/* Simulator for the Hitachi SH architecture. Written by Steve Chamberlain of Cygnus Support. sac@cygnus.com This file is part of SH sim THIS SOFTWARE IS NOT COPYRIGHTED Cygnus offers the following for use in the public domain. Cygnus makes no warranty with regard to the software or it's performance and the user accepts the software "AS IS" with all faults. CYGNUS DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD TO THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. */ #include #include "sysdep.h" #include #include #include "bfd.h" #include "remote-sim.h" #include "../../newlib/libc/sys/sh/sys/syscall.h" #define O_RECOMPILE 85 #define DEFINE_TABLE #define DISASSEMBLER_TABLE #define SBIT(x) ((x)&sbit) #define R0 saved_state.asregs.regs[0] #define Rn saved_state.asregs.regs[n] #define Rm saved_state.asregs.regs[m] #define UR0 (unsigned int)(saved_state.asregs.regs[0]) #define UR (unsigned int)R #define UR (unsigned int)R #define SR0 saved_state.asregs.regs[0] #define GBR saved_state.asregs.gbr #define VBR saved_state.asregs.vbr #define MACH saved_state.asregs.mach #define MACL saved_state.asregs.macl #define M saved_state.asregs.sr.bits.m #define Q saved_state.asregs.sr.bits.q #define GET_SR() (saved_state.asregs.sr.bits.t = T, saved_state.asregs.sr.word) #define SET_SR(x) {saved_state.asregs.sr.word = (x); T =saved_state.asregs.sr.bits.t;} #define PC pc #define C cycles char *fail() { } /* Define this to enable register lifetime checking. The compiler generates "add #0,rn" insns to mark registers as invalid, the simulator uses this info to call fail if it finds a ref to an invalid register before a def #define PARANOID */ #ifdef PARANOID int valid[16]; #define CREF(x) if(!valid[x]) fail(); #define CDEF(x) valid[x] = 1; #define UNDEF(x) valid[x] = 0; #else #define CREF(x) #define CDEF(x) #define UNDEF(x) #endif #ifdef TARGET_BIG_ENDIAN #if 0 #define LMEM(x) *((long *)(memory+((x)&maskl))) #define BMEM(x) *((char *)(memory+((x)&maskb))) #define UWMEM(x) *((unsigned short *)(memory+((x)&maskw))) #define SWMEM(x) *((short *)(memory+((x)&maskw))) #define WLAT(x,value) (LMEM(x) = value) #define RLAT(x) (LMEM(x)) #define WWAT(x,value) (UWMEM(x) = value) #define RSWAT(x) (SWMEM(x)) #define RUWAT(x) (UWMEM(x)) #define WBAT(x,value) (BMEM(x) = value) #define RBAT(x) (BMEM(x)) #else #define LMEM(x) ((x)&maskl ? fail() : *((long *)(memory+((x)&maskl)))) #define BMEM(x) ((x) &maskb ? fail() : *((char *)(memory+((x)&maskb)))) #define UWMEM(x) ((x)&maskw ? fail() : *((unsigned short *)(memory+((x)&maskw)))) #define SWMEM(x) ((x)&maskw ? fail() : *((short *)(memory+((x)&maskw)))) #define WLAT(x,value) (LMEM(x) = value) #define RLAT(x) (LMEM(x)) #define WWAT(x,value) (UWMEM(x) = value) #define RSWAT(x) (SWMEM(x)) #define RUWAT(x) (UWMEM(x)) #define WBAT(x,value) (BMEM(x) = value) #define RBAT(x) (BMEM(x)) #endif #else /* For little endian or unknown host machines */ #define WLAT(x,value)\ { int v = value; unsigned char *p = memory + ((x) & maskl);\ p[0] =v>>24;p[1] = v>>16;p[2]=v>>8;p[3]=v; } #define WWAT(x,value)\ { int v = value; unsigned char *p = memory + (x & maskw);p[0] =v>>8;p[1] = v ;} #define WBAT(x,value)\ { unsigned char *p = memory + (x & maskb);p[0] =value;} #define RLAT(x)\ ((memory[x&maskl]<<24)|(memory[(x&maskl)+1]<<16)|(memory[(x&maskl)+2]<<8)| (memory[(x&maskl)+3])) #define RWAT(x)\ ((memory[x&maskw]<<8)|(memory[(x&maskw)+1])) #define RBAT(x)\ ((memory[x&maskb])) #define RUWAT(x) (RWAT(x) & 0xffff) #define RSWAT(x) ((short)(RWAT(x))) #define RSBAT(x) (SEXT(RBAT(x))) #endif #define SEXT(x) (((x&0xff) ^ (~0x7f))+0x80) #define SEXTW(y) ((int)((short)y)) #define SL(TEMPPC) iword= RUWAT(TEMPPC); goto top; int empty[16]; #define L(x) thislock = x; #define TL(x) if ((x) == prevlock) stalls++; #define TB(x,y) if ((x) == prevlock || (y)==prevlock) stalls++; #ifdef __GO32__ int sim_memory_size = 19; #else int sim_memory_size = 24; #endif static int sim_profile_size = 17; static int nsamples; static int sim_timeout; typedef union { struct { int regs[16]; int pc; int pr; int gbr; int vbr; int mach; int macl; union { struct { unsigned int d0:22; unsigned int m:1; unsigned int q:1; unsigned int i:4; unsigned int d1:2; unsigned int s:1; unsigned int t:1; } bits; int word; } sr; int ticks; int stalls; int cycles; int insts; int prevlock; int thislock; int exception; int msize; #define PROFILE_FREQ 1 #define PROFILE_SHIFT 2 int profile; unsigned short *profile_hist; unsigned char *memory; } asregs; int asints[28]; } saved_state_type; saved_state_type saved_state; static int get_now () { return time((long*)0); } static int now_persec () { return 1; } static FILE *profile_file; static void swap (b, n) unsigned char *b; int n; { b[0] = n >> 24; b[1] = n >> 16; b[2] = n >> 8; b[3] = n >> 0; } static void swap16 (b, n) unsigned char *b; int n; { b[0] = n >> 8; b[1] = n >> 0; } static void swapout (n) int n; { if (profile_file) { char b[4]; swap (b, n); fwrite (b, 4, 1, profile_file); } } static void swapout16 (n) int n; { char b[4]; swap16 (b, n); fwrite (b, 2, 1, profile_file); } /* Turn a pointer in a register into a pointer into real memory. */ static char * ptr (x) int x; { return (char *) (x + saved_state.asregs.memory); } static char *wwat(ptr, val) char *ptr; int val; { ptr[0] = val >> 8; ptr[1] = val; return ptr+2; } static char *wlat(ptr,val) char *ptr; int val; { ptr[0] = val>> 24; ptr[1] = val >> 16; ptr[2] = val >>8; ptr[3] = val; return ptr+4; } /* Simulate a monitor trap, put the result into r0 and errno into r1 */ static void trap (i, regs) int i; int *regs; { switch (i) { case 1: printf ("%c", regs[0]); break; case 2: saved_state.asregs.exception = SIGQUIT; break; case 3: { extern int errno; int perrno = errno; errno = 0; switch (regs[4]) { #ifndef __GO32__ case SYS_fork: regs[0] = fork(); break; case SYS_execve: regs[0] = execve(ptr(regs[5]), ptr(regs[6]), ptr(regs[7])); break; case SYS_execv: regs[0] = execv(ptr(regs[5]), ptr(regs[6])); break; case SYS_pipe: { char* buf; int host_fd[2]; buf = ptr(regs[5]); regs[0] = pipe(host_fd); buf = wlat(buf, host_fd[0]); buf = wlat(buf, host_fd[1]); } break; case SYS_wait: regs[0] = wait(ptr(regs[5])); break; #endif case SYS_read: regs[0] = read (regs[5], ptr (regs[6]), regs[7]); break; case SYS_write: regs[0] = write (regs[5], ptr (regs[6]), regs[7]); break; case SYS_lseek: regs[0] = lseek (regs[5], regs[6], regs[7]); break; case SYS_close: regs[0] = close (regs[5]); break; case SYS_open: regs[0] = open (ptr (regs[5]), regs[6]); break; case SYS_exit: /* EXIT */ saved_state.asregs.exception = SIGQUIT; errno = regs[5]; break; case SYS_stat: /* added at hmsi */ /* stat system call */ { struct stat host_stat; char *buf; regs[0] = stat( ptr(regs[5]), &host_stat); buf = ptr(regs[6]); buf = wwat(buf, host_stat.st_dev); buf = wwat(buf, host_stat.st_ino); buf = wlat(buf, host_stat.st_mode); buf = wwat(buf, host_stat.st_nlink); buf = wwat(buf, host_stat.st_uid); buf = wwat(buf, host_stat.st_gid); buf = wwat(buf, host_stat.st_rdev); buf = wlat(buf, host_stat.st_size); buf = wlat(buf, host_stat.st_atime); buf = wlat(buf, 0); buf = wlat(buf, host_stat.st_mtime); buf = wlat(buf, 0); buf = wlat(buf, host_stat.st_ctime); buf = wlat(buf, 0); buf = wlat(buf, host_stat.st_blksize); buf = wlat(buf, host_stat.st_blocks); } break; case SYS_chown: regs[0] = chown( ptr(regs[5]), regs[6], regs[7] ); break; case SYS_chmod: regs[0] = chmod( ptr(regs[5]), regs[6]); break; case SYS_utime: regs[0] = utime (ptr(regs[5]), ptr(regs[6])); break; default: abort (); } regs[1] = errno; errno = perrno; } break; case 255: saved_state.asregs.exception = SIGTRAP; saved_state.asregs.exception = 5; break; } } void control_c (sig, code, scp, addr) int sig; int code; char *scp; char *addr; { saved_state.asregs.exception = SIGINT; } static int div1 (R, iRn2, iRn1, T) int *R; int iRn1; int iRn2; int T; { unsigned long tmp0; unsigned char old_q, tmp1; old_q = Q; Q = (unsigned char) ((0x80000000 & R[iRn1]) != 0); R[iRn1] <<= 1; R[iRn1] |= (unsigned long) T; switch (old_q) { case 0: switch (M) { case 0: tmp0 = R[iRn1]; R[iRn1] -= R[iRn2]; tmp1 = (R[iRn1] > tmp0); switch (Q) { case 0: Q = tmp1; break; case 1: Q = (unsigned char) (tmp1 == 0); break; } break; case 1: tmp0 = R[iRn1]; R[iRn1] += R[iRn2]; tmp1 = (R[iRn1] < tmp0); switch (Q) { case 0: Q = (unsigned char) (tmp1 == 0); break; case 1: Q = tmp1; break; } break; } break; case 1: switch (M) { case 0: tmp0 = R[iRn1]; R[iRn1] += R[iRn2]; tmp1 = (R[iRn1] < tmp0); switch (Q) { case 0: Q = tmp1; break; case 1: Q = (unsigned char) (tmp1 == 0); break; } break; case 1: tmp0 = R[iRn1]; R[iRn1] -= R[iRn2]; tmp1 = (R[iRn1] > tmp0); switch (Q) { case 0: Q = (unsigned char) (tmp1 == 0); break; case 1: Q = tmp1; break; } break; } break; } T = (Q == M); return T; } static void dmul (sign, rm, rn) int sign; unsigned int rm; unsigned int rn; { unsigned long RnL, RnH; unsigned long RmL, RmH; unsigned long temp0, temp1, temp2, temp3; unsigned long Res2, Res1, Res0; if (!sign) { RnL = rn & 0xffff; RnH = (rn >> 16) & 0xffff; RmL = rm & 0xffff; RmH = (rm >> 16) & 0xffff; temp0 = RmL * RnL; temp1 = RmH * RnL; temp2 = RmL * RnH; temp3 = RmH * RnH; Res2 = 0; Res1 = temp1 + temp2; if (Res1 < temp1) Res2 += 0x00010000; temp1 = (Res1 << 16) & 0xffff0000; Res0 = temp0 + temp1; if (Res0 < temp0) Res2 += 1; Res2 += ((Res1 >> 16) & 0xffff) + temp3; MACH = Res2; MACL = Res0; } else { abort (); } } /* Set the memory size to the power of two provided. */ void sim_size (power) int power; { saved_state.asregs.msize = 1 << power; sim_memory_size = power; if (saved_state.asregs.memory) { free (saved_state.asregs.memory); } saved_state.asregs.memory = (unsigned char *) calloc (64, saved_state.asregs.msize / 64); if (!saved_state.asregs.memory) { fprintf (stderr, "Not enough VM for simuation of %d bytes of RAM\n", saved_state.asregs.msize); saved_state.asregs.msize = 1; saved_state.asregs.memory = (unsigned char *) calloc (1, 1); } } static void init_pointers () { if (saved_state.asregs.msize != 1 << sim_memory_size) { sim_size (sim_memory_size); } if (saved_state.asregs.profile && !profile_file) { profile_file = fopen ("gmon.out", "wb"); /* Seek to where to put the call arc data */ nsamples = (1 << sim_profile_size); fseek (profile_file, nsamples * 2 + 12, 0); if (!profile_file) { fprintf (stderr, "Can't open gmon.out\n"); } else { saved_state.asregs.profile_hist = (unsigned short *) calloc (64, (nsamples * sizeof (short) / 64)); } } } static void dump_profile () { unsigned int minpc; unsigned int maxpc; unsigned short *p; int thisshift; unsigned short *first; int i; p = saved_state.asregs.profile_hist; minpc = 0; maxpc = (1 << sim_profile_size); fseek (profile_file, 0L, 0); swapout (minpc << PROFILE_SHIFT); swapout (maxpc << PROFILE_SHIFT); swapout (nsamples * 2 + 12); for (i = 0; i < nsamples; i++) swapout16 (saved_state.asregs.profile_hist[i]); } static int gotcall (from, to) int from; int to; { swapout (from); swapout (to); swapout (1); } #define MMASKB ((saved_state.asregs.msize -1) & ~0) void sim_resume (step, siggnal) int step, siggnal; { register unsigned int pc; register int cycles = 0; register int stalls = 0; register int insts = 0; register int prevlock; register int thislock; register unsigned int doprofile; int tick_start = get_now (); void (*prev) (); extern unsigned char sh_jump_table0[]; register unsigned char *jump_table = sh_jump_table0; register int *R = &(saved_state.asregs.regs[0]); register int T; register int PR; register int maskb = ((saved_state.asregs.msize - 1) & ~0); register int maskw = ((saved_state.asregs.msize - 1) & ~1); register int maskl = ((saved_state.asregs.msize - 1) & ~3); register unsigned char *memory ; register unsigned int sbit = (1 << 31); prev = signal (SIGINT, control_c); init_pointers (); memory = saved_state.asregs.memory; if (step) { saved_state.asregs.exception = SIGTRAP; } else { saved_state.asregs.exception = 0; } pc = saved_state.asregs.pc; PR = saved_state.asregs.pr; T = saved_state.asregs.sr.bits.t; prevlock = saved_state.asregs.prevlock; thislock = saved_state.asregs.thislock; doprofile = saved_state.asregs.profile; /* If profiling not enabled, disable it by asking for profiles infrequently. */ if (doprofile == 0) doprofile = ~0; do { register unsigned int iword = RUWAT (pc); register unsigned int ult; insts++; top: #include "code.c" pc += 2; prevlock = thislock; thislock = 30; cycles++; if (cycles >= doprofile) { if (cycles > sim_timeout) saved_state.asregs.exception = SIGQUIT; saved_state.asregs.cycles += doprofile; cycles -= doprofile; if (saved_state.asregs.profile_hist) { int n = pc >> PROFILE_SHIFT; if (n < nsamples) { int i = saved_state.asregs.profile_hist[n]; if (i < 65000) saved_state.asregs.profile_hist[n] = i + 1; } } } } while (!saved_state.asregs.exception); if (saved_state.asregs.exception == SIGILL) { pc -= 2; } saved_state.asregs.ticks += get_now () - tick_start; saved_state.asregs.cycles += cycles; saved_state.asregs.stalls += stalls; saved_state.asregs.insts += insts; saved_state.asregs.pc = pc; saved_state.asregs.sr.bits.t = T; saved_state.asregs.pr = PR; saved_state.asregs.prevlock = prevlock; saved_state.asregs.thislock = thislock; if (profile_file) { dump_profile (); } signal (SIGINT, prev); } int sim_write (addr, buffer, size) SIM_ADDR addr; unsigned char *buffer; int size; { int i; init_pointers (); for (i = 0; i < size; i++) { saved_state.asregs.memory[MMASKB & (addr + i)] = buffer[i]; } return size; } int sim_read (addr, buffer, size) SIM_ADDR addr; unsigned char *buffer; int size; { int i; init_pointers (); for (i = 0; i < size; i++) { buffer[i] = saved_state.asregs.memory[MMASKB & (addr + i)]; } return size; } void sim_store_register (rn, value) int rn; unsigned char *value; { saved_state.asregs.regs[rn] = (value[0] << 24) | (value[1] << 16) | (value[2] << 8) | (value[3]); } void sim_fetch_register (rn, buf) int rn; unsigned char *buf; { int value = ((int *) (&saved_state))[rn]; swap (buf, value); } int sim_trace () { return 0; } void sim_stop_reason (reason, sigrc) enum sim_stop *reason; int *sigrc; { *reason = sim_stopped; *sigrc = saved_state.asregs.exception; } void sim_info (verbose) int verbose; { double timetaken = (double) saved_state.asregs.ticks / (double) now_persec (); double virttime = saved_state.asregs.cycles / 36.0e6; printf_filtered ("\n\n# instructions executed %10d\n", saved_state.asregs.insts); printf_filtered ("# cycles %10d\n", saved_state.asregs.cycles); printf_filtered ("# pipeline stalls %10d\n", saved_state.asregs.stalls); printf_filtered ("# real time taken %10.4f\n", timetaken); printf_filtered ("# virtual time taken %10.4f\n", virttime); printf_filtered ("# profiling size %10d\n", sim_profile_size); printf_filtered ("# profiling frequency %10d\n", saved_state.asregs.profile); printf_filtered ("# profile maxpc %10x\n", (1 << sim_profile_size) << PROFILE_SHIFT); if (timetaken != 0) { printf_filtered ("# cycles/second %10d\n", (int) (saved_state.asregs.cycles / timetaken)); printf_filtered ("# simulation ratio %10.4f\n", virttime / timetaken); } } void sim_set_profile (n) int n; { saved_state.asregs.profile = n; } void sim_set_profile_size (n) int n; { sim_profile_size = n; } void sim_open (name) char *name; { /* nothing to do */ } void sim_close (quitting) int quitting; { /* nothing to do */ } int sim_load (prog, from_tty) char *prog; int from_tty; { /* Return nonzero so GDB will handle it. */ return 1; } void sim_create_inferior (start_address, argv, env) SIM_ADDR start_address; char **argv; char **env; { saved_state.asregs.pc = start_address; } void sim_kill () { /* nothing to do */ }