot; gg = htab->got_info; if (elf_hash_table (info)->dynamic_sections_created) { bfd_byte *b; int dyn_to_skip = 0, dyn_skipped = 0; BFD_ASSERT (sdyn != NULL); BFD_ASSERT (gg != NULL); g = mips_elf_bfd_got (output_bfd, FALSE); BFD_ASSERT (g != NULL); for (b = sdyn->contents; b < sdyn->contents + sdyn->size; b += MIPS_ELF_DYN_SIZE (dynobj)) { Elf_Internal_Dyn dyn; const char *name; size_t elemsize; asection *s; bfd_boolean swap_out_p; /* Read in the current dynamic entry. */ (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn); /* Assume that we're going to modify it and write it out. */ swap_out_p = TRUE; switch (dyn.d_tag) { case DT_RELENT: dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj); break; case DT_RELAENT: BFD_ASSERT (htab->is_vxworks); dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj); break; case DT_STRSZ: /* Rewrite DT_STRSZ. */ dyn.d_un.d_val = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); break; case DT_PLTGOT: s = htab->sgot; dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; break; case DT_MIPS_PLTGOT: s = htab->sgotplt; dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; break; case DT_MIPS_RLD_VERSION: dyn.d_un.d_val = 1; /* XXX */ break; case DT_MIPS_FLAGS: dyn.d_un.d_val = RHF_NOTPOT; /* XXX */ break; case DT_MIPS_TIME_STAMP: { time_t t; time (&t); dyn.d_un.d_val = t; } break; case DT_MIPS_ICHECKSUM: /* XXX FIXME: */ swap_out_p = FALSE; break; case DT_MIPS_IVERSION: /* XXX FIXME: */ swap_out_p = FALSE; break; case DT_MIPS_BASE_ADDRESS: s = output_bfd->sections; BFD_ASSERT (s != NULL); dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff; break; case DT_MIPS_LOCAL_GOTNO: dyn.d_un.d_val = g->local_gotno; break; case DT_MIPS_UNREFEXTNO: /* The index into the dynamic symbol table which is the entry of the first external symbol that is not referenced within the same object. */ dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1; break; case DT_MIPS_GOTSYM: if (htab->global_gotsym) { dyn.d_un.d_val = htab->global_gotsym->dynindx; break; } /* In case if we don't have global got symbols we default to setting DT_MIPS_GOTSYM to the same value as DT_MIPS_SYMTABNO, so we just fall through. */ case DT_MIPS_SYMTABNO: name = ".dynsym"; elemsize = MIPS_ELF_SYM_SIZE (output_bfd); s = bfd_get_section_by_name (output_bfd, name); BFD_ASSERT (s != NULL); dyn.d_un.d_val = s->size / elemsize; break; case DT_MIPS_HIPAGENO: dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno; break; case DT_MIPS_RLD_MAP: { struct elf_link_hash_entry *h; h = mips_elf_hash_table (info)->rld_symbol; if (!h) { dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj); swap_out_p = FALSE; break; } s = h->root.u.def.section; dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset + h->root.u.def.value); } break; case DT_MIPS_OPTIONS: s = (bfd_get_section_by_name (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd))); dyn.d_un.d_ptr = s->vma; break; case DT_RELASZ: BFD_ASSERT (htab->is_vxworks); /* The count does not include the JUMP_SLOT relocations. */ if (htab->srelplt) dyn.d_un.d_val -= htab->srelplt->size; break; case DT_PLTREL: BFD_ASSERT (htab->use_plts_and_copy_relocs); if (htab->is_vxworks) dyn.d_un.d_val = DT_RELA; else dyn.d_un.d_val = DT_REL; break; case DT_PLTRELSZ: BFD_ASSERT (htab->use_plts_and_copy_relocs); dyn.d_un.d_val = htab->srelplt->size; break; case DT_JMPREL: BFD_ASSERT (htab->use_plts_and_copy_relocs); dyn.d_un.d_ptr = (htab->srelplt->output_section->vma + htab->srelplt->output_offset); break; case DT_TEXTREL: /* If we didn't need any text relocations after all, delete the dynamic tag. */ if (!(info->flags & DF_TEXTREL)) { dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj); swap_out_p = FALSE; } break; case DT_FLAGS: /* If we didn't need any text relocations after all, clear DF_TEXTREL from DT_FLAGS. */ if (!(info->flags & DF_TEXTREL)) dyn.d_un.d_val &= ~DF_TEXTREL; else swap_out_p = FALSE; break; default: swap_out_p = FALSE; if (htab->is_vxworks && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn)) swap_out_p = TRUE; break; } if (swap_out_p || dyn_skipped) (*get_elf_backend_data (dynobj)->s->swap_dyn_out) (dynobj, &dyn, b - dyn_skipped); if (dyn_to_skip) { dyn_skipped += dyn_to_skip; dyn_to_skip = 0; } } /* Wipe out any trailing entries if we shifted down a dynamic tag. */ if (dyn_skipped > 0) memset (b - dyn_skipped, 0, dyn_skipped); } if (sgot != NULL && sgot->size > 0 && !bfd_is_abs_section (sgot->output_section)) { if (htab->is_vxworks) { /* The first entry of the global offset table points to the ".dynamic" section. The second is initialized by the loader and contains the shared library identifier. The third is also initialized by the loader and points to the lazy resolution stub. */ MIPS_ELF_PUT_WORD (output_bfd, sdyn->output_offset + sdyn->output_section->vma, sgot->contents); MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd)); MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents + 2 * MIPS_ELF_GOT_SIZE (output_bfd)); } else { /* The first entry of the global offset table will be filled at runtime. The second entry will be used by some runtime loaders. This isn't the case of IRIX rld. */ MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents); MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd), sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd)); } elf_section_data (sgot->output_section)->this_hdr.sh_entsize = MIPS_ELF_GOT_SIZE (output_bfd); } /* Generate dynamic relocations for the non-primary gots. */ if (gg != NULL && gg->next) { Elf_Internal_Rela rel[3]; bfd_vma addend = 0; memset (rel, 0, sizeof (rel)); rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32); for (g = gg->next; g->next != gg; g = g->next) { bfd_vma got_index = g->next->local_gotno + g->next->global_gotno + g->next->tls_gotno; MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd)); MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd), sgot->contents + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd)); if (! info->shared) continue; while (got_index < g->assigned_gotno) { rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = got_index++ * MIPS_ELF_GOT_SIZE (output_bfd); if (!(mips_elf_create_dynamic_relocation (output_bfd, info, rel, NULL, bfd_abs_section_ptr, 0, &addend, sgot))) return FALSE; BFD_ASSERT (addend == 0); } } } /* The generation of dynamic relocations for the non-primary gots adds more dynamic relocations. We cannot count them until here. */ if (elf_hash_table (info)->dynamic_sections_created) { bfd_byte *b; bfd_boolean swap_out_p; BFD_ASSERT (sdyn != NULL); for (b = sdyn->contents; b < sdyn->contents + sdyn->size; b += MIPS_ELF_DYN_SIZE (dynobj)) { Elf_Internal_Dyn dyn; asection *s; /* Read in the current dynamic entry. */ (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn); /* Assume that we're going to modify it and write it out. */ swap_out_p = TRUE; switch (dyn.d_tag) { case DT_RELSZ: /* Reduce DT_RELSZ to account for any relocations we decided not to make. This is for the n64 irix rld, which doesn't seem to apply any relocations if there are trailing null entries. */ s = mips_elf_rel_dyn_section (info, FALSE); dyn.d_un.d_val = (s->reloc_count * (ABI_64_P (output_bfd) ? sizeof (Elf64_Mips_External_Rel) : sizeof (Elf32_External_Rel))); /* Adjust the section size too. Tools like the prelinker can reasonably expect the values to the same. */ elf_section_data (s->output_section)->this_hdr.sh_size = dyn.d_un.d_val; break; default: swap_out_p = FALSE; break; } if (swap_out_p) (*get_elf_backend_data (dynobj)->s->swap_dyn_out) (dynobj, &dyn, b); } } { asection *s; Elf32_compact_rel cpt; if (SGI_COMPAT (output_bfd)) { /* Write .compact_rel section out. */ s = bfd_get_linker_section (dynobj, ".compact_rel"); if (s != NULL) { cpt.id1 = 1; cpt.num = s->reloc_count; cpt.id2 = 2; cpt.offset = (s->output_section->filepos + sizeof (Elf32_External_compact_rel)); cpt.reserved0 = 0; cpt.reserved1 = 0; bfd_elf32_swap_compact_rel_out (output_bfd, &cpt, ((Elf32_External_compact_rel *) s->contents)); /* Clean up a dummy stub function entry in .text. */ if (htab->sstubs != NULL) { file_ptr dummy_offset; BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size); dummy_offset = htab->sstubs->size - htab->function_stub_size; memset (htab->sstubs->contents + dummy_offset, 0, htab->function_stub_size); } } } /* The psABI says that the dynamic relocations must be sorted in increasing order of r_symndx. The VxWorks EABI doesn't require this, and because the code below handles REL rather than RELA relocations, using it for VxWorks would be outright harmful. */ if (!htab->is_vxworks) { s = mips_elf_rel_dyn_section (info, FALSE); if (s != NULL && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd)) { reldyn_sorting_bfd = output_bfd; if (ABI_64_P (output_bfd)) qsort ((Elf64_External_Rel *) s->contents + 1, s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel), sort_dynamic_relocs_64); else qsort ((Elf32_External_Rel *) s->contents + 1, s->reloc_count - 1, sizeof (Elf32_External_Rel), sort_dynamic_relocs); } } } if (htab->splt && htab->splt->size > 0) { if (htab->is_vxworks) { if (info->shared) mips_vxworks_finish_shared_plt (output_bfd, info); else mips_vxworks_finish_exec_plt (output_bfd, info); } else { BFD_ASSERT (!info->shared); if (!mips_finish_exec_plt (output_bfd, info)) return FALSE; } } return TRUE; } /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */ static void mips_set_isa_flags (bfd *abfd) { flagword val; switch (bfd_get_mach (abfd)) { default: case bfd_mach_mips3000: val = E_MIPS_ARCH_1; break; case bfd_mach_mips3900: val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900; break; case bfd_mach_mips6000: val = E_MIPS_ARCH_2; break; case bfd_mach_mips4000: case bfd_mach_mips4300: case bfd_mach_mips4400: case bfd_mach_mips4600: val = E_MIPS_ARCH_3; break; case bfd_mach_mips4010: val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010; break; case bfd_mach_mips4100: val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100; break; case bfd_mach_mips4111: val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111; break; case bfd_mach_mips4120: val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120; break; case bfd_mach_mips4650: val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650; break; case bfd_mach_mips5400: val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400; break; case bfd_mach_mips5500: val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500; break; case bfd_mach_mips5900: val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900; break; case bfd_mach_mips9000: val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000; break; case bfd_mach_mips5000: case bfd_mach_mips7000: case bfd_mach_mips8000: case bfd_mach_mips10000: case bfd_mach_mips12000: case bfd_mach_mips14000: case bfd_mach_mips16000: val = E_MIPS_ARCH_4; break; case bfd_mach_mips5: val = E_MIPS_ARCH_5; break; case bfd_mach_mips_loongson_2e: val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E; break; case bfd_mach_mips_loongson_2f: val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F; break; case bfd_mach_mips_sb1: val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1; break; case bfd_mach_mips_loongson_3a: val = E_MIPS_ARCH_64 | E_MIPS_MACH_LS3A; break; case bfd_mach_mips_octeon: case bfd_mach_mips_octeonp: val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON; break; case bfd_mach_mips_xlr: val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR; break; case bfd_mach_mips_octeon2: val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2; break; case bfd_mach_mipsisa32: val = E_MIPS_ARCH_32; break; case bfd_mach_mipsisa64: val = E_MIPS_ARCH_64; break; case bfd_mach_mipsisa32r2: val = E_MIPS_ARCH_32R2; break; case bfd_mach_mipsisa64r2: val = E_MIPS_ARCH_64R2; break; } elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); elf_elfheader (abfd)->e_flags |= val; } /* The final processing done just before writing out a MIPS ELF object file. This gets the MIPS architecture right based on the machine number. This is used by both the 32-bit and the 64-bit ABI. */ void _bfd_mips_elf_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED) { unsigned int i; Elf_Internal_Shdr **hdrpp; const char *name; asection *sec; /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former is nonzero. This is for compatibility with old objects, which used a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */ if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0) mips_set_isa_flags (abfd); /* Set the sh_info field for .gptab sections and other appropriate info for each special section. */ for (i = 1, hdrpp = elf_elfsections (abfd) + 1; i < elf_numsections (abfd); i++, hdrpp++) { switch ((*hdrpp)->sh_type) { case SHT_MIPS_MSYM: case SHT_MIPS_LIBLIST: sec = bfd_get_section_by_name (abfd, ".dynstr"); if (sec != NULL) (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; break; case SHT_MIPS_GPTAB: BFD_ASSERT ((*hdrpp)->bfd_section != NULL); name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); BFD_ASSERT (name != NULL && CONST_STRNEQ (name, ".gptab.")); sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1); BFD_ASSERT (sec != NULL); (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; break; case SHT_MIPS_CONTENT: BFD_ASSERT ((*hdrpp)->bfd_section != NULL); name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); BFD_ASSERT (name != NULL && CONST_STRNEQ (name, ".MIPS.content")); sec = bfd_get_section_by_name (abfd, name + sizeof ".MIPS.content" - 1); BFD_ASSERT (sec != NULL); (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; break; case SHT_MIPS_SYMBOL_LIB: sec = bfd_get_section_by_name (abfd, ".dynsym"); if (sec != NULL) (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; sec = bfd_get_section_by_name (abfd, ".liblist"); if (sec != NULL) (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; break; case SHT_MIPS_EVENTS: BFD_ASSERT ((*hdrpp)->bfd_section != NULL); name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); BFD_ASSERT (name != NULL); if (CONST_STRNEQ (name, ".MIPS.events")) sec = bfd_get_section_by_name (abfd, name + sizeof ".MIPS.events" - 1); else { BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel")); sec = bfd_get_section_by_name (abfd, (name + sizeof ".MIPS.post_rel" - 1)); } BFD_ASSERT (sec != NULL); (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; break; } } } /* When creating an IRIX5 executable, we need REGINFO and RTPROC segments. */ int _bfd_mips_elf_additional_program_headers (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED) { asection *s; int ret = 0; /* See if we need a PT_MIPS_REGINFO segment. */ s = bfd_get_section_by_name (abfd, ".reginfo"); if (s && (s->flags & SEC_LOAD)) ++ret; /* See if we need a PT_MIPS_OPTIONS segment. */ if (IRIX_COMPAT (abfd) == ict_irix6 && bfd_get_section_by_name (abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd))) ++ret; /* See if we need a PT_MIPS_RTPROC segment. */ if (IRIX_COMPAT (abfd) == ict_irix5 && bfd_get_section_by_name (abfd, ".dynamic") && bfd_get_section_by_name (abfd, ".mdebug")) ++ret; /* Allocate a PT_NULL header in dynamic objects. See _bfd_mips_elf_modify_segment_map for details. */ if (!SGI_COMPAT (abfd) && bfd_get_section_by_name (abfd, ".dynamic")) ++ret; return ret; } /* Modify the segment map for an IRIX5 executable. */ bfd_boolean _bfd_mips_elf_modify_segment_map (bfd *abfd, struct bfd_link_info *info) { asection *s; struct elf_segment_map *m, **pm; bfd_size_type amt; /* If there is a .reginfo section, we need a PT_MIPS_REGINFO segment. */ s = bfd_get_section_by_name (abfd, ".reginfo"); if (s != NULL && (s->flags & SEC_LOAD) != 0) { for (m = elf_seg_map (abfd); m != NULL; m = m->next) if (m->p_type == PT_MIPS_REGINFO) break; if (m == NULL) { amt = sizeof *m; m = bfd_zalloc (abfd, amt); if (m == NULL) return FALSE; m->p_type = PT_MIPS_REGINFO; m->count = 1; m->sections[0] = s; /* We want to put it after the PHDR and INTERP segments. */ pm = &elf_seg_map (abfd); while (*pm != NULL && ((*pm)->p_type == PT_PHDR || (*pm)->p_type == PT_INTERP)) pm = &(*pm)->next; m->next = *pm; *pm = m; } } /* For IRIX 6, we don't have .mdebug sections, nor does anything but .dynamic end up in PT_DYNAMIC. However, we do have to insert a PT_MIPS_OPTIONS segment immediately following the program header table. */ if (NEWABI_P (abfd) /* On non-IRIX6 new abi, we'll have already created a segment for this section, so don't create another. I'm not sure this is not also the case for IRIX 6, but I can't test it right now. */ && IRIX_COMPAT (abfd) == ict_irix6) { for (s = abfd->sections; s; s = s->next) if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS) break; if (s) { struct elf_segment_map *options_segment; pm = &elf_seg_map (abfd); while (*pm != NULL && ((*pm)->p_type == PT_PHDR || (*pm)->p_type == PT_INTERP)) pm = &(*pm)->next; if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS) { amt = sizeof (struct elf_segment_map); options_segment = bfd_zalloc (abfd, amt); options_segment->next = *pm; options_segment->p_type = PT_MIPS_OPTIONS; options_segment->p_flags = PF_R; options_segment->p_flags_valid = TRUE; options_segment->count = 1; options_segment->sections[0] = s; *pm = options_segment; } } } else { if (IRIX_COMPAT (abfd) == ict_irix5) { /* If there are .dynamic and .mdebug sections, we make a room for the RTPROC header. FIXME: Rewrite without section names. */ if (bfd_get_section_by_name (abfd, ".interp") == NULL && bfd_get_section_by_name (abfd, ".dynamic") != NULL && bfd_get_section_by_name (abfd, ".mdebug") != NULL) { for (m = elf_seg_map (abfd); m != NULL; m = m->next) if (m->p_type == PT_MIPS_RTPROC) break; if (m == NULL) { amt = sizeof *m; m = bfd_zalloc (abfd, amt); if (m == NULL) return FALSE; m->p_type = PT_MIPS_RTPROC; s = bfd_get_section_by_name (abfd, ".rtproc"); if (s == NULL) { m->count = 0; m->p_flags = 0; m->p_flags_valid = 1; } else { m->count = 1; m->sections[0] = s; } /* We want to put it after the DYNAMIC segment. */ pm = &elf_seg_map (abfd); while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC) pm = &(*pm)->next; if (*pm != NULL) pm = &(*pm)->next; m->next = *pm; *pm = m; } } } /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic, .dynstr, .dynsym, and .hash sections, and everything in between. */ for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next) if ((*pm)->p_type == PT_DYNAMIC) break; m = *pm; if (m != NULL && IRIX_COMPAT (abfd) == ict_none) { /* For a normal mips executable the permissions for the PT_DYNAMIC segment are read, write and execute. We do that here since the code in elf.c sets only the read permission. This matters sometimes for the dynamic linker. */ if (bfd_get_section_by_name (abfd, ".dynamic") != NULL) { m->p_flags = PF_R | PF_W | PF_X; m->p_flags_valid = 1; } } /* GNU/Linux binaries do not need the extended PT_DYNAMIC section. glibc's dynamic linker has traditionally derived the number of tags from the p_filesz field, and sometimes allocates stack arrays of that size. An overly-big PT_DYNAMIC segment can be actively harmful in such cases. Making PT_DYNAMIC contain other sections can also make life hard for the prelinker, which might move one of the other sections to a different PT_LOAD segment. */ if (SGI_COMPAT (abfd) && m != NULL && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0) { static const char *sec_names[] = { ".dynamic", ".dynstr", ".dynsym", ".hash" }; bfd_vma low, high; unsigned int i, c; struct elf_segment_map *n; low = ~(bfd_vma) 0; high = 0; for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++) { s = bfd_get_section_by_name (abfd, sec_names[i]); if (s != NULL && (s->flags & SEC_LOAD) != 0) { bfd_size_type sz; if (low > s->vma) low = s->vma; sz = s->size; if (high < s->vma + sz) high = s->vma + sz; } } c = 0; for (s = abfd->sections; s != NULL; s = s->next) if ((s->flags & SEC_LOAD) != 0 && s->vma >= low && s->vma + s->size <= high) ++c; amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *); n = bfd_zalloc (abfd, amt); if (n == NULL) return FALSE; *n = *m; n->count = c; i = 0; for (s = abfd->sections; s != NULL; s = s->next) { if ((s->flags & SEC_LOAD) != 0 && s->vma >= low && s->vma + s->size <= high) { n->sections[i] = s; ++i; } } *pm = n; } } /* Allocate a spare program header in dynamic objects so that tools like the prelinker can add an extra PT_LOAD entry. If the prelinker needs to make room for a new PT_LOAD entry, its standard procedure is to move the first (read-only) sections into the new (writable) segment. However, the MIPS ABI requires .dynamic to be in a read-only segment, and the section will often start within sizeof (ElfNN_Phdr) bytes of the last program header. Although the prelinker could in principle move .dynamic to a writable segment, it seems better to allocate a spare program header instead, and avoid the need to move any sections. There is a long tradition of allocating spare dynamic tags, so allocating a spare program header seems like a natural extension. If INFO is NULL, we may be copying an already prelinked binary with objcopy or strip, so do not add this header. */ if (info != NULL && !SGI_COMPAT (abfd) && bfd_get_section_by_name (abfd, ".dynamic")) { for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next) if ((*pm)->p_type == PT_NULL) break; if (*pm == NULL) { m = bfd_zalloc (abfd, sizeof (*m)); if (m == NULL) return FALSE; m->p_type = PT_NULL; *pm = m; } } return TRUE; } /* Return the section that should be marked against GC for a given relocation. */ asection * _bfd_mips_elf_gc_mark_hook (asection *sec, struct bfd_link_info *info, Elf_Internal_Rela *rel, struct elf_link_hash_entry *h, Elf_Internal_Sym *sym) { /* ??? Do mips16 stub sections need to be handled special? */ if (h != NULL) switch (ELF_R_TYPE (sec->owner, rel->r_info)) { case R_MIPS_GNU_VTINHERIT: case R_MIPS_GNU_VTENTRY: return NULL; } return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); } /* Update the got entry reference counts for the section being removed. */ bfd_boolean _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED, struct bfd_link_info *info ATTRIBUTE_UNUSED, asection *sec ATTRIBUTE_UNUSED, const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED) { #if 0 Elf_Internal_Shdr *symtab_hdr; struct elf_link_hash_entry **sym_hashes; bfd_signed_vma *local_got_refcounts; const Elf_Internal_Rela *rel, *relend; unsigned long r_symndx; struct elf_link_hash_entry *h; if (info->relocatable) return TRUE; symtab_hdr = &elf_tdata (abfd)->symtab_hdr; sym_hashes = elf_sym_hashes (abfd); local_got_refcounts = elf_local_got_refcounts (abfd); relend = relocs + sec->reloc_count; for (rel = relocs; rel < relend; rel++) switch (ELF_R_TYPE (abfd, rel->r_info)) { case R_MIPS16_GOT16: case R_MIPS16_CALL16: case R_MIPS_GOT16: case R_MIPS_CALL16: case R_MIPS_CALL_HI16: case R_MIPS_CALL_LO16: case R_MIPS_GOT_HI16: case R_MIPS_GOT_LO16: case R_MIPS_GOT_DISP: case R_MIPS_GOT_PAGE: case R_MIPS_GOT_OFST: case R_MICROMIPS_GOT16: case R_MICROMIPS_CALL16: case R_MICROMIPS_CALL_HI16: case R_MICROMIPS_CALL_LO16: case R_MICROMIPS_GOT_HI16: case R_MICROMIPS_GOT_LO16: case R_MICROMIPS_GOT_DISP: case R_MICROMIPS_GOT_PAGE: case R_MICROMIPS_GOT_OFST: /* ??? It would seem that the existing MIPS code does no sort of reference counting or whatnot on its GOT and PLT entries, so it is not possible to garbage collect them at this time. */ break; default: break; } #endif return TRUE; } /* Copy data from a MIPS ELF indirect symbol to its direct symbol, hiding the old indirect symbol. Process additional relocation information. Also called for weakdefs, in which case we just let _bfd_elf_link_hash_copy_indirect copy the flags for us. */ void _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *dir, struct elf_link_hash_entry *ind) { struct mips_elf_link_hash_entry *dirmips, *indmips; _bfd_elf_link_hash_copy_indirect (info, dir, ind); dirmips = (struct mips_elf_link_hash_entry *) dir; indmips = (struct mips_elf_link_hash_entry *) ind; /* Any absolute non-dynamic relocations against an indirect or weak definition will be against the target symbol. */ if (indmips->has_static_relocs) dirmips->has_static_relocs = TRUE; if (ind->root.type != bfd_link_hash_indirect) return; dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs; if (indmips->readonly_reloc) dirmips->readonly_reloc = TRUE; if (indmips->no_fn_stub) dirmips->no_fn_stub = TRUE; if (indmips->fn_stub) { dirmips->fn_stub = indmips->fn_stub; indmips->fn_stub = NULL; } if (indmips->need_fn_stub) { dirmips->need_fn_stub = TRUE; indmips->need_fn_stub = FALSE; } if (indmips->call_stub) { dirmips->call_stub = indmips->call_stub; indmips->call_stub = NULL; } if (indmips->call_fp_stub) { dirmips->call_fp_stub = indmips->call_fp_stub; indmips->call_fp_stub = NULL; } if (indmips->global_got_area < dirmips->global_got_area) dirmips->global_got_area = indmips->global_got_area; if (indmips->global_got_area < GGA_NONE) indmips->global_got_area = GGA_NONE; if (indmips->has_nonpic_branches) dirmips->has_nonpic_branches = TRUE; } #define PDR_SIZE 32 bfd_boolean _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie, struct bfd_link_info *info) { asection *o; bfd_boolean ret = FALSE; unsigned char *tdata; size_t i, skip; o = bfd_get_section_by_name (abfd, ".pdr"); if (! o) return FALSE; if (o->size == 0) return FALSE; if (o->size % PDR_SIZE != 0) return FALSE; if (o->output_section != NULL && bfd_is_abs_section (o->output_section)) return FALSE; tdata = bfd_zmalloc (o->size / PDR_SIZE); if (! tdata) return FALSE; cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, info->keep_memory); if (!cookie->rels) { free (tdata); return FALSE; } cookie->rel = cookie->rels; cookie->relend = cookie->rels + o->reloc_count; for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++) { if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie)) { tdata[i] = 1; skip ++; } } if (skip != 0) { mips_elf_section_data (o)->u.tdata = tdata; o->size -= skip * PDR_SIZE; ret = TRUE; } else free (tdata); if (! info->keep_memory) free (cookie->rels); return ret; } bfd_boolean _bfd_mips_elf_ignore_discarded_relocs (asection *sec) { if (strcmp (sec->name, ".pdr") == 0) return TRUE; return FALSE; } bfd_boolean _bfd_mips_elf_write_section (bfd *output_bfd, struct bfd_link_info *link_info ATTRIBUTE_UNUSED, asection *sec, bfd_byte *contents) { bfd_byte *to, *from, *end; int i; if (strcmp (sec->name, ".pdr") != 0) return FALSE; if (mips_elf_section_data (sec)->u.tdata == NULL) return FALSE; to = contents; end = contents + sec->size; for (from = contents, i = 0; from < end; from += PDR_SIZE, i++) { if ((mips_elf_section_data (sec)->u.tdata)[i] == 1) continue; if (to != from) memcpy (to, from, PDR_SIZE); to += PDR_SIZE; } bfd_set_section_contents (output_bfd, sec->output_section, contents, sec->output_offset, sec->size); return TRUE; } /* microMIPS code retains local labels for linker relaxation. Omit them from output by default for clarity. */ bfd_boolean _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym) { return _bfd_elf_is_local_label_name (abfd, sym->name); } /* MIPS ELF uses a special find_nearest_line routine in order the handle the ECOFF debugging information. */ struct mips_elf_find_line { struct ecoff_debug_info d; struct ecoff_find_line i; }; bfd_boolean _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section, asymbol **symbols, bfd_vma offset, const char **filename_ptr, const char **functionname_ptr, unsigned int *line_ptr) { asection *msec; if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr)) return TRUE; if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr, NULL, ABI_64_P (abfd) ? 8 : 0, &elf_tdata (abfd)->dwarf2_find_line_info)) return TRUE; msec = bfd_get_section_by_name (abfd, ".mdebug"); if (msec != NULL) { flagword origflags; struct mips_elf_find_line *fi; const struct ecoff_debug_swap * const swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; /* If we are called during a link, mips_elf_final_link may have cleared the SEC_HAS_CONTENTS field. We force it back on here if appropriate (which it normally will be). */ origflags = msec->flags; if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS) msec->flags |= SEC_HAS_CONTENTS; fi = mips_elf_tdata (abfd)->find_line_info; if (fi == NULL) { bfd_size_type external_fdr_size; char *fraw_src; char *fraw_end; struct fdr *fdr_ptr; bfd_size_type amt = sizeof (struct mips_elf_find_line); fi = bfd_zalloc (abfd, amt); if (fi == NULL) { msec->flags = origflags; return FALSE; } if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d)) { msec->flags = origflags; return FALSE; } /* Swap in the FDR information. */ amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr); fi->d.fdr = bfd_alloc (abfd, amt); if (fi->d.fdr == NULL) { msec->flags = origflags; return FALSE; } external_fdr_size = swap->external_fdr_size; fdr_ptr = fi->d.fdr; fraw_src = (char *) fi->d.external_fdr; fraw_end = (fraw_src + fi->d.symbolic_header.ifdMax * external_fdr_size); for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++) (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr); mips_elf_tdata (abfd)->find_line_info = fi; /* Note that we don't bother to ever free this information. find_nearest_line is either called all the time, as in objdump -l, so the information should be saved, or it is rarely called, as in ld error messages, so the memory wasted is unimportant. Still, it would probably be a good idea for free_cached_info to throw it away. */ } if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap, &fi->i, filename_ptr, functionname_ptr, line_ptr)) { msec->flags = origflags; return TRUE; } msec->flags = origflags; } /* Fall back on the generic ELF find_nearest_line routine. */ return _bfd_elf_find_nearest_line (abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr); } bfd_boolean _bfd_mips_elf_find_inliner_info (bfd *abfd, const char **filename_ptr, const char **functionname_ptr, unsigned int *line_ptr) { bfd_boolean found; found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr, functionname_ptr, line_ptr, & elf_tdata (abfd)->dwarf2_find_line_info); return found; } /* When are writing out the .options or .MIPS.options section, remember the bytes we are writing out, so that we can install the GP value in the section_processing routine. */ bfd_boolean _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section, const void *location, file_ptr offset, bfd_size_type count) { if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name)) { bfd_byte *c; if (elf_section_data (section) == NULL) { bfd_size_type amt = sizeof (struct bfd_elf_section_data); section->used_by_bfd = bfd_zalloc (abfd, amt); if (elf_section_data (section) == NULL) return FALSE; } c = mips_elf_section_data (section)->u.tdata; if (c == NULL) { c = bfd_zalloc (abfd, section->size); if (c == NULL) return FALSE; mips_elf_section_data (section)->u.tdata = c; } memcpy (c + offset, location, count); } return _bfd_elf_set_section_contents (abfd, section, location, offset, count); } /* This is almost identical to bfd_generic_get_... except that some MIPS relocations need to be handled specially. Sigh. */ bfd_byte * _bfd_elf_mips_get_relocated_section_contents (bfd *abfd, struct bfd_link_info *link_info, struct bfd_link_order *link_order, bfd_byte *data, bfd_boolean relocatable, asymbol **symbols) { /* Get enough memory to hold the stuff */ bfd *input_bfd = link_order->u.indirect.section->owner; asection *input_section = link_order->u.indirect.section; bfd_size_type sz; long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section); arelent **reloc_vector = NULL; long reloc_count; if (reloc_size < 0) goto error_return; reloc_vector = bfd_malloc (reloc_size); if (reloc_vector == NULL && reloc_size != 0) goto error_return; /* read in the section */ sz = input_section->rawsize ? input_section->rawsize : input_section->size; if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz)) goto error_return; reloc_count = bfd_canonicalize_reloc (input_bfd, input_section, reloc_vector, symbols); if (reloc_count < 0) goto error_return; if (reloc_count > 0) { arelent **parent; /* for mips */ int gp_found; bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */ { struct bfd_hash_entry *h; struct bfd_link_hash_entry *lh; /* Skip all this stuff if we aren't mixing formats. */ if (abfd && input_bfd && abfd->xvec == input_bfd->xvec) lh = 0; else { h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE); lh = (struct bfd_link_hash_entry *) h; } lookup: if (lh) { switch (lh->type) { case bfd_link_hash_undefined: case bfd_link_hash_undefweak: case bfd_link_hash_common: gp_found = 0; break; case bfd_link_hash_defined: case bfd_link_hash_defweak: gp_found = 1; gp = lh->u.def.value; break; case bfd_link_hash_indirect: case bfd_link_hash_warning: lh = lh->u.i.link; /* @@FIXME ignoring warning for now */ goto lookup; case bfd_link_hash_new: default: abort (); } } else gp_found = 0; } /* end mips */ for (parent = reloc_vector; *parent != NULL; parent++) { char *error_message = NULL; bfd_reloc_status_type r; /* Specific to MIPS: Deal with relocation types that require knowing the gp of the output bfd. */ asymbol *sym = *(*parent)->sym_ptr_ptr; /* If we've managed to find the gp and have a special function for the relocation then go ahead, else default to the generic handling. */ if (gp_found && (*parent)->howto->special_function == _bfd_mips_elf32_gprel16_reloc) r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent, input_section, relocatable, data, gp); else r = bfd_perform_relocation (input_bfd, *parent, data, input_section, relocatable ? abfd : NULL, &error_message); if (relocatable) { asection *os = input_section->output_section; /* A partial link, so keep the relocs */ os->orelocation[os->reloc_count] = *parent; os->reloc_count++; } if (r != bfd_reloc_ok) { switch (r) { case bfd_reloc_undefined: if (!((*link_info->callbacks->undefined_symbol) (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr), input_bfd, input_section, (*parent)->address, TRUE))) goto error_return; break; case bfd_reloc_dangerous: BFD_ASSERT (error_message != NULL); if (!((*link_info->callbacks->reloc_dangerous) (link_info, error_message, input_bfd, input_section, (*parent)->address))) goto error_return; break; case bfd_reloc_overflow: if (!((*link_info->callbacks->reloc_overflow) (link_info, NULL, bfd_asymbol_name (*(*parent)->sym_ptr_ptr), (*parent)->howto->name, (*parent)->addend, input_bfd, input_section, (*parent)->address))) goto error_return; break; case bfd_reloc_outofrange: default: abort (); break; } } } } if (reloc_vector != NULL) free (reloc_vector); return data; error_return: if (reloc_vector != NULL) free (reloc_vector); return NULL; } static bfd_boolean mips_elf_relax_delete_bytes (bfd *abfd, asection *sec, bfd_vma addr, int count) { Elf_Internal_Shdr *symtab_hdr; unsigned int sec_shndx; bfd_byte *contents; Elf_Internal_Rela *irel, *irelend; Elf_Internal_Sym *isym; Elf_Internal_Sym *isymend; struct elf_link_hash_entry **sym_hashes; struct elf_link_hash_entry **end_hashes; struct elf_link_hash_entry **start_hashes; unsigned int symcount; sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); contents = elf_section_data (sec)->this_hdr.contents; irel = elf_section_data (sec)->relocs; irelend = irel + sec->reloc_count; /* Actually delete the bytes. */ memmove (contents + addr, contents + addr + count, (size_t) (sec->size - addr - count)); sec->size -= count; /* Adjust all the relocs. */ for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++) { /* Get the new reloc address. */ if (irel->r_offset > addr) irel->r_offset -= count; } BFD_ASSERT (addr % 2 == 0); BFD_ASSERT (count % 2 == 0); /* Adjust the local symbols defined in this section. */ symtab_hdr = &elf_tdata (abfd)->symtab_hdr; isym = (Elf_Internal_Sym *) symtab_hdr->contents; for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++) if (isym->st_shndx == sec_shndx && isym->st_value > addr) isym->st_value -= count; /* Now adjust the global symbols defined in this section. */ symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym) - symtab_hdr->sh_info); sym_hashes = start_hashes = elf_sym_hashes (abfd); end_hashes = sym_hashes + symcount; for (; sym_hashes < end_hashes; sym_hashes++) { struct elf_link_hash_entry *sym_hash = *sym_hashes; if ((sym_hash->root.type == bfd_link_hash_defined || sym_hash->root.type == bfd_link_hash_defweak) && sym_hash->root.u.def.section == sec) { bfd_vma value = sym_hash->root.u.def.value; if (ELF_ST_IS_MICROMIPS (sym_hash->other)) value &= MINUS_TWO; if (value > addr) sym_hash->root.u.def.value -= count; } } return TRUE; } /* Opcodes needed for microMIPS relaxation as found in opcodes/micromips-opc.c. */ struct opcode_descriptor { unsigned long match; unsigned long mask; }; /* The $ra register aka $31. */ #define RA 31 /* 32-bit instruction format register fields. */ #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f) #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f) /* Check if a 5-bit register index can be abbreviated to 3 bits. */ #define OP16_VALID_REG(r) \ ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17)) /* 32-bit and 16-bit branches. */ static const struct opcode_descriptor b_insns_32[] = { { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */ { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */ { 0, 0 } /* End marker for find_match(). */ }; static const struct opcode_descriptor bc_insn_32 = { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 }; static const struct opcode_descriptor bz_insn_32 = { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 }; static const struct opcode_descriptor bzal_insn_32 = { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 }; static const struct opcode_descriptor beq_insn_32 = { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 }; static const struct opcode_descriptor b_insn_16 = { /* "b", "mD", */ 0xcc00, 0xfc00 }; static const struct opcode_descriptor bz_insn_16 = { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 }; /* 32-bit and 16-bit branch EQ and NE zero. */ /* NOTE: All opcode tables have BEQ/BNE in the same order: first the eq and second the ne. This convention is used when replacing a 32-bit BEQ/BNE with the 16-bit version. */ #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16) static const struct opcode_descriptor bz_rs_insns_32[] = { { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 }, { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 }, { 0, 0 } /* End marker for find_match(). */ }; static const struct opcode_descriptor bz_rt_insns_32[] = { { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 }, { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 }, { 0, 0 } /* End marker for find_match(). */ }; static const struct opcode_descriptor bzc_insns_32[] = { { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 }, { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 }, { 0, 0 } /* End marker for find_match(). */ }; static const struct opcode_descriptor bz_insns_16[] = { { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 }, { /* "bnez", "md,mE", */ 0xac00, 0xfc00 }, { 0, 0 } /* End marker for find_match(). */ }; /* Switch between a 5-bit register index and its 3-bit shorthand. */ #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2) #define BZ16_REG_FIELD(r) \ (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7) /* 32-bit instructions with a delay slot. */ static const struct opcode_descriptor jal_insn_32_bd16 = { /* "jals", "a", */ 0x74000000, 0xfc000000 }; static const struct opcode_descriptor jal_insn_32_bd32 = { /* "jal", "a", */ 0xf4000000, 0xfc000000 }; static const struct opcode_descriptor jal_x_insn_32_bd32 = { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 }; static const struct opcode_descriptor j_insn_32 = { /* "j", "a", */ 0xd4000000, 0xfc000000 }; static const struct opcode_descriptor jalr_insn_32 = { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff }; /* This table can be compacted, because no opcode replacement is made. */ static const struct opcode_descriptor ds_insns_32_bd16[] = { { /* "jals", "a", */ 0x74000000, 0xfc000000 }, { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff }, { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 }, { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 }, { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 }, { /* "j", "a", */ 0xd4000000, 0xfc000000 }, { 0, 0 } /* End marker for find_match(). */ }; /* This table can be compacted, because no opcode replacement is made. */ static const struct opcode_descriptor ds_insns_32_bd32[] = { { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 }, { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff }, { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 }, { 0, 0 } /* End marker for find_match(). */ }; /* 16-bit instructions with a delay slot. */ static const struct opcode_descriptor jalr_insn_16_bd16 = { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 }; static const struct opcode_descriptor jalr_insn_16_bd32 = { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 }; static const struct opcode_descriptor jr_insn_16 = { /* "jr", "mj", */ 0x4580, 0xffe0 }; #define JR16_REG(opcode) ((opcode) & 0x1f) /* This table can be compacted, because no opcode replacement is made. */ static const struct opcode_descriptor ds_insns_16_bd16[] = { { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 }, { /* "b", "mD", */ 0xcc00, 0xfc00 }, { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 }, { /* "jr", "mj", */ 0x4580, 0xffe0 }, { 0, 0 } /* End marker for find_match(). */ }; /* LUI instruction. */ static const struct opcode_descriptor lui_insn = { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 }; /* ADDIU instruction. */ static const struct opcode_descriptor addiu_insn = { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 }; static const struct opcode_descriptor addiupc_insn = { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 }; #define ADDIUPC_REG_FIELD(r) \ (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23) /* Relaxable instructions in a JAL delay slot: MOVE. */ /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves (ADDU, OR) have rd in 15:11 and rs in 10:16. */ #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f) #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f) #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5) #define MOVE16_RS_FIELD(r) (((r) & 0x1f) ) static const struct opcode_descriptor move_insns_32[] = { { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */ { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */ { 0, 0 } /* End marker for find_match(). */ }; static const struct opcode_descriptor move_insn_16 = { /* "move", "mp,mj", */ 0x0c00, 0xfc00 }; /* NOP instructions. */ static const struct opcode_descriptor nop_insn_32 = { /* "nop", "", */ 0x00000000, 0xffffffff }; static const struct opcode_descriptor nop_insn_16 = { /* "nop", "", */ 0x0c00, 0xffff }; /* Instruction match support. */ #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match) static int find_match (unsigned long opcode, const struct opcode_descriptor insn[]) { unsigned long indx; for (indx = 0; insn[indx].mask != 0; indx++) if (MATCH (opcode, insn[indx])) return indx; return -1; } /* Branch and delay slot decoding support. */ /* If PTR points to what *might* be a 16-bit branch or jump, then return the minimum length of its delay slot, otherwise return 0. Non-zero results are not definitive as we might be checking against the second half of another instruction. */ static int check_br16_dslot (bfd *abfd, bfd_byte *ptr) { unsigned long opcode; int bdsize; opcode = bfd_get_16 (abfd, ptr); if (MATCH (opcode, jalr_insn_16_bd32) != 0) /* 16-bit branch/jump with a 32-bit delay slot. */ bdsize = 4; else if (MATCH (opcode, jalr_insn_16_bd16) != 0 || find_match (opcode, ds_insns_16_bd16) >= 0) /* 16-bit branch/jump with a 16-bit delay slot. */ bdsize = 2; else /* No delay slot. */ bdsize = 0; return bdsize; } /* If PTR points to what *might* be a 32-bit branch or jump, then return the minimum length of its delay slot, otherwise return 0. Non-zero results are not definitive as we might be checking against the second half of another instruction. */ static int check_br32_dslot (bfd *abfd, bfd_byte *ptr) { unsigned long opcode; int bdsize; opcode = bfd_get_micromips_32 (abfd, ptr); if (find_match (opcode, ds_insns_32_bd32) >= 0) /* 32-bit branch/jump with a 32-bit delay slot. */ bdsize = 4; else if (find_match (opcode, ds_insns_32_bd16) >= 0) /* 32-bit branch/jump with a 16-bit delay slot. */ bdsize = 2; else /* No delay slot. */ bdsize = 0; return bdsize; } /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */ static bfd_boolean check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg) { unsigned long opcode; opcode = bfd_get_16 (abfd, ptr); if (MATCH (opcode, b_insn_16) /* B16 */ || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode)) /* JR16 */ || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode)) /* BEQZ16, BNEZ16 */ || (MATCH (opcode, jalr_insn_16_bd32) /* JALR16 */ && reg != JR16_REG (opcode) && reg != RA)) return TRUE; return FALSE; } /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */ static bfd_boolean check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg) { unsigned long opcode; opcode = bfd_get_micromips_32 (abfd, ptr); if (MATCH (opcode, j_insn_32) /* J */ || MATCH (opcode, bc_insn_32) /* BC1F, BC1T, BC2F, BC2T */ || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA) /* JAL, JALX */ || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode)) /* BGEZ, BGTZ, BLEZ, BLTZ */ || (MATCH (opcode, bzal_insn_32) /* BGEZAL, BLTZAL */ && reg != OP32_SREG (opcode) && reg != RA) || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32)) /* JALR, JALR.HB, BEQ, BNE */ && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode))) return TRUE; return FALSE; } /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS, IRELEND) at OFFSET indicate that there must be a compact branch there, then return TRUE, otherwise FALSE. */ static bfd_boolean check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset, const Elf_Internal_Rela *internal_relocs, const Elf_Internal_Rela *irelend) { const Elf_Internal_Rela *irel; unsigned long opcode; opcode = bfd_get_micromips_32 (abfd, ptr); if (find_match (opcode, bzc_insns_32) < 0) return FALSE; for (irel = internal_relocs; irel < irelend; irel++) if (irel->r_offset == offset && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1) return TRUE; return FALSE; } /* Bitsize checking. */ #define IS_BITSIZE(val, N) \ (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \ - (1ULL << ((N) - 1))) == (val)) bfd_boolean _bfd_mips_elf_relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info, bfd_boolean *again) { bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32; Elf_Internal_Shdr *symtab_hdr; Elf_Internal_Rela *internal_relocs; Elf_Internal_Rela *irel, *irelend; bfd_byte *contents = NULL; Elf_Internal_Sym *isymbuf = NULL; /* Assume nothing changes. */ *again = FALSE; /* We don't have to do anything for a relocatable link, if this section does not have relocs, or if this is not a code section. */ if (link_info->relocatable || (sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0 || (sec->flags & SEC_CODE) == 0) return TRUE; symtab_hdr = &elf_tdata (abfd)->symtab_hdr; /* Get a copy of the native relocations. */ internal_relocs = (_bfd_elf_link_read_relocs (abfd, sec, NULL, (Elf_Internal_Rela *) NULL, link_info->keep_memory)); if (internal_relocs == NULL) goto error_return; /* Walk through them looking for relaxing opportunities. */ irelend = internal_relocs + sec->reloc_count; for (irel = internal_relocs; irel < irelend; irel++) { unsigned long r_symndx = ELF32_R_SYM (irel->r_info); unsigned int r_type = ELF32_R_TYPE (irel->r_info); bfd_boolean target_is_micromips_code_p; unsigned long opcode; bfd_vma symval; bfd_vma pcrval; bfd_byte *ptr; int fndopc; /* The number of bytes to delete for relaxation and from where to delete these bytes starting at irel->r_offset. */ int delcnt = 0; int deloff = 0; /* If this isn't something that can be relaxed, then ignore this reloc. */ if (r_type != R_MICROMIPS_HI16 && r_type != R_MICROMIPS_PC16_S1 && r_type != R_MICROMIPS_26_S1) continue; /* Get the section contents if we haven't done so already. */ if (contents == NULL) { /* Get cached copy if it exists. */ if (elf_section_data (sec)->this_hdr.contents != NULL) contents = elf_section_data (sec)->this_hdr.contents; /* Go get them off disk. */ else if (!bfd_malloc_and_get_section (abfd, sec, &contents)) goto error_return; } ptr = contents + irel->r_offset; /* Read this BFD's local symbols if we haven't done so already. */ if (isymbuf == NULL && symtab_hdr->sh_info != 0) { isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; if (isymbuf == NULL) isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, symtab_hdr->sh_info, 0, NULL, NULL, NULL); if (isymbuf == NULL) goto error_return; } /* Get the value of the symbol referred to by the reloc. */ if (r_symndx < symtab_hdr->sh_info) { /* A local symbol. */ Elf_Internal_Sym *isym; asection *sym_sec; isym = isymbuf + r_symndx; if (isym->st_shndx == SHN_UNDEF) sym_sec = bfd_und_section_ptr; else if (isym->st_shndx == SHN_ABS) sym_sec = bfd_abs_section_ptr; else if (isym->st_shndx == SHN_COMMON) sym_sec = bfd_com_section_ptr; else sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx); symval = (isym->st_value + sym_sec->output_section->vma + sym_sec->output_offset); target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other); } else { unsigned long indx; struct elf_link_hash_entry *h; /* An external symbol. */ indx = r_symndx - symtab_hdr->sh_info; h = elf_sym_hashes (abfd)[indx]; BFD_ASSERT (h != NULL); if (h->root.type != bfd_link_hash_defined && h->root.type != bfd_link_hash_defweak) /* This appears to be a reference to an undefined symbol. Just ignore it -- it will be caught by the regular reloc processing. */ continue; symval = (h->root.u.def.value + h->root.u.def.section->output_section->vma + h->root.u.def.section->output_offset); target_is_micromips_code_p = (!h->needs_plt && ELF_ST_IS_MICROMIPS (h->other)); } /* For simplicity of coding, we are going to modify the section contents, the section relocs, and the BFD symbol table. We must tell the rest of the code not to free up this information. It would be possible to instead create a table of changes which have to be made, as is done in coff-mips.c; that would be more work, but would require less memory when the linker is run. */ /* Only 32-bit instructions relaxed. */ if (irel->r_offset + 4 > sec->size) continue; opcode = bfd_get_micromips_32 (abfd, ptr); /* This is the pc-relative distance from the instruction the relocation is applied to, to the symbol referred. */ pcrval = (symval - (sec->output_section->vma + sec->output_offset) - irel->r_offset); /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is (symval % 4 == 0 && IS_BITSIZE (pcrval, 25)) where pcrval has first to be adjusted to apply against the LO16 location (we make the adjustment later on, when we have figured out the offset). */ if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn)) { bfd_boolean bzc = FALSE; unsigned long nextopc; unsigned long reg; bfd_vma offset; /* Give up if the previous reloc was a HI16 against this symbol too. */ if (irel > internal_relocs && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16 && ELF32_R_SYM (irel[-1].r_info) == r_symndx) continue; /* Or if the next reloc is not a LO16 against this symbol. */ if (irel + 1 >= irelend || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16 || ELF32_R_SYM (irel[1].r_info) != r_symndx) continue; /* Or if the second next reloc is a LO16 against this symbol too. */ if (irel + 2 >= irelend && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16 && ELF32_R_SYM (irel[2].r_info) == r_symndx) continue; /* See if the LUI instruction *might* be in a branch delay slot. We check whether what looks like a 16-bit branch or jump is actually an immediate argument to a compact branch, and let it through if so. */ if (irel->r_offset >= 2 && check_br16_dslot (abfd, ptr - 2) && !(irel->r_offset >= 4 && (bzc = check_relocated_bzc (abfd, ptr - 4, irel->r_offset - 4, internal_relocs, irelend)))) continue; if (irel->r_offset >= 4 && !bzc && check_br32_dslot (abfd, ptr - 4)) continue; reg = OP32_SREG (opcode); /* We only relax adjacent instructions or ones separated with a branch or jump that has a delay slot. The branch or jump must not fiddle with the register used to hold the address. Subtract 4 for the LUI itself. */ offset = irel[1].r_offset - irel[0].r_offset; switch (offset - 4) { case 0: break; case 2: if (check_br16 (abfd, ptr + 4, reg)) break; continue; case 4: if (check_br32 (abfd, ptr + 4, reg)) break; continue; default: continue; } nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset); /* Give up unless the same register is used with both relocations. */ if (OP32_SREG (nextopc) != reg) continue; /* Now adjust pcrval, subtracting the offset to the LO16 reloc and rounding up to take masking of the two LSBs into account. */ pcrval = ((pcrval - offset + 3) | 3) ^ 3; /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */ if (IS_BITSIZE (symval, 16)) { /* Fix the relocation's type. */ irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16); /* Instructions using R_MICROMIPS_LO16 have the base or source register in bits 20:16. This register becomes $0 (zero) as the result of the R_MICROMIPS_HI16 being 0. */ nextopc &= ~0x001f0000; bfd_put_16 (abfd, (nextopc >> 16) & 0xffff, contents + irel[1].r_offset); } /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2. We add 4 to take LUI deletion into account while checking the PC-relative distance. */ else if (symval % 4 == 0 && IS_BITSIZE (pcrval + 4, 25) && MATCH (nextopc, addiu_insn) && OP32_TREG (nextopc) == OP32_SREG (nextopc) && OP16_VALID_REG (OP32_TREG (nextopc))) { /* Fix the relocation's type. */ irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2); /* Replace ADDIU with the ADDIUPC version. */ nextopc = (addiupc_insn.match | ADDIUPC_REG_FIELD (OP32_TREG (nextopc))); bfd_put_micromips_32 (abfd, nextopc, contents + irel[1].r_offset); } /* Can't do anything, give up, sigh... */ else continue; /* Fix the relocation's type. */ irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE); /* Delete the LUI instruction: 4 bytes at irel->r_offset. */ delcnt = 4; deloff = 0; } /* Compact branch relaxation -- due to the multitude of macros employed by the compiler/assembler, compact branches are not always generated. Obviously, this can/will be fixed elsewhere, but there is no drawback in double checking it here. */ else if (r_type == R_MICROMIPS_PC16_S1 && irel->r_offset + 5 < sec->size && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0) && ((!insn32 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4), nop_insn_16) ? 2 : 0)) || (irel->r_offset + 7 < sec->size && (delcnt = MATCH (bfd_get_micromips_32 (abfd, ptr + 4), nop_insn_32) ? 4 : 0)))) { unsigned long reg; reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode); /* Replace BEQZ/BNEZ with the compact version. */ opcode = (bzc_insns_32[fndopc].match | BZC32_REG_FIELD (reg) | (opcode & 0xffff)); /* Addend value. */ bfd_put_micromips_32 (abfd, opcode, ptr); /* Delete the delay slot NOP: two or four bytes from irel->offset + 4; delcnt has already been set above. */ deloff = 4; } /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need to check the distance from the next instruction, so subtract 2. */ else if (!insn32 && r_type == R_MICROMIPS_PC16_S1 && IS_BITSIZE (pcrval - 2, 11) && find_match (opcode, b_insns_32) >= 0) { /* Fix the relocation's type. */ irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1); /* Replace the 32-bit opcode with a 16-bit opcode. */ bfd_put_16 (abfd, (b_insn_16.match | (opcode & 0x3ff)), /* Addend value. */ ptr); /* Delete 2 bytes from irel->r_offset + 2. */ delcnt = 2; deloff = 2; } /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need to check the distance from the next instruction, so subtract 2. */ else if (!insn32 && r_type == R_MICROMIPS_PC16_S1 && IS_BITSIZE (pcrval - 2, 8) && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0 && OP16_VALID_REG (OP32_SREG (opcode))) || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0 && OP16_VALID_REG (OP32_TREG (opcode))))) { unsigned long reg; reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode); /* Fix the relocation's type. */ irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1); /* Replace the 32-bit opcode with a 16-bit opcode. */ bfd_put_16 (abfd, (bz_insns_16[fndopc].match | BZ16_REG_FIELD (reg) | (opcode & 0x7f)), /* Addend value. */ ptr); /* Delete 2 bytes from irel->r_offset + 2. */ delcnt = 2; deloff = 2; } /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */ else if (!insn32 && r_type == R_MICROMIPS_26_S1 && target_is_micromips_code_p && irel->r_offset + 7 < sec->size && MATCH (opcode, jal_insn_32_bd32)) { unsigned long n32opc; bfd_boolean relaxed = FALSE; n32opc = bfd_get_micromips_32 (abfd, ptr + 4); if (MATCH (n32opc, nop_insn_32)) { /* Replace delay slot 32-bit NOP with a 16-bit NOP. */ bfd_put_16 (abfd, nop_insn_16.match, ptr + 4); relaxed = TRUE; } else if (find_match (n32opc, move_insns_32) >= 0) { /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */ bfd_put_16 (abfd, (move_insn_16.match | MOVE16_RD_FIELD (MOVE32_RD (n32opc)) | MOVE16_RS_FIELD (MOVE32_RS (n32opc))), ptr + 4); relaxed = TRUE; } /* Other 32-bit instructions relaxable to 16-bit instructions will be handled here later. */ if (relaxed) { /* JAL with 32-bit delay slot that is changed to a JALS with 16-bit delay slot. */ bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr); /* Delete 2 bytes from irel->r_offset + 6. */ delcnt = 2; deloff = 6; } } if (delcnt != 0) { /* Note that we've changed the relocs, section contents, etc. */ elf_section_data (sec)->relocs = internal_relocs; elf_section_data (sec)->this_hdr.contents = contents; symtab_hdr->contents = (unsigned char *) isymbuf; /* Delete bytes depending on the delcnt and deloff. */ if (!mips_elf_relax_delete_bytes (abfd, sec, irel->r_offset + deloff, delcnt)) goto error_return; /* That will change things, so we should relax again. Note that this is not required, and it may be slow. */ *again = TRUE; } } if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf) { if (! link_info->keep_memory) free (isymbuf); else { /* Cache the symbols for elf_link_input_bfd. */ symtab_hdr->contents = (unsigned char *) isymbuf; } } if (contents != NULL && elf_section_data (sec)->this_hdr.contents != contents) { if (! link_info->keep_memory) free (contents); else { /* Cache the section contents for elf_link_input_bfd. */ elf_section_data (sec)->this_hdr.contents = contents; } } if (internal_relocs != NULL && elf_section_data (sec)->relocs != internal_relocs) free (internal_relocs); return TRUE; error_return: if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf) free (isymbuf); if (contents != NULL && elf_section_data (sec)->this_hdr.contents != contents) free (contents); if (internal_relocs != NULL && elf_section_data (sec)->relocs != internal_relocs) free (internal_relocs); return FALSE; } /* Create a MIPS ELF linker hash table. */ struct bfd_link_hash_table * _bfd_mips_elf_link_hash_table_create (bfd *abfd) { struct mips_elf_link_hash_table *ret; bfd_size_type amt = sizeof (struct mips_elf_link_hash_table); ret = bfd_zmalloc (amt); if (ret == NULL) return NULL; if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, mips_elf_link_hash_newfunc, sizeof (struct mips_elf_link_hash_entry), MIPS_ELF_DATA)) { free (ret); return NULL; } ret->root.init_plt_refcount.plist = NULL; ret->root.init_plt_offset.plist = NULL; return &ret->root.root; } /* Likewise, but indicate that the target is VxWorks. */ struct bfd_link_hash_table * _bfd_mips_vxworks_link_hash_table_create (bfd *abfd) { struct bfd_link_hash_table *ret; ret = _bfd_mips_elf_link_hash_table_create (abfd); if (ret) { struct mips_elf_link_hash_table *htab; htab = (struct mips_elf_link_hash_table *) ret; htab->use_plts_and_copy_relocs = TRUE; htab->is_vxworks = TRUE; } return ret; } /* A function that the linker calls if we are allowed to use PLTs and copy relocs. */ void _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info) { mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE; } /* A function that the linker calls to select between all or only 32-bit microMIPS instructions. */ void _bfd_mips_elf_insn32 (struct bfd_link_info *info, bfd_boolean on) { mips_elf_hash_table (info)->insn32 = on; } /* We need to use a special link routine to handle the .reginfo and the .mdebug sections. We need to merge all instances of these sections together, not write them all out sequentially. */ bfd_boolean _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info) { asection *o; struct bfd_link_order *p; asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec; asection *rtproc_sec; Elf32_RegInfo reginfo; struct ecoff_debug_info debug; struct mips_htab_traverse_info hti; const struct elf_backend_data *bed = get_elf_backend_data (abfd); const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap; HDRR *symhdr = &debug.symbolic_header; void *mdebug_handle = NULL; asection *s; EXTR esym; unsigned int i; bfd_size_type amt; struct mips_elf_link_hash_table *htab; static const char * const secname[] = { ".text", ".init", ".fini", ".data", ".rodata", ".sdata", ".sbss", ".bss" }; static const int sc[] = { scText, scInit, scFini, scData, scRData, scSData, scSBss, scBss }; /* Sort the dynamic symbols so that those with GOT entries come after those without. */ htab = mips_elf_hash_table (info); BFD_ASSERT (htab != NULL); if (!mips_elf_sort_hash_table (abfd, info)) return FALSE; /* Create any scheduled LA25 stubs. */ hti.info = info; hti.output_bfd = abfd; hti.error = FALSE; htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti); if (hti.error) return FALSE; /* Get a value for the GP register. */ if (elf_gp (abfd) == 0) { struct bfd_link_hash_entry *h; h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE); if (h != NULL && h->type == bfd_link_hash_defined) elf_gp (abfd) = (h->u.def.value + h->u.def.section->output_section->vma + h->u.def.section->output_offset); else if (htab->is_vxworks && (h = bfd_link_hash_lookup (info->hash, "_GLOBAL_OFFSET_TABLE_", FALSE, FALSE, TRUE)) && h->type == bfd_link_hash_defined) elf_gp (abfd) = (h->u.def.section->output_section->vma + h->u.def.section->output_offset + h->u.def.value); else if (info->relocatable) { bfd_vma lo = MINUS_ONE; /* Find the GP-relative section with the lowest offset. */ for (o = abfd->sections; o != NULL; o = o->next) if (o->vma < lo && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL)) lo = o->vma; /* And calculate GP relative to that. */ elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info); } else { /* If the relocate_section function needs to do a reloc involving the GP value, it should make a reloc_dangerous callback to warn that GP is not defined. */ } } /* Go through the sections and collect the .reginfo and .mdebug information. */ reginfo_sec = NULL; mdebug_sec = NULL; gptab_data_sec = NULL; gptab_bss_sec = NULL; for (o = abfd->sections; o != NULL; o = o->next) { if (strcmp (o->name, ".reginfo") == 0) { memset (®info, 0, sizeof reginfo); /* We have found the .reginfo section in the output file. Look through all the link_orders comprising it and merge the information together. */ for (p = o->map_head.link_order; p != NULL; p = p->next) { asection *input_section; bfd *input_bfd; Elf32_External_RegInfo ext; Elf32_RegInfo sub; if (p->type != bfd_indirect_link_order) { if (p->type == bfd_data_link_order) continue; abort (); } input_section = p->u.indirect.section; input_bfd = input_section->owner; if (! bfd_get_section_contents (input_bfd, input_section, &ext, 0, sizeof ext)) return FALSE; bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub); reginfo.ri_gprmask |= sub.ri_gprmask; reginfo.ri_cprmask[0] |= sub.ri_cprmask[0]; reginfo.ri_cprmask[1] |= sub.ri_cprmask[1]; reginfo.ri_cprmask[2] |= sub.ri_cprmask[2]; reginfo.ri_cprmask[3] |= sub.ri_cprmask[3]; /* ri_gp_value is set by the function mips_elf32_section_processing when the section is finally written out. */ /* Hack: reset the SEC_HAS_CONTENTS flag so that elf_link_input_bfd ignores this section. */ input_section->flags &= ~SEC_HAS_CONTENTS; } /* Size has been set in _bfd_mips_elf_always_size_sections. */ BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo)); /* Skip this section later on (I don't think this currently matters, but someday it might). */ o->map_head.link_order = NULL; reginfo_sec = o; } if (strcmp (o->name, ".mdebug") == 0) { struct extsym_info einfo; bfd_vma last; /* We have found the .mdebug section in the output file. Look through all the link_orders comprising it and merge the information together. */ symhdr->magic = swap->sym_magic; /* FIXME: What should the version stamp be? */ symhdr->vstamp = 0; symhdr->ilineMax = 0; symhdr->cbLine = 0; symhdr->idnMax = 0; symhdr->ipdMax = 0; symhdr->isymMax = 0; symhdr->ioptMax = 0; symhdr->iauxMax = 0; symhdr->issMax = 0; symhdr->issExtMax = 0; symhdr->ifdMax = 0; symhdr->crfd = 0; symhdr->iextMax = 0; /* We accumulate the debugging information itself in the debug_info structure. */ debug.line = NULL; debug.external_dnr = NULL; debug.external_pdr = NULL; debug.external_sym = NULL; debug.external_opt = NULL; debug.external_aux = NULL; debug.ss = NULL; debug.ssext = debug.ssext_end = NULL; debug.external_fdr = NULL; debug.external_rfd = NULL; debug.external_ext = debug.external_ext_end = NULL; mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info); if (mdebug_handle == NULL) return FALSE; esym.jmptbl = 0; esym.cobol_main = 0; esym.weakext = 0; esym.reserved = 0; esym.ifd = ifdNil; esym.asym.iss = issNil; esym.asym.st = stLocal; esym.asym.reserved = 0; esym.asym.index = indexNil; last = 0; for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++) { esym.asym.sc = sc[i]; s = bfd_get_section_by_name (abfd, secname[i]); if (s != NULL) { esym.asym.value = s->vma; last = s->vma + s->size; } else esym.asym.value = last; if (!bfd_ecoff_debug_one_external (abfd, &debug, swap, secname[i], &esym)) return FALSE; } for (p = o->map_head.link_order; p != NULL; p = p->next) { asection *input_section; bfd *input_bfd; const struct ecoff_debug_swap *input_swap; struct ecoff_debug_info input_debug; char *eraw_src; char *eraw_end; if (p->type != bfd_indirect_link_order) { if (p->type == bfd_data_link_order) continue; abort (); } input_section = p->u.indirect.section; input_bfd = input_section->owner; if (!is_mips_elf (input_bfd)) { /* I don't know what a non MIPS ELF bfd would be doing with a .mdebug section, but I don't really want to deal with it. */ continue; } input_swap = (get_elf_backend_data (input_bfd) ->elf_backend_ecoff_debug_swap); BFD_ASSERT (p->size == input_section->size); /* The ECOFF linking code expects that we have already read in the debugging information and set up an ecoff_debug_info structure, so we do that now. */ if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section, &input_debug)) return FALSE; if (! (bfd_ecoff_debug_accumulate (mdebug_handle, abfd, &debug, swap, input_bfd, &input_debug, input_swap, info))) return FALSE; /* Loop through the external symbols. For each one with interesting information, try to find the symbol in the linker global hash table and save the information for the output external symbols. */ eraw_src = input_debug.external_ext; eraw_end = (eraw_src + (input_debug.symbolic_header.iextMax * input_swap->external_ext_size)); for (; eraw_src < eraw_end; eraw_src += input_swap->external_ext_size) { EXTR ext; const char *name; struct mips_elf_link_hash_entry *h; (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext); if (ext.asym.sc == scNil || ext.asym.sc == scUndefined || ext.asym.sc == scSUndefined) continue; name = input_debug.ssext + ext.asym.iss; h = mips_elf_link_hash_lookup (mips_elf_hash_table (info), name, FALSE, FALSE, TRUE); if (h == NULL || h->esym.ifd != -2) continue; if (ext.ifd != -1) { BFD_ASSERT (ext.ifd < input_debug.symbolic_header.ifdMax); ext.ifd = input_debug.ifdmap[ext.ifd]; } h->esym = ext; } /* Free up the information we just read. */ free (input_debug.line); free (input_debug.external_dnr); free (input_debug.external_pdr); free (input_debug.external_sym); free (input_debug.external_opt); free (input_debug.external_aux); free (input_debug.ss); free (input_debug.ssext); free (input_debug.external_fdr); free (input_debug.external_rfd); free (input_debug.external_ext); /* Hack: reset the SEC_HAS_CONTENTS flag so that elf_link_input_bfd ignores this section. */ input_section->flags &= ~SEC_HAS_CONTENTS; } if (SGI_COMPAT (abfd) && info->shared) { /* Create .rtproc section. */ rtproc_sec = bfd_get_linker_section (abfd, ".rtproc"); if (rtproc_sec == NULL) { flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED | SEC_READONLY); rtproc_sec = bfd_make_section_anyway_with_flags (abfd, ".rtproc", flags); if (rtproc_sec == NULL || ! bfd_set_section_alignment (abfd, rtproc_sec, 4)) return FALSE; } if (! mips_elf_create_procedure_table (mdebug_handle, abfd, info, rtproc_sec, &debug)) return FALSE; } /* Build the external symbol information. */ einfo.abfd = abfd; einfo.info = info; einfo.debug = &debug; einfo.swap = swap; einfo.failed = FALSE; mips_elf_link_hash_traverse (mips_elf_hash_table (info), mips_elf_output_extsym, &einfo); if (einfo.failed) return FALSE; /* Set the size of the .mdebug section. */ o->size = bfd_ecoff_debug_size (abfd, &debug, swap); /* Skip this section later on (I don't think this currently matters, but someday it might). */ o->map_head.link_order = NULL; mdebug_sec = o; } if (CONST_STRNEQ (o->name, ".gptab.")) { const char *subname; unsigned int c; Elf32_gptab *tab; Elf32_External_gptab *ext_tab; unsigned int j; /* The .gptab.sdata and .gptab.sbss sections hold information describing how the small data area would change depending upon the -G switch. These sections not used in executables files. */ if (! info->relocatable) { for (p = o->map_head.link_order; p != NULL; p = p->next) { asection *input_section; if (p->type != bfd_indirect_link_order) { if (p->type == bfd_data_link_order) continue; abort (); } input_section = p->u.indirect.section; /* Hack: reset the SEC_HAS_CONTENTS flag so that elf_link_input_bfd ignores this section. */ input_section->flags &= ~SEC_HAS_CONTENTS; } /* Skip this section later on (I don't think this currently matters, but someday it might). */ o->map_head.link_order = NULL; /* Really remove the section. */ bfd_section_list_remove (abfd, o); --abfd->section_count; continue; } /* There is one gptab for initialized data, and one for uninitialized data. */ if (strcmp (o->name, ".gptab.sdata") == 0) gptab_data_sec = o; else if (strcmp (o->name, ".gptab.sbss") == 0) gptab_bss_sec = o; else { (*_bfd_error_handler) (_("%s: illegal section name `%s'"), bfd_get_filename (abfd), o->name); bfd_set_error (bfd_error_nonrepresentable_section); return FALSE; } /* The linker script always combines .gptab.data and .gptab.sdata into .gptab.sdata, and likewise for .gptab.bss and .gptab.sbss. It is possible that there is no .sdata or .sbss section in the output file, in which case we must change the name of the output section. */ subname = o->name + sizeof ".gptab" - 1; if (bfd_get_section_by_name (abfd, subname) == NULL) { if (o == gptab_data_sec) o->name = ".gptab.data"; else o->name = ".gptab.bss"; subname = o->name + sizeof ".gptab" - 1; BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL); } /* Set up the first entry. */ c = 1; amt = c * sizeof (Elf32_gptab); tab = bfd_malloc (amt); if (tab == NULL) return FALSE; tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd); tab[0].gt_header.gt_unused = 0; /* Combine the input sections. */ for (p = o->map_head.link_order; p != NULL; p = p->next) { asection *input_section; bfd *input_bfd; bfd_size_type size; unsigned long last; bfd_size_type gpentry; if (p->type != bfd_indirect_link_order) { if (p->type == bfd_data_link_order) continue; abort (); } input_section = p->u.indirect.section; input_bfd = input_section->owner; /* Combine the gptab entries for this input section one by one. We know that the input gptab entries are sorted by ascending -G value. */ size = input_section->size; last = 0; for (gpentry = sizeof (Elf32_External_gptab); gpentry < size; gpentry += sizeof (Elf32_External_gptab)) { Elf32_External_gptab ext_gptab; Elf32_gptab int_gptab; unsigned long val; unsigned long add; bfd_boolean exact; unsigned int look; if (! (bfd_get_section_contents (input_bfd, input_section, &ext_gptab, gpentry, sizeof (Elf32_External_gptab)))) { free (tab); return FALSE; } bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab, &int_gptab); val = int_gptab.gt_entry.gt_g_value; add = int_gptab.gt_entry.gt_bytes - last; exact = FALSE; for (look = 1; look < c; look++) { if (tab[look].gt_entry.gt_g_value >= val) tab[look].gt_entry.gt_bytes += add; if (tab[look].gt_entry.gt_g_value == val) exact = TRUE; } if (! exact) { Elf32_gptab *new_tab; unsigned int max; /* We need a new table entry. */ amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab); new_tab = bfd_realloc (tab, amt); if (new_tab == NULL) { free (tab); return FALSE; } tab = new_tab; tab[c].gt_entry.gt_g_value = val; tab[c].gt_entry.gt_bytes = add; /* Merge in the size for the next smallest -G value, since that will be implied by this new value. */ max = 0; for (look = 1; look < c; look++) { if (tab[look].gt_entry.gt_g_value < val && (max == 0 || (tab[look].gt_entry.gt_g_value > tab[max].gt_entry.gt_g_value))) max = look; } if (max != 0) tab[c].gt_entry.gt_bytes += tab[max].gt_entry.gt_bytes; ++c; } last = int_gptab.gt_entry.gt_bytes; } /* Hack: reset the SEC_HAS_CONTENTS flag so that elf_link_input_bfd ignores this section. */ input_section->flags &= ~SEC_HAS_CONTENTS; } /* The table must be sorted by -G value. */ if (c > 2) qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare); /* Swap out the table. */ amt = (bfd_size_type) c * sizeof (Elf32_External_gptab); ext_tab = bfd_alloc (abfd, amt); if (ext_tab == NULL) { free (tab); return FALSE; } for (j = 0; j < c; j++) bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j); free (tab); o->size = c * sizeof (Elf32_External_gptab); o->contents = (bfd_byte *) ext_tab; /* Skip this section later on (I don't think this currently matters, but someday it might). */ o->map_head.link_order = NULL; } } /* Invoke the regular ELF backend linker to do all the work. */ if (!bfd_elf_final_link (abfd, info)) return FALSE; /* Now write out the computed sections. */ if (reginfo_sec != NULL) { Elf32_External_RegInfo ext; bfd_mips_elf32_swap_reginfo_out (abfd, ®info, &ext); if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext)) return FALSE; } if (mdebug_sec != NULL) { BFD_ASSERT (abfd->output_has_begun); if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug, swap, info, mdebug_sec->filepos)) return FALSE; bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info); } if (gptab_data_sec != NULL) { if (! bfd_set_section_contents (abfd, gptab_data_sec, gptab_data_sec->contents, 0, gptab_data_sec->size)) return FALSE; } if (gptab_bss_sec != NULL) { if (! bfd_set_section_contents (abfd, gptab_bss_sec, gptab_bss_sec->contents, 0, gptab_bss_sec->size)) return FALSE; } if (SGI_COMPAT (abfd)) { rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc"); if (rtproc_sec != NULL) { if (! bfd_set_section_contents (abfd, rtproc_sec, rtproc_sec->contents, 0, rtproc_sec->size)) return FALSE; } } return TRUE; } /* Structure for saying that BFD machine EXTENSION extends BASE. */ struct mips_mach_extension { unsigned long extension, base; }; /* An array describing how BFD machines relate to one another. The entries are ordered topologically with MIPS I extensions listed last. */ static const struct mips_mach_extension mips_mach_extensions[] = { /* MIPS64r2 extensions. */ { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp }, { bfd_mach_mips_octeonp, bfd_mach_mips_octeon }, { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 }, /* MIPS64 extensions. */ { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 }, { bfd_mach_mips_sb1, bfd_mach_mipsisa64 }, { bfd_mach_mips_xlr, bfd_mach_mipsisa64 }, { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64 }, /* MIPS V extensions. */ { bfd_mach_mipsisa64, bfd_mach_mips5 }, /* R10000 extensions. */ { bfd_mach_mips12000, bfd_mach_mips10000 }, { bfd_mach_mips14000, bfd_mach_mips10000 }, { bfd_mach_mips16000, bfd_mach_mips10000 }, /* R5000 extensions. Note: the vr5500 ISA is an extension of the core vr5400 ISA, but doesn't include the multimedia stuff. It seems better to allow vr5400 and vr5500 code to be merged anyway, since many libraries will just use the core ISA. Perhaps we could add some sort of ASE flag if this ever proves a problem. */ { bfd_mach_mips5500, bfd_mach_mips5400 }, { bfd_mach_mips5400, bfd_mach_mips5000 }, /* MIPS IV extensions. */ { bfd_mach_mips5, bfd_mach_mips8000 }, { bfd_mach_mips10000, bfd_mach_mips8000 }, { bfd_mach_mips5000, bfd_mach_mips8000 }, { bfd_mach_mips7000, bfd_mach_mips8000 }, { bfd_mach_mips9000, bfd_mach_mips8000 }, /* VR4100 extensions. */ { bfd_mach_mips4120, bfd_mach_mips4100 }, { bfd_mach_mips4111, bfd_mach_mips4100 }, /* MIPS III extensions. */ { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 }, { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 }, { bfd_mach_mips8000, bfd_mach_mips4000 }, { bfd_mach_mips4650, bfd_mach_mips4000 }, { bfd_mach_mips4600, bfd_mach_mips4000 }, { bfd_mach_mips4400, bfd_mach_mips4000 }, { bfd_mach_mips4300, bfd_mach_mips4000 }, { bfd_mach_mips4100, bfd_mach_mips4000 }, { bfd_mach_mips4010, bfd_mach_mips4000 }, { bfd_mach_mips5900, bfd_mach_mips4000 }, /* MIPS32 extensions. */ { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 }, /* MIPS II extensions. */ { bfd_mach_mips4000, bfd_mach_mips6000 }, { bfd_mach_mipsisa32, bfd_mach_mips6000 }, /* MIPS I extensions. */ { bfd_mach_mips6000, bfd_mach_mips3000 }, { bfd_mach_mips3900, bfd_mach_mips3000 } }; /* Return true if bfd machine EXTENSION is an extension of machine BASE. */ static bfd_boolean mips_mach_extends_p (unsigned long base, unsigned long extension) { size_t i; if (extension == base) return TRUE; if (base == bfd_mach_mipsisa32 && mips_mach_extends_p (bfd_mach_mipsisa64, extension)) return TRUE; if (base == bfd_mach_mipsisa32r2 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension)) return TRUE; for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++) if (extension == mips_mach_extensions[i].extension) { extension = mips_mach_extensions[i].base; if (extension == base) return TRUE; } return FALSE; } /* Return true if the given ELF header flags describe a 32-bit binary. */ static bfd_boolean mips_32bit_flags_p (flagword flags) { return ((flags & EF_MIPS_32BITMODE) != 0 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2); } /* Merge object attributes from IBFD into OBFD. Raise an error if there are conflicting attributes. */ static bfd_boolean mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd) { obj_attribute *in_attr; obj_attribute *out_attr; bfd *abi_fp_bfd; abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd; in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU]; if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != 0) mips_elf_tdata (obfd)->abi_fp_bfd = ibfd; if (!elf_known_obj_attributes_proc (obfd)[0].i) { /* This is the first object. Copy the attributes. */ _bfd_elf_copy_obj_attributes (ibfd, obfd); /* Use the Tag_null value to indicate the attributes have been initialized. */ elf_known_obj_attributes_proc (obfd)[0].i = 1; return TRUE; } /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge non-conflicting ones. */ out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU]; if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i) { out_attr[Tag_GNU_MIPS_ABI_FP].type = 1; if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0) out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i; else if (in_attr[Tag_GNU_MIPS_ABI_FP].i != 0) switch (out_attr[Tag_GNU_MIPS_ABI_FP].i) { case 1: switch (in_attr[Tag_GNU_MIPS_ABI_FP].i) { case 2: _bfd_error_handler (_("Warning: %B uses %s (set by %B), %B uses %s"), obfd, abi_fp_bfd, ibfd, "-mdouble-float", "-msingle-float"); break; case 3: _bfd_error_handler (_("Warning: %B uses %s (set by %B), %B uses %s"), obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float"); break; case 4: _bfd_error_handler (_("Warning: %B uses %s (set by %B), %B uses %s"), obfd, abi_fp_bfd, ibfd, "-mdouble-float", "-mips32r2 -mfp64"); break; default: _bfd_error_handler (_("Warning: %B uses %s (set by %B), " "%B uses unknown floating point ABI %d"), obfd, abi_fp_bfd, ibfd, "-mdouble-float", in_attr[Tag_GNU_MIPS_ABI_FP].i); break; } break; case 2: switch (in_attr[Tag_GNU_MIPS_ABI_FP].i) { case 1: _bfd_error_handler (_("Warning: %B uses %s (set by %B), %B uses %s"), obfd, abi_fp_bfd, ibfd, "-msingle-float", "-mdouble-float"); break; case 3: _bfd_error_handler (_("Warning: %B uses %s (set by %B), %B uses %s"), obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float"); break; case 4: _bfd_error_handler (_("Warning: %B uses %s (set by %B), %B uses %s"), obfd, abi_fp_bfd, ibfd, "-msingle-float", "-mips32r2 -mfp64"); break; default: _bfd_error_handler (_("Warning: %B uses %s (set by %B), " "%B uses unknown floating point ABI %d"), obfd, abi_fp_bfd, ibfd, "-msingle-float", in_attr[Tag_GNU_MIPS_ABI_FP].i); break; } break; case 3: switch (in_attr[Tag_GNU_MIPS_ABI_FP].i) { case 1: case 2: case 4: _bfd_error_handler (_("Warning: %B uses %s (set by %B), %B uses %s"), obfd, abi_fp_bfd, ibfd, "-msoft-float", "-mhard-float"); break; default: _bfd_error_handler (_("Warning: %B uses %s (set by %B), " "%B uses unknown floating point ABI %d"), obfd, abi_fp_bfd, ibfd, "-msoft-float", in_attr[Tag_GNU_MIPS_ABI_FP].i); break; } break; case 4: switch (in_attr[Tag_GNU_MIPS_ABI_FP].i) { case 1: _bfd_error_handler (_("Warning: %B uses %s (set by %B), %B uses %s"), obfd, abi_fp_bfd, ibfd, "-mips32r2 -mfp64", "-mdouble-float"); break; case 2: _bfd_error_handler (_("Warning: %B uses %s (set by %B), %B uses %s"), obfd, abi_fp_bfd, ibfd, "-mips32r2 -mfp64", "-msingle-float"); break; case 3: _bfd_error_handler (_("Warning: %B uses %s (set by %B), %B uses %s"), obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float"); break; default: _bfd_error_handler (_("Warning: %B uses %s (set by %B), " "%B uses unknown floating point ABI %d"), obfd, abi_fp_bfd, ibfd, "-mips32r2 -mfp64", in_attr[Tag_GNU_MIPS_ABI_FP].i); break; } break; default: switch (in_attr[Tag_GNU_MIPS_ABI_FP].i) { case 1: _bfd_error_handler (_("Warning: %B uses unknown floating point ABI %d " "(set by %B), %B uses %s"), obfd, abi_fp_bfd, ibfd, out_attr[Tag_GNU_MIPS_ABI_FP].i, "-mdouble-float"); break; case 2: _bfd_error_handler (_("Warning: %B uses unknown floating point ABI %d " "(set by %B), %B uses %s"), obfd, abi_fp_bfd, ibfd, out_attr[Tag_GNU_MIPS_ABI_FP].i, "-msingle-float"); break; case 3: _bfd_error_handler (_("Warning: %B uses unknown floating point ABI %d " "(set by %B), %B uses %s"), obfd, abi_fp_bfd, ibfd, out_attr[Tag_GNU_MIPS_ABI_FP].i, "-msoft-float"); break; case 4: _bfd_error_handler (_("Warning: %B uses unknown floating point ABI %d " "(set by %B), %B uses %s"), obfd, abi_fp_bfd, ibfd, out_attr[Tag_GNU_MIPS_ABI_FP].i, "-mips32r2 -mfp64"); break; default: _bfd_error_handler (_("Warning: %B uses unknown floating point ABI %d " "(set by %B), %B uses unknown floating point ABI %d"), obfd, abi_fp_bfd, ibfd, out_attr[Tag_GNU_MIPS_ABI_FP].i, in_attr[Tag_GNU_MIPS_ABI_FP].i); break; } break; } } /* Merge Tag_compatibility attributes and any common GNU ones. */ _bfd_elf_merge_object_attributes (ibfd, obfd); return TRUE; } /* Merge backend specific data from an object file to the output object file when linking. */ bfd_boolean _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd) { flagword old_flags; flagword new_flags; bfd_boolean ok; bfd_boolean null_input_bfd = TRUE; asection *sec; /* Check if we have the same endianness. */ if (! _bfd_generic_verify_endian_match (ibfd, obfd)) { (*_bfd_error_handler) (_("%B: endianness incompatible with that of the selected emulation"), ibfd); return FALSE; } if (!is_mips_elf (ibfd) || !is_mips_elf (obfd)) return TRUE; if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0) { (*_bfd_error_handler) (_("%B: ABI is incompatible with that of the selected emulation"), ibfd); return FALSE; } if (!mips_elf_merge_obj_attributes (ibfd, obfd)) return FALSE; new_flags = elf_elfheader (ibfd)->e_flags; elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER; old_flags = elf_elfheader (obfd)->e_flags; if (! elf_flags_init (obfd)) { elf_flags_init (obfd) = TRUE; elf_elfheader (obfd)->e_flags = new_flags; elf_elfheader (obfd)->e_ident[EI_CLASS] = elf_elfheader (ibfd)->e_ident[EI_CLASS]; if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) && (bfd_get_arch_info (obfd)->the_default || mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))) { if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd))) return FALSE; } return TRUE; } /* Check flag compatibility. */ new_flags &= ~EF_MIPS_NOREORDER; old_flags &= ~EF_MIPS_NOREORDER; /* Some IRIX 6 BSD-compatibility objects have this bit set. It doesn't seem to matter. */ new_flags &= ~EF_MIPS_XGOT; old_flags &= ~EF_MIPS_XGOT; /* MIPSpro generates ucode info in n64 objects. Again, we should just be able to ignore this. */ new_flags &= ~EF_MIPS_UCODE; old_flags &= ~EF_MIPS_UCODE; /* DSOs should only be linked with CPIC code. */ if ((ibfd->flags & DYNAMIC) != 0) new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC; if (new_flags == old_flags) return TRUE; /* Check to see if the input BFD actually contains any sections. If not, its flags may not have been initialised either, but it cannot actually cause any incompatibility. */ for (sec = ibfd->sections; sec != NULL; sec = sec->next) { /* Ignore synthetic sections and empty .text, .data and .bss sections which are automatically generated by gas. Also ignore fake (s)common sections, since merely defining a common symbol does not affect compatibility. */ if ((sec->flags & SEC_IS_COMMON) == 0 && strcmp (sec->name, ".reginfo") && strcmp (sec->name, ".mdebug") && (sec->size != 0 || (strcmp (sec->name, ".text") && strcmp (sec->name, ".data") && strcmp (sec->name, ".bss")))) { null_input_bfd = FALSE; break; } } if (null_input_bfd) return TRUE; ok = TRUE; if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0) != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)) { (*_bfd_error_handler) (_("%B: warning: linking abicalls files with non-abicalls files"), ibfd); ok = TRUE; } if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC; if (! (new_flags & EF_MIPS_PIC)) elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC; new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC); old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC); /* Compare the ISAs. */ if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags)) { (*_bfd_error_handler) (_("%B: linking 32-bit code with 64-bit code"), ibfd); ok = FALSE; } else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd))) { /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */ if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd))) { /* Copy the architecture info from IBFD to OBFD. Also copy the 32-bit flag (if set) so that we continue to recognise OBFD as a 32-bit binary. */ bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd)); elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); elf_elfheader (obfd)->e_flags |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); /* Copy across the ABI flags if OBFD doesn't use them and if that was what caused us to treat IBFD as 32-bit. */ if ((old_flags & EF_MIPS_ABI) == 0 && mips_32bit_flags_p (new_flags) && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI)) elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI; } else { /* The ISAs aren't compatible. */ (*_bfd_error_handler) (_("%B: linking %s module with previous %s modules"), ibfd, bfd_printable_name (ibfd), bfd_printable_name (obfd)); ok = FALSE; } } new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it does set EI_CLASS differently from any 32-bit ABI. */ if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI) || (elf_elfheader (ibfd)->e_ident[EI_CLASS] != elf_elfheader (obfd)->e_ident[EI_CLASS])) { /* Only error if both are set (to different values). */ if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI)) || (elf_elfheader (ibfd)->e_ident[EI_CLASS] != elf_elfheader (obfd)->e_ident[EI_CLASS])) { (*_bfd_error_handler) (_("%B: ABI mismatch: linking %s module with previous %s modules"), ibfd, elf_mips_abi_name (ibfd), elf_mips_abi_name (obfd)); ok = FALSE; } new_flags &= ~EF_MIPS_ABI; old_flags &= ~EF_MIPS_ABI; } /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together and allow arbitrary mixing of the remaining ASEs (retain the union). */ if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE)) { int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS; int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS; int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16; int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16; int micro_mis = old_m16 && new_micro; int m16_mis = old_micro && new_m16; if (m16_mis || micro_mis) { (*_bfd_error_handler) (_("%B: ASE mismatch: linking %s module with previous %s modules"), ibfd, m16_mis ? "MIPS16" : "microMIPS", m16_mis ? "microMIPS" : "MIPS16"); ok = FALSE; } elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE; new_flags &= ~ EF_MIPS_ARCH_ASE; old_flags &= ~ EF_MIPS_ARCH_ASE; } /* Warn about any other mismatches */ if (new_flags != old_flags) { (*_bfd_error_handler) (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"), ibfd, (unsigned long) new_flags, (unsigned long) old_flags); ok = FALSE; } if (! ok) { bfd_set_error (bfd_error_bad_value); return FALSE; } return TRUE; } /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */ bfd_boolean _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags) { BFD_ASSERT (!elf_flags_init (abfd) || elf_elfheader (abfd)->e_flags == flags); elf_elfheader (abfd)->e_flags = flags; elf_flags_init (abfd) = TRUE; return TRUE; } char * _bfd_mips_elf_get_target_dtag (bfd_vma dtag) { switch (dtag) { default: return ""; case DT_MIPS_RLD_VERSION: return "MIPS_RLD_VERSION"; case DT_MIPS_TIME_STAMP: return "MIPS_TIME_STAMP"; case DT_MIPS_ICHECKSUM: return "MIPS_ICHECKSUM"; case DT_MIPS_IVERSION: return "MIPS_IVERSION"; case DT_MIPS_FLAGS: return "MIPS_FLAGS"; case DT_MIPS_BASE_ADDRESS: return "MIPS_BASE_ADDRESS"; case DT_MIPS_MSYM: return "MIPS_MSYM"; case DT_MIPS_CONFLICT: return "MIPS_CONFLICT"; case DT_MIPS_LIBLIST: return "MIPS_LIBLIST"; case DT_MIPS_LOCAL_GOTNO: return "MIPS_LOCAL_GOTNO"; case DT_MIPS_CONFLICTNO: return "MIPS_CONFLICTNO"; case DT_MIPS_LIBLISTNO: return "MIPS_LIBLISTNO"; case DT_MIPS_SYMTABNO: return "MIPS_SYMTABNO"; case DT_MIPS_UNREFEXTNO: return "MIPS_UNREFEXTNO"; case DT_MIPS_GOTSYM: return "MIPS_GOTSYM"; case DT_MIPS_HIPAGENO: return "MIPS_HIPAGENO"; case DT_MIPS_RLD_MAP: return "MIPS_RLD_MAP"; case DT_MIPS_DELTA_CLASS: return "MIPS_DELTA_CLASS"; case DT_MIPS_DELTA_CLASS_NO: return "MIPS_DELTA_CLASS_NO"; case DT_MIPS_DELTA_INSTANCE: return "MIPS_DELTA_INSTANCE"; case DT_MIPS_DELTA_INSTANCE_NO: return "MIPS_DELTA_INSTANCE_NO"; case DT_MIPS_DELTA_RELOC: return "MIPS_DELTA_RELOC"; case DT_MIPS_DELTA_RELOC_NO: return "MIPS_DELTA_RELOC_NO"; case DT_MIPS_DELTA_SYM: return "MIPS_DELTA_SYM"; case DT_MIPS_DELTA_SYM_NO: return "MIPS_DELTA_SYM_NO"; case DT_MIPS_DELTA_CLASSSYM: return "MIPS_DELTA_CLASSSYM"; case DT_MIPS_DELTA_CLASSSYM_NO: return "MIPS_DELTA_CLASSSYM_NO"; case DT_MIPS_CXX_FLAGS: return "MIPS_CXX_FLAGS"; case DT_MIPS_PIXIE_INIT: return "MIPS_PIXIE_INIT"; case DT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB"; case DT_MIPS_LOCALPAGE_GOTIDX: return "MIPS_LOCALPAGE_GOTIDX"; case DT_MIPS_LOCAL_GOTIDX: return "MIPS_LOCAL_GOTIDX"; case DT_MIPS_HIDDEN_GOTIDX: return "MIPS_HIDDEN_GOTIDX"; case DT_MIPS_PROTECTED_GOTIDX: return "MIPS_PROTECTED_GOT_IDX"; case DT_MIPS_OPTIONS: return "MIPS_OPTIONS"; case DT_MIPS_INTERFACE: return "MIPS_INTERFACE"; case DT_MIPS_DYNSTR_ALIGN: return "DT_MIPS_DYNSTR_ALIGN"; case DT_MIPS_INTERFACE_SIZE: return "DT_MIPS_INTERFACE_SIZE"; case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR"; case DT_MIPS_PERF_SUFFIX: return "DT_MIPS_PERF_SUFFIX"; case DT_MIPS_COMPACT_SIZE: return "DT_MIPS_COMPACT_SIZE"; case DT_MIPS_GP_VALUE: return "DT_MIPS_GP_VALUE"; case DT_MIPS_AUX_DYNAMIC: return "DT_MIPS_AUX_DYNAMIC"; case DT_MIPS_PLTGOT: return "DT_MIPS_PLTGOT"; case DT_MIPS_RWPLT: return "DT_MIPS_RWPLT"; } } bfd_boolean _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr) { FILE *file = ptr; BFD_ASSERT (abfd != NULL && ptr != NULL); /* Print normal ELF private data. */ _bfd_elf_print_private_bfd_data (abfd, ptr); /* xgettext:c-format */ fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags); if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32) fprintf (file, _(" [abi=O32]")); else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64) fprintf (file, _(" [abi=O64]")); else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32) fprintf (file, _(" [abi=EABI32]")); else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64) fprintf (file, _(" [abi=EABI64]")); else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI)) fprintf (file, _(" [abi unknown]")); else if (ABI_N32_P (abfd)) fprintf (file, _(" [abi=N32]")); else if (ABI_64_P (abfd)) fprintf (file, _(" [abi=64]")); else fprintf (file, _(" [no abi set]")); if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1) fprintf (file, " [mips1]"); else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2) fprintf (file, " [mips2]"); else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3) fprintf (file, " [mips3]"); else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4) fprintf (file, " [mips4]"); else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5) fprintf (file, " [mips5]"); else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32) fprintf (file, " [mips32]"); else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64) fprintf (file, " [mips64]"); else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2) fprintf (file, " [mips32r2]"); else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2) fprintf (file, " [mips64r2]"); else fprintf (file, _(" [unknown ISA]")); if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX) fprintf (file, " [mdmx]"); if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16) fprintf (file, " [mips16]"); if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) fprintf (file, " [micromips]"); if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE) fprintf (file, " [32bitmode]"); else fprintf (file, _(" [not 32bitmode]")); if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER) fprintf (file, " [noreorder]"); if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) fprintf (file, " [PIC]"); if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC) fprintf (file, " [CPIC]"); if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT) fprintf (file, " [XGOT]"); if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE) fprintf (file, " [UCODE]"); fputc ('\n', file); return TRUE; } const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] = { { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 }, { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 }, { NULL, 0, 0, 0, 0 } }; /* Merge non visibility st_other attributes. Ensure that the STO_OPTIONAL flag is copied into h->other, even if this is not a definiton of the symbol. */ void _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h, const Elf_Internal_Sym *isym, bfd_boolean definition, bfd_boolean dynamic ATTRIBUTE_UNUSED) { if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0) { unsigned char other; other = (definition ? isym->st_other : h->other); other &= ~ELF_ST_VISIBILITY (-1); h->other = other | ELF_ST_VISIBILITY (h->other); } if (!definition && ELF_MIPS_IS_OPTIONAL (isym->st_other)) h->other |= STO_OPTIONAL; } /* Decide whether an undefined symbol is special and can be ignored. This is the case for OPTIONAL symbols on IRIX. */ bfd_boolean _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h) { return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE; } bfd_boolean _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym) { return (sym->st_shndx == SHN_COMMON || sym->st_shndx == SHN_MIPS_ACOMMON || sym->st_shndx == SHN_MIPS_SCOMMON); } /* Return address for Ith PLT stub in section PLT, for relocation REL or (bfd_vma) -1 if it should not be included. */ bfd_vma _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt, const arelent *rel ATTRIBUTE_UNUSED) { return (plt->vma + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry) + i * 4 * ARRAY_SIZE (mips_exec_plt_entry)); } /* Build a table of synthetic symbols to represent the PLT. As with MIPS16 and microMIPS PLT slots we may have a many-to-one mapping between .plt and .got.plt and also the slots may be of a different size each we walk the PLT manually fetching instructions and matching them against known patterns. To make things easier standard MIPS slots, if any, always come first. As we don't create proper ELF symbols we use the UDATA.I member of ASYMBOL to carry ISA annotation. The encoding used is the same as with the ST_OTHER member of the ELF symbol. */ long _bfd_mips_elf_get_synthetic_symtab (bfd *abfd, long symcount ATTRIBUTE_UNUSED, asymbol **syms ATTRIBUTE_UNUSED, long dynsymcount, asymbol **dynsyms, asymbol **ret) { static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_"; static const char microsuffix[] = "@micromipsplt"; static const char m16suffix[] = "@mips16plt"; static const char mipssuffix[] = "@plt"; bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean); const struct elf_backend_data *bed = get_elf_backend_data (abfd); bfd_boolean micromips_p = MICROMIPS_P (abfd); Elf_Internal_Shdr *hdr; bfd_byte *plt_data; bfd_vma plt_offset; unsigned int other; bfd_vma entry_size; bfd_vma plt0_size; asection *relplt; bfd_vma opcode; asection *plt; asymbol *send; size_t size; char *names; long counti; arelent *p; asymbol *s; char *nend; long count; long pi; long i; long n; *ret = NULL; if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0) return 0; relplt = bfd_get_section_by_name (abfd, ".rel.plt"); if (relplt == NULL) return 0; hdr = &elf_section_data (relplt)->this_hdr; if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL) return 0; plt = bfd_get_section_by_name (abfd, ".plt"); if (plt == NULL) return 0; slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table; if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE)) return -1; p = relplt->relocation; /* Calculating the exact amount of space required for symbols would require two passes over the PLT, so just pessimise assuming two PLT slots per relocation. */ count = relplt->size / hdr->sh_entsize; counti = count * bed->s->int_rels_per_ext_rel; size = 2 * count * sizeof (asymbol); size += count * (sizeof (mipssuffix) + (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix))); for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel) size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name); /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */ size += sizeof (asymbol) + sizeof (pltname); if (!bfd_malloc_and_get_section (abfd, plt, &plt_data)) return -1; if (plt->size < 16) return -1; s = *ret = bfd_malloc (size); if (s == NULL) return -1; send = s + 2 * count + 1; names = (char *) send; nend = (char *) s + size; n = 0; opcode = bfd_get_micromips_32 (abfd, plt_data + 12); if (opcode == 0x3302fffe) { if (!micromips_p) return -1; plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry); other = STO_MICROMIPS; } else if (opcode == 0x0398c1d0) { if (!micromips_p) return -1; plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); other = STO_MICROMIPS; } else { plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry); other = 0; } s->the_bfd = abfd; s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL; s->section = plt; s->value = 0; s->name = names; s->udata.i = other; memcpy (names, pltname, sizeof (pltname)); names += sizeof (pltname); ++s, ++n; pi = 0; for (plt_offset = plt0_size; plt_offset + 8 <= plt->size && s < send; plt_offset += entry_size) { bfd_vma gotplt_addr; const char *suffix; bfd_vma gotplt_hi; bfd_vma gotplt_lo; size_t suffixlen; opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4); /* Check if the second word matches the expected MIPS16 instruction. */ if (opcode == 0x651aeb00) { if (micromips_p) return -1; /* Truncated table??? */ if (plt_offset + 16 > plt->size) break; gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12); entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry); suffixlen = sizeof (m16suffix); suffix = m16suffix; other = STO_MIPS16; } /* Likewise the expected microMIPS instruction (no insn32 mode). */ else if (opcode == 0xff220000) { if (!micromips_p) return -1; gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f; gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff; gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18; gotplt_lo <<= 2; gotplt_addr = gotplt_hi + gotplt_lo; gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3; entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry); suffixlen = sizeof (microsuffix); suffix = microsuffix; other = STO_MICROMIPS; } /* Likewise the expected microMIPS instruction (insn32 mode). */ else if ((opcode & 0xffff0000) == 0xff2f0000) { gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff; gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff; gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16; gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000; gotplt_addr = gotplt_hi + gotplt_lo; entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry); suffixlen = sizeof (microsuffix); suffix = microsuffix; other = STO_MICROMIPS; } /* Otherwise assume standard MIPS code. */ else { gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff; gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff; gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16; gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000; gotplt_addr = gotplt_hi + gotplt_lo; entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry); suffixlen = sizeof (mipssuffix); suffix = mipssuffix; other = 0; } /* Truncated table??? */ if (plt_offset + entry_size > plt->size) break; for (i = 0; i < count && p[pi].address != gotplt_addr; i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti); if (i < count) { size_t namelen; size_t len; *s = **p[pi].sym_ptr_ptr; /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since we are defining a symbol, ensure one of them is set. */ if ((s->flags & BSF_LOCAL) == 0) s->flags |= BSF_GLOBAL; s->flags |= BSF_SYNTHETIC; s->section = plt; s->value = plt_offset; s->name = names; s->udata.i = other; len = strlen ((*p[pi].sym_ptr_ptr)->name); namelen = len + suffixlen; if (names + namelen > nend) break; memcpy (names, (*p[pi].sym_ptr_ptr)->name, len); names += len; memcpy (names, suffix, suffixlen); names += suffixlen; ++s, ++n; pi = (pi + bed->s->int_rels_per_ext_rel) % counti; } } free (plt_data); return n; } void _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info) { struct mips_elf_link_hash_table *htab; Elf_Internal_Ehdr *i_ehdrp; i_ehdrp = elf_elfheader (abfd); if (link_info) { htab = mips_elf_hash_table (link_info); BFD_ASSERT (htab != NULL); if (htab->use_plts_and_copy_relocs && !htab->is_vxworks) i_ehdrp->e_ident[EI_ABIVERSION] = 1; } }