180 lines
5.2 KiB
C
180 lines
5.2 KiB
C
/* Host support routines for MinGW, for GDB, the GNU debugger.
|
|
|
|
Copyright (C) 2006-2017 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#include "defs.h"
|
|
#include "main.h"
|
|
#include "serial.h"
|
|
#include "event-loop.h"
|
|
|
|
#include "gdb_select.h"
|
|
#include "readline/readline.h"
|
|
|
|
#include <windows.h>
|
|
|
|
/* Return an absolute file name of the running GDB, if possible, or
|
|
ARGV0 if not. The return value is in malloc'ed storage. */
|
|
|
|
char *
|
|
windows_get_absolute_argv0 (const char *argv0)
|
|
{
|
|
char full_name[PATH_MAX];
|
|
|
|
if (GetModuleFileName (NULL, full_name, PATH_MAX))
|
|
return xstrdup (full_name);
|
|
return xstrdup (argv0);
|
|
}
|
|
|
|
/* Wrapper for select. On Windows systems, where the select interface
|
|
only works for sockets, this uses the GDB serial abstraction to
|
|
handle sockets, consoles, pipes, and serial ports.
|
|
|
|
The arguments to this function are the same as the traditional
|
|
arguments to select on POSIX platforms. */
|
|
|
|
int
|
|
gdb_select (int n, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
|
|
struct timeval *timeout)
|
|
{
|
|
static HANDLE never_handle;
|
|
HANDLE handles[MAXIMUM_WAIT_OBJECTS];
|
|
HANDLE h;
|
|
DWORD event;
|
|
DWORD num_handles;
|
|
/* SCBS contains serial control objects corresponding to file
|
|
descriptors in READFDS and WRITEFDS. */
|
|
struct serial *scbs[MAXIMUM_WAIT_OBJECTS];
|
|
/* The number of valid entries in SCBS. */
|
|
size_t num_scbs;
|
|
int fd;
|
|
int num_ready;
|
|
size_t indx;
|
|
|
|
num_ready = 0;
|
|
num_handles = 0;
|
|
num_scbs = 0;
|
|
for (fd = 0; fd < n; ++fd)
|
|
{
|
|
HANDLE read = NULL, except = NULL;
|
|
struct serial *scb;
|
|
|
|
/* There is no support yet for WRITEFDS. At present, this isn't
|
|
used by GDB -- but we do not want to silently ignore WRITEFDS
|
|
if something starts using it. */
|
|
gdb_assert (!writefds || !FD_ISSET (fd, writefds));
|
|
|
|
if ((!readfds || !FD_ISSET (fd, readfds))
|
|
&& (!exceptfds || !FD_ISSET (fd, exceptfds)))
|
|
continue;
|
|
|
|
scb = serial_for_fd (fd);
|
|
if (scb)
|
|
{
|
|
serial_wait_handle (scb, &read, &except);
|
|
scbs[num_scbs++] = scb;
|
|
}
|
|
|
|
if (read == NULL)
|
|
read = (HANDLE) _get_osfhandle (fd);
|
|
if (except == NULL)
|
|
{
|
|
if (!never_handle)
|
|
never_handle = CreateEvent (0, FALSE, FALSE, 0);
|
|
|
|
except = never_handle;
|
|
}
|
|
|
|
if (readfds && FD_ISSET (fd, readfds))
|
|
{
|
|
gdb_assert (num_handles < MAXIMUM_WAIT_OBJECTS);
|
|
handles[num_handles++] = read;
|
|
}
|
|
|
|
if (exceptfds && FD_ISSET (fd, exceptfds))
|
|
{
|
|
gdb_assert (num_handles < MAXIMUM_WAIT_OBJECTS);
|
|
handles[num_handles++] = except;
|
|
}
|
|
}
|
|
|
|
gdb_assert (num_handles <= MAXIMUM_WAIT_OBJECTS);
|
|
|
|
event = WaitForMultipleObjects (num_handles,
|
|
handles,
|
|
FALSE,
|
|
timeout
|
|
? (timeout->tv_sec * 1000
|
|
+ timeout->tv_usec / 1000)
|
|
: INFINITE);
|
|
/* EVENT can only be a value in the WAIT_ABANDONED_0 range if the
|
|
HANDLES included an abandoned mutex. Since GDB doesn't use
|
|
mutexes, that should never occur. */
|
|
gdb_assert (!(WAIT_ABANDONED_0 <= event
|
|
&& event < WAIT_ABANDONED_0 + num_handles));
|
|
/* We no longer need the helper threads to check for activity. */
|
|
for (indx = 0; indx < num_scbs; ++indx)
|
|
serial_done_wait_handle (scbs[indx]);
|
|
if (event == WAIT_FAILED)
|
|
return -1;
|
|
if (event == WAIT_TIMEOUT)
|
|
return 0;
|
|
/* Run through the READFDS, clearing bits corresponding to descriptors
|
|
for which input is unavailable. */
|
|
h = handles[event - WAIT_OBJECT_0];
|
|
for (fd = 0, indx = 0; fd < n; ++fd)
|
|
{
|
|
HANDLE fd_h;
|
|
|
|
if ((!readfds || !FD_ISSET (fd, readfds))
|
|
&& (!exceptfds || !FD_ISSET (fd, exceptfds)))
|
|
continue;
|
|
|
|
if (readfds && FD_ISSET (fd, readfds))
|
|
{
|
|
fd_h = handles[indx++];
|
|
/* This handle might be ready, even though it wasn't the handle
|
|
returned by WaitForMultipleObjects. */
|
|
if (fd_h != h && WaitForSingleObject (fd_h, 0) != WAIT_OBJECT_0)
|
|
FD_CLR (fd, readfds);
|
|
else
|
|
num_ready++;
|
|
}
|
|
|
|
if (exceptfds && FD_ISSET (fd, exceptfds))
|
|
{
|
|
fd_h = handles[indx++];
|
|
/* This handle might be ready, even though it wasn't the handle
|
|
returned by WaitForMultipleObjects. */
|
|
if (fd_h != h && WaitForSingleObject (fd_h, 0) != WAIT_OBJECT_0)
|
|
FD_CLR (fd, exceptfds);
|
|
else
|
|
num_ready++;
|
|
}
|
|
}
|
|
|
|
/* With multi-threaded SIGINT handling, there is a race between the
|
|
readline signal handler and GDB. It may still be in
|
|
rl_prep_terminal in another thread. Do not return until it is
|
|
done; we can check the state here because we never longjmp from
|
|
signal handlers on Windows. */
|
|
while (RL_ISSTATE (RL_STATE_SIGHANDLER))
|
|
Sleep (1);
|
|
|
|
return num_ready;
|
|
}
|