/* Target-machine dependent code for Zilog Z8000, for GDB. Copyright (C) 1992 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* Contributed by Steve Chamberlain sac@cygnus.com */ #include "defs.h" #include "frame.h" #include "obstack.h" #include "symtab.h" #include "gdbtypes.h" /* Return the saved PC from this frame. If the frame has a memory copy of SRP_REGNUM, use that. If not, just use the register SRP_REGNUM itself. */ CORE_ADDR frame_saved_pc (frame) FRAME frame; { return ( read_memory_pointer(frame->frame+(BIG ? 4 : 2))); } #define IS_PUSHL(x) (BIG ? ((x & 0xfff0) == 0x91e0):((x & 0xfff0) == 0x91F0)) #define IS_PUSHW(x) (BIG ? ((x & 0xfff0) == 0x93e0):((x & 0xfff0)==0x93f0)) #define IS_MOVE_FP(x) (BIG ? x == 0xa1ea : x == 0xa1fa) #define IS_MOV_SP_FP(x) (BIG ? x == 0x94ea : x == 0x0d76) #define IS_SUB2_SP(x) (x==0x1b87) #define IS_MOVK_R5(x) (x==0x7905) #define IS_SUB_SP(x) ((x & 0xffff) == 0x020f) #define IS_PUSH_FP(x) (BIG ? (x == 0x93ea) : (x == 0x93fa)) /* work out how much local space is on the stack and return the pc pointing to the first push */ static CORE_ADDR skip_adjust(pc, size) CORE_ADDR pc; int *size; { *size = 0; if (IS_PUSH_FP(read_memory_short(pc)) && IS_MOV_SP_FP(read_memory_short(pc+2))) { /* This is a function with an explict frame pointer */ pc += 4; *size += 2; /* remember the frame pointer */ } /* remember any stack adjustment */ if (IS_SUB_SP(read_memory_short(pc))) { *size += read_memory_short(pc+2); pc += 4; } return pc; } int examine_frame(pc, regs, sp) CORE_ADDR pc; struct frame_saved_regs *regs; CORE_ADDR sp; { int w = read_memory_short(pc); int offset = 0; int regno; for (regno = 0; regno < NUM_REGS; regno++) regs->regs[regno] = 0; while (IS_PUSHW(w) || IS_PUSHL(w)) { /* work out which register is being pushed to where */ if (IS_PUSHL(w)) { regs->regs[w & 0xf] = offset; regs->regs[(w & 0xf) + 1] = offset +2; offset += 4; } else { regs->regs[w & 0xf] = offset; offset += 2; } pc += 2; w = read_memory_short(pc); } if (IS_MOVE_FP(w)) { /* We know the fp */ } else if (IS_SUB_SP(w)) { /* Subtracting a value from the sp, so were in a function which needs stack space for locals, but has no fp. We fake up the values as if we had an fp */ regs->regs[FP_REGNUM] = sp; } else { /* This one didn't have an fp, we'll fake it up */ regs->regs[SP_REGNUM] = sp; } /* stack pointer contains address of next frame */ /* regs->regs[fp_regnum()] = fp;*/ regs->regs[SP_REGNUM] = sp; return pc; } CORE_ADDR z8k_skip_prologue(start_pc) CORE_ADDR start_pc; { struct frame_saved_regs dummy; return examine_frame(start_pc, &dummy, 0); } CORE_ADDR addr_bits_remove(x) CORE_ADDR x; { return x & PTR_MASK; } read_memory_pointer(x) CORE_ADDR x; { return read_memory_integer(ADDR_BITS_REMOVE(x), BIG ? 4 : 2); } FRAME_ADDR frame_chain (thisframe) FRAME thisframe; { if (thisframe->prev == 0) { /* This is the top of the stack, let's get the sp for real */ } if (!inside_entry_file ((thisframe)->pc)) { return read_memory_pointer ((thisframe)->frame); } return 0; } init_frame_pc() { abort(); } /* Put here the code to store, into a struct frame_saved_regs, the addresses of the saved registers of frame described by FRAME_INFO. This includes special registers such as pc and fp saved in special ways in the stack frame. sp is even more special: the address we return for it IS the sp for the next frame. */ void get_frame_saved_regs(frame_info, frame_saved_regs) struct frame_info *frame_info; struct frame_saved_regs *frame_saved_regs; { CORE_ADDR pc; int w; bzero(frame_saved_regs, sizeof(*frame_saved_regs)); pc = get_pc_function_start(frame_info->pc); /* wander down the instruction stream */ examine_frame(pc, frame_saved_regs, frame_info->frame); } extract_return_value(valtype, regbuf, valbuf) struct type *valtype; char regbuf[REGISTER_BYTES]; char *valbuf; { bcopy(regbuf + REGISTER_BYTE(2), valbuf, TYPE_LENGTH(valtype)); } void z8k_push_dummy_frame() { abort(); } int print_insn(memaddr, stream) CORE_ADDR memaddr; FILE *stream; { char temp[20]; read_memory (memaddr, temp, 20); if (BIG) { return print_insn_z8001(memaddr, temp, stream); } else { return print_insn_z8002(memaddr, temp, stream); } } void store_return_value() { abort(); } void store_struct_return() { abort(); } /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or is not the address of a valid instruction, the address of the next instruction beyond ADDR otherwise. *PWORD1 receives the first word of the instruction.*/ CORE_ADDR NEXT_PROLOGUE_INSN(addr, lim, pword1) CORE_ADDR addr; CORE_ADDR lim; short *pword1; { if (addr < lim+8) { read_memory (addr, pword1, sizeof(*pword1)); SWAP_TARGET_AND_HOST (pword1, sizeof (short)); return addr + 2; } return 0; } /* Put here the code to store, into a struct frame_saved_regs, the addresses of the saved registers of frame described by FRAME_INFO. This includes special registers such as pc and fp saved in special ways in the stack frame. sp is even more special: the address we return for it IS the sp for the next frame. We cache the result of doing this in the frame_cache_obstack, since it is fairly expensive. */ void frame_find_saved_regs (fip, fsrp) struct frame_info *fip; struct frame_saved_regs *fsrp; { int locals; CORE_ADDR pc; CORE_ADDR adr; int i; memset (fsrp, 0, sizeof *fsrp); pc = skip_adjust(get_pc_function_start (fip->pc), &locals); { adr = fip->frame - locals; for (i = 0; i < 8; i++) { int word = read_memory_short(pc); pc += 2 ; if (IS_PUSHL(word)) { fsrp->regs[word & 0xf] = adr; fsrp->regs[(word & 0xf) + 1] = adr - 2; adr -= 4; } else if (IS_PUSHW(word)) { fsrp->regs[word & 0xf] = adr; adr -= 2; } else break; } } fsrp->regs[PC_REGNUM] = fip->frame + 4; fsrp->regs[FP_REGNUM] = fip->frame; } void addr_bits_set() { abort(); } int saved_pc_after_call() { return addr_bits_remove(read_memory_integer(read_register(SP_REGNUM), PTR_SIZE)); } void print_register_hook(regno) int regno; { if ((regno & 1)==0 && regno < 16) { unsigned short l[2]; read_relative_register_raw_bytes(regno, (char *)(l+0)); read_relative_register_raw_bytes(regno+1, (char *)(l+1)); printf("\t"); printf("%04x%04x", l[0],l[1]); } if ((regno & 3)== 0 && regno < 16) { unsigned short l[4]; read_relative_register_raw_bytes(regno, l+0); read_relative_register_raw_bytes(regno+1, l+1); read_relative_register_raw_bytes(regno+2, l+2); read_relative_register_raw_bytes(regno+3, l+3); printf("\t"); printf("%04x%04x%04x%04x", l[0],l[1],l[2],l[3]); } if (regno == 15) { unsigned short rval; int i; read_relative_register_raw_bytes(regno, (char *)(&rval)); printf("\n"); for (i = 0; i < 10; i+=2) { printf("(sp+%d=%04x)",i, read_memory_short(rval+i)); } } } void register_convert_to_virtual(regnum, from, to) unsigned char *from; unsigned char *to; { to[0] = from[0]; to[1] = from[1]; to[2] = from[2]; to[3] = from[3]; } void register_convert_to_raw(regnum, to, from) char *to; char *from; { to[0] = from[0]; to[1] = from[1]; to[2] = from[2]; to[3] = from[3]; } void z8k_pop_frame() { }