1750 lines
52 KiB
C
1750 lines
52 KiB
C
/* Target-dependent code for GNU/Linux on MIPS processors.
|
|
|
|
Copyright (C) 2001-2017 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#include "defs.h"
|
|
#include "gdbcore.h"
|
|
#include "target.h"
|
|
#include "solib-svr4.h"
|
|
#include "osabi.h"
|
|
#include "mips-tdep.h"
|
|
#include "frame.h"
|
|
#include "regcache.h"
|
|
#include "trad-frame.h"
|
|
#include "tramp-frame.h"
|
|
#include "gdbtypes.h"
|
|
#include "objfiles.h"
|
|
#include "solib.h"
|
|
#include "solist.h"
|
|
#include "symtab.h"
|
|
#include "target-descriptions.h"
|
|
#include "regset.h"
|
|
#include "mips-linux-tdep.h"
|
|
#include "glibc-tdep.h"
|
|
#include "linux-tdep.h"
|
|
#include "xml-syscall.h"
|
|
#include "gdb_signals.h"
|
|
|
|
#include "features/mips-linux.c"
|
|
#include "features/mips-dsp-linux.c"
|
|
#include "features/mips64-linux.c"
|
|
#include "features/mips64-dsp-linux.c"
|
|
|
|
static struct target_so_ops mips_svr4_so_ops;
|
|
|
|
/* This enum represents the signals' numbers on the MIPS
|
|
architecture. It just contains the signal definitions which are
|
|
different from the generic implementation.
|
|
|
|
It is derived from the file <arch/mips/include/uapi/asm/signal.h>,
|
|
from the Linux kernel tree. */
|
|
|
|
enum
|
|
{
|
|
MIPS_LINUX_SIGEMT = 7,
|
|
MIPS_LINUX_SIGBUS = 10,
|
|
MIPS_LINUX_SIGSYS = 12,
|
|
MIPS_LINUX_SIGUSR1 = 16,
|
|
MIPS_LINUX_SIGUSR2 = 17,
|
|
MIPS_LINUX_SIGCHLD = 18,
|
|
MIPS_LINUX_SIGCLD = MIPS_LINUX_SIGCHLD,
|
|
MIPS_LINUX_SIGPWR = 19,
|
|
MIPS_LINUX_SIGWINCH = 20,
|
|
MIPS_LINUX_SIGURG = 21,
|
|
MIPS_LINUX_SIGIO = 22,
|
|
MIPS_LINUX_SIGPOLL = MIPS_LINUX_SIGIO,
|
|
MIPS_LINUX_SIGSTOP = 23,
|
|
MIPS_LINUX_SIGTSTP = 24,
|
|
MIPS_LINUX_SIGCONT = 25,
|
|
MIPS_LINUX_SIGTTIN = 26,
|
|
MIPS_LINUX_SIGTTOU = 27,
|
|
MIPS_LINUX_SIGVTALRM = 28,
|
|
MIPS_LINUX_SIGPROF = 29,
|
|
MIPS_LINUX_SIGXCPU = 30,
|
|
MIPS_LINUX_SIGXFSZ = 31,
|
|
|
|
MIPS_LINUX_SIGRTMIN = 32,
|
|
MIPS_LINUX_SIGRT64 = 64,
|
|
MIPS_LINUX_SIGRTMAX = 127,
|
|
};
|
|
|
|
/* Figure out where the longjmp will land.
|
|
We expect the first arg to be a pointer to the jmp_buf structure
|
|
from which we extract the pc (MIPS_LINUX_JB_PC) that we will land
|
|
at. The pc is copied into PC. This routine returns 1 on
|
|
success. */
|
|
|
|
#define MIPS_LINUX_JB_ELEMENT_SIZE 4
|
|
#define MIPS_LINUX_JB_PC 0
|
|
|
|
static int
|
|
mips_linux_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
|
|
{
|
|
CORE_ADDR jb_addr;
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
gdb_byte buf[gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT];
|
|
|
|
jb_addr = get_frame_register_unsigned (frame, MIPS_A0_REGNUM);
|
|
|
|
if (target_read_memory ((jb_addr
|
|
+ MIPS_LINUX_JB_PC * MIPS_LINUX_JB_ELEMENT_SIZE),
|
|
buf, gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
|
|
return 0;
|
|
|
|
*pc = extract_unsigned_integer (buf,
|
|
gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT,
|
|
byte_order);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Transform the bits comprising a 32-bit register to the right size
|
|
for regcache_raw_supply(). This is needed when mips_isa_regsize()
|
|
is 8. */
|
|
|
|
static void
|
|
supply_32bit_reg (struct regcache *regcache, int regnum, const void *addr)
|
|
{
|
|
regcache->raw_supply_integer (regnum, (const gdb_byte *) addr, 4, true);
|
|
}
|
|
|
|
/* Unpack an elf_gregset_t into GDB's register cache. */
|
|
|
|
void
|
|
mips_supply_gregset (struct regcache *regcache,
|
|
const mips_elf_gregset_t *gregsetp)
|
|
{
|
|
int regi;
|
|
const mips_elf_greg_t *regp = *gregsetp;
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
|
|
for (regi = EF_REG0 + 1; regi <= EF_REG31; regi++)
|
|
supply_32bit_reg (regcache, regi - EF_REG0, regp + regi);
|
|
|
|
if (mips_linux_restart_reg_p (gdbarch))
|
|
supply_32bit_reg (regcache, MIPS_RESTART_REGNUM, regp + EF_REG0);
|
|
|
|
supply_32bit_reg (regcache, mips_regnum (gdbarch)->lo, regp + EF_LO);
|
|
supply_32bit_reg (regcache, mips_regnum (gdbarch)->hi, regp + EF_HI);
|
|
|
|
supply_32bit_reg (regcache, mips_regnum (gdbarch)->pc,
|
|
regp + EF_CP0_EPC);
|
|
supply_32bit_reg (regcache, mips_regnum (gdbarch)->badvaddr,
|
|
regp + EF_CP0_BADVADDR);
|
|
supply_32bit_reg (regcache, MIPS_PS_REGNUM, regp + EF_CP0_STATUS);
|
|
supply_32bit_reg (regcache, mips_regnum (gdbarch)->cause,
|
|
regp + EF_CP0_CAUSE);
|
|
|
|
/* Fill the inaccessible zero register with zero. */
|
|
regcache->raw_supply_zeroed (MIPS_ZERO_REGNUM);
|
|
}
|
|
|
|
static void
|
|
mips_supply_gregset_wrapper (const struct regset *regset,
|
|
struct regcache *regcache,
|
|
int regnum, const void *gregs, size_t len)
|
|
{
|
|
gdb_assert (len >= sizeof (mips_elf_gregset_t));
|
|
|
|
mips_supply_gregset (regcache, (const mips_elf_gregset_t *)gregs);
|
|
}
|
|
|
|
/* Pack our registers (or one register) into an elf_gregset_t. */
|
|
|
|
void
|
|
mips_fill_gregset (const struct regcache *regcache,
|
|
mips_elf_gregset_t *gregsetp, int regno)
|
|
{
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
int regaddr, regi;
|
|
mips_elf_greg_t *regp = *gregsetp;
|
|
void *dst;
|
|
|
|
if (regno == -1)
|
|
{
|
|
memset (regp, 0, sizeof (mips_elf_gregset_t));
|
|
for (regi = 1; regi < 32; regi++)
|
|
mips_fill_gregset (regcache, gregsetp, regi);
|
|
mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->lo);
|
|
mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->hi);
|
|
mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->pc);
|
|
mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->badvaddr);
|
|
mips_fill_gregset (regcache, gregsetp, MIPS_PS_REGNUM);
|
|
mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->cause);
|
|
mips_fill_gregset (regcache, gregsetp, MIPS_RESTART_REGNUM);
|
|
return;
|
|
}
|
|
|
|
if (regno > 0 && regno < 32)
|
|
{
|
|
dst = regp + regno + EF_REG0;
|
|
regcache_raw_collect (regcache, regno, dst);
|
|
return;
|
|
}
|
|
|
|
if (regno == mips_regnum (gdbarch)->lo)
|
|
regaddr = EF_LO;
|
|
else if (regno == mips_regnum (gdbarch)->hi)
|
|
regaddr = EF_HI;
|
|
else if (regno == mips_regnum (gdbarch)->pc)
|
|
regaddr = EF_CP0_EPC;
|
|
else if (regno == mips_regnum (gdbarch)->badvaddr)
|
|
regaddr = EF_CP0_BADVADDR;
|
|
else if (regno == MIPS_PS_REGNUM)
|
|
regaddr = EF_CP0_STATUS;
|
|
else if (regno == mips_regnum (gdbarch)->cause)
|
|
regaddr = EF_CP0_CAUSE;
|
|
else if (mips_linux_restart_reg_p (gdbarch)
|
|
&& regno == MIPS_RESTART_REGNUM)
|
|
regaddr = EF_REG0;
|
|
else
|
|
regaddr = -1;
|
|
|
|
if (regaddr != -1)
|
|
{
|
|
dst = regp + regaddr;
|
|
regcache_raw_collect (regcache, regno, dst);
|
|
}
|
|
}
|
|
|
|
static void
|
|
mips_fill_gregset_wrapper (const struct regset *regset,
|
|
const struct regcache *regcache,
|
|
int regnum, void *gregs, size_t len)
|
|
{
|
|
gdb_assert (len >= sizeof (mips_elf_gregset_t));
|
|
|
|
mips_fill_gregset (regcache, (mips_elf_gregset_t *)gregs, regnum);
|
|
}
|
|
|
|
/* Likewise, unpack an elf_fpregset_t. */
|
|
|
|
void
|
|
mips_supply_fpregset (struct regcache *regcache,
|
|
const mips_elf_fpregset_t *fpregsetp)
|
|
{
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
int regi;
|
|
|
|
for (regi = 0; regi < 32; regi++)
|
|
regcache_raw_supply (regcache,
|
|
gdbarch_fp0_regnum (gdbarch) + regi,
|
|
*fpregsetp + regi);
|
|
|
|
regcache_raw_supply (regcache,
|
|
mips_regnum (gdbarch)->fp_control_status,
|
|
*fpregsetp + 32);
|
|
|
|
/* FIXME: how can we supply FCRIR? The ABI doesn't tell us. */
|
|
regcache->raw_supply_zeroed
|
|
(mips_regnum (gdbarch)->fp_implementation_revision);
|
|
}
|
|
|
|
static void
|
|
mips_supply_fpregset_wrapper (const struct regset *regset,
|
|
struct regcache *regcache,
|
|
int regnum, const void *gregs, size_t len)
|
|
{
|
|
gdb_assert (len >= sizeof (mips_elf_fpregset_t));
|
|
|
|
mips_supply_fpregset (regcache, (const mips_elf_fpregset_t *)gregs);
|
|
}
|
|
|
|
/* Likewise, pack one or all floating point registers into an
|
|
elf_fpregset_t. */
|
|
|
|
void
|
|
mips_fill_fpregset (const struct regcache *regcache,
|
|
mips_elf_fpregset_t *fpregsetp, int regno)
|
|
{
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
char *to;
|
|
|
|
if ((regno >= gdbarch_fp0_regnum (gdbarch))
|
|
&& (regno < gdbarch_fp0_regnum (gdbarch) + 32))
|
|
{
|
|
to = (char *) (*fpregsetp + regno - gdbarch_fp0_regnum (gdbarch));
|
|
regcache_raw_collect (regcache, regno, to);
|
|
}
|
|
else if (regno == mips_regnum (gdbarch)->fp_control_status)
|
|
{
|
|
to = (char *) (*fpregsetp + 32);
|
|
regcache_raw_collect (regcache, regno, to);
|
|
}
|
|
else if (regno == -1)
|
|
{
|
|
int regi;
|
|
|
|
for (regi = 0; regi < 32; regi++)
|
|
mips_fill_fpregset (regcache, fpregsetp,
|
|
gdbarch_fp0_regnum (gdbarch) + regi);
|
|
mips_fill_fpregset (regcache, fpregsetp,
|
|
mips_regnum (gdbarch)->fp_control_status);
|
|
}
|
|
}
|
|
|
|
static void
|
|
mips_fill_fpregset_wrapper (const struct regset *regset,
|
|
const struct regcache *regcache,
|
|
int regnum, void *gregs, size_t len)
|
|
{
|
|
gdb_assert (len >= sizeof (mips_elf_fpregset_t));
|
|
|
|
mips_fill_fpregset (regcache, (mips_elf_fpregset_t *)gregs, regnum);
|
|
}
|
|
|
|
/* Support for 64-bit ABIs. */
|
|
|
|
/* Figure out where the longjmp will land.
|
|
We expect the first arg to be a pointer to the jmp_buf structure
|
|
from which we extract the pc (MIPS_LINUX_JB_PC) that we will land
|
|
at. The pc is copied into PC. This routine returns 1 on
|
|
success. */
|
|
|
|
/* Details about jmp_buf. */
|
|
|
|
#define MIPS64_LINUX_JB_PC 0
|
|
|
|
static int
|
|
mips64_linux_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
|
|
{
|
|
CORE_ADDR jb_addr;
|
|
struct gdbarch *gdbarch = get_frame_arch (frame);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
gdb_byte *buf
|
|
= (gdb_byte *) alloca (gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT);
|
|
int element_size = gdbarch_ptr_bit (gdbarch) == 32 ? 4 : 8;
|
|
|
|
jb_addr = get_frame_register_unsigned (frame, MIPS_A0_REGNUM);
|
|
|
|
if (target_read_memory (jb_addr + MIPS64_LINUX_JB_PC * element_size,
|
|
buf,
|
|
gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
|
|
return 0;
|
|
|
|
*pc = extract_unsigned_integer (buf,
|
|
gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT,
|
|
byte_order);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Register set support functions. These operate on standard 64-bit
|
|
regsets, but work whether the target is 32-bit or 64-bit. A 32-bit
|
|
target will still use the 64-bit format for PTRACE_GETREGS. */
|
|
|
|
/* Supply a 64-bit register. */
|
|
|
|
static void
|
|
supply_64bit_reg (struct regcache *regcache, int regnum,
|
|
const gdb_byte *buf)
|
|
{
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
|
|
&& register_size (gdbarch, regnum) == 4)
|
|
regcache_raw_supply (regcache, regnum, buf + 4);
|
|
else
|
|
regcache_raw_supply (regcache, regnum, buf);
|
|
}
|
|
|
|
/* Unpack a 64-bit elf_gregset_t into GDB's register cache. */
|
|
|
|
void
|
|
mips64_supply_gregset (struct regcache *regcache,
|
|
const mips64_elf_gregset_t *gregsetp)
|
|
{
|
|
int regi;
|
|
const mips64_elf_greg_t *regp = *gregsetp;
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
|
|
for (regi = MIPS64_EF_REG0 + 1; regi <= MIPS64_EF_REG31; regi++)
|
|
supply_64bit_reg (regcache, regi - MIPS64_EF_REG0,
|
|
(const gdb_byte *) (regp + regi));
|
|
|
|
if (mips_linux_restart_reg_p (gdbarch))
|
|
supply_64bit_reg (regcache, MIPS_RESTART_REGNUM,
|
|
(const gdb_byte *) (regp + MIPS64_EF_REG0));
|
|
|
|
supply_64bit_reg (regcache, mips_regnum (gdbarch)->lo,
|
|
(const gdb_byte *) (regp + MIPS64_EF_LO));
|
|
supply_64bit_reg (regcache, mips_regnum (gdbarch)->hi,
|
|
(const gdb_byte *) (regp + MIPS64_EF_HI));
|
|
|
|
supply_64bit_reg (regcache, mips_regnum (gdbarch)->pc,
|
|
(const gdb_byte *) (regp + MIPS64_EF_CP0_EPC));
|
|
supply_64bit_reg (regcache, mips_regnum (gdbarch)->badvaddr,
|
|
(const gdb_byte *) (regp + MIPS64_EF_CP0_BADVADDR));
|
|
supply_64bit_reg (regcache, MIPS_PS_REGNUM,
|
|
(const gdb_byte *) (regp + MIPS64_EF_CP0_STATUS));
|
|
supply_64bit_reg (regcache, mips_regnum (gdbarch)->cause,
|
|
(const gdb_byte *) (regp + MIPS64_EF_CP0_CAUSE));
|
|
|
|
/* Fill the inaccessible zero register with zero. */
|
|
regcache->raw_supply_zeroed (MIPS_ZERO_REGNUM);
|
|
}
|
|
|
|
static void
|
|
mips64_supply_gregset_wrapper (const struct regset *regset,
|
|
struct regcache *regcache,
|
|
int regnum, const void *gregs, size_t len)
|
|
{
|
|
gdb_assert (len >= sizeof (mips64_elf_gregset_t));
|
|
|
|
mips64_supply_gregset (regcache, (const mips64_elf_gregset_t *)gregs);
|
|
}
|
|
|
|
/* Pack our registers (or one register) into a 64-bit elf_gregset_t. */
|
|
|
|
void
|
|
mips64_fill_gregset (const struct regcache *regcache,
|
|
mips64_elf_gregset_t *gregsetp, int regno)
|
|
{
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
int regaddr, regi;
|
|
mips64_elf_greg_t *regp = *gregsetp;
|
|
void *dst;
|
|
|
|
if (regno == -1)
|
|
{
|
|
memset (regp, 0, sizeof (mips64_elf_gregset_t));
|
|
for (regi = 1; regi < 32; regi++)
|
|
mips64_fill_gregset (regcache, gregsetp, regi);
|
|
mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->lo);
|
|
mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->hi);
|
|
mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->pc);
|
|
mips64_fill_gregset (regcache, gregsetp,
|
|
mips_regnum (gdbarch)->badvaddr);
|
|
mips64_fill_gregset (regcache, gregsetp, MIPS_PS_REGNUM);
|
|
mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->cause);
|
|
mips64_fill_gregset (regcache, gregsetp, MIPS_RESTART_REGNUM);
|
|
return;
|
|
}
|
|
|
|
if (regno > 0 && regno < 32)
|
|
regaddr = regno + MIPS64_EF_REG0;
|
|
else if (regno == mips_regnum (gdbarch)->lo)
|
|
regaddr = MIPS64_EF_LO;
|
|
else if (regno == mips_regnum (gdbarch)->hi)
|
|
regaddr = MIPS64_EF_HI;
|
|
else if (regno == mips_regnum (gdbarch)->pc)
|
|
regaddr = MIPS64_EF_CP0_EPC;
|
|
else if (regno == mips_regnum (gdbarch)->badvaddr)
|
|
regaddr = MIPS64_EF_CP0_BADVADDR;
|
|
else if (regno == MIPS_PS_REGNUM)
|
|
regaddr = MIPS64_EF_CP0_STATUS;
|
|
else if (regno == mips_regnum (gdbarch)->cause)
|
|
regaddr = MIPS64_EF_CP0_CAUSE;
|
|
else if (mips_linux_restart_reg_p (gdbarch)
|
|
&& regno == MIPS_RESTART_REGNUM)
|
|
regaddr = MIPS64_EF_REG0;
|
|
else
|
|
regaddr = -1;
|
|
|
|
if (regaddr != -1)
|
|
{
|
|
dst = regp + regaddr;
|
|
regcache->raw_collect_integer (regno, (gdb_byte *) dst, 8, true);
|
|
}
|
|
}
|
|
|
|
static void
|
|
mips64_fill_gregset_wrapper (const struct regset *regset,
|
|
const struct regcache *regcache,
|
|
int regnum, void *gregs, size_t len)
|
|
{
|
|
gdb_assert (len >= sizeof (mips64_elf_gregset_t));
|
|
|
|
mips64_fill_gregset (regcache, (mips64_elf_gregset_t *)gregs, regnum);
|
|
}
|
|
|
|
/* Likewise, unpack an elf_fpregset_t. */
|
|
|
|
void
|
|
mips64_supply_fpregset (struct regcache *regcache,
|
|
const mips64_elf_fpregset_t *fpregsetp)
|
|
{
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
int regi;
|
|
|
|
/* See mips_linux_o32_sigframe_init for a description of the
|
|
peculiar FP register layout. */
|
|
if (register_size (gdbarch, gdbarch_fp0_regnum (gdbarch)) == 4)
|
|
for (regi = 0; regi < 32; regi++)
|
|
{
|
|
const gdb_byte *reg_ptr
|
|
= (const gdb_byte *) (*fpregsetp + (regi & ~1));
|
|
if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (regi & 1))
|
|
reg_ptr += 4;
|
|
regcache_raw_supply (regcache,
|
|
gdbarch_fp0_regnum (gdbarch) + regi,
|
|
reg_ptr);
|
|
}
|
|
else
|
|
for (regi = 0; regi < 32; regi++)
|
|
regcache_raw_supply (regcache,
|
|
gdbarch_fp0_regnum (gdbarch) + regi,
|
|
(const char *) (*fpregsetp + regi));
|
|
|
|
supply_32bit_reg (regcache, mips_regnum (gdbarch)->fp_control_status,
|
|
(const gdb_byte *) (*fpregsetp + 32));
|
|
|
|
/* The ABI doesn't tell us how to supply FCRIR, and core dumps don't
|
|
include it - but the result of PTRACE_GETFPREGS does. The best we
|
|
can do is to assume that its value is present. */
|
|
supply_32bit_reg (regcache,
|
|
mips_regnum (gdbarch)->fp_implementation_revision,
|
|
(const gdb_byte *) (*fpregsetp + 32) + 4);
|
|
}
|
|
|
|
static void
|
|
mips64_supply_fpregset_wrapper (const struct regset *regset,
|
|
struct regcache *regcache,
|
|
int regnum, const void *gregs, size_t len)
|
|
{
|
|
gdb_assert (len >= sizeof (mips64_elf_fpregset_t));
|
|
|
|
mips64_supply_fpregset (regcache, (const mips64_elf_fpregset_t *)gregs);
|
|
}
|
|
|
|
/* Likewise, pack one or all floating point registers into an
|
|
elf_fpregset_t. */
|
|
|
|
void
|
|
mips64_fill_fpregset (const struct regcache *regcache,
|
|
mips64_elf_fpregset_t *fpregsetp, int regno)
|
|
{
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
gdb_byte *to;
|
|
|
|
if ((regno >= gdbarch_fp0_regnum (gdbarch))
|
|
&& (regno < gdbarch_fp0_regnum (gdbarch) + 32))
|
|
{
|
|
/* See mips_linux_o32_sigframe_init for a description of the
|
|
peculiar FP register layout. */
|
|
if (register_size (gdbarch, regno) == 4)
|
|
{
|
|
int regi = regno - gdbarch_fp0_regnum (gdbarch);
|
|
|
|
to = (gdb_byte *) (*fpregsetp + (regi & ~1));
|
|
if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (regi & 1))
|
|
to += 4;
|
|
regcache_raw_collect (regcache, regno, to);
|
|
}
|
|
else
|
|
{
|
|
to = (gdb_byte *) (*fpregsetp + regno
|
|
- gdbarch_fp0_regnum (gdbarch));
|
|
regcache_raw_collect (regcache, regno, to);
|
|
}
|
|
}
|
|
else if (regno == mips_regnum (gdbarch)->fp_control_status)
|
|
{
|
|
to = (gdb_byte *) (*fpregsetp + 32);
|
|
regcache->raw_collect_integer (regno, to, 4, true);
|
|
}
|
|
else if (regno == mips_regnum (gdbarch)->fp_implementation_revision)
|
|
{
|
|
to = (gdb_byte *) (*fpregsetp + 32) + 4;
|
|
regcache->raw_collect_integer (regno, to, 4, true);
|
|
}
|
|
else if (regno == -1)
|
|
{
|
|
int regi;
|
|
|
|
for (regi = 0; regi < 32; regi++)
|
|
mips64_fill_fpregset (regcache, fpregsetp,
|
|
gdbarch_fp0_regnum (gdbarch) + regi);
|
|
mips64_fill_fpregset (regcache, fpregsetp,
|
|
mips_regnum (gdbarch)->fp_control_status);
|
|
mips64_fill_fpregset (regcache, fpregsetp,
|
|
mips_regnum (gdbarch)->fp_implementation_revision);
|
|
}
|
|
}
|
|
|
|
static void
|
|
mips64_fill_fpregset_wrapper (const struct regset *regset,
|
|
const struct regcache *regcache,
|
|
int regnum, void *gregs, size_t len)
|
|
{
|
|
gdb_assert (len >= sizeof (mips64_elf_fpregset_t));
|
|
|
|
mips64_fill_fpregset (regcache, (mips64_elf_fpregset_t *)gregs, regnum);
|
|
}
|
|
|
|
static const struct regset mips_linux_gregset =
|
|
{
|
|
NULL, mips_supply_gregset_wrapper, mips_fill_gregset_wrapper
|
|
};
|
|
|
|
static const struct regset mips64_linux_gregset =
|
|
{
|
|
NULL, mips64_supply_gregset_wrapper, mips64_fill_gregset_wrapper
|
|
};
|
|
|
|
static const struct regset mips_linux_fpregset =
|
|
{
|
|
NULL, mips_supply_fpregset_wrapper, mips_fill_fpregset_wrapper
|
|
};
|
|
|
|
static const struct regset mips64_linux_fpregset =
|
|
{
|
|
NULL, mips64_supply_fpregset_wrapper, mips64_fill_fpregset_wrapper
|
|
};
|
|
|
|
static void
|
|
mips_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
|
|
iterate_over_regset_sections_cb *cb,
|
|
void *cb_data,
|
|
const struct regcache *regcache)
|
|
{
|
|
if (register_size (gdbarch, MIPS_ZERO_REGNUM) == 4)
|
|
{
|
|
cb (".reg", sizeof (mips_elf_gregset_t), &mips_linux_gregset,
|
|
NULL, cb_data);
|
|
cb (".reg2", sizeof (mips_elf_fpregset_t), &mips_linux_fpregset,
|
|
NULL, cb_data);
|
|
}
|
|
else
|
|
{
|
|
cb (".reg", sizeof (mips64_elf_gregset_t), &mips64_linux_gregset,
|
|
NULL, cb_data);
|
|
cb (".reg2", sizeof (mips64_elf_fpregset_t), &mips64_linux_fpregset,
|
|
NULL, cb_data);
|
|
}
|
|
}
|
|
|
|
static const struct target_desc *
|
|
mips_linux_core_read_description (struct gdbarch *gdbarch,
|
|
struct target_ops *target,
|
|
bfd *abfd)
|
|
{
|
|
asection *section = bfd_get_section_by_name (abfd, ".reg");
|
|
if (! section)
|
|
return NULL;
|
|
|
|
switch (bfd_section_size (abfd, section))
|
|
{
|
|
case sizeof (mips_elf_gregset_t):
|
|
return mips_tdesc_gp32;
|
|
|
|
case sizeof (mips64_elf_gregset_t):
|
|
return mips_tdesc_gp64;
|
|
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
|
|
/* Check the code at PC for a dynamic linker lazy resolution stub.
|
|
GNU ld for MIPS has put lazy resolution stubs into a ".MIPS.stubs"
|
|
section uniformly since version 2.15. If the pc is in that section,
|
|
then we are in such a stub. Before that ".stub" was used in 32-bit
|
|
ELF binaries, however we do not bother checking for that since we
|
|
have never had and that case should be extremely rare these days.
|
|
Instead we pattern-match on the code generated by GNU ld. They look
|
|
like this:
|
|
|
|
lw t9,0x8010(gp)
|
|
addu t7,ra
|
|
jalr t9,ra
|
|
addiu t8,zero,INDEX
|
|
|
|
(with the appropriate doubleword instructions for N64). As any lazy
|
|
resolution stubs in microMIPS binaries will always be in a
|
|
".MIPS.stubs" section we only ever verify standard MIPS patterns. */
|
|
|
|
static int
|
|
mips_linux_in_dynsym_stub (CORE_ADDR pc)
|
|
{
|
|
gdb_byte buf[28], *p;
|
|
ULONGEST insn, insn1;
|
|
int n64 = (mips_abi (target_gdbarch ()) == MIPS_ABI_N64);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
|
|
|
|
if (in_mips_stubs_section (pc))
|
|
return 1;
|
|
|
|
read_memory (pc - 12, buf, 28);
|
|
|
|
if (n64)
|
|
{
|
|
/* ld t9,0x8010(gp) */
|
|
insn1 = 0xdf998010;
|
|
}
|
|
else
|
|
{
|
|
/* lw t9,0x8010(gp) */
|
|
insn1 = 0x8f998010;
|
|
}
|
|
|
|
p = buf + 12;
|
|
while (p >= buf)
|
|
{
|
|
insn = extract_unsigned_integer (p, 4, byte_order);
|
|
if (insn == insn1)
|
|
break;
|
|
p -= 4;
|
|
}
|
|
if (p < buf)
|
|
return 0;
|
|
|
|
insn = extract_unsigned_integer (p + 4, 4, byte_order);
|
|
if (n64)
|
|
{
|
|
/* 'daddu t7,ra' or 'or t7, ra, zero'*/
|
|
if (insn != 0x03e0782d || insn != 0x03e07825)
|
|
return 0;
|
|
|
|
}
|
|
else
|
|
{
|
|
/* 'addu t7,ra' or 'or t7, ra, zero'*/
|
|
if (insn != 0x03e07821 || insn != 0x03e07825)
|
|
return 0;
|
|
|
|
}
|
|
|
|
insn = extract_unsigned_integer (p + 8, 4, byte_order);
|
|
/* jalr t9,ra */
|
|
if (insn != 0x0320f809)
|
|
return 0;
|
|
|
|
insn = extract_unsigned_integer (p + 12, 4, byte_order);
|
|
if (n64)
|
|
{
|
|
/* daddiu t8,zero,0 */
|
|
if ((insn & 0xffff0000) != 0x64180000)
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
/* addiu t8,zero,0 */
|
|
if ((insn & 0xffff0000) != 0x24180000)
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Return non-zero iff PC belongs to the dynamic linker resolution
|
|
code, a PLT entry, or a lazy binding stub. */
|
|
|
|
static int
|
|
mips_linux_in_dynsym_resolve_code (CORE_ADDR pc)
|
|
{
|
|
/* Check whether PC is in the dynamic linker. This also checks
|
|
whether it is in the .plt section, used by non-PIC executables. */
|
|
if (svr4_in_dynsym_resolve_code (pc))
|
|
return 1;
|
|
|
|
/* Likewise for the stubs. They live in the .MIPS.stubs section these
|
|
days, so we check if the PC is within, than fall back to a pattern
|
|
match. */
|
|
if (mips_linux_in_dynsym_stub (pc))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* See the comments for SKIP_SOLIB_RESOLVER at the top of infrun.c,
|
|
and glibc_skip_solib_resolver in glibc-tdep.c. The normal glibc
|
|
implementation of this triggers at "fixup" from the same objfile as
|
|
"_dl_runtime_resolve"; MIPS GNU/Linux can trigger at
|
|
"__dl_runtime_resolve" directly. An unresolved lazy binding
|
|
stub will point to _dl_runtime_resolve, which will first call
|
|
__dl_runtime_resolve, and then pass control to the resolved
|
|
function. */
|
|
|
|
static CORE_ADDR
|
|
mips_linux_skip_resolver (struct gdbarch *gdbarch, CORE_ADDR pc)
|
|
{
|
|
struct bound_minimal_symbol resolver;
|
|
|
|
resolver = lookup_minimal_symbol ("__dl_runtime_resolve", NULL, NULL);
|
|
|
|
if (resolver.minsym && BMSYMBOL_VALUE_ADDRESS (resolver) == pc)
|
|
return frame_unwind_caller_pc (get_current_frame ());
|
|
|
|
return glibc_skip_solib_resolver (gdbarch, pc);
|
|
}
|
|
|
|
/* Signal trampoline support. There are four supported layouts for a
|
|
signal frame: o32 sigframe, o32 rt_sigframe, n32 rt_sigframe, and
|
|
n64 rt_sigframe. We handle them all independently; not the most
|
|
efficient way, but simplest. First, declare all the unwinders. */
|
|
|
|
static void mips_linux_o32_sigframe_init (const struct tramp_frame *self,
|
|
struct frame_info *this_frame,
|
|
struct trad_frame_cache *this_cache,
|
|
CORE_ADDR func);
|
|
|
|
static void mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
|
|
struct frame_info *this_frame,
|
|
struct trad_frame_cache *this_cache,
|
|
CORE_ADDR func);
|
|
|
|
static int mips_linux_sigframe_validate (const struct tramp_frame *self,
|
|
struct frame_info *this_frame,
|
|
CORE_ADDR *pc);
|
|
|
|
static int micromips_linux_sigframe_validate (const struct tramp_frame *self,
|
|
struct frame_info *this_frame,
|
|
CORE_ADDR *pc);
|
|
|
|
#define MIPS_NR_LINUX 4000
|
|
#define MIPS_NR_N64_LINUX 5000
|
|
#define MIPS_NR_N32_LINUX 6000
|
|
|
|
#define MIPS_NR_sigreturn MIPS_NR_LINUX + 119
|
|
#define MIPS_NR_rt_sigreturn MIPS_NR_LINUX + 193
|
|
#define MIPS_NR_N64_rt_sigreturn MIPS_NR_N64_LINUX + 211
|
|
#define MIPS_NR_N32_rt_sigreturn MIPS_NR_N32_LINUX + 211
|
|
|
|
#define MIPS_INST_LI_V0_SIGRETURN 0x24020000 + MIPS_NR_sigreturn
|
|
#define MIPS_INST_LI_V0_RT_SIGRETURN 0x24020000 + MIPS_NR_rt_sigreturn
|
|
#define MIPS_INST_LI_V0_N64_RT_SIGRETURN 0x24020000 + MIPS_NR_N64_rt_sigreturn
|
|
#define MIPS_INST_LI_V0_N32_RT_SIGRETURN 0x24020000 + MIPS_NR_N32_rt_sigreturn
|
|
#define MIPS_INST_SYSCALL 0x0000000c
|
|
|
|
#define MICROMIPS_INST_LI_V0 0x3040
|
|
#define MICROMIPS_INST_POOL32A 0x0000
|
|
#define MICROMIPS_INST_SYSCALL 0x8b7c
|
|
|
|
static const struct tramp_frame mips_linux_o32_sigframe = {
|
|
SIGTRAMP_FRAME,
|
|
4,
|
|
{
|
|
{ MIPS_INST_LI_V0_SIGRETURN, -1 },
|
|
{ MIPS_INST_SYSCALL, -1 },
|
|
{ TRAMP_SENTINEL_INSN, -1 }
|
|
},
|
|
mips_linux_o32_sigframe_init,
|
|
mips_linux_sigframe_validate
|
|
};
|
|
|
|
static const struct tramp_frame mips_linux_o32_rt_sigframe = {
|
|
SIGTRAMP_FRAME,
|
|
4,
|
|
{
|
|
{ MIPS_INST_LI_V0_RT_SIGRETURN, -1 },
|
|
{ MIPS_INST_SYSCALL, -1 },
|
|
{ TRAMP_SENTINEL_INSN, -1 } },
|
|
mips_linux_o32_sigframe_init,
|
|
mips_linux_sigframe_validate
|
|
};
|
|
|
|
static const struct tramp_frame mips_linux_n32_rt_sigframe = {
|
|
SIGTRAMP_FRAME,
|
|
4,
|
|
{
|
|
{ MIPS_INST_LI_V0_N32_RT_SIGRETURN, -1 },
|
|
{ MIPS_INST_SYSCALL, -1 },
|
|
{ TRAMP_SENTINEL_INSN, -1 }
|
|
},
|
|
mips_linux_n32n64_sigframe_init,
|
|
mips_linux_sigframe_validate
|
|
};
|
|
|
|
static const struct tramp_frame mips_linux_n64_rt_sigframe = {
|
|
SIGTRAMP_FRAME,
|
|
4,
|
|
{
|
|
{ MIPS_INST_LI_V0_N64_RT_SIGRETURN, -1 },
|
|
{ MIPS_INST_SYSCALL, -1 },
|
|
{ TRAMP_SENTINEL_INSN, -1 }
|
|
},
|
|
mips_linux_n32n64_sigframe_init,
|
|
mips_linux_sigframe_validate
|
|
};
|
|
|
|
static const struct tramp_frame micromips_linux_o32_sigframe = {
|
|
SIGTRAMP_FRAME,
|
|
2,
|
|
{
|
|
{ MICROMIPS_INST_LI_V0, -1 },
|
|
{ MIPS_NR_sigreturn, -1 },
|
|
{ MICROMIPS_INST_POOL32A, -1 },
|
|
{ MICROMIPS_INST_SYSCALL, -1 },
|
|
{ TRAMP_SENTINEL_INSN, -1 }
|
|
},
|
|
mips_linux_o32_sigframe_init,
|
|
micromips_linux_sigframe_validate
|
|
};
|
|
|
|
static const struct tramp_frame micromips_linux_o32_rt_sigframe = {
|
|
SIGTRAMP_FRAME,
|
|
2,
|
|
{
|
|
{ MICROMIPS_INST_LI_V0, -1 },
|
|
{ MIPS_NR_rt_sigreturn, -1 },
|
|
{ MICROMIPS_INST_POOL32A, -1 },
|
|
{ MICROMIPS_INST_SYSCALL, -1 },
|
|
{ TRAMP_SENTINEL_INSN, -1 }
|
|
},
|
|
mips_linux_o32_sigframe_init,
|
|
micromips_linux_sigframe_validate
|
|
};
|
|
|
|
static const struct tramp_frame micromips_linux_n32_rt_sigframe = {
|
|
SIGTRAMP_FRAME,
|
|
2,
|
|
{
|
|
{ MICROMIPS_INST_LI_V0, -1 },
|
|
{ MIPS_NR_N32_rt_sigreturn, -1 },
|
|
{ MICROMIPS_INST_POOL32A, -1 },
|
|
{ MICROMIPS_INST_SYSCALL, -1 },
|
|
{ TRAMP_SENTINEL_INSN, -1 }
|
|
},
|
|
mips_linux_n32n64_sigframe_init,
|
|
micromips_linux_sigframe_validate
|
|
};
|
|
|
|
static const struct tramp_frame micromips_linux_n64_rt_sigframe = {
|
|
SIGTRAMP_FRAME,
|
|
2,
|
|
{
|
|
{ MICROMIPS_INST_LI_V0, -1 },
|
|
{ MIPS_NR_N64_rt_sigreturn, -1 },
|
|
{ MICROMIPS_INST_POOL32A, -1 },
|
|
{ MICROMIPS_INST_SYSCALL, -1 },
|
|
{ TRAMP_SENTINEL_INSN, -1 }
|
|
},
|
|
mips_linux_n32n64_sigframe_init,
|
|
micromips_linux_sigframe_validate
|
|
};
|
|
|
|
/* *INDENT-OFF* */
|
|
/* The unwinder for o32 signal frames. The legacy structures look
|
|
like this:
|
|
|
|
struct sigframe {
|
|
u32 sf_ass[4]; [argument save space for o32]
|
|
u32 sf_code[2]; [signal trampoline or fill]
|
|
struct sigcontext sf_sc;
|
|
sigset_t sf_mask;
|
|
};
|
|
|
|
Pre-2.6.12 sigcontext:
|
|
|
|
struct sigcontext {
|
|
unsigned int sc_regmask; [Unused]
|
|
unsigned int sc_status;
|
|
unsigned long long sc_pc;
|
|
unsigned long long sc_regs[32];
|
|
unsigned long long sc_fpregs[32];
|
|
unsigned int sc_ownedfp;
|
|
unsigned int sc_fpc_csr;
|
|
unsigned int sc_fpc_eir; [Unused]
|
|
unsigned int sc_used_math;
|
|
unsigned int sc_ssflags; [Unused]
|
|
[Alignment hole of four bytes]
|
|
unsigned long long sc_mdhi;
|
|
unsigned long long sc_mdlo;
|
|
|
|
unsigned int sc_cause; [Unused]
|
|
unsigned int sc_badvaddr; [Unused]
|
|
|
|
unsigned long sc_sigset[4]; [kernel's sigset_t]
|
|
};
|
|
|
|
Post-2.6.12 sigcontext (SmartMIPS/DSP support added):
|
|
|
|
struct sigcontext {
|
|
unsigned int sc_regmask; [Unused]
|
|
unsigned int sc_status; [Unused]
|
|
unsigned long long sc_pc;
|
|
unsigned long long sc_regs[32];
|
|
unsigned long long sc_fpregs[32];
|
|
unsigned int sc_acx;
|
|
unsigned int sc_fpc_csr;
|
|
unsigned int sc_fpc_eir; [Unused]
|
|
unsigned int sc_used_math;
|
|
unsigned int sc_dsp;
|
|
[Alignment hole of four bytes]
|
|
unsigned long long sc_mdhi;
|
|
unsigned long long sc_mdlo;
|
|
unsigned long sc_hi1;
|
|
unsigned long sc_lo1;
|
|
unsigned long sc_hi2;
|
|
unsigned long sc_lo2;
|
|
unsigned long sc_hi3;
|
|
unsigned long sc_lo3;
|
|
};
|
|
|
|
The RT signal frames look like this:
|
|
|
|
struct rt_sigframe {
|
|
u32 rs_ass[4]; [argument save space for o32]
|
|
u32 rs_code[2] [signal trampoline or fill]
|
|
struct siginfo rs_info;
|
|
struct ucontext rs_uc;
|
|
};
|
|
|
|
struct ucontext {
|
|
unsigned long uc_flags;
|
|
struct ucontext *uc_link;
|
|
stack_t uc_stack;
|
|
[Alignment hole of four bytes]
|
|
struct sigcontext uc_mcontext;
|
|
sigset_t uc_sigmask;
|
|
}; */
|
|
/* *INDENT-ON* */
|
|
|
|
#define SIGFRAME_SIGCONTEXT_OFFSET (6 * 4)
|
|
|
|
#define RTSIGFRAME_SIGINFO_SIZE 128
|
|
#define STACK_T_SIZE (3 * 4)
|
|
#define UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + STACK_T_SIZE + 4)
|
|
#define RTSIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
|
|
+ RTSIGFRAME_SIGINFO_SIZE \
|
|
+ UCONTEXT_SIGCONTEXT_OFFSET)
|
|
|
|
#define SIGCONTEXT_PC (1 * 8)
|
|
#define SIGCONTEXT_REGS (2 * 8)
|
|
#define SIGCONTEXT_FPREGS (34 * 8)
|
|
#define SIGCONTEXT_FPCSR (66 * 8 + 4)
|
|
#define SIGCONTEXT_DSPCTL (68 * 8 + 0)
|
|
#define SIGCONTEXT_HI (69 * 8)
|
|
#define SIGCONTEXT_LO (70 * 8)
|
|
#define SIGCONTEXT_CAUSE (71 * 8 + 0)
|
|
#define SIGCONTEXT_BADVADDR (71 * 8 + 4)
|
|
#define SIGCONTEXT_HI1 (71 * 8 + 0)
|
|
#define SIGCONTEXT_LO1 (71 * 8 + 4)
|
|
#define SIGCONTEXT_HI2 (72 * 8 + 0)
|
|
#define SIGCONTEXT_LO2 (72 * 8 + 4)
|
|
#define SIGCONTEXT_HI3 (73 * 8 + 0)
|
|
#define SIGCONTEXT_LO3 (73 * 8 + 4)
|
|
|
|
#define SIGCONTEXT_REG_SIZE 8
|
|
|
|
static void
|
|
mips_linux_o32_sigframe_init (const struct tramp_frame *self,
|
|
struct frame_info *this_frame,
|
|
struct trad_frame_cache *this_cache,
|
|
CORE_ADDR func)
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
|
int ireg;
|
|
CORE_ADDR frame_sp = get_frame_sp (this_frame);
|
|
CORE_ADDR sigcontext_base;
|
|
const struct mips_regnum *regs = mips_regnum (gdbarch);
|
|
CORE_ADDR regs_base;
|
|
|
|
if (self == &mips_linux_o32_sigframe
|
|
|| self == µmips_linux_o32_sigframe)
|
|
sigcontext_base = frame_sp + SIGFRAME_SIGCONTEXT_OFFSET;
|
|
else
|
|
sigcontext_base = frame_sp + RTSIGFRAME_SIGCONTEXT_OFFSET;
|
|
|
|
/* I'm not proud of this hack. Eventually we will have the
|
|
infrastructure to indicate the size of saved registers on a
|
|
per-frame basis, but right now we don't; the kernel saves eight
|
|
bytes but we only want four. Use regs_base to access any
|
|
64-bit fields. */
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
|
regs_base = sigcontext_base + 4;
|
|
else
|
|
regs_base = sigcontext_base;
|
|
|
|
if (mips_linux_restart_reg_p (gdbarch))
|
|
trad_frame_set_reg_addr (this_cache,
|
|
(MIPS_RESTART_REGNUM
|
|
+ gdbarch_num_regs (gdbarch)),
|
|
regs_base + SIGCONTEXT_REGS);
|
|
|
|
for (ireg = 1; ireg < 32; ireg++)
|
|
trad_frame_set_reg_addr (this_cache,
|
|
(ireg + MIPS_ZERO_REGNUM
|
|
+ gdbarch_num_regs (gdbarch)),
|
|
(regs_base + SIGCONTEXT_REGS
|
|
+ ireg * SIGCONTEXT_REG_SIZE));
|
|
|
|
/* The way that floating point registers are saved, unfortunately,
|
|
depends on the architecture the kernel is built for. For the r3000 and
|
|
tx39, four bytes of each register are at the beginning of each of the
|
|
32 eight byte slots. For everything else, the registers are saved
|
|
using double precision; only the even-numbered slots are initialized,
|
|
and the high bits are the odd-numbered register. Assume the latter
|
|
layout, since we can't tell, and it's much more common. Which bits are
|
|
the "high" bits depends on endianness. */
|
|
for (ireg = 0; ireg < 32; ireg++)
|
|
if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (ireg & 1))
|
|
trad_frame_set_reg_addr (this_cache,
|
|
ireg + regs->fp0 + gdbarch_num_regs (gdbarch),
|
|
(sigcontext_base + SIGCONTEXT_FPREGS + 4
|
|
+ (ireg & ~1) * SIGCONTEXT_REG_SIZE));
|
|
else
|
|
trad_frame_set_reg_addr (this_cache,
|
|
ireg + regs->fp0 + gdbarch_num_regs (gdbarch),
|
|
(sigcontext_base + SIGCONTEXT_FPREGS
|
|
+ (ireg & ~1) * SIGCONTEXT_REG_SIZE));
|
|
|
|
trad_frame_set_reg_addr (this_cache,
|
|
regs->pc + gdbarch_num_regs (gdbarch),
|
|
regs_base + SIGCONTEXT_PC);
|
|
|
|
trad_frame_set_reg_addr (this_cache,
|
|
(regs->fp_control_status
|
|
+ gdbarch_num_regs (gdbarch)),
|
|
sigcontext_base + SIGCONTEXT_FPCSR);
|
|
|
|
if (regs->dspctl != -1)
|
|
trad_frame_set_reg_addr (this_cache,
|
|
regs->dspctl + gdbarch_num_regs (gdbarch),
|
|
sigcontext_base + SIGCONTEXT_DSPCTL);
|
|
|
|
trad_frame_set_reg_addr (this_cache,
|
|
regs->hi + gdbarch_num_regs (gdbarch),
|
|
regs_base + SIGCONTEXT_HI);
|
|
trad_frame_set_reg_addr (this_cache,
|
|
regs->lo + gdbarch_num_regs (gdbarch),
|
|
regs_base + SIGCONTEXT_LO);
|
|
|
|
if (regs->dspacc != -1)
|
|
{
|
|
trad_frame_set_reg_addr (this_cache,
|
|
regs->dspacc + 0 + gdbarch_num_regs (gdbarch),
|
|
sigcontext_base + SIGCONTEXT_HI1);
|
|
trad_frame_set_reg_addr (this_cache,
|
|
regs->dspacc + 1 + gdbarch_num_regs (gdbarch),
|
|
sigcontext_base + SIGCONTEXT_LO1);
|
|
trad_frame_set_reg_addr (this_cache,
|
|
regs->dspacc + 2 + gdbarch_num_regs (gdbarch),
|
|
sigcontext_base + SIGCONTEXT_HI2);
|
|
trad_frame_set_reg_addr (this_cache,
|
|
regs->dspacc + 3 + gdbarch_num_regs (gdbarch),
|
|
sigcontext_base + SIGCONTEXT_LO2);
|
|
trad_frame_set_reg_addr (this_cache,
|
|
regs->dspacc + 4 + gdbarch_num_regs (gdbarch),
|
|
sigcontext_base + SIGCONTEXT_HI3);
|
|
trad_frame_set_reg_addr (this_cache,
|
|
regs->dspacc + 5 + gdbarch_num_regs (gdbarch),
|
|
sigcontext_base + SIGCONTEXT_LO3);
|
|
}
|
|
else
|
|
{
|
|
trad_frame_set_reg_addr (this_cache,
|
|
regs->cause + gdbarch_num_regs (gdbarch),
|
|
sigcontext_base + SIGCONTEXT_CAUSE);
|
|
trad_frame_set_reg_addr (this_cache,
|
|
regs->badvaddr + gdbarch_num_regs (gdbarch),
|
|
sigcontext_base + SIGCONTEXT_BADVADDR);
|
|
}
|
|
|
|
/* Choice of the bottom of the sigframe is somewhat arbitrary. */
|
|
trad_frame_set_id (this_cache, frame_id_build (frame_sp, func));
|
|
}
|
|
|
|
/* *INDENT-OFF* */
|
|
/* For N32/N64 things look different. There is no non-rt signal frame.
|
|
|
|
struct rt_sigframe_n32 {
|
|
u32 rs_ass[4]; [ argument save space for o32 ]
|
|
u32 rs_code[2]; [ signal trampoline or fill ]
|
|
struct siginfo rs_info;
|
|
struct ucontextn32 rs_uc;
|
|
};
|
|
|
|
struct ucontextn32 {
|
|
u32 uc_flags;
|
|
s32 uc_link;
|
|
stack32_t uc_stack;
|
|
struct sigcontext uc_mcontext;
|
|
sigset_t uc_sigmask; [ mask last for extensibility ]
|
|
};
|
|
|
|
struct rt_sigframe {
|
|
u32 rs_ass[4]; [ argument save space for o32 ]
|
|
u32 rs_code[2]; [ signal trampoline ]
|
|
struct siginfo rs_info;
|
|
struct ucontext rs_uc;
|
|
};
|
|
|
|
struct ucontext {
|
|
unsigned long uc_flags;
|
|
struct ucontext *uc_link;
|
|
stack_t uc_stack;
|
|
struct sigcontext uc_mcontext;
|
|
sigset_t uc_sigmask; [ mask last for extensibility ]
|
|
};
|
|
|
|
And the sigcontext is different (this is for both n32 and n64):
|
|
|
|
struct sigcontext {
|
|
unsigned long long sc_regs[32];
|
|
unsigned long long sc_fpregs[32];
|
|
unsigned long long sc_mdhi;
|
|
unsigned long long sc_hi1;
|
|
unsigned long long sc_hi2;
|
|
unsigned long long sc_hi3;
|
|
unsigned long long sc_mdlo;
|
|
unsigned long long sc_lo1;
|
|
unsigned long long sc_lo2;
|
|
unsigned long long sc_lo3;
|
|
unsigned long long sc_pc;
|
|
unsigned int sc_fpc_csr;
|
|
unsigned int sc_used_math;
|
|
unsigned int sc_dsp;
|
|
unsigned int sc_reserved;
|
|
};
|
|
|
|
That is the post-2.6.12 definition of the 64-bit sigcontext; before
|
|
then, there were no hi1-hi3 or lo1-lo3. Cause and badvaddr were
|
|
included too. */
|
|
/* *INDENT-ON* */
|
|
|
|
#define N32_STACK_T_SIZE STACK_T_SIZE
|
|
#define N64_STACK_T_SIZE (2 * 8 + 4)
|
|
#define N32_UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + N32_STACK_T_SIZE + 4)
|
|
#define N64_UCONTEXT_SIGCONTEXT_OFFSET (2 * 8 + N64_STACK_T_SIZE + 4)
|
|
#define N32_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
|
|
+ RTSIGFRAME_SIGINFO_SIZE \
|
|
+ N32_UCONTEXT_SIGCONTEXT_OFFSET)
|
|
#define N64_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
|
|
+ RTSIGFRAME_SIGINFO_SIZE \
|
|
+ N64_UCONTEXT_SIGCONTEXT_OFFSET)
|
|
|
|
#define N64_SIGCONTEXT_REGS (0 * 8)
|
|
#define N64_SIGCONTEXT_FPREGS (32 * 8)
|
|
#define N64_SIGCONTEXT_HI (64 * 8)
|
|
#define N64_SIGCONTEXT_HI1 (65 * 8)
|
|
#define N64_SIGCONTEXT_HI2 (66 * 8)
|
|
#define N64_SIGCONTEXT_HI3 (67 * 8)
|
|
#define N64_SIGCONTEXT_LO (68 * 8)
|
|
#define N64_SIGCONTEXT_LO1 (69 * 8)
|
|
#define N64_SIGCONTEXT_LO2 (70 * 8)
|
|
#define N64_SIGCONTEXT_LO3 (71 * 8)
|
|
#define N64_SIGCONTEXT_PC (72 * 8)
|
|
#define N64_SIGCONTEXT_FPCSR (73 * 8 + 0)
|
|
#define N64_SIGCONTEXT_DSPCTL (74 * 8 + 0)
|
|
|
|
#define N64_SIGCONTEXT_REG_SIZE 8
|
|
|
|
static void
|
|
mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
|
|
struct frame_info *this_frame,
|
|
struct trad_frame_cache *this_cache,
|
|
CORE_ADDR func)
|
|
{
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
|
int ireg;
|
|
CORE_ADDR frame_sp = get_frame_sp (this_frame);
|
|
CORE_ADDR sigcontext_base;
|
|
const struct mips_regnum *regs = mips_regnum (gdbarch);
|
|
|
|
if (self == &mips_linux_n32_rt_sigframe
|
|
|| self == µmips_linux_n32_rt_sigframe)
|
|
sigcontext_base = frame_sp + N32_SIGFRAME_SIGCONTEXT_OFFSET;
|
|
else
|
|
sigcontext_base = frame_sp + N64_SIGFRAME_SIGCONTEXT_OFFSET;
|
|
|
|
if (mips_linux_restart_reg_p (gdbarch))
|
|
trad_frame_set_reg_addr (this_cache,
|
|
(MIPS_RESTART_REGNUM
|
|
+ gdbarch_num_regs (gdbarch)),
|
|
sigcontext_base + N64_SIGCONTEXT_REGS);
|
|
|
|
for (ireg = 1; ireg < 32; ireg++)
|
|
trad_frame_set_reg_addr (this_cache,
|
|
(ireg + MIPS_ZERO_REGNUM
|
|
+ gdbarch_num_regs (gdbarch)),
|
|
(sigcontext_base + N64_SIGCONTEXT_REGS
|
|
+ ireg * N64_SIGCONTEXT_REG_SIZE));
|
|
|
|
for (ireg = 0; ireg < 32; ireg++)
|
|
trad_frame_set_reg_addr (this_cache,
|
|
ireg + regs->fp0 + gdbarch_num_regs (gdbarch),
|
|
(sigcontext_base + N64_SIGCONTEXT_FPREGS
|
|
+ ireg * N64_SIGCONTEXT_REG_SIZE));
|
|
|
|
trad_frame_set_reg_addr (this_cache,
|
|
regs->pc + gdbarch_num_regs (gdbarch),
|
|
sigcontext_base + N64_SIGCONTEXT_PC);
|
|
|
|
trad_frame_set_reg_addr (this_cache,
|
|
(regs->fp_control_status
|
|
+ gdbarch_num_regs (gdbarch)),
|
|
sigcontext_base + N64_SIGCONTEXT_FPCSR);
|
|
|
|
trad_frame_set_reg_addr (this_cache,
|
|
regs->hi + gdbarch_num_regs (gdbarch),
|
|
sigcontext_base + N64_SIGCONTEXT_HI);
|
|
trad_frame_set_reg_addr (this_cache,
|
|
regs->lo + gdbarch_num_regs (gdbarch),
|
|
sigcontext_base + N64_SIGCONTEXT_LO);
|
|
|
|
if (regs->dspacc != -1)
|
|
{
|
|
trad_frame_set_reg_addr (this_cache,
|
|
regs->dspacc + 0 + gdbarch_num_regs (gdbarch),
|
|
sigcontext_base + N64_SIGCONTEXT_HI1);
|
|
trad_frame_set_reg_addr (this_cache,
|
|
regs->dspacc + 1 + gdbarch_num_regs (gdbarch),
|
|
sigcontext_base + N64_SIGCONTEXT_LO1);
|
|
trad_frame_set_reg_addr (this_cache,
|
|
regs->dspacc + 2 + gdbarch_num_regs (gdbarch),
|
|
sigcontext_base + N64_SIGCONTEXT_HI2);
|
|
trad_frame_set_reg_addr (this_cache,
|
|
regs->dspacc + 3 + gdbarch_num_regs (gdbarch),
|
|
sigcontext_base + N64_SIGCONTEXT_LO2);
|
|
trad_frame_set_reg_addr (this_cache,
|
|
regs->dspacc + 4 + gdbarch_num_regs (gdbarch),
|
|
sigcontext_base + N64_SIGCONTEXT_HI3);
|
|
trad_frame_set_reg_addr (this_cache,
|
|
regs->dspacc + 5 + gdbarch_num_regs (gdbarch),
|
|
sigcontext_base + N64_SIGCONTEXT_LO3);
|
|
}
|
|
if (regs->dspctl != -1)
|
|
trad_frame_set_reg_addr (this_cache,
|
|
regs->dspctl + gdbarch_num_regs (gdbarch),
|
|
sigcontext_base + N64_SIGCONTEXT_DSPCTL);
|
|
|
|
/* Choice of the bottom of the sigframe is somewhat arbitrary. */
|
|
trad_frame_set_id (this_cache, frame_id_build (frame_sp, func));
|
|
}
|
|
|
|
/* Implement struct tramp_frame's "validate" method for standard MIPS code. */
|
|
|
|
static int
|
|
mips_linux_sigframe_validate (const struct tramp_frame *self,
|
|
struct frame_info *this_frame,
|
|
CORE_ADDR *pc)
|
|
{
|
|
return mips_pc_is_mips (*pc);
|
|
}
|
|
|
|
/* Implement struct tramp_frame's "validate" method for microMIPS code. */
|
|
|
|
static int
|
|
micromips_linux_sigframe_validate (const struct tramp_frame *self,
|
|
struct frame_info *this_frame,
|
|
CORE_ADDR *pc)
|
|
{
|
|
if (mips_pc_is_micromips (get_frame_arch (this_frame), *pc))
|
|
{
|
|
*pc = mips_unmake_compact_addr (*pc);
|
|
return 1;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/* Implement the "write_pc" gdbarch method. */
|
|
|
|
static void
|
|
mips_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
|
|
{
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
|
|
mips_write_pc (regcache, pc);
|
|
|
|
/* Clear the syscall restart flag. */
|
|
if (mips_linux_restart_reg_p (gdbarch))
|
|
regcache_cooked_write_unsigned (regcache, MIPS_RESTART_REGNUM, 0);
|
|
}
|
|
|
|
/* Return 1 if MIPS_RESTART_REGNUM is usable. */
|
|
|
|
int
|
|
mips_linux_restart_reg_p (struct gdbarch *gdbarch)
|
|
{
|
|
/* If we do not have a target description with registers, then
|
|
MIPS_RESTART_REGNUM will not be included in the register set. */
|
|
if (!tdesc_has_registers (gdbarch_target_desc (gdbarch)))
|
|
return 0;
|
|
|
|
/* If we do, then MIPS_RESTART_REGNUM is safe to check; it will
|
|
either be GPR-sized or missing. */
|
|
return register_size (gdbarch, MIPS_RESTART_REGNUM) > 0;
|
|
}
|
|
|
|
/* When FRAME is at a syscall instruction, return the PC of the next
|
|
instruction to be executed. */
|
|
|
|
static CORE_ADDR
|
|
mips_linux_syscall_next_pc (struct frame_info *frame)
|
|
{
|
|
CORE_ADDR pc = get_frame_pc (frame);
|
|
ULONGEST v0 = get_frame_register_unsigned (frame, MIPS_V0_REGNUM);
|
|
|
|
/* If we are about to make a sigreturn syscall, use the unwinder to
|
|
decode the signal frame. */
|
|
if (v0 == MIPS_NR_sigreturn
|
|
|| v0 == MIPS_NR_rt_sigreturn
|
|
|| v0 == MIPS_NR_N64_rt_sigreturn
|
|
|| v0 == MIPS_NR_N32_rt_sigreturn)
|
|
return frame_unwind_caller_pc (get_current_frame ());
|
|
|
|
return pc + 4;
|
|
}
|
|
|
|
/* Return the current system call's number present in the
|
|
v0 register. When the function fails, it returns -1. */
|
|
|
|
static LONGEST
|
|
mips_linux_get_syscall_number (struct gdbarch *gdbarch,
|
|
ptid_t ptid)
|
|
{
|
|
struct regcache *regcache = get_thread_regcache (ptid);
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
int regsize = register_size (gdbarch, MIPS_V0_REGNUM);
|
|
/* The content of a register */
|
|
gdb_byte buf[8];
|
|
/* The result */
|
|
LONGEST ret;
|
|
|
|
/* Make sure we're in a known ABI */
|
|
gdb_assert (tdep->mips_abi == MIPS_ABI_O32
|
|
|| tdep->mips_abi == MIPS_ABI_N32
|
|
|| tdep->mips_abi == MIPS_ABI_N64);
|
|
|
|
gdb_assert (regsize <= sizeof (buf));
|
|
|
|
/* Getting the system call number from the register.
|
|
syscall number is in v0 or $2. */
|
|
regcache_cooked_read (regcache, MIPS_V0_REGNUM, buf);
|
|
|
|
ret = extract_signed_integer (buf, regsize, byte_order);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Implementation of `gdbarch_gdb_signal_to_target', as defined in
|
|
gdbarch.h. */
|
|
|
|
static int
|
|
mips_gdb_signal_to_target (struct gdbarch *gdbarch,
|
|
enum gdb_signal signal)
|
|
{
|
|
switch (signal)
|
|
{
|
|
case GDB_SIGNAL_EMT:
|
|
return MIPS_LINUX_SIGEMT;
|
|
|
|
case GDB_SIGNAL_BUS:
|
|
return MIPS_LINUX_SIGBUS;
|
|
|
|
case GDB_SIGNAL_SYS:
|
|
return MIPS_LINUX_SIGSYS;
|
|
|
|
case GDB_SIGNAL_USR1:
|
|
return MIPS_LINUX_SIGUSR1;
|
|
|
|
case GDB_SIGNAL_USR2:
|
|
return MIPS_LINUX_SIGUSR2;
|
|
|
|
case GDB_SIGNAL_CHLD:
|
|
return MIPS_LINUX_SIGCHLD;
|
|
|
|
case GDB_SIGNAL_PWR:
|
|
return MIPS_LINUX_SIGPWR;
|
|
|
|
case GDB_SIGNAL_WINCH:
|
|
return MIPS_LINUX_SIGWINCH;
|
|
|
|
case GDB_SIGNAL_URG:
|
|
return MIPS_LINUX_SIGURG;
|
|
|
|
case GDB_SIGNAL_IO:
|
|
return MIPS_LINUX_SIGIO;
|
|
|
|
case GDB_SIGNAL_POLL:
|
|
return MIPS_LINUX_SIGPOLL;
|
|
|
|
case GDB_SIGNAL_STOP:
|
|
return MIPS_LINUX_SIGSTOP;
|
|
|
|
case GDB_SIGNAL_TSTP:
|
|
return MIPS_LINUX_SIGTSTP;
|
|
|
|
case GDB_SIGNAL_CONT:
|
|
return MIPS_LINUX_SIGCONT;
|
|
|
|
case GDB_SIGNAL_TTIN:
|
|
return MIPS_LINUX_SIGTTIN;
|
|
|
|
case GDB_SIGNAL_TTOU:
|
|
return MIPS_LINUX_SIGTTOU;
|
|
|
|
case GDB_SIGNAL_VTALRM:
|
|
return MIPS_LINUX_SIGVTALRM;
|
|
|
|
case GDB_SIGNAL_PROF:
|
|
return MIPS_LINUX_SIGPROF;
|
|
|
|
case GDB_SIGNAL_XCPU:
|
|
return MIPS_LINUX_SIGXCPU;
|
|
|
|
case GDB_SIGNAL_XFSZ:
|
|
return MIPS_LINUX_SIGXFSZ;
|
|
|
|
/* GDB_SIGNAL_REALTIME_32 is not continuous in <gdb/signals.def>,
|
|
therefore we have to handle it here. */
|
|
case GDB_SIGNAL_REALTIME_32:
|
|
return MIPS_LINUX_SIGRTMIN;
|
|
}
|
|
|
|
if (signal >= GDB_SIGNAL_REALTIME_33
|
|
&& signal <= GDB_SIGNAL_REALTIME_63)
|
|
{
|
|
int offset = signal - GDB_SIGNAL_REALTIME_33;
|
|
|
|
return MIPS_LINUX_SIGRTMIN + 1 + offset;
|
|
}
|
|
else if (signal >= GDB_SIGNAL_REALTIME_64
|
|
&& signal <= GDB_SIGNAL_REALTIME_127)
|
|
{
|
|
int offset = signal - GDB_SIGNAL_REALTIME_64;
|
|
|
|
return MIPS_LINUX_SIGRT64 + offset;
|
|
}
|
|
|
|
return linux_gdb_signal_to_target (gdbarch, signal);
|
|
}
|
|
|
|
/* Translate signals based on MIPS signal values.
|
|
Adapted from gdb/common/signals.c. */
|
|
|
|
static enum gdb_signal
|
|
mips_gdb_signal_from_target (struct gdbarch *gdbarch, int signal)
|
|
{
|
|
switch (signal)
|
|
{
|
|
case MIPS_LINUX_SIGEMT:
|
|
return GDB_SIGNAL_EMT;
|
|
|
|
case MIPS_LINUX_SIGBUS:
|
|
return GDB_SIGNAL_BUS;
|
|
|
|
case MIPS_LINUX_SIGSYS:
|
|
return GDB_SIGNAL_SYS;
|
|
|
|
case MIPS_LINUX_SIGUSR1:
|
|
return GDB_SIGNAL_USR1;
|
|
|
|
case MIPS_LINUX_SIGUSR2:
|
|
return GDB_SIGNAL_USR2;
|
|
|
|
case MIPS_LINUX_SIGCHLD:
|
|
return GDB_SIGNAL_CHLD;
|
|
|
|
case MIPS_LINUX_SIGPWR:
|
|
return GDB_SIGNAL_PWR;
|
|
|
|
case MIPS_LINUX_SIGWINCH:
|
|
return GDB_SIGNAL_WINCH;
|
|
|
|
case MIPS_LINUX_SIGURG:
|
|
return GDB_SIGNAL_URG;
|
|
|
|
/* No way to differentiate between SIGIO and SIGPOLL.
|
|
Therefore, we just handle the first one. */
|
|
case MIPS_LINUX_SIGIO:
|
|
return GDB_SIGNAL_IO;
|
|
|
|
case MIPS_LINUX_SIGSTOP:
|
|
return GDB_SIGNAL_STOP;
|
|
|
|
case MIPS_LINUX_SIGTSTP:
|
|
return GDB_SIGNAL_TSTP;
|
|
|
|
case MIPS_LINUX_SIGCONT:
|
|
return GDB_SIGNAL_CONT;
|
|
|
|
case MIPS_LINUX_SIGTTIN:
|
|
return GDB_SIGNAL_TTIN;
|
|
|
|
case MIPS_LINUX_SIGTTOU:
|
|
return GDB_SIGNAL_TTOU;
|
|
|
|
case MIPS_LINUX_SIGVTALRM:
|
|
return GDB_SIGNAL_VTALRM;
|
|
|
|
case MIPS_LINUX_SIGPROF:
|
|
return GDB_SIGNAL_PROF;
|
|
|
|
case MIPS_LINUX_SIGXCPU:
|
|
return GDB_SIGNAL_XCPU;
|
|
|
|
case MIPS_LINUX_SIGXFSZ:
|
|
return GDB_SIGNAL_XFSZ;
|
|
}
|
|
|
|
if (signal >= MIPS_LINUX_SIGRTMIN && signal <= MIPS_LINUX_SIGRTMAX)
|
|
{
|
|
/* GDB_SIGNAL_REALTIME values are not contiguous, map parts of
|
|
the MIPS block to the respective GDB_SIGNAL_REALTIME blocks. */
|
|
int offset = signal - MIPS_LINUX_SIGRTMIN;
|
|
|
|
if (offset == 0)
|
|
return GDB_SIGNAL_REALTIME_32;
|
|
else if (offset < 32)
|
|
return (enum gdb_signal) (offset - 1
|
|
+ (int) GDB_SIGNAL_REALTIME_33);
|
|
else
|
|
return (enum gdb_signal) (offset - 32
|
|
+ (int) GDB_SIGNAL_REALTIME_64);
|
|
}
|
|
|
|
return linux_gdb_signal_from_target (gdbarch, signal);
|
|
}
|
|
|
|
/* Initialize one of the GNU/Linux OS ABIs. */
|
|
|
|
static void
|
|
mips_linux_init_abi (struct gdbarch_info info,
|
|
struct gdbarch *gdbarch)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
enum mips_abi abi = mips_abi (gdbarch);
|
|
struct tdesc_arch_data *tdesc_data = info.tdesc_data;
|
|
|
|
linux_init_abi (info, gdbarch);
|
|
|
|
/* Get the syscall number from the arch's register. */
|
|
set_gdbarch_get_syscall_number (gdbarch, mips_linux_get_syscall_number);
|
|
|
|
switch (abi)
|
|
{
|
|
case MIPS_ABI_O32:
|
|
set_gdbarch_get_longjmp_target (gdbarch,
|
|
mips_linux_get_longjmp_target);
|
|
set_solib_svr4_fetch_link_map_offsets
|
|
(gdbarch, svr4_ilp32_fetch_link_map_offsets);
|
|
tramp_frame_prepend_unwinder (gdbarch, µmips_linux_o32_sigframe);
|
|
tramp_frame_prepend_unwinder (gdbarch,
|
|
µmips_linux_o32_rt_sigframe);
|
|
tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_sigframe);
|
|
tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_rt_sigframe);
|
|
set_xml_syscall_file_name (gdbarch, "syscalls/mips-o32-linux.xml");
|
|
break;
|
|
case MIPS_ABI_N32:
|
|
set_gdbarch_get_longjmp_target (gdbarch,
|
|
mips_linux_get_longjmp_target);
|
|
set_solib_svr4_fetch_link_map_offsets
|
|
(gdbarch, svr4_ilp32_fetch_link_map_offsets);
|
|
set_gdbarch_long_double_bit (gdbarch, 128);
|
|
/* These floatformats should probably be renamed. MIPS uses
|
|
the same 128-bit IEEE floating point format that IA-64 uses,
|
|
except that the quiet/signalling NaN bit is reversed (GDB
|
|
does not distinguish between quiet and signalling NaNs). */
|
|
set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
|
|
tramp_frame_prepend_unwinder (gdbarch,
|
|
µmips_linux_n32_rt_sigframe);
|
|
tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n32_rt_sigframe);
|
|
set_xml_syscall_file_name (gdbarch, "syscalls/mips-n32-linux.xml");
|
|
break;
|
|
case MIPS_ABI_N64:
|
|
set_gdbarch_get_longjmp_target (gdbarch,
|
|
mips64_linux_get_longjmp_target);
|
|
set_solib_svr4_fetch_link_map_offsets
|
|
(gdbarch, svr4_lp64_fetch_link_map_offsets);
|
|
set_gdbarch_long_double_bit (gdbarch, 128);
|
|
/* These floatformats should probably be renamed. MIPS uses
|
|
the same 128-bit IEEE floating point format that IA-64 uses,
|
|
except that the quiet/signalling NaN bit is reversed (GDB
|
|
does not distinguish between quiet and signalling NaNs). */
|
|
set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
|
|
tramp_frame_prepend_unwinder (gdbarch,
|
|
µmips_linux_n64_rt_sigframe);
|
|
tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n64_rt_sigframe);
|
|
set_xml_syscall_file_name (gdbarch, "syscalls/mips-n64-linux.xml");
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
set_gdbarch_skip_solib_resolver (gdbarch, mips_linux_skip_resolver);
|
|
|
|
set_gdbarch_software_single_step (gdbarch, mips_software_single_step);
|
|
|
|
/* Enable TLS support. */
|
|
set_gdbarch_fetch_tls_load_module_address (gdbarch,
|
|
svr4_fetch_objfile_link_map);
|
|
|
|
/* Initialize this lazily, to avoid an initialization order
|
|
dependency on solib-svr4.c's _initialize routine. */
|
|
if (mips_svr4_so_ops.in_dynsym_resolve_code == NULL)
|
|
{
|
|
mips_svr4_so_ops = svr4_so_ops;
|
|
mips_svr4_so_ops.in_dynsym_resolve_code
|
|
= mips_linux_in_dynsym_resolve_code;
|
|
}
|
|
set_solib_ops (gdbarch, &mips_svr4_so_ops);
|
|
|
|
set_gdbarch_write_pc (gdbarch, mips_linux_write_pc);
|
|
|
|
set_gdbarch_core_read_description (gdbarch,
|
|
mips_linux_core_read_description);
|
|
|
|
set_gdbarch_iterate_over_regset_sections
|
|
(gdbarch, mips_linux_iterate_over_regset_sections);
|
|
|
|
set_gdbarch_gdb_signal_from_target (gdbarch,
|
|
mips_gdb_signal_from_target);
|
|
|
|
set_gdbarch_gdb_signal_to_target (gdbarch,
|
|
mips_gdb_signal_to_target);
|
|
|
|
tdep->syscall_next_pc = mips_linux_syscall_next_pc;
|
|
|
|
if (tdesc_data)
|
|
{
|
|
const struct tdesc_feature *feature;
|
|
|
|
/* If we have target-described registers, then we can safely
|
|
reserve a number for MIPS_RESTART_REGNUM (whether it is
|
|
described or not). */
|
|
gdb_assert (gdbarch_num_regs (gdbarch) <= MIPS_RESTART_REGNUM);
|
|
set_gdbarch_num_regs (gdbarch, MIPS_RESTART_REGNUM + 1);
|
|
set_gdbarch_num_pseudo_regs (gdbarch, MIPS_RESTART_REGNUM + 1);
|
|
|
|
/* If it's present, then assign it to the reserved number. */
|
|
feature = tdesc_find_feature (info.target_desc,
|
|
"org.gnu.gdb.mips.linux");
|
|
if (feature != NULL)
|
|
tdesc_numbered_register (feature, tdesc_data, MIPS_RESTART_REGNUM,
|
|
"restart");
|
|
}
|
|
}
|
|
|
|
void
|
|
_initialize_mips_linux_tdep (void)
|
|
{
|
|
const struct bfd_arch_info *arch_info;
|
|
|
|
for (arch_info = bfd_lookup_arch (bfd_arch_mips, 0);
|
|
arch_info != NULL;
|
|
arch_info = arch_info->next)
|
|
{
|
|
gdbarch_register_osabi (bfd_arch_mips, arch_info->mach,
|
|
GDB_OSABI_LINUX,
|
|
mips_linux_init_abi);
|
|
}
|
|
|
|
/* Initialize the standard target descriptions. */
|
|
initialize_tdesc_mips_linux ();
|
|
initialize_tdesc_mips_dsp_linux ();
|
|
initialize_tdesc_mips64_linux ();
|
|
initialize_tdesc_mips64_dsp_linux ();
|
|
}
|