93fe4e330e
* symmisc.c, xcoffread.c: Move debug functions to symmisc.c.
3315 lines
92 KiB
C
3315 lines
92 KiB
C
/* Build symbol tables in GDB's internal format.
|
||
Copyright 1986, 1987, 1988, 1989, 1990, 1991 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
/* This module provides subroutines used for creating and adding to
|
||
the symbol table. These routines are called from various symbol-
|
||
file-reading routines.
|
||
|
||
They originated in dbxread.c of gdb-4.2, and were split out to
|
||
make xcoffread.c more maintainable by sharing code. */
|
||
|
||
#include <stdio.h>
|
||
#include "defs.h"
|
||
#include "obstack.h"
|
||
#include "symtab.h"
|
||
#include "gdbtypes.h"
|
||
#include "breakpoint.h"
|
||
#include "gdbcore.h" /* for bfd stuff for symfile.h */
|
||
#include "symfile.h" /* Needed for "struct complaint" */
|
||
#include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
|
||
#include <string.h>
|
||
#include <ctype.h>
|
||
|
||
/* Ask buildsym.h to define the vars it normally declares `extern'. */
|
||
#define EXTERN /**/
|
||
#include "buildsym.h" /* Our own declarations */
|
||
#undef EXTERN
|
||
|
||
static void
|
||
patch_block_stabs PARAMS ((struct pending *, struct pending_stabs *,
|
||
struct objfile *));
|
||
|
||
static void
|
||
read_huge_number PARAMS ((char **, int, long *, int *));
|
||
|
||
static struct type *
|
||
dbx_alloc_type PARAMS ((int [2], struct objfile *));
|
||
|
||
static int
|
||
compare_line_numbers PARAMS ((const void *, const void *));
|
||
|
||
static struct blockvector *
|
||
make_blockvector PARAMS ((struct objfile *));
|
||
|
||
static void
|
||
fix_common_block PARAMS ((struct symbol *, int));
|
||
|
||
static void
|
||
cleanup_undefined_types PARAMS ((void));
|
||
|
||
static struct type *
|
||
read_range_type PARAMS ((char **, int [2], struct objfile *));
|
||
|
||
static struct type *
|
||
read_enum_type PARAMS ((char **, struct type *, struct objfile *));
|
||
|
||
static struct type *
|
||
read_struct_type PARAMS ((char **, struct type *, struct objfile *));
|
||
|
||
static struct type *
|
||
read_array_type PARAMS ((char **, struct type *, struct objfile *));
|
||
|
||
static struct type **
|
||
read_args PARAMS ((char **, int, struct objfile *));
|
||
|
||
|
||
|
||
static const char vptr_name[] = { '_','v','p','t','r',CPLUS_MARKER,'\0' };
|
||
static const char vb_name[] = { '_','v','b',CPLUS_MARKER,'\0' };
|
||
|
||
/* Define this as 1 if a pcc declaration of a char or short argument
|
||
gives the correct address. Otherwise assume pcc gives the
|
||
address of the corresponding int, which is not the same on a
|
||
big-endian machine. */
|
||
|
||
#ifndef BELIEVE_PCC_PROMOTION
|
||
#define BELIEVE_PCC_PROMOTION 0
|
||
#endif
|
||
|
||
/* During some calls to read_type (and thus to read_range_type), this
|
||
contains the name of the type being defined. Range types are only
|
||
used in C as basic types. We use the name to distinguish the otherwise
|
||
identical basic types "int" and "long" and their unsigned versions.
|
||
FIXME, this should disappear with better type management. */
|
||
|
||
static char *long_kludge_name;
|
||
|
||
/* Make a list of forward references which haven't been defined. */
|
||
static struct type **undef_types;
|
||
static int undef_types_allocated, undef_types_length;
|
||
|
||
/* Initial sizes of data structures. These are realloc'd larger if needed,
|
||
and realloc'd down to the size actually used, when completed. */
|
||
|
||
#define INITIAL_CONTEXT_STACK_SIZE 10
|
||
#define INITIAL_TYPE_VECTOR_LENGTH 160
|
||
#define INITIAL_LINE_VECTOR_LENGTH 1000
|
||
|
||
/* Complaints about the symbols we have encountered. */
|
||
|
||
struct complaint innerblock_complaint =
|
||
{"inner block not inside outer block in %s", 0, 0};
|
||
|
||
struct complaint blockvector_complaint =
|
||
{"block at %x out of order", 0, 0};
|
||
|
||
#if 0
|
||
struct complaint dbx_class_complaint =
|
||
{"encountered DBX-style class variable debugging information.\n\
|
||
You seem to have compiled your program with \
|
||
\"g++ -g0\" instead of \"g++ -g\".\n\
|
||
Therefore GDB will not know about your class variables", 0, 0};
|
||
#endif
|
||
|
||
struct complaint invalid_cpp_abbrev_complaint =
|
||
{"invalid C++ abbreviation `%s'", 0, 0};
|
||
|
||
struct complaint invalid_cpp_type_complaint =
|
||
{"C++ abbreviated type name unknown at symtab pos %d", 0, 0};
|
||
|
||
struct complaint member_fn_complaint =
|
||
{"member function type missing, got '%c'", 0, 0};
|
||
|
||
struct complaint const_vol_complaint =
|
||
{"const/volatile indicator missing, got '%c'", 0, 0};
|
||
|
||
struct complaint error_type_complaint =
|
||
{"debug info mismatch between compiler and debugger", 0, 0};
|
||
|
||
struct complaint invalid_member_complaint =
|
||
{"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
|
||
|
||
struct complaint range_type_base_complaint =
|
||
{"base type %d of range type is not defined", 0, 0};
|
||
|
||
int
|
||
hashname (name)
|
||
char *name;
|
||
{
|
||
register char *p = name;
|
||
register int total = p[0];
|
||
register int c;
|
||
|
||
c = p[1];
|
||
total += c << 2;
|
||
if (c)
|
||
{
|
||
c = p[2];
|
||
total += c << 4;
|
||
if (c)
|
||
total += p[3] << 6;
|
||
}
|
||
|
||
/* Ensure result is positive. */
|
||
if (total < 0) total += (1000 << 6);
|
||
return total % HASHSIZE;
|
||
}
|
||
|
||
|
||
/* Look up a dbx type-number pair. Return the address of the slot
|
||
where the type for that number-pair is stored.
|
||
The number-pair is in TYPENUMS.
|
||
|
||
This can be used for finding the type associated with that pair
|
||
or for associating a new type with the pair. */
|
||
|
||
struct type **
|
||
dbx_lookup_type (typenums)
|
||
int typenums[2];
|
||
{
|
||
register int filenum = typenums[0], index = typenums[1];
|
||
unsigned old_len;
|
||
|
||
if (filenum < 0 || filenum >= n_this_object_header_files)
|
||
error ("Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
|
||
filenum, index, symnum);
|
||
|
||
if (filenum == 0)
|
||
{
|
||
/* Type is defined outside of header files.
|
||
Find it in this object file's type vector. */
|
||
if (index >= type_vector_length)
|
||
{
|
||
old_len = type_vector_length;
|
||
if (old_len == 0) {
|
||
type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
|
||
type_vector = (struct type **)
|
||
malloc (type_vector_length * sizeof (struct type *));
|
||
}
|
||
while (index >= type_vector_length)
|
||
type_vector_length *= 2;
|
||
type_vector = (struct type **)
|
||
xrealloc ((char *) type_vector,
|
||
(type_vector_length * sizeof (struct type *)));
|
||
bzero (&type_vector[old_len],
|
||
(type_vector_length - old_len) * sizeof (struct type *));
|
||
}
|
||
return &type_vector[index];
|
||
}
|
||
else
|
||
{
|
||
register int real_filenum = this_object_header_files[filenum];
|
||
register struct header_file *f;
|
||
int f_orig_length;
|
||
|
||
if (real_filenum >= n_header_files)
|
||
abort ();
|
||
|
||
f = &header_files[real_filenum];
|
||
|
||
f_orig_length = f->length;
|
||
if (index >= f_orig_length)
|
||
{
|
||
while (index >= f->length)
|
||
f->length *= 2;
|
||
f->vector = (struct type **)
|
||
xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
|
||
bzero (&f->vector[f_orig_length],
|
||
(f->length - f_orig_length) * sizeof (struct type *));
|
||
}
|
||
return &f->vector[index];
|
||
}
|
||
}
|
||
|
||
/* Make sure there is a type allocated for type numbers TYPENUMS
|
||
and return the type object.
|
||
This can create an empty (zeroed) type object.
|
||
TYPENUMS may be (-1, -1) to return a new type object that is not
|
||
put into the type vector, and so may not be referred to by number. */
|
||
|
||
static struct type *
|
||
dbx_alloc_type (typenums, objfile)
|
||
int typenums[2];
|
||
struct objfile *objfile;
|
||
{
|
||
register struct type **type_addr;
|
||
register struct type *type;
|
||
|
||
if (typenums[0] != -1)
|
||
{
|
||
type_addr = dbx_lookup_type (typenums);
|
||
type = *type_addr;
|
||
}
|
||
else
|
||
{
|
||
type_addr = 0;
|
||
type = 0;
|
||
}
|
||
|
||
/* If we are referring to a type not known at all yet,
|
||
allocate an empty type for it.
|
||
We will fill it in later if we find out how. */
|
||
if (type == 0)
|
||
{
|
||
type = alloc_type (objfile);
|
||
if (type_addr)
|
||
*type_addr = type;
|
||
}
|
||
|
||
return type;
|
||
}
|
||
|
||
/* maintain the lists of symbols and blocks */
|
||
|
||
/* Add a symbol to one of the lists of symbols. */
|
||
void
|
||
add_symbol_to_list (symbol, listhead)
|
||
struct symbol *symbol;
|
||
struct pending **listhead;
|
||
{
|
||
/* We keep PENDINGSIZE symbols in each link of the list.
|
||
If we don't have a link with room in it, add a new link. */
|
||
if (*listhead == 0 || (*listhead)->nsyms == PENDINGSIZE)
|
||
{
|
||
register struct pending *link;
|
||
if (free_pendings)
|
||
{
|
||
link = free_pendings;
|
||
free_pendings = link->next;
|
||
}
|
||
else
|
||
link = (struct pending *) xmalloc (sizeof (struct pending));
|
||
|
||
link->next = *listhead;
|
||
*listhead = link;
|
||
link->nsyms = 0;
|
||
}
|
||
|
||
(*listhead)->symbol[(*listhead)->nsyms++] = symbol;
|
||
}
|
||
|
||
/* Find a symbol on a pending list. */
|
||
struct symbol *
|
||
find_symbol_in_list (list, name, length)
|
||
struct pending *list;
|
||
char *name;
|
||
int length;
|
||
{
|
||
int j;
|
||
|
||
while (list) {
|
||
for (j = list->nsyms; --j >= 0; ) {
|
||
char *pp = SYMBOL_NAME (list->symbol[j]);
|
||
if (*pp == *name && strncmp (pp, name, length) == 0 && pp[length] == '\0')
|
||
return list->symbol[j];
|
||
}
|
||
list = list->next;
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
/* At end of reading syms, or in case of quit,
|
||
really free as many `struct pending's as we can easily find. */
|
||
|
||
/* ARGSUSED */
|
||
void
|
||
really_free_pendings (foo)
|
||
int foo;
|
||
{
|
||
struct pending *next, *next1;
|
||
#if 0
|
||
struct pending_block *bnext, *bnext1;
|
||
#endif
|
||
|
||
for (next = free_pendings; next; next = next1)
|
||
{
|
||
next1 = next->next;
|
||
free (next);
|
||
}
|
||
free_pendings = 0;
|
||
|
||
#if 0 /* Now we make the links in the symbol_obstack, so don't free them. */
|
||
for (bnext = pending_blocks; bnext; bnext = bnext1)
|
||
{
|
||
bnext1 = bnext->next;
|
||
free (bnext);
|
||
}
|
||
#endif
|
||
pending_blocks = 0;
|
||
|
||
for (next = file_symbols; next; next = next1)
|
||
{
|
||
next1 = next->next;
|
||
free (next);
|
||
}
|
||
file_symbols = 0;
|
||
|
||
for (next = global_symbols; next; next = next1)
|
||
{
|
||
next1 = next->next;
|
||
free (next);
|
||
}
|
||
global_symbols = 0;
|
||
}
|
||
|
||
/* Take one of the lists of symbols and make a block from it.
|
||
Keep the order the symbols have in the list (reversed from the input file).
|
||
Put the block on the list of pending blocks. */
|
||
|
||
void
|
||
finish_block (symbol, listhead, old_blocks, start, end, objfile)
|
||
struct symbol *symbol;
|
||
struct pending **listhead;
|
||
struct pending_block *old_blocks;
|
||
CORE_ADDR start, end;
|
||
struct objfile *objfile;
|
||
{
|
||
register struct pending *next, *next1;
|
||
register struct block *block;
|
||
register struct pending_block *pblock;
|
||
struct pending_block *opblock;
|
||
register int i;
|
||
|
||
/* Count the length of the list of symbols. */
|
||
|
||
for (next = *listhead, i = 0;
|
||
next;
|
||
i += next->nsyms, next = next->next)
|
||
/*EMPTY*/;
|
||
|
||
block = (struct block *) obstack_alloc (&objfile -> symbol_obstack,
|
||
(sizeof (struct block) + ((i - 1) * sizeof (struct symbol *))));
|
||
|
||
/* Copy the symbols into the block. */
|
||
|
||
BLOCK_NSYMS (block) = i;
|
||
for (next = *listhead; next; next = next->next)
|
||
{
|
||
register int j;
|
||
for (j = next->nsyms - 1; j >= 0; j--)
|
||
BLOCK_SYM (block, --i) = next->symbol[j];
|
||
}
|
||
|
||
BLOCK_START (block) = start;
|
||
BLOCK_END (block) = end;
|
||
BLOCK_SUPERBLOCK (block) = 0; /* Filled in when containing block is made */
|
||
BLOCK_GCC_COMPILED (block) = processing_gcc_compilation;
|
||
|
||
/* Put the block in as the value of the symbol that names it. */
|
||
|
||
if (symbol)
|
||
{
|
||
SYMBOL_BLOCK_VALUE (symbol) = block;
|
||
BLOCK_FUNCTION (block) = symbol;
|
||
}
|
||
else
|
||
BLOCK_FUNCTION (block) = 0;
|
||
|
||
/* Now "free" the links of the list, and empty the list. */
|
||
|
||
for (next = *listhead; next; next = next1)
|
||
{
|
||
next1 = next->next;
|
||
next->next = free_pendings;
|
||
free_pendings = next;
|
||
}
|
||
*listhead = 0;
|
||
|
||
/* Install this block as the superblock
|
||
of all blocks made since the start of this scope
|
||
that don't have superblocks yet. */
|
||
|
||
opblock = 0;
|
||
for (pblock = pending_blocks; pblock != old_blocks; pblock = pblock->next)
|
||
{
|
||
if (BLOCK_SUPERBLOCK (pblock->block) == 0) {
|
||
#if 1
|
||
/* Check to be sure the blocks are nested as we receive them.
|
||
If the compiler/assembler/linker work, this just burns a small
|
||
amount of time. */
|
||
if (BLOCK_START (pblock->block) < BLOCK_START (block)
|
||
|| BLOCK_END (pblock->block) > BLOCK_END (block)) {
|
||
complain(&innerblock_complaint, symbol? SYMBOL_NAME (symbol):
|
||
"(don't know)");
|
||
BLOCK_START (pblock->block) = BLOCK_START (block);
|
||
BLOCK_END (pblock->block) = BLOCK_END (block);
|
||
}
|
||
#endif
|
||
BLOCK_SUPERBLOCK (pblock->block) = block;
|
||
}
|
||
opblock = pblock;
|
||
}
|
||
|
||
/* Record this block on the list of all blocks in the file.
|
||
Put it after opblock, or at the beginning if opblock is 0.
|
||
This puts the block in the list after all its subblocks. */
|
||
|
||
/* Allocate in the symbol_obstack to save time.
|
||
It wastes a little space. */
|
||
pblock = (struct pending_block *)
|
||
obstack_alloc (&objfile -> symbol_obstack,
|
||
sizeof (struct pending_block));
|
||
pblock->block = block;
|
||
if (opblock)
|
||
{
|
||
pblock->next = opblock->next;
|
||
opblock->next = pblock;
|
||
}
|
||
else
|
||
{
|
||
pblock->next = pending_blocks;
|
||
pending_blocks = pblock;
|
||
}
|
||
}
|
||
|
||
static struct blockvector *
|
||
make_blockvector (objfile)
|
||
struct objfile *objfile;
|
||
{
|
||
register struct pending_block *next;
|
||
register struct blockvector *blockvector;
|
||
register int i;
|
||
|
||
/* Count the length of the list of blocks. */
|
||
|
||
for (next = pending_blocks, i = 0; next; next = next->next, i++);
|
||
|
||
blockvector = (struct blockvector *)
|
||
obstack_alloc (&objfile -> symbol_obstack,
|
||
(sizeof (struct blockvector)
|
||
+ (i - 1) * sizeof (struct block *)));
|
||
|
||
/* Copy the blocks into the blockvector.
|
||
This is done in reverse order, which happens to put
|
||
the blocks into the proper order (ascending starting address).
|
||
finish_block has hair to insert each block into the list
|
||
after its subblocks in order to make sure this is true. */
|
||
|
||
BLOCKVECTOR_NBLOCKS (blockvector) = i;
|
||
for (next = pending_blocks; next; next = next->next) {
|
||
BLOCKVECTOR_BLOCK (blockvector, --i) = next->block;
|
||
}
|
||
|
||
#if 0 /* Now we make the links in the obstack, so don't free them. */
|
||
/* Now free the links of the list, and empty the list. */
|
||
|
||
for (next = pending_blocks; next; next = next1)
|
||
{
|
||
next1 = next->next;
|
||
free (next);
|
||
}
|
||
#endif
|
||
pending_blocks = 0;
|
||
|
||
#if 1 /* FIXME, shut this off after a while to speed up symbol reading. */
|
||
/* Some compilers output blocks in the wrong order, but we depend
|
||
on their being in the right order so we can binary search.
|
||
Check the order and moan about it. FIXME. */
|
||
if (BLOCKVECTOR_NBLOCKS (blockvector) > 1)
|
||
for (i = 1; i < BLOCKVECTOR_NBLOCKS (blockvector); i++) {
|
||
if (BLOCK_START(BLOCKVECTOR_BLOCK (blockvector, i-1))
|
||
> BLOCK_START(BLOCKVECTOR_BLOCK (blockvector, i))) {
|
||
complain (&blockvector_complaint,
|
||
(char *) BLOCK_START(BLOCKVECTOR_BLOCK (blockvector, i)));
|
||
}
|
||
}
|
||
#endif
|
||
|
||
return blockvector;
|
||
}
|
||
|
||
/* Start recording information about source code that came from an included
|
||
(or otherwise merged-in) source file with a different name. */
|
||
|
||
void
|
||
start_subfile (name, dirname)
|
||
char *name;
|
||
char *dirname;
|
||
{
|
||
register struct subfile *subfile;
|
||
|
||
/* See if this subfile is already known as a subfile of the
|
||
current main source file. */
|
||
|
||
for (subfile = subfiles; subfile; subfile = subfile->next)
|
||
{
|
||
if (!strcmp (subfile->name, name))
|
||
{
|
||
current_subfile = subfile;
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* This subfile is not known. Add an entry for it.
|
||
Make an entry for this subfile in the list of all subfiles
|
||
of the current main source file. */
|
||
|
||
subfile = (struct subfile *) xmalloc (sizeof (struct subfile));
|
||
subfile->next = subfiles;
|
||
subfiles = subfile;
|
||
current_subfile = subfile;
|
||
|
||
/* Save its name and compilation directory name */
|
||
subfile->name = strdup (name);
|
||
if (dirname == NULL)
|
||
subfile->dirname = NULL;
|
||
else
|
||
subfile->dirname = strdup (dirname);
|
||
|
||
/* Initialize line-number recording for this subfile. */
|
||
subfile->line_vector = 0;
|
||
}
|
||
|
||
/* Handle the N_BINCL and N_EINCL symbol types
|
||
that act like N_SOL for switching source files
|
||
(different subfiles, as we call them) within one object file,
|
||
but using a stack rather than in an arbitrary order. */
|
||
|
||
void
|
||
push_subfile ()
|
||
{
|
||
register struct subfile_stack *tem
|
||
= (struct subfile_stack *) xmalloc (sizeof (struct subfile_stack));
|
||
|
||
tem->next = subfile_stack;
|
||
subfile_stack = tem;
|
||
if (current_subfile == 0 || current_subfile->name == 0)
|
||
abort ();
|
||
tem->name = current_subfile->name;
|
||
tem->prev_index = header_file_prev_index;
|
||
}
|
||
|
||
char *
|
||
pop_subfile ()
|
||
{
|
||
register char *name;
|
||
register struct subfile_stack *link = subfile_stack;
|
||
|
||
if (link == 0)
|
||
abort ();
|
||
|
||
name = link->name;
|
||
subfile_stack = link->next;
|
||
header_file_prev_index = link->prev_index;
|
||
free (link);
|
||
|
||
return name;
|
||
}
|
||
|
||
/* Manage the vector of line numbers for each subfile. */
|
||
|
||
void
|
||
record_line (subfile, line, pc)
|
||
register struct subfile *subfile;
|
||
int line;
|
||
CORE_ADDR pc;
|
||
{
|
||
struct linetable_entry *e;
|
||
/* Ignore the dummy line number in libg.o */
|
||
|
||
if (line == 0xffff)
|
||
return;
|
||
|
||
/* Make sure line vector exists and is big enough. */
|
||
if (!subfile->line_vector) {
|
||
subfile->line_vector_length = INITIAL_LINE_VECTOR_LENGTH;
|
||
subfile->line_vector = (struct linetable *)
|
||
xmalloc (sizeof (struct linetable)
|
||
+ subfile->line_vector_length * sizeof (struct linetable_entry));
|
||
subfile->line_vector->nitems = 0;
|
||
}
|
||
|
||
if (subfile->line_vector->nitems + 1 >= subfile->line_vector_length)
|
||
{
|
||
subfile->line_vector_length *= 2;
|
||
subfile->line_vector = (struct linetable *)
|
||
xrealloc ((char *) subfile->line_vector, (sizeof (struct linetable)
|
||
+ subfile->line_vector_length * sizeof (struct linetable_entry)));
|
||
}
|
||
|
||
e = subfile->line_vector->item + subfile->line_vector->nitems++;
|
||
e->line = line; e->pc = pc;
|
||
}
|
||
|
||
|
||
/* Needed in order to sort line tables from IBM xcoff files. Sigh! */
|
||
|
||
static int
|
||
compare_line_numbers (ln1p, ln2p)
|
||
const PTR ln1p;
|
||
const PTR ln2p;
|
||
{
|
||
return (((struct linetable_entry *) ln1p) -> line -
|
||
((struct linetable_entry *) ln2p) -> line);
|
||
}
|
||
|
||
|
||
/* Start a new symtab for a new source file.
|
||
This is called when a dbx symbol of type N_SO is seen;
|
||
it indicates the start of data for one original source file. */
|
||
|
||
void
|
||
start_symtab (name, dirname, start_addr)
|
||
char *name;
|
||
char *dirname;
|
||
CORE_ADDR start_addr;
|
||
{
|
||
|
||
last_source_file = name;
|
||
last_source_start_addr = start_addr;
|
||
file_symbols = 0;
|
||
global_symbols = 0;
|
||
global_stabs = 0; /* AIX COFF */
|
||
file_stabs = 0; /* AIX COFF */
|
||
within_function = 0;
|
||
|
||
/* Context stack is initially empty. Allocate first one with room for
|
||
10 levels; reuse it forever afterward. */
|
||
if (context_stack == 0) {
|
||
context_stack_size = INITIAL_CONTEXT_STACK_SIZE;
|
||
context_stack = (struct context_stack *)
|
||
xmalloc (context_stack_size * sizeof (struct context_stack));
|
||
}
|
||
context_stack_depth = 0;
|
||
|
||
/* Leave FILENUM of 0 free for builtin types and this file's types. */
|
||
n_this_object_header_files = 1;
|
||
header_file_prev_index = -1;
|
||
|
||
type_vector_length = 0;
|
||
type_vector = (struct type **) 0;
|
||
|
||
/* Initialize the list of sub source files with one entry
|
||
for this file (the top-level source file). */
|
||
|
||
subfiles = 0;
|
||
current_subfile = 0;
|
||
start_subfile (name, dirname);
|
||
}
|
||
|
||
/* for all the stabs in a given stab vector, build appropriate types
|
||
and fix their symbols in given symbol vector. */
|
||
|
||
static void
|
||
patch_block_stabs (symbols, stabs, objfile)
|
||
struct pending *symbols;
|
||
struct pending_stabs *stabs;
|
||
struct objfile *objfile;
|
||
{
|
||
int ii;
|
||
|
||
if (stabs)
|
||
{
|
||
|
||
/* for all the stab entries, find their corresponding symbols and
|
||
patch their types! */
|
||
|
||
for (ii = 0; ii < stabs->count; ++ii)
|
||
{
|
||
char *name = stabs->stab[ii];
|
||
char *pp = (char*) strchr (name, ':');
|
||
struct symbol *sym = find_symbol_in_list (symbols, name, pp-name);
|
||
if (!sym)
|
||
{
|
||
printf ("ERROR! stab symbol not found!\n"); /* FIXME */
|
||
}
|
||
else
|
||
{
|
||
pp += 2;
|
||
if (*(pp-1) == 'F' || *(pp-1) == 'f')
|
||
{
|
||
SYMBOL_TYPE (sym) =
|
||
lookup_function_type (read_type (&pp, objfile));
|
||
}
|
||
else
|
||
{
|
||
SYMBOL_TYPE (sym) = read_type (&pp, objfile);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Finish the symbol definitions for one main source file,
|
||
close off all the lexical contexts for that file
|
||
(creating struct block's for them), then make the struct symtab
|
||
for that file and put it in the list of all such.
|
||
|
||
END_ADDR is the address of the end of the file's text. */
|
||
|
||
struct symtab *
|
||
end_symtab (end_addr, sort_pending, sort_linevec, objfile)
|
||
CORE_ADDR end_addr;
|
||
int sort_pending;
|
||
int sort_linevec;
|
||
struct objfile *objfile;
|
||
{
|
||
register struct symtab *symtab;
|
||
register struct blockvector *blockvector;
|
||
register struct subfile *subfile;
|
||
struct subfile *nextsub;
|
||
|
||
/* Finish the lexical context of the last function in the file;
|
||
pop the context stack. */
|
||
|
||
if (context_stack_depth > 0)
|
||
{
|
||
register struct context_stack *cstk;
|
||
context_stack_depth--;
|
||
cstk = &context_stack[context_stack_depth];
|
||
/* Make a block for the local symbols within. */
|
||
finish_block (cstk->name, &local_symbols, cstk->old_blocks,
|
||
cstk->start_addr, end_addr, objfile);
|
||
|
||
/* Debug: if context stack still has something in it, we are in
|
||
trouble. */
|
||
if (context_stack_depth > 0)
|
||
abort ();
|
||
}
|
||
|
||
/* It is unfortunate that in aixcoff, pending blocks might not be ordered
|
||
in this stage. Especially, blocks for static functions will show up at
|
||
the end. We need to sort them, so tools like `find_pc_function' and
|
||
`find_pc_block' can work reliably. */
|
||
if (sort_pending && pending_blocks) {
|
||
/* FIXME! Remove this horrid bubble sort and use qsort!!! */
|
||
int swapped;
|
||
do {
|
||
struct pending_block *pb, *pbnext;
|
||
|
||
pb = pending_blocks, pbnext = pb->next;
|
||
swapped = 0;
|
||
|
||
while ( pbnext ) {
|
||
|
||
/* swap blocks if unordered! */
|
||
|
||
if (BLOCK_START(pb->block) < BLOCK_START(pbnext->block)) {
|
||
struct block *tmp = pb->block;
|
||
pb->block = pbnext->block;
|
||
pbnext->block = tmp;
|
||
swapped = 1;
|
||
}
|
||
pb = pbnext;
|
||
pbnext = pbnext->next;
|
||
}
|
||
} while (swapped);
|
||
}
|
||
|
||
/* Cleanup any undefined types that have been left hanging around
|
||
(this needs to be done before the finish_blocks so that
|
||
file_symbols is still good). */
|
||
cleanup_undefined_types ();
|
||
|
||
/* Hooks for xcoffread.c */
|
||
if (file_stabs) {
|
||
patch_block_stabs (file_symbols, file_stabs, objfile);
|
||
free (file_stabs);
|
||
file_stabs = 0;
|
||
}
|
||
|
||
if (global_stabs) {
|
||
patch_block_stabs (global_symbols, global_stabs, objfile);
|
||
free (global_stabs);
|
||
global_stabs = 0;
|
||
}
|
||
|
||
if (pending_blocks == 0
|
||
&& file_symbols == 0
|
||
&& global_symbols == 0) {
|
||
/* Ignore symtabs that have no functions with real debugging info */
|
||
blockvector = NULL;
|
||
} else {
|
||
/* Define the STATIC_BLOCK and GLOBAL_BLOCK, and build the blockvector. */
|
||
finish_block (0, &file_symbols, 0, last_source_start_addr, end_addr, objfile);
|
||
finish_block (0, &global_symbols, 0, last_source_start_addr, end_addr, objfile);
|
||
blockvector = make_blockvector (objfile);
|
||
}
|
||
|
||
/* Now create the symtab objects proper, one for each subfile. */
|
||
/* (The main file is the last one on the chain.) */
|
||
|
||
for (subfile = subfiles; subfile; subfile = nextsub)
|
||
{
|
||
int linetablesize;
|
||
/* If we have blocks of symbols, make a symtab.
|
||
Otherwise, just ignore this file and any line number info in it. */
|
||
symtab = 0;
|
||
if (blockvector) {
|
||
if (subfile->line_vector) {
|
||
/* First, shrink the linetable to make more memory. */
|
||
linetablesize = sizeof (struct linetable) +
|
||
subfile->line_vector->nitems * sizeof (struct linetable_entry);
|
||
subfile->line_vector = (struct linetable *)
|
||
xrealloc ((char *) subfile->line_vector, linetablesize);
|
||
|
||
if (sort_linevec)
|
||
qsort (subfile->line_vector->item, subfile->line_vector->nitems,
|
||
sizeof (struct linetable_entry), compare_line_numbers);
|
||
}
|
||
|
||
/* Now, allocate a symbol table. */
|
||
symtab = allocate_symtab (subfile->name, objfile);
|
||
|
||
/* Fill in its components. */
|
||
symtab->blockvector = blockvector;
|
||
if (subfile->line_vector)
|
||
{
|
||
/* Reallocate the line table on the symbol obstack */
|
||
symtab->linetable = (struct linetable *)
|
||
obstack_alloc (&objfile -> symbol_obstack, linetablesize);
|
||
memcpy (symtab->linetable, subfile->line_vector, linetablesize);
|
||
}
|
||
else
|
||
{
|
||
symtab->linetable = NULL;
|
||
}
|
||
symtab->dirname = subfile->dirname;
|
||
symtab->free_code = free_linetable;
|
||
symtab->free_ptr = 0;
|
||
}
|
||
if (subfile->line_vector)
|
||
free (subfile->line_vector);
|
||
|
||
nextsub = subfile->next;
|
||
free (subfile);
|
||
}
|
||
|
||
if (type_vector)
|
||
free ((char *) type_vector);
|
||
type_vector = 0;
|
||
type_vector_length = 0;
|
||
|
||
last_source_file = 0;
|
||
current_subfile = 0;
|
||
previous_stab_code = 0;
|
||
|
||
return symtab;
|
||
}
|
||
|
||
|
||
/* Push a context block. Args are an identifying nesting level (checkable
|
||
when you pop it), and the starting PC address of this context. */
|
||
|
||
struct context_stack *
|
||
push_context (desc, valu)
|
||
int desc;
|
||
CORE_ADDR valu;
|
||
{
|
||
register struct context_stack *new;
|
||
|
||
if (context_stack_depth == context_stack_size)
|
||
{
|
||
context_stack_size *= 2;
|
||
context_stack = (struct context_stack *)
|
||
xrealloc ((char *) context_stack,
|
||
(context_stack_size * sizeof (struct context_stack)));
|
||
}
|
||
|
||
new = &context_stack[context_stack_depth++];
|
||
new->depth = desc;
|
||
new->locals = local_symbols;
|
||
new->old_blocks = pending_blocks;
|
||
new->start_addr = valu;
|
||
new->name = 0;
|
||
|
||
local_symbols = 0;
|
||
|
||
return new;
|
||
}
|
||
|
||
/* Initialize anything that needs initializing when starting to read
|
||
a fresh piece of a symbol file, e.g. reading in the stuff corresponding
|
||
to a psymtab. */
|
||
|
||
void
|
||
buildsym_init ()
|
||
{
|
||
free_pendings = 0;
|
||
file_symbols = 0;
|
||
global_symbols = 0;
|
||
pending_blocks = 0;
|
||
}
|
||
|
||
/* Initialize anything that needs initializing when a completely new
|
||
symbol file is specified (not just adding some symbols from another
|
||
file, e.g. a shared library). */
|
||
|
||
void
|
||
buildsym_new_init ()
|
||
{
|
||
/* Empty the hash table of global syms looking for values. */
|
||
bzero (global_sym_chain, sizeof global_sym_chain);
|
||
|
||
buildsym_init ();
|
||
}
|
||
|
||
/* Scan through all of the global symbols defined in the object file,
|
||
assigning values to the debugging symbols that need to be assigned
|
||
to. Get these symbols from the minimal symbol table. */
|
||
|
||
void
|
||
scan_file_globals (objfile)
|
||
struct objfile *objfile;
|
||
{
|
||
int hash;
|
||
struct minimal_symbol *msymbol;
|
||
struct symbol *sym, *prev;
|
||
|
||
for (msymbol = objfile -> msymbols; msymbol -> name != NULL; msymbol++)
|
||
{
|
||
QUIT;
|
||
|
||
prev = (struct symbol *) 0;
|
||
|
||
/* Get the hash index and check all the symbols
|
||
under that hash index. */
|
||
|
||
hash = hashname (msymbol -> name);
|
||
|
||
for (sym = global_sym_chain[hash]; sym;)
|
||
{
|
||
if (*(msymbol -> name) == SYMBOL_NAME (sym)[0]
|
||
&& !strcmp(msymbol -> name + 1, SYMBOL_NAME (sym) + 1))
|
||
{
|
||
/* Splice this symbol out of the hash chain and
|
||
assign the value we have to it. */
|
||
if (prev)
|
||
SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
|
||
else
|
||
global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
|
||
|
||
/* Check to see whether we need to fix up a common block. */
|
||
/* Note: this code might be executed several times for
|
||
the same symbol if there are multiple references. */
|
||
if (SYMBOL_CLASS (sym) == LOC_BLOCK)
|
||
fix_common_block (sym, msymbol -> address);
|
||
else
|
||
SYMBOL_VALUE_ADDRESS (sym) = msymbol -> address;
|
||
|
||
if (prev)
|
||
sym = SYMBOL_VALUE_CHAIN (prev);
|
||
else
|
||
sym = global_sym_chain[hash];
|
||
}
|
||
else
|
||
{
|
||
prev = sym;
|
||
sym = SYMBOL_VALUE_CHAIN (sym);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Read a number by which a type is referred to in dbx data,
|
||
or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
|
||
Just a single number N is equivalent to (0,N).
|
||
Return the two numbers by storing them in the vector TYPENUMS.
|
||
TYPENUMS will then be used as an argument to dbx_lookup_type. */
|
||
|
||
void
|
||
read_type_number (pp, typenums)
|
||
register char **pp;
|
||
register int *typenums;
|
||
{
|
||
if (**pp == '(')
|
||
{
|
||
(*pp)++;
|
||
typenums[0] = read_number (pp, ',');
|
||
typenums[1] = read_number (pp, ')');
|
||
}
|
||
else
|
||
{
|
||
typenums[0] = 0;
|
||
typenums[1] = read_number (pp, 0);
|
||
}
|
||
}
|
||
|
||
/* To handle GNU C++ typename abbreviation, we need to be able to
|
||
fill in a type's name as soon as space for that type is allocated.
|
||
`type_synonym_name' is the name of the type being allocated.
|
||
It is cleared as soon as it is used (lest all allocated types
|
||
get this name). */
|
||
static char *type_synonym_name;
|
||
|
||
/* ARGSUSED */
|
||
struct symbol *
|
||
define_symbol (valu, string, desc, type, objfile)
|
||
unsigned int valu;
|
||
char *string;
|
||
int desc;
|
||
int type;
|
||
struct objfile *objfile;
|
||
{
|
||
register struct symbol *sym;
|
||
char *p = (char *) strchr (string, ':');
|
||
int deftype;
|
||
int synonym = 0;
|
||
register int i;
|
||
struct type *temptype;
|
||
|
||
/* Ignore syms with empty names. */
|
||
if (string[0] == 0)
|
||
return 0;
|
||
|
||
/* Ignore old-style symbols from cc -go */
|
||
if (p == 0)
|
||
return 0;
|
||
|
||
sym = (struct symbol *)obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
|
||
|
||
if (processing_gcc_compilation) {
|
||
/* GCC 2.x puts the line number in desc. SunOS apparently puts in the
|
||
number of bytes occupied by a type or object, which we ignore. */
|
||
SYMBOL_LINE(sym) = desc;
|
||
} else {
|
||
SYMBOL_LINE(sym) = 0; /* unknown */
|
||
}
|
||
|
||
if (string[0] == CPLUS_MARKER)
|
||
{
|
||
/* Special GNU C++ names. */
|
||
switch (string[1])
|
||
{
|
||
case 't':
|
||
SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
|
||
&objfile -> symbol_obstack);
|
||
break;
|
||
case 'v': /* $vtbl_ptr_type */
|
||
/* Was: SYMBOL_NAME (sym) = "vptr"; */
|
||
goto normal;
|
||
case 'e':
|
||
SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
|
||
&objfile -> symbol_obstack);
|
||
break;
|
||
|
||
case '_':
|
||
/* This was an anonymous type that was never fixed up. */
|
||
goto normal;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
normal:
|
||
SYMBOL_NAME (sym)
|
||
= (char *) obstack_alloc (&objfile -> symbol_obstack, ((p - string) + 1));
|
||
/* Open-coded bcopy--saves function call time. */
|
||
{
|
||
register char *p1 = string;
|
||
register char *p2 = SYMBOL_NAME (sym);
|
||
while (p1 != p)
|
||
*p2++ = *p1++;
|
||
*p2++ = '\0';
|
||
}
|
||
}
|
||
p++;
|
||
/* Determine the type of name being defined. */
|
||
/* The Acorn RISC machine's compiler can put out locals that don't
|
||
start with "234=" or "(3,4)=", so assume anything other than the
|
||
deftypes we know how to handle is a local. */
|
||
/* (Peter Watkins @ Computervision)
|
||
Handle Sun-style local fortran array types 'ar...' .
|
||
(gnu@cygnus.com) -- this strchr() handles them properly?
|
||
(tiemann@cygnus.com) -- 'C' is for catch. */
|
||
if (!strchr ("cfFGpPrStTvVXC", *p))
|
||
deftype = 'l';
|
||
else
|
||
deftype = *p++;
|
||
|
||
/* c is a special case, not followed by a type-number.
|
||
SYMBOL:c=iVALUE for an integer constant symbol.
|
||
SYMBOL:c=rVALUE for a floating constant symbol.
|
||
SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
|
||
e.g. "b:c=e6,0" for "const b = blob1"
|
||
(where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
|
||
if (deftype == 'c')
|
||
{
|
||
if (*p++ != '=')
|
||
error ("Invalid symbol data at symtab pos %d.", symnum);
|
||
switch (*p++)
|
||
{
|
||
case 'r':
|
||
{
|
||
double d = atof (p);
|
||
char *dbl_valu;
|
||
|
||
SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
|
||
FT_DBL_PREC_FLOAT);
|
||
dbl_valu = (char *)
|
||
obstack_alloc (&objfile -> type_obstack,
|
||
sizeof (double));
|
||
memcpy (dbl_valu, &d, sizeof (double));
|
||
SWAP_TARGET_AND_HOST (dbl_valu, sizeof (double));
|
||
SYMBOL_VALUE_BYTES (sym) = dbl_valu;
|
||
SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
|
||
}
|
||
break;
|
||
case 'i':
|
||
{
|
||
SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
|
||
FT_INTEGER);
|
||
SYMBOL_VALUE (sym) = atoi (p);
|
||
SYMBOL_CLASS (sym) = LOC_CONST;
|
||
}
|
||
break;
|
||
case 'e':
|
||
/* SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
|
||
e.g. "b:c=e6,0" for "const b = blob1"
|
||
(where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
|
||
{
|
||
int typenums[2];
|
||
|
||
read_type_number (&p, typenums);
|
||
if (*p++ != ',')
|
||
error ("Invalid symbol data: no comma in enum const symbol");
|
||
|
||
SYMBOL_TYPE (sym) = *dbx_lookup_type (typenums);
|
||
SYMBOL_VALUE (sym) = atoi (p);
|
||
SYMBOL_CLASS (sym) = LOC_CONST;
|
||
}
|
||
break;
|
||
default:
|
||
error ("Invalid symbol data at symtab pos %d.", symnum);
|
||
}
|
||
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
||
add_symbol_to_list (sym, &file_symbols);
|
||
return sym;
|
||
}
|
||
|
||
/* Now usually comes a number that says which data type,
|
||
and possibly more stuff to define the type
|
||
(all of which is handled by read_type) */
|
||
|
||
if (deftype == 'p' && *p == 'F')
|
||
/* pF is a two-letter code that means a function parameter in Fortran.
|
||
The type-number specifies the type of the return value.
|
||
Translate it into a pointer-to-function type. */
|
||
{
|
||
p++;
|
||
SYMBOL_TYPE (sym)
|
||
= lookup_pointer_type (lookup_function_type (read_type (&p, objfile)));
|
||
}
|
||
else
|
||
{
|
||
struct type *type_read;
|
||
synonym = *p == 't';
|
||
|
||
if (synonym)
|
||
{
|
||
p += 1;
|
||
type_synonym_name = obsavestring (SYMBOL_NAME (sym),
|
||
strlen (SYMBOL_NAME (sym)),
|
||
&objfile -> symbol_obstack);
|
||
}
|
||
|
||
/* Here we save the name of the symbol for read_range_type, which
|
||
ends up reading in the basic types. In stabs, unfortunately there
|
||
is no distinction between "int" and "long" types except their
|
||
names. Until we work out a saner type policy (eliminating most
|
||
builtin types and using the names specified in the files), we
|
||
save away the name so that far away from here in read_range_type,
|
||
we can examine it to decide between "int" and "long". FIXME. */
|
||
long_kludge_name = SYMBOL_NAME (sym);
|
||
type_read = read_type (&p, objfile);
|
||
|
||
if ((deftype == 'F' || deftype == 'f')
|
||
&& TYPE_CODE (type_read) != TYPE_CODE_FUNC)
|
||
{
|
||
#if 0
|
||
/* This code doesn't work -- it needs to realloc and can't. */
|
||
struct type *new = (struct type *)
|
||
obstack_alloc (&objfile -> type_obstack,
|
||
sizeof (struct type));
|
||
|
||
/* Generate a template for the type of this function. The
|
||
types of the arguments will be added as we read the symbol
|
||
table. */
|
||
*new = *lookup_function_type (type_read);
|
||
SYMBOL_TYPE(sym) = new;
|
||
TYPE_OBJFILE (new) = objfile;
|
||
in_function_type = new;
|
||
#else
|
||
SYMBOL_TYPE (sym) = lookup_function_type (type_read);
|
||
#endif
|
||
}
|
||
else
|
||
SYMBOL_TYPE (sym) = type_read;
|
||
}
|
||
|
||
switch (deftype)
|
||
{
|
||
case 'C':
|
||
/* The name of a caught exception. */
|
||
SYMBOL_CLASS (sym) = LOC_LABEL;
|
||
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
||
SYMBOL_VALUE_ADDRESS (sym) = valu;
|
||
add_symbol_to_list (sym, &local_symbols);
|
||
break;
|
||
|
||
case 'f':
|
||
SYMBOL_CLASS (sym) = LOC_BLOCK;
|
||
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
||
add_symbol_to_list (sym, &file_symbols);
|
||
break;
|
||
|
||
case 'F':
|
||
SYMBOL_CLASS (sym) = LOC_BLOCK;
|
||
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
||
add_symbol_to_list (sym, &global_symbols);
|
||
break;
|
||
|
||
case 'G':
|
||
/* For a class G (global) symbol, it appears that the
|
||
value is not correct. It is necessary to search for the
|
||
corresponding linker definition to find the value.
|
||
These definitions appear at the end of the namelist. */
|
||
i = hashname (SYMBOL_NAME (sym));
|
||
SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
|
||
global_sym_chain[i] = sym;
|
||
SYMBOL_CLASS (sym) = LOC_STATIC;
|
||
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
||
add_symbol_to_list (sym, &global_symbols);
|
||
break;
|
||
|
||
/* This case is faked by a conditional above,
|
||
when there is no code letter in the dbx data.
|
||
Dbx data never actually contains 'l'. */
|
||
case 'l':
|
||
SYMBOL_CLASS (sym) = LOC_LOCAL;
|
||
SYMBOL_VALUE (sym) = valu;
|
||
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
||
add_symbol_to_list (sym, &local_symbols);
|
||
break;
|
||
|
||
case 'p':
|
||
/* Normally this is a parameter, a LOC_ARG. On the i960, it
|
||
can also be a LOC_LOCAL_ARG depending on symbol type. */
|
||
#ifndef DBX_PARM_SYMBOL_CLASS
|
||
#define DBX_PARM_SYMBOL_CLASS(type) LOC_ARG
|
||
#endif
|
||
SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
|
||
SYMBOL_VALUE (sym) = valu;
|
||
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
||
#if 0
|
||
/* This doesn't work yet. */
|
||
add_param_to_type (&in_function_type, sym);
|
||
#endif
|
||
add_symbol_to_list (sym, &local_symbols);
|
||
|
||
/* If it's gcc-compiled, if it says `short', believe it. */
|
||
if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
|
||
break;
|
||
|
||
#if defined(BELIEVE_PCC_PROMOTION_TYPE)
|
||
/* This macro is defined on machines (e.g. sparc) where
|
||
we should believe the type of a PCC 'short' argument,
|
||
but shouldn't believe the address (the address is
|
||
the address of the corresponding int). Note that
|
||
this is only different from the BELIEVE_PCC_PROMOTION
|
||
case on big-endian machines.
|
||
|
||
My guess is that this correction, as opposed to changing
|
||
the parameter to an 'int' (as done below, for PCC
|
||
on most machines), is the right thing to do
|
||
on all machines, but I don't want to risk breaking
|
||
something that already works. On most PCC machines,
|
||
the sparc problem doesn't come up because the calling
|
||
function has to zero the top bytes (not knowing whether
|
||
the called function wants an int or a short), so there
|
||
is no practical difference between an int and a short
|
||
(except perhaps what happens when the GDB user types
|
||
"print short_arg = 0x10000;").
|
||
|
||
Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the compiler
|
||
actually produces the correct address (we don't need to fix it
|
||
up). I made this code adapt so that it will offset the symbol
|
||
if it was pointing at an int-aligned location and not
|
||
otherwise. This way you can use the same gdb for 4.0.x and
|
||
4.1 systems.
|
||
|
||
If the parameter is shorter than an int, and is integral
|
||
(e.g. char, short, or unsigned equivalent), and is claimed to
|
||
be passed on an integer boundary, don't believe it! Offset the
|
||
parameter's address to the tail-end of that integer. */
|
||
|
||
temptype = lookup_fundamental_type (objfile, FT_INTEGER);
|
||
if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (temptype)
|
||
&& TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT
|
||
&& 0 == SYMBOL_VALUE (sym) % TYPE_LENGTH (temptype))
|
||
{
|
||
SYMBOL_VALUE (sym) += TYPE_LENGTH (temptype)
|
||
- TYPE_LENGTH (SYMBOL_TYPE (sym));
|
||
}
|
||
break;
|
||
|
||
#else /* no BELIEVE_PCC_PROMOTION_TYPE. */
|
||
|
||
/* If PCC says a parameter is a short or a char,
|
||
it is really an int. */
|
||
temptype = lookup_fundamental_type (objfile, FT_INTEGER);
|
||
if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (temptype)
|
||
&& TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
|
||
{
|
||
SYMBOL_TYPE (sym) = TYPE_UNSIGNED (SYMBOL_TYPE (sym))
|
||
? lookup_fundamental_type (objfile, FT_UNSIGNED_INTEGER)
|
||
: temptype;
|
||
}
|
||
break;
|
||
|
||
#endif /* no BELIEVE_PCC_PROMOTION_TYPE. */
|
||
|
||
case 'P':
|
||
SYMBOL_CLASS (sym) = LOC_REGPARM;
|
||
SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
|
||
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
||
add_symbol_to_list (sym, &local_symbols);
|
||
break;
|
||
|
||
case 'r':
|
||
SYMBOL_CLASS (sym) = LOC_REGISTER;
|
||
SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
|
||
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
||
add_symbol_to_list (sym, &local_symbols);
|
||
break;
|
||
|
||
case 'S':
|
||
/* Static symbol at top level of file */
|
||
SYMBOL_CLASS (sym) = LOC_STATIC;
|
||
SYMBOL_VALUE_ADDRESS (sym) = valu;
|
||
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
||
add_symbol_to_list (sym, &file_symbols);
|
||
break;
|
||
|
||
case 't':
|
||
SYMBOL_CLASS (sym) = LOC_TYPEDEF;
|
||
SYMBOL_VALUE (sym) = valu;
|
||
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
||
if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
|
||
TYPE_NAME (SYMBOL_TYPE (sym)) =
|
||
obsavestring (SYMBOL_NAME (sym),
|
||
strlen (SYMBOL_NAME (sym)),
|
||
&objfile -> symbol_obstack);
|
||
/* C++ vagaries: we may have a type which is derived from
|
||
a base type which did not have its name defined when the
|
||
derived class was output. We fill in the derived class's
|
||
base part member's name here in that case. */
|
||
else if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
|
||
|| TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
|
||
&& TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
|
||
{
|
||
int j;
|
||
for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
|
||
if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
|
||
TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
|
||
type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
|
||
}
|
||
|
||
add_symbol_to_list (sym, &file_symbols);
|
||
break;
|
||
|
||
case 'T':
|
||
SYMBOL_CLASS (sym) = LOC_TYPEDEF;
|
||
SYMBOL_VALUE (sym) = valu;
|
||
SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
|
||
if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
|
||
TYPE_NAME (SYMBOL_TYPE (sym))
|
||
= obconcat (&objfile -> type_obstack, "",
|
||
(TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_ENUM
|
||
? "enum "
|
||
: (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
|
||
? "struct " : "union ")),
|
||
SYMBOL_NAME (sym));
|
||
add_symbol_to_list (sym, &file_symbols);
|
||
|
||
if (synonym)
|
||
{
|
||
register struct symbol *typedef_sym = (struct symbol *)
|
||
obstack_alloc (&objfile -> type_obstack,
|
||
sizeof (struct symbol));
|
||
SYMBOL_NAME (typedef_sym) = SYMBOL_NAME (sym);
|
||
SYMBOL_TYPE (typedef_sym) = SYMBOL_TYPE (sym);
|
||
|
||
SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
|
||
SYMBOL_VALUE (typedef_sym) = valu;
|
||
SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
|
||
add_symbol_to_list (typedef_sym, &file_symbols);
|
||
}
|
||
break;
|
||
|
||
case 'V':
|
||
/* Static symbol of local scope */
|
||
SYMBOL_CLASS (sym) = LOC_STATIC;
|
||
SYMBOL_VALUE_ADDRESS (sym) = valu;
|
||
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
||
add_symbol_to_list (sym, &local_symbols);
|
||
break;
|
||
|
||
case 'v':
|
||
/* Reference parameter */
|
||
SYMBOL_CLASS (sym) = LOC_REF_ARG;
|
||
SYMBOL_VALUE (sym) = valu;
|
||
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
||
add_symbol_to_list (sym, &local_symbols);
|
||
break;
|
||
|
||
case 'X':
|
||
/* This is used by Sun FORTRAN for "function result value".
|
||
Sun claims ("dbx and dbxtool interfaces", 2nd ed)
|
||
that Pascal uses it too, but when I tried it Pascal used
|
||
"x:3" (local symbol) instead. */
|
||
SYMBOL_CLASS (sym) = LOC_LOCAL;
|
||
SYMBOL_VALUE (sym) = valu;
|
||
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
||
add_symbol_to_list (sym, &local_symbols);
|
||
break;
|
||
|
||
default:
|
||
error ("Invalid symbol data: unknown symbol-type code `%c' at symtab pos %d.", deftype, symnum);
|
||
}
|
||
return sym;
|
||
}
|
||
|
||
/* What about types defined as forward references inside of a small lexical
|
||
scope? */
|
||
/* Add a type to the list of undefined types to be checked through
|
||
once this file has been read in. */
|
||
void
|
||
add_undefined_type (type)
|
||
struct type *type;
|
||
{
|
||
if (undef_types_length == undef_types_allocated)
|
||
{
|
||
undef_types_allocated *= 2;
|
||
undef_types = (struct type **)
|
||
xrealloc ((char *) undef_types,
|
||
undef_types_allocated * sizeof (struct type *));
|
||
}
|
||
undef_types[undef_types_length++] = type;
|
||
}
|
||
|
||
/* Go through each undefined type, see if it's still undefined, and fix it
|
||
up if possible. We have two kinds of undefined types:
|
||
|
||
TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
|
||
Fix: update array length using the element bounds
|
||
and the target type's length.
|
||
TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
|
||
yet defined at the time a pointer to it was made.
|
||
Fix: Do a full lookup on the struct/union tag. */
|
||
static void
|
||
cleanup_undefined_types ()
|
||
{
|
||
struct type **type;
|
||
|
||
for (type = undef_types; type < undef_types + undef_types_length; type++) {
|
||
switch (TYPE_CODE (*type)) {
|
||
|
||
case TYPE_CODE_STRUCT:
|
||
case TYPE_CODE_UNION:
|
||
case TYPE_CODE_ENUM:
|
||
{
|
||
/* Reasonable test to see if it's been defined since. */
|
||
if (TYPE_NFIELDS (*type) == 0)
|
||
{
|
||
struct pending *ppt;
|
||
int i;
|
||
/* Name of the type, without "struct" or "union" */
|
||
char *typename = TYPE_NAME (*type);
|
||
|
||
if (!strncmp (typename, "struct ", 7))
|
||
typename += 7;
|
||
if (!strncmp (typename, "union ", 6))
|
||
typename += 6;
|
||
if (!strncmp (typename, "enum ", 5))
|
||
typename += 5;
|
||
|
||
for (ppt = file_symbols; ppt; ppt = ppt->next)
|
||
for (i = 0; i < ppt->nsyms; i++)
|
||
{
|
||
struct symbol *sym = ppt->symbol[i];
|
||
|
||
if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
|
||
&& SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
|
||
&& (TYPE_CODE (SYMBOL_TYPE (sym)) ==
|
||
TYPE_CODE (*type))
|
||
&& !strcmp (SYMBOL_NAME (sym), typename))
|
||
memcpy (*type, SYMBOL_TYPE (sym), sizeof (struct type));
|
||
}
|
||
}
|
||
else
|
||
/* It has been defined; don't mark it as a stub. */
|
||
TYPE_FLAGS (*type) &= ~TYPE_FLAG_STUB;
|
||
}
|
||
break;
|
||
|
||
case TYPE_CODE_ARRAY:
|
||
{
|
||
struct type *range_type;
|
||
int lower, upper;
|
||
|
||
if (TYPE_LENGTH (*type) != 0) /* Better be unknown */
|
||
goto badtype;
|
||
if (TYPE_NFIELDS (*type) != 1)
|
||
goto badtype;
|
||
range_type = TYPE_FIELD_TYPE (*type, 0);
|
||
if (TYPE_CODE (range_type) != TYPE_CODE_RANGE)
|
||
goto badtype;
|
||
|
||
/* Now recompute the length of the array type, based on its
|
||
number of elements and the target type's length. */
|
||
lower = TYPE_FIELD_BITPOS (range_type, 0);
|
||
upper = TYPE_FIELD_BITPOS (range_type, 1);
|
||
TYPE_LENGTH (*type) = (upper - lower + 1)
|
||
* TYPE_LENGTH (TYPE_TARGET_TYPE (*type));
|
||
}
|
||
break;
|
||
|
||
default:
|
||
badtype:
|
||
error ("GDB internal error. cleanup_undefined_types with bad\
|
||
type %d.", TYPE_CODE (*type));
|
||
break;
|
||
}
|
||
}
|
||
undef_types_length = 0;
|
||
}
|
||
|
||
/* Skip rest of this symbol and return an error type.
|
||
|
||
General notes on error recovery: error_type always skips to the
|
||
end of the symbol (modulo cretinous dbx symbol name continuation).
|
||
Thus code like this:
|
||
|
||
if (*(*pp)++ != ';')
|
||
return error_type (pp);
|
||
|
||
is wrong because if *pp starts out pointing at '\0' (typically as the
|
||
result of an earlier error), it will be incremented to point to the
|
||
start of the next symbol, which might produce strange results, at least
|
||
if you run off the end of the string table. Instead use
|
||
|
||
if (**pp != ';')
|
||
return error_type (pp);
|
||
++*pp;
|
||
|
||
or
|
||
|
||
if (**pp != ';')
|
||
foo = error_type (pp);
|
||
else
|
||
++*pp;
|
||
|
||
And in case it isn't obvious, the point of all this hair is so the compiler
|
||
can define new types and new syntaxes, and old versions of the
|
||
debugger will be able to read the new symbol tables. */
|
||
|
||
struct type *
|
||
error_type (pp)
|
||
char **pp;
|
||
{
|
||
complain (&error_type_complaint, 0);
|
||
while (1)
|
||
{
|
||
/* Skip to end of symbol. */
|
||
while (**pp != '\0')
|
||
(*pp)++;
|
||
|
||
/* Check for and handle cretinous dbx symbol name continuation! */
|
||
if ((*pp)[-1] == '\\')
|
||
*pp = next_symbol_text ();
|
||
else
|
||
break;
|
||
}
|
||
return builtin_type_error;
|
||
}
|
||
|
||
/* Read a dbx type reference or definition;
|
||
return the type that is meant.
|
||
This can be just a number, in which case it references
|
||
a type already defined and placed in type_vector.
|
||
Or the number can be followed by an =, in which case
|
||
it means to define a new type according to the text that
|
||
follows the =. */
|
||
|
||
struct type *
|
||
read_type (pp, objfile)
|
||
register char **pp;
|
||
struct objfile *objfile;
|
||
{
|
||
register struct type *type = 0;
|
||
struct type *type1;
|
||
int typenums[2];
|
||
int xtypenums[2];
|
||
|
||
/* Read type number if present. The type number may be omitted.
|
||
for instance in a two-dimensional array declared with type
|
||
"ar1;1;10;ar1;1;10;4". */
|
||
if ((**pp >= '0' && **pp <= '9')
|
||
|| **pp == '(')
|
||
{
|
||
read_type_number (pp, typenums);
|
||
|
||
/* Type is not being defined here. Either it already exists,
|
||
or this is a forward reference to it. dbx_alloc_type handles
|
||
both cases. */
|
||
if (**pp != '=')
|
||
return dbx_alloc_type (typenums, objfile);
|
||
|
||
/* Type is being defined here. */
|
||
#if 0 /* Callers aren't prepared for a NULL result! FIXME -- metin! */
|
||
{
|
||
struct type *tt;
|
||
|
||
/* if such a type already exists, this is an unnecessary duplication
|
||
of the stab string, which is common in (RS/6000) xlc generated
|
||
objects. In that case, simply return NULL and let the caller take
|
||
care of it. */
|
||
|
||
tt = *dbx_lookup_type (typenums);
|
||
if (tt && tt->length && tt->code)
|
||
return NULL;
|
||
}
|
||
#endif
|
||
|
||
*pp += 2;
|
||
}
|
||
else
|
||
{
|
||
/* 'typenums=' not present, type is anonymous. Read and return
|
||
the definition, but don't put it in the type vector. */
|
||
typenums[0] = typenums[1] = -1;
|
||
*pp += 1;
|
||
}
|
||
|
||
switch ((*pp)[-1])
|
||
{
|
||
case 'x':
|
||
{
|
||
enum type_code code;
|
||
|
||
/* Used to index through file_symbols. */
|
||
struct pending *ppt;
|
||
int i;
|
||
|
||
/* Name including "struct", etc. */
|
||
char *type_name;
|
||
|
||
/* Name without "struct", etc. */
|
||
char *type_name_only;
|
||
|
||
{
|
||
char *prefix;
|
||
char *from, *to;
|
||
|
||
/* Set the type code according to the following letter. */
|
||
switch ((*pp)[0])
|
||
{
|
||
case 's':
|
||
code = TYPE_CODE_STRUCT;
|
||
prefix = "struct ";
|
||
break;
|
||
case 'u':
|
||
code = TYPE_CODE_UNION;
|
||
prefix = "union ";
|
||
break;
|
||
case 'e':
|
||
code = TYPE_CODE_ENUM;
|
||
prefix = "enum ";
|
||
break;
|
||
default:
|
||
return error_type (pp);
|
||
}
|
||
|
||
to = type_name = (char *)
|
||
obstack_alloc (&objfile -> type_obstack,
|
||
(strlen (prefix) +
|
||
((char *) strchr (*pp, ':') - (*pp)) + 1));
|
||
|
||
/* Copy the prefix. */
|
||
from = prefix;
|
||
while (*to++ = *from++)
|
||
;
|
||
to--;
|
||
|
||
type_name_only = to;
|
||
|
||
/* Copy the name. */
|
||
from = *pp + 1;
|
||
while ((*to++ = *from++) != ':')
|
||
;
|
||
*--to = '\0';
|
||
|
||
/* Set the pointer ahead of the name which we just read. */
|
||
*pp = from;
|
||
|
||
#if 0
|
||
/* The following hack is clearly wrong, because it doesn't
|
||
check whether we are in a baseclass. I tried to reproduce
|
||
the case that it is trying to fix, but I couldn't get
|
||
g++ to put out a cross reference to a basetype. Perhaps
|
||
it doesn't do it anymore. */
|
||
/* Note: for C++, the cross reference may be to a base type which
|
||
has not yet been seen. In this case, we skip to the comma,
|
||
which will mark the end of the base class name. (The ':'
|
||
at the end of the base class name will be skipped as well.)
|
||
But sometimes (ie. when the cross ref is the last thing on
|
||
the line) there will be no ','. */
|
||
from = (char *) strchr (*pp, ',');
|
||
if (from)
|
||
*pp = from;
|
||
#endif /* 0 */
|
||
}
|
||
|
||
/* Now check to see whether the type has already been declared. */
|
||
/* This is necessary at least in the case where the
|
||
program says something like
|
||
struct foo bar[5];
|
||
The compiler puts out a cross-reference; we better find
|
||
set the length of the structure correctly so we can
|
||
set the length of the array. */
|
||
for (ppt = file_symbols; ppt; ppt = ppt->next)
|
||
for (i = 0; i < ppt->nsyms; i++)
|
||
{
|
||
struct symbol *sym = ppt->symbol[i];
|
||
|
||
if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
|
||
&& SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
|
||
&& (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
|
||
&& !strcmp (SYMBOL_NAME (sym), type_name_only))
|
||
{
|
||
obstack_free (&objfile -> type_obstack, type_name);
|
||
type = SYMBOL_TYPE (sym);
|
||
return type;
|
||
}
|
||
}
|
||
|
||
/* Didn't find the type to which this refers, so we must
|
||
be dealing with a forward reference. Allocate a type
|
||
structure for it, and keep track of it so we can
|
||
fill in the rest of the fields when we get the full
|
||
type. */
|
||
type = dbx_alloc_type (typenums, objfile);
|
||
TYPE_CODE (type) = code;
|
||
TYPE_NAME (type) = type_name;
|
||
INIT_CPLUS_SPECIFIC(type);
|
||
TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
|
||
|
||
add_undefined_type (type);
|
||
return type;
|
||
}
|
||
|
||
case '-': /* RS/6000 built-in type */
|
||
(*pp)--;
|
||
type = builtin_type (pp); /* (in xcoffread.c) */
|
||
goto after_digits;
|
||
|
||
case '0':
|
||
case '1':
|
||
case '2':
|
||
case '3':
|
||
case '4':
|
||
case '5':
|
||
case '6':
|
||
case '7':
|
||
case '8':
|
||
case '9':
|
||
case '(':
|
||
(*pp)--;
|
||
read_type_number (pp, xtypenums);
|
||
type = *dbx_lookup_type (xtypenums);
|
||
/* fall through */
|
||
|
||
after_digits:
|
||
if (type == 0)
|
||
type = lookup_fundamental_type (objfile, FT_VOID);
|
||
if (typenums[0] != -1)
|
||
*dbx_lookup_type (typenums) = type;
|
||
break;
|
||
|
||
case '*':
|
||
type1 = read_type (pp, objfile);
|
||
/* FIXME -- we should be doing smash_to_XXX types here. */
|
||
#if 0
|
||
/* postponed type decoration should be allowed. */
|
||
if (typenums[1] > 0 && typenums[1] < type_vector_length &&
|
||
(type = type_vector[typenums[1]])) {
|
||
smash_to_pointer_type (type, type1);
|
||
break;
|
||
}
|
||
#endif
|
||
type = lookup_pointer_type (type1);
|
||
if (typenums[0] != -1)
|
||
*dbx_lookup_type (typenums) = type;
|
||
break;
|
||
|
||
case '@':
|
||
{
|
||
struct type *domain = read_type (pp, objfile);
|
||
struct type *memtype;
|
||
|
||
if (**pp != ',')
|
||
/* Invalid member type data format. */
|
||
return error_type (pp);
|
||
++*pp;
|
||
|
||
memtype = read_type (pp, objfile);
|
||
type = dbx_alloc_type (typenums, objfile);
|
||
smash_to_member_type (type, domain, memtype);
|
||
}
|
||
break;
|
||
|
||
case '#':
|
||
if ((*pp)[0] == '#')
|
||
{
|
||
/* We'll get the parameter types from the name. */
|
||
struct type *return_type;
|
||
|
||
*pp += 1;
|
||
return_type = read_type (pp, objfile);
|
||
if (*(*pp)++ != ';')
|
||
complain (&invalid_member_complaint, (char *) symnum);
|
||
type = allocate_stub_method (return_type);
|
||
if (typenums[0] != -1)
|
||
*dbx_lookup_type (typenums) = type;
|
||
}
|
||
else
|
||
{
|
||
struct type *domain = read_type (pp, objfile);
|
||
struct type *return_type;
|
||
struct type **args;
|
||
|
||
if (*(*pp)++ != ',')
|
||
error ("invalid member type data format, at symtab pos %d.",
|
||
symnum);
|
||
|
||
return_type = read_type (pp, objfile);
|
||
args = read_args (pp, ';', objfile);
|
||
type = dbx_alloc_type (typenums, objfile);
|
||
smash_to_method_type (type, domain, return_type, args);
|
||
}
|
||
break;
|
||
|
||
case '&':
|
||
type1 = read_type (pp, objfile);
|
||
type = lookup_reference_type (type1);
|
||
if (typenums[0] != -1)
|
||
*dbx_lookup_type (typenums) = type;
|
||
break;
|
||
|
||
case 'f':
|
||
type1 = read_type (pp, objfile);
|
||
type = lookup_function_type (type1);
|
||
if (typenums[0] != -1)
|
||
*dbx_lookup_type (typenums) = type;
|
||
break;
|
||
|
||
case 'r':
|
||
type = read_range_type (pp, typenums, objfile);
|
||
if (typenums[0] != -1)
|
||
*dbx_lookup_type (typenums) = type;
|
||
break;
|
||
|
||
case 'e':
|
||
type = dbx_alloc_type (typenums, objfile);
|
||
type = read_enum_type (pp, type, objfile);
|
||
*dbx_lookup_type (typenums) = type;
|
||
break;
|
||
|
||
case 's':
|
||
type = dbx_alloc_type (typenums, objfile);
|
||
TYPE_NAME (type) = type_synonym_name;
|
||
type_synonym_name = 0;
|
||
type = read_struct_type (pp, type, objfile);
|
||
break;
|
||
|
||
case 'u':
|
||
type = dbx_alloc_type (typenums, objfile);
|
||
TYPE_NAME (type) = type_synonym_name;
|
||
type_synonym_name = 0;
|
||
type = read_struct_type (pp, type, objfile);
|
||
TYPE_CODE (type) = TYPE_CODE_UNION;
|
||
break;
|
||
|
||
case 'a':
|
||
if (**pp != 'r')
|
||
return error_type (pp);
|
||
++*pp;
|
||
|
||
type = dbx_alloc_type (typenums, objfile);
|
||
type = read_array_type (pp, type, objfile);
|
||
break;
|
||
|
||
default:
|
||
--*pp; /* Go back to the symbol in error */
|
||
/* Particularly important if it was \0! */
|
||
return error_type (pp);
|
||
}
|
||
|
||
if (type == 0)
|
||
abort ();
|
||
|
||
#if 0
|
||
/* If this is an overriding temporary alteration for a header file's
|
||
contents, and this type number is unknown in the global definition,
|
||
put this type into the global definition at this type number. */
|
||
if (header_file_prev_index >= 0)
|
||
{
|
||
register struct type **tp
|
||
= explicit_lookup_type (header_file_prev_index, typenums[1]);
|
||
if (*tp == 0)
|
||
*tp = type;
|
||
}
|
||
#endif
|
||
return type;
|
||
}
|
||
|
||
/* This page contains subroutines of read_type. */
|
||
|
||
/* Read the description of a structure (or union type)
|
||
and return an object describing the type. */
|
||
|
||
static struct type *
|
||
read_struct_type (pp, type, objfile)
|
||
char **pp;
|
||
register struct type *type;
|
||
struct objfile *objfile;
|
||
{
|
||
/* Total number of methods defined in this class.
|
||
If the class defines two `f' methods, and one `g' method,
|
||
then this will have the value 3. */
|
||
int total_length = 0;
|
||
|
||
struct nextfield
|
||
{
|
||
struct nextfield *next;
|
||
int visibility; /* 0=public, 1=protected, 2=public */
|
||
struct field field;
|
||
};
|
||
|
||
struct next_fnfield
|
||
{
|
||
struct next_fnfield *next;
|
||
struct fn_field fn_field;
|
||
};
|
||
|
||
struct next_fnfieldlist
|
||
{
|
||
struct next_fnfieldlist *next;
|
||
struct fn_fieldlist fn_fieldlist;
|
||
};
|
||
|
||
register struct nextfield *list = 0;
|
||
struct nextfield *new;
|
||
register char *p;
|
||
int nfields = 0;
|
||
int non_public_fields = 0;
|
||
register int n;
|
||
|
||
register struct next_fnfieldlist *mainlist = 0;
|
||
int nfn_fields = 0;
|
||
|
||
TYPE_CODE (type) = TYPE_CODE_STRUCT;
|
||
INIT_CPLUS_SPECIFIC(type);
|
||
|
||
/* First comes the total size in bytes. */
|
||
|
||
TYPE_LENGTH (type) = read_number (pp, 0);
|
||
|
||
/* C++: Now, if the class is a derived class, then the next character
|
||
will be a '!', followed by the number of base classes derived from.
|
||
Each element in the list contains visibility information,
|
||
the offset of this base class in the derived structure,
|
||
and then the base type. */
|
||
if (**pp == '!')
|
||
{
|
||
int i, n_baseclasses, offset;
|
||
struct type *baseclass;
|
||
int via_public;
|
||
|
||
/* Nonzero if it is a virtual baseclass, i.e.,
|
||
|
||
struct A{};
|
||
struct B{};
|
||
struct C : public B, public virtual A {};
|
||
|
||
B is a baseclass of C; A is a virtual baseclass for C. This is a C++
|
||
2.0 language feature. */
|
||
int via_virtual;
|
||
|
||
*pp += 1;
|
||
|
||
ALLOCATE_CPLUS_STRUCT_TYPE(type);
|
||
|
||
n_baseclasses = read_number (pp, ',');
|
||
TYPE_FIELD_VIRTUAL_BITS (type) =
|
||
(B_TYPE *) obstack_alloc (&objfile -> type_obstack,
|
||
B_BYTES (n_baseclasses));
|
||
B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), n_baseclasses);
|
||
|
||
for (i = 0; i < n_baseclasses; i++)
|
||
{
|
||
if (**pp == '\\')
|
||
*pp = next_symbol_text ();
|
||
|
||
switch (**pp)
|
||
{
|
||
case '0':
|
||
via_virtual = 0;
|
||
break;
|
||
case '1':
|
||
via_virtual = 1;
|
||
break;
|
||
default:
|
||
/* Bad visibility format. */
|
||
return error_type (pp);
|
||
}
|
||
++*pp;
|
||
|
||
switch (**pp)
|
||
{
|
||
case '0':
|
||
via_public = 0;
|
||
non_public_fields++;
|
||
break;
|
||
case '2':
|
||
via_public = 2;
|
||
break;
|
||
default:
|
||
/* Bad visibility format. */
|
||
return error_type (pp);
|
||
}
|
||
if (via_virtual)
|
||
SET_TYPE_FIELD_VIRTUAL (type, i);
|
||
++*pp;
|
||
|
||
/* Offset of the portion of the object corresponding to
|
||
this baseclass. Always zero in the absence of
|
||
multiple inheritance. */
|
||
offset = read_number (pp, ',');
|
||
baseclass = read_type (pp, objfile);
|
||
*pp += 1; /* skip trailing ';' */
|
||
|
||
/* Make this baseclass visible for structure-printing purposes. */
|
||
new = (struct nextfield *) alloca (sizeof (struct nextfield));
|
||
new->next = list;
|
||
list = new;
|
||
list->visibility = via_public;
|
||
list->field.type = baseclass;
|
||
list->field.name = type_name_no_tag (baseclass);
|
||
list->field.bitpos = offset;
|
||
list->field.bitsize = 0; /* this should be an unpacked field! */
|
||
nfields++;
|
||
}
|
||
TYPE_N_BASECLASSES (type) = n_baseclasses;
|
||
}
|
||
|
||
/* Now come the fields, as NAME:?TYPENUM,BITPOS,BITSIZE; for each one.
|
||
At the end, we see a semicolon instead of a field.
|
||
|
||
In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
|
||
a static field.
|
||
|
||
The `?' is a placeholder for one of '/2' (public visibility),
|
||
'/1' (protected visibility), '/0' (private visibility), or nothing
|
||
(C style symbol table, public visibility). */
|
||
|
||
/* We better set p right now, in case there are no fields at all... */
|
||
p = *pp;
|
||
|
||
while (**pp != ';')
|
||
{
|
||
/* Check for and handle cretinous dbx symbol name continuation! */
|
||
if (**pp == '\\') *pp = next_symbol_text ();
|
||
|
||
/* Get space to record the next field's data. */
|
||
new = (struct nextfield *) alloca (sizeof (struct nextfield));
|
||
new->next = list;
|
||
list = new;
|
||
|
||
/* Get the field name. */
|
||
p = *pp;
|
||
if (*p == CPLUS_MARKER)
|
||
{
|
||
/* Special GNU C++ name. */
|
||
if (*++p == 'v')
|
||
{
|
||
const char *prefix;
|
||
char *name = 0;
|
||
struct type *context;
|
||
|
||
switch (*++p)
|
||
{
|
||
case 'f':
|
||
prefix = vptr_name;
|
||
break;
|
||
case 'b':
|
||
prefix = vb_name;
|
||
break;
|
||
default:
|
||
complain (&invalid_cpp_abbrev_complaint, *pp);
|
||
prefix = "INVALID_C++_ABBREV";
|
||
break;
|
||
}
|
||
*pp = p + 1;
|
||
context = read_type (pp, objfile);
|
||
name = type_name_no_tag (context);
|
||
if (name == 0)
|
||
{
|
||
complain (&invalid_cpp_type_complaint, (char *) symnum);
|
||
TYPE_NAME (context) = name;
|
||
}
|
||
list->field.name = obconcat (&objfile -> type_obstack,
|
||
prefix, name, "");
|
||
p = ++(*pp);
|
||
if (p[-1] != ':')
|
||
complain (&invalid_cpp_abbrev_complaint, *pp);
|
||
list->field.type = read_type (pp, objfile);
|
||
(*pp)++; /* Skip the comma. */
|
||
list->field.bitpos = read_number (pp, ';');
|
||
/* This field is unpacked. */
|
||
list->field.bitsize = 0;
|
||
list->visibility = 0; /* private */
|
||
non_public_fields++;
|
||
}
|
||
/* GNU C++ anonymous type. */
|
||
else if (*p == '_')
|
||
break;
|
||
else
|
||
complain (&invalid_cpp_abbrev_complaint, *pp);
|
||
|
||
nfields++;
|
||
continue;
|
||
}
|
||
|
||
while (*p != ':') p++;
|
||
list->field.name = obsavestring (*pp, p - *pp,
|
||
&objfile -> type_obstack);
|
||
|
||
/* C++: Check to see if we have hit the methods yet. */
|
||
if (p[1] == ':')
|
||
break;
|
||
|
||
*pp = p + 1;
|
||
|
||
/* This means we have a visibility for a field coming. */
|
||
if (**pp == '/')
|
||
{
|
||
switch (*++*pp)
|
||
{
|
||
case '0':
|
||
list->visibility = 0; /* private */
|
||
non_public_fields++;
|
||
*pp += 1;
|
||
break;
|
||
|
||
case '1':
|
||
list->visibility = 1; /* protected */
|
||
non_public_fields++;
|
||
*pp += 1;
|
||
break;
|
||
|
||
case '2':
|
||
list->visibility = 2; /* public */
|
||
*pp += 1;
|
||
break;
|
||
}
|
||
}
|
||
else /* normal dbx-style format. */
|
||
list->visibility = 2; /* public */
|
||
|
||
list->field.type = read_type (pp, objfile);
|
||
if (**pp == ':')
|
||
{
|
||
/* Static class member. */
|
||
list->field.bitpos = (long)-1;
|
||
p = ++(*pp);
|
||
while (*p != ';') p++;
|
||
list->field.bitsize = (long) savestring (*pp, p - *pp);
|
||
*pp = p + 1;
|
||
nfields++;
|
||
continue;
|
||
}
|
||
else if (**pp != ',')
|
||
/* Bad structure-type format. */
|
||
return error_type (pp);
|
||
|
||
(*pp)++; /* Skip the comma. */
|
||
list->field.bitpos = read_number (pp, ',');
|
||
list->field.bitsize = read_number (pp, ';');
|
||
|
||
#if 0
|
||
/* FIXME-tiemann: Can't the compiler put out something which
|
||
lets us distinguish these? (or maybe just not put out anything
|
||
for the field). What is the story here? What does the compiler
|
||
really do? Also, patch gdb.texinfo for this case; I document
|
||
it as a possible problem there. Search for "DBX-style". */
|
||
|
||
/* This is wrong because this is identical to the symbols
|
||
produced for GCC 0-size arrays. For example:
|
||
typedef union {
|
||
int num;
|
||
char str[0];
|
||
} foo;
|
||
The code which dumped core in such circumstances should be
|
||
fixed not to dump core. */
|
||
|
||
/* g++ -g0 can put out bitpos & bitsize zero for a static
|
||
field. This does not give us any way of getting its
|
||
class, so we can't know its name. But we can just
|
||
ignore the field so we don't dump core and other nasty
|
||
stuff. */
|
||
if (list->field.bitpos == 0
|
||
&& list->field.bitsize == 0)
|
||
{
|
||
complain (&dbx_class_complaint, 0);
|
||
/* Ignore this field. */
|
||
list = list->next;
|
||
}
|
||
else
|
||
#endif /* 0 */
|
||
{
|
||
/* Detect an unpacked field and mark it as such.
|
||
dbx gives a bit size for all fields.
|
||
Note that forward refs cannot be packed,
|
||
and treat enums as if they had the width of ints. */
|
||
if (TYPE_CODE (list->field.type) != TYPE_CODE_INT
|
||
&& TYPE_CODE (list->field.type) != TYPE_CODE_ENUM)
|
||
list->field.bitsize = 0;
|
||
if ((list->field.bitsize == 8 * TYPE_LENGTH (list->field.type)
|
||
|| (TYPE_CODE (list->field.type) == TYPE_CODE_ENUM
|
||
&& (list->field.bitsize
|
||
== 8 * TYPE_LENGTH (lookup_fundamental_type (objfile, FT_INTEGER)))
|
||
)
|
||
)
|
||
&&
|
||
list->field.bitpos % 8 == 0)
|
||
list->field.bitsize = 0;
|
||
nfields++;
|
||
}
|
||
}
|
||
|
||
if (p[1] == ':')
|
||
/* chill the list of fields: the last entry (at the head)
|
||
is a partially constructed entry which we now scrub. */
|
||
list = list->next;
|
||
|
||
/* Now create the vector of fields, and record how big it is.
|
||
We need this info to record proper virtual function table information
|
||
for this class's virtual functions. */
|
||
|
||
TYPE_NFIELDS (type) = nfields;
|
||
TYPE_FIELDS (type) = (struct field *)
|
||
obstack_alloc (&objfile -> type_obstack, sizeof (struct field) * nfields);
|
||
|
||
if (non_public_fields)
|
||
{
|
||
ALLOCATE_CPLUS_STRUCT_TYPE (type);
|
||
|
||
TYPE_FIELD_PRIVATE_BITS (type) =
|
||
(B_TYPE *) obstack_alloc (&objfile -> type_obstack,
|
||
B_BYTES (nfields));
|
||
B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
|
||
|
||
TYPE_FIELD_PROTECTED_BITS (type) =
|
||
(B_TYPE *) obstack_alloc (&objfile -> type_obstack,
|
||
B_BYTES (nfields));
|
||
B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
|
||
}
|
||
|
||
/* Copy the saved-up fields into the field vector. */
|
||
|
||
for (n = nfields; list; list = list->next)
|
||
{
|
||
n -= 1;
|
||
TYPE_FIELD (type, n) = list->field;
|
||
if (list->visibility == 0)
|
||
SET_TYPE_FIELD_PRIVATE (type, n);
|
||
else if (list->visibility == 1)
|
||
SET_TYPE_FIELD_PROTECTED (type, n);
|
||
}
|
||
|
||
/* Now come the method fields, as NAME::methods
|
||
where each method is of the form TYPENUM,ARGS,...:PHYSNAME;
|
||
At the end, we see a semicolon instead of a field.
|
||
|
||
For the case of overloaded operators, the format is
|
||
op$::*.methods, where $ is the CPLUS_MARKER (usually '$'),
|
||
`*' holds the place for an operator name (such as `+=')
|
||
and `.' marks the end of the operator name. */
|
||
if (p[1] == ':')
|
||
{
|
||
/* Now, read in the methods. To simplify matters, we
|
||
"unread" the name that has been read, so that we can
|
||
start from the top. */
|
||
|
||
ALLOCATE_CPLUS_STRUCT_TYPE (type);
|
||
/* For each list of method lists... */
|
||
do
|
||
{
|
||
int i;
|
||
struct next_fnfield *sublist = 0;
|
||
struct type *look_ahead_type = NULL;
|
||
int length = 0;
|
||
struct next_fnfieldlist *new_mainlist =
|
||
(struct next_fnfieldlist *)alloca (sizeof (struct next_fnfieldlist));
|
||
char *main_fn_name;
|
||
|
||
p = *pp;
|
||
|
||
/* read in the name. */
|
||
while (*p != ':') p++;
|
||
if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && (*pp)[2] == CPLUS_MARKER)
|
||
{
|
||
/* This is a completely wierd case. In order to stuff in the
|
||
names that might contain colons (the usual name delimiter),
|
||
Mike Tiemann defined a different name format which is
|
||
signalled if the identifier is "op$". In that case, the
|
||
format is "op$::XXXX." where XXXX is the name. This is
|
||
used for names like "+" or "=". YUUUUUUUK! FIXME! */
|
||
/* This lets the user type "break operator+".
|
||
We could just put in "+" as the name, but that wouldn't
|
||
work for "*". */
|
||
static char opname[32] = {'o', 'p', CPLUS_MARKER};
|
||
char *o = opname + 3;
|
||
|
||
/* Skip past '::'. */
|
||
*pp = p + 2;
|
||
if (**pp == '\\') *pp = next_symbol_text ();
|
||
p = *pp;
|
||
while (*p != '.')
|
||
*o++ = *p++;
|
||
main_fn_name = savestring (opname, o - opname);
|
||
/* Skip past '.' */
|
||
*pp = p + 1;
|
||
}
|
||
else
|
||
{
|
||
main_fn_name = savestring (*pp, p - *pp);
|
||
/* Skip past '::'. */
|
||
*pp = p + 2;
|
||
}
|
||
new_mainlist->fn_fieldlist.name = main_fn_name;
|
||
|
||
do
|
||
{
|
||
struct next_fnfield *new_sublist =
|
||
(struct next_fnfield *)alloca (sizeof (struct next_fnfield));
|
||
|
||
/* Check for and handle cretinous dbx symbol name continuation! */
|
||
if (look_ahead_type == NULL) /* Normal case. */
|
||
{
|
||
if (**pp == '\\') *pp = next_symbol_text ();
|
||
|
||
new_sublist->fn_field.type = read_type (pp, objfile);
|
||
if (**pp != ':')
|
||
/* Invalid symtab info for method. */
|
||
return error_type (pp);
|
||
}
|
||
else
|
||
{ /* g++ version 1 kludge */
|
||
new_sublist->fn_field.type = look_ahead_type;
|
||
look_ahead_type = NULL;
|
||
}
|
||
|
||
*pp += 1;
|
||
p = *pp;
|
||
while (*p != ';') p++;
|
||
|
||
/* If this is just a stub, then we don't have the
|
||
real name here. */
|
||
if (TYPE_FLAGS (new_sublist->fn_field.type) & TYPE_FLAG_STUB)
|
||
new_sublist->fn_field.is_stub = 1;
|
||
new_sublist->fn_field.physname = savestring (*pp, p - *pp);
|
||
*pp = p + 1;
|
||
|
||
/* Set this method's visibility fields. */
|
||
switch (*(*pp)++ - '0')
|
||
{
|
||
case 0:
|
||
new_sublist->fn_field.is_private = 1;
|
||
break;
|
||
case 1:
|
||
new_sublist->fn_field.is_protected = 1;
|
||
break;
|
||
}
|
||
|
||
if (**pp == '\\') *pp = next_symbol_text ();
|
||
switch (**pp)
|
||
{
|
||
case 'A': /* Normal functions. */
|
||
new_sublist->fn_field.is_const = 0;
|
||
new_sublist->fn_field.is_volatile = 0;
|
||
(*pp)++;
|
||
break;
|
||
case 'B': /* `const' member functions. */
|
||
new_sublist->fn_field.is_const = 1;
|
||
new_sublist->fn_field.is_volatile = 0;
|
||
(*pp)++;
|
||
break;
|
||
case 'C': /* `volatile' member function. */
|
||
new_sublist->fn_field.is_const = 0;
|
||
new_sublist->fn_field.is_volatile = 1;
|
||
(*pp)++;
|
||
break;
|
||
case 'D': /* `const volatile' member function. */
|
||
new_sublist->fn_field.is_const = 1;
|
||
new_sublist->fn_field.is_volatile = 1;
|
||
(*pp)++;
|
||
break;
|
||
case '*': /* File compiled with g++ version 1 -- no info */
|
||
case '?':
|
||
case '.':
|
||
break;
|
||
default:
|
||
complain (&const_vol_complaint, (char *) (long) **pp);
|
||
break;
|
||
}
|
||
|
||
switch (*(*pp)++)
|
||
{
|
||
case '*':
|
||
/* virtual member function, followed by index. */
|
||
/* The sign bit is set to distinguish pointers-to-methods
|
||
from virtual function indicies. Since the array is
|
||
in words, the quantity must be shifted left by 1
|
||
on 16 bit machine, and by 2 on 32 bit machine, forcing
|
||
the sign bit out, and usable as a valid index into
|
||
the array. Remove the sign bit here. */
|
||
new_sublist->fn_field.voffset =
|
||
(0x7fffffff & read_number (pp, ';')) + 2;
|
||
|
||
if (**pp == '\\') *pp = next_symbol_text ();
|
||
|
||
if (**pp == ';' || **pp == '\0')
|
||
/* Must be g++ version 1. */
|
||
new_sublist->fn_field.fcontext = 0;
|
||
else
|
||
{
|
||
/* Figure out from whence this virtual function came.
|
||
It may belong to virtual function table of
|
||
one of its baseclasses. */
|
||
look_ahead_type = read_type (pp, objfile);
|
||
if (**pp == ':')
|
||
{ /* g++ version 1 overloaded methods. */ }
|
||
else
|
||
{
|
||
new_sublist->fn_field.fcontext = look_ahead_type;
|
||
if (**pp != ';')
|
||
return error_type (pp);
|
||
else
|
||
++*pp;
|
||
look_ahead_type = NULL;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case '?':
|
||
/* static member function. */
|
||
new_sublist->fn_field.voffset = VOFFSET_STATIC;
|
||
if (strncmp (new_sublist->fn_field.physname,
|
||
main_fn_name, strlen (main_fn_name)))
|
||
new_sublist->fn_field.is_stub = 1;
|
||
break;
|
||
|
||
default:
|
||
/* error */
|
||
complain (&member_fn_complaint, (char *) (long) (*pp)[-1]);
|
||
/* Fall through into normal member function. */
|
||
|
||
case '.':
|
||
/* normal member function. */
|
||
new_sublist->fn_field.voffset = 0;
|
||
new_sublist->fn_field.fcontext = 0;
|
||
break;
|
||
}
|
||
|
||
new_sublist->next = sublist;
|
||
sublist = new_sublist;
|
||
length++;
|
||
if (**pp == '\\') *pp = next_symbol_text ();
|
||
}
|
||
while (**pp != ';' && **pp != '\0');
|
||
|
||
*pp += 1;
|
||
|
||
new_mainlist->fn_fieldlist.fn_fields =
|
||
(struct fn_field *) obstack_alloc (&objfile -> type_obstack,
|
||
sizeof (struct fn_field) * length);
|
||
for (i = length; (i--, sublist); sublist = sublist->next)
|
||
new_mainlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
|
||
|
||
new_mainlist->fn_fieldlist.length = length;
|
||
new_mainlist->next = mainlist;
|
||
mainlist = new_mainlist;
|
||
nfn_fields++;
|
||
total_length += length;
|
||
}
|
||
while (**pp != ';');
|
||
}
|
||
|
||
*pp += 1;
|
||
|
||
|
||
if (nfn_fields)
|
||
{
|
||
TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
|
||
obstack_alloc (&objfile -> type_obstack,
|
||
sizeof (struct fn_fieldlist) * nfn_fields);
|
||
TYPE_NFN_FIELDS (type) = nfn_fields;
|
||
TYPE_NFN_FIELDS_TOTAL (type) = total_length;
|
||
}
|
||
|
||
{
|
||
int i;
|
||
for (i = 0; i < TYPE_N_BASECLASSES (type); ++i)
|
||
TYPE_NFN_FIELDS_TOTAL (type) +=
|
||
TYPE_NFN_FIELDS_TOTAL (TYPE_BASECLASS (type, i));
|
||
}
|
||
|
||
for (n = nfn_fields; mainlist; mainlist = mainlist->next) {
|
||
--n; /* Circumvent Sun3 compiler bug */
|
||
TYPE_FN_FIELDLISTS (type)[n] = mainlist->fn_fieldlist;
|
||
}
|
||
|
||
if (**pp == '~')
|
||
{
|
||
*pp += 1;
|
||
|
||
if (**pp == '=' || **pp == '+' || **pp == '-')
|
||
{
|
||
/* Obsolete flags that used to indicate the presence
|
||
of constructors and/or destructors. */
|
||
*pp += 1;
|
||
}
|
||
|
||
/* Read either a '%' or the final ';'. */
|
||
if (*(*pp)++ == '%')
|
||
{
|
||
/* We'd like to be able to derive the vtable pointer field
|
||
from the type information, but when it's inherited, that's
|
||
hard. A reason it's hard is because we may read in the
|
||
info about a derived class before we read in info about
|
||
the base class that provides the vtable pointer field.
|
||
Once the base info has been read, we could fill in the info
|
||
for the derived classes, but for the fact that by then,
|
||
we don't remember who needs what. */
|
||
|
||
int predicted_fieldno = -1;
|
||
|
||
/* Now we must record the virtual function table pointer's
|
||
field information. */
|
||
|
||
struct type *t;
|
||
int i;
|
||
|
||
|
||
#if 0
|
||
{
|
||
/* In version 2, we derive the vfield ourselves. */
|
||
for (n = 0; n < nfields; n++)
|
||
{
|
||
if (! strncmp (TYPE_FIELD_NAME (type, n), vptr_name,
|
||
sizeof (vptr_name) -1))
|
||
{
|
||
predicted_fieldno = n;
|
||
break;
|
||
}
|
||
}
|
||
if (predicted_fieldno < 0)
|
||
for (n = 0; n < TYPE_N_BASECLASSES (type); n++)
|
||
if (! TYPE_FIELD_VIRTUAL (type, n)
|
||
&& TYPE_VPTR_FIELDNO (TYPE_BASECLASS (type, n)) >= 0)
|
||
{
|
||
predicted_fieldno = TYPE_VPTR_FIELDNO (TYPE_BASECLASS (type, n));
|
||
break;
|
||
}
|
||
}
|
||
#endif
|
||
|
||
t = read_type (pp, objfile);
|
||
p = (*pp)++;
|
||
while (*p != '\0' && *p != ';')
|
||
p++;
|
||
if (*p == '\0')
|
||
/* Premature end of symbol. */
|
||
return error_type (pp);
|
||
|
||
TYPE_VPTR_BASETYPE (type) = t;
|
||
if (type == t)
|
||
{
|
||
if (TYPE_FIELD_NAME (t, TYPE_N_BASECLASSES (t)) == 0)
|
||
{
|
||
/* FIXME-tiemann: what's this? */
|
||
#if 0
|
||
TYPE_VPTR_FIELDNO (type) = i = TYPE_N_BASECLASSES (t);
|
||
#else
|
||
error_type (pp);
|
||
#endif
|
||
}
|
||
else for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); --i)
|
||
if (! strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
|
||
sizeof (vptr_name) -1))
|
||
{
|
||
TYPE_VPTR_FIELDNO (type) = i;
|
||
break;
|
||
}
|
||
if (i < 0)
|
||
/* Virtual function table field not found. */
|
||
return error_type (pp);
|
||
}
|
||
else
|
||
TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
|
||
|
||
#if 0
|
||
if (TYPE_VPTR_FIELDNO (type) != predicted_fieldno)
|
||
error ("TYPE_VPTR_FIELDNO miscalculated");
|
||
#endif
|
||
|
||
*pp = p + 1;
|
||
}
|
||
}
|
||
|
||
return type;
|
||
}
|
||
|
||
/* Read a definition of an array type,
|
||
and create and return a suitable type object.
|
||
Also creates a range type which represents the bounds of that
|
||
array. */
|
||
static struct type *
|
||
read_array_type (pp, type, objfile)
|
||
register char **pp;
|
||
register struct type *type;
|
||
struct objfile *objfile;
|
||
{
|
||
struct type *index_type, *element_type, *range_type;
|
||
int lower, upper;
|
||
int adjustable = 0;
|
||
|
||
/* Format of an array type:
|
||
"ar<index type>;lower;upper;<array_contents_type>". Put code in
|
||
to handle this.
|
||
|
||
Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
|
||
for these, produce a type like float[][]. */
|
||
|
||
index_type = read_type (pp, objfile);
|
||
if (**pp != ';')
|
||
/* Improper format of array type decl. */
|
||
return error_type (pp);
|
||
++*pp;
|
||
|
||
if (!(**pp >= '0' && **pp <= '9'))
|
||
{
|
||
*pp += 1;
|
||
adjustable = 1;
|
||
}
|
||
lower = read_number (pp, ';');
|
||
|
||
if (!(**pp >= '0' && **pp <= '9'))
|
||
{
|
||
*pp += 1;
|
||
adjustable = 1;
|
||
}
|
||
upper = read_number (pp, ';');
|
||
|
||
element_type = read_type (pp, objfile);
|
||
|
||
if (adjustable)
|
||
{
|
||
lower = 0;
|
||
upper = -1;
|
||
}
|
||
|
||
{
|
||
/* Create range type. */
|
||
range_type = (struct type *)
|
||
obstack_alloc (&objfile -> type_obstack, sizeof (struct type));
|
||
bzero (range_type, sizeof (struct type));
|
||
TYPE_OBJFILE (range_type) = objfile;
|
||
TYPE_CODE (range_type) = TYPE_CODE_RANGE;
|
||
TYPE_TARGET_TYPE (range_type) = index_type;
|
||
|
||
/* This should never be needed. */
|
||
TYPE_LENGTH (range_type) = sizeof (int);
|
||
|
||
TYPE_NFIELDS (range_type) = 2;
|
||
TYPE_FIELDS (range_type) =
|
||
(struct field *) obstack_alloc (&objfile -> type_obstack,
|
||
2 * sizeof (struct field));
|
||
TYPE_FIELD_BITPOS (range_type, 0) = lower;
|
||
TYPE_FIELD_BITPOS (range_type, 1) = upper;
|
||
}
|
||
|
||
TYPE_CODE (type) = TYPE_CODE_ARRAY;
|
||
TYPE_TARGET_TYPE (type) = element_type;
|
||
TYPE_LENGTH (type) = (upper - lower + 1) * TYPE_LENGTH (element_type);
|
||
TYPE_NFIELDS (type) = 1;
|
||
TYPE_FIELDS (type) =
|
||
(struct field *) obstack_alloc (&objfile -> type_obstack,
|
||
sizeof (struct field));
|
||
TYPE_FIELD_TYPE (type, 0) = range_type;
|
||
|
||
/* If we have an array whose element type is not yet known, but whose
|
||
bounds *are* known, record it to be adjusted at the end of the file. */
|
||
if (TYPE_LENGTH (element_type) == 0 && !adjustable)
|
||
add_undefined_type (type);
|
||
|
||
return type;
|
||
}
|
||
|
||
|
||
/* Read a definition of an enumeration type,
|
||
and create and return a suitable type object.
|
||
Also defines the symbols that represent the values of the type. */
|
||
|
||
static struct type *
|
||
read_enum_type (pp, type, objfile)
|
||
register char **pp;
|
||
register struct type *type;
|
||
struct objfile *objfile;
|
||
{
|
||
register char *p;
|
||
char *name;
|
||
register long n;
|
||
register struct symbol *sym;
|
||
int nsyms = 0;
|
||
struct pending **symlist;
|
||
struct pending *osyms, *syms;
|
||
int o_nsyms;
|
||
|
||
if (within_function)
|
||
symlist = &local_symbols;
|
||
else
|
||
symlist = &file_symbols;
|
||
osyms = *symlist;
|
||
o_nsyms = osyms ? osyms->nsyms : 0;
|
||
|
||
/* Read the value-names and their values.
|
||
The input syntax is NAME:VALUE,NAME:VALUE, and so on.
|
||
A semicolon or comma instead of a NAME means the end. */
|
||
while (**pp && **pp != ';' && **pp != ',')
|
||
{
|
||
/* Check for and handle cretinous dbx symbol name continuation! */
|
||
if (**pp == '\\') *pp = next_symbol_text ();
|
||
|
||
p = *pp;
|
||
while (*p != ':') p++;
|
||
name = obsavestring (*pp, p - *pp, &objfile -> symbol_obstack);
|
||
*pp = p + 1;
|
||
n = read_number (pp, ',');
|
||
|
||
sym = (struct symbol *) obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
|
||
bzero (sym, sizeof (struct symbol));
|
||
SYMBOL_NAME (sym) = name;
|
||
SYMBOL_CLASS (sym) = LOC_CONST;
|
||
SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
|
||
SYMBOL_VALUE (sym) = n;
|
||
add_symbol_to_list (sym, symlist);
|
||
nsyms++;
|
||
}
|
||
|
||
if (**pp == ';')
|
||
(*pp)++; /* Skip the semicolon. */
|
||
|
||
/* Now fill in the fields of the type-structure. */
|
||
|
||
TYPE_LENGTH (type) = sizeof (int);
|
||
TYPE_CODE (type) = TYPE_CODE_ENUM;
|
||
TYPE_NFIELDS (type) = nsyms;
|
||
TYPE_FIELDS (type) = (struct field *)
|
||
obstack_alloc (&objfile -> type_obstack,
|
||
sizeof (struct field) * nsyms);
|
||
|
||
/* Find the symbols for the values and put them into the type.
|
||
The symbols can be found in the symlist that we put them on
|
||
to cause them to be defined. osyms contains the old value
|
||
of that symlist; everything up to there was defined by us. */
|
||
/* Note that we preserve the order of the enum constants, so
|
||
that in something like "enum {FOO, LAST_THING=FOO}" we print
|
||
FOO, not LAST_THING. */
|
||
|
||
for (syms = *symlist, n = 0; syms; syms = syms->next)
|
||
{
|
||
int j = 0;
|
||
if (syms == osyms)
|
||
j = o_nsyms;
|
||
for (; j < syms->nsyms; j++,n++)
|
||
{
|
||
struct symbol *xsym = syms->symbol[j];
|
||
SYMBOL_TYPE (xsym) = type;
|
||
TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (xsym);
|
||
TYPE_FIELD_VALUE (type, n) = 0;
|
||
TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
|
||
TYPE_FIELD_BITSIZE (type, n) = 0;
|
||
}
|
||
if (syms == osyms)
|
||
break;
|
||
}
|
||
|
||
#if 0
|
||
/* This screws up perfectly good C programs with enums. FIXME. */
|
||
/* Is this Modula-2's BOOLEAN type? Flag it as such if so. */
|
||
if(TYPE_NFIELDS(type) == 2 &&
|
||
((!strcmp(TYPE_FIELD_NAME(type,0),"TRUE") &&
|
||
!strcmp(TYPE_FIELD_NAME(type,1),"FALSE")) ||
|
||
(!strcmp(TYPE_FIELD_NAME(type,1),"TRUE") &&
|
||
!strcmp(TYPE_FIELD_NAME(type,0),"FALSE"))))
|
||
TYPE_CODE(type) = TYPE_CODE_BOOL;
|
||
#endif
|
||
|
||
return type;
|
||
}
|
||
|
||
/* Read a number from the string pointed to by *PP.
|
||
The value of *PP is advanced over the number.
|
||
If END is nonzero, the character that ends the
|
||
number must match END, or an error happens;
|
||
and that character is skipped if it does match.
|
||
If END is zero, *PP is left pointing to that character.
|
||
|
||
If the number fits in a long, set *VALUE and set *BITS to 0.
|
||
If not, set *BITS to be the number of bits in the number.
|
||
|
||
If encounter garbage, set *BITS to -1. */
|
||
|
||
static void
|
||
read_huge_number (pp, end, valu, bits)
|
||
char **pp;
|
||
int end;
|
||
long *valu;
|
||
int *bits;
|
||
{
|
||
char *p = *pp;
|
||
int sign = 1;
|
||
long n = 0;
|
||
int radix = 10;
|
||
char overflow = 0;
|
||
int nbits = 0;
|
||
int c;
|
||
long upper_limit;
|
||
|
||
if (*p == '-')
|
||
{
|
||
sign = -1;
|
||
p++;
|
||
}
|
||
|
||
/* Leading zero means octal. GCC uses this to output values larger
|
||
than an int (because that would be hard in decimal). */
|
||
if (*p == '0')
|
||
{
|
||
radix = 8;
|
||
p++;
|
||
}
|
||
|
||
upper_limit = LONG_MAX / radix;
|
||
while ((c = *p++) >= '0' && c <= ('0' + radix))
|
||
{
|
||
if (n <= upper_limit)
|
||
{
|
||
n *= radix;
|
||
n += c - '0'; /* FIXME this overflows anyway */
|
||
}
|
||
else
|
||
overflow = 1;
|
||
|
||
/* This depends on large values being output in octal, which is
|
||
what GCC does. */
|
||
if (radix == 8)
|
||
{
|
||
if (nbits == 0)
|
||
{
|
||
if (c == '0')
|
||
/* Ignore leading zeroes. */
|
||
;
|
||
else if (c == '1')
|
||
nbits = 1;
|
||
else if (c == '2' || c == '3')
|
||
nbits = 2;
|
||
else
|
||
nbits = 3;
|
||
}
|
||
else
|
||
nbits += 3;
|
||
}
|
||
}
|
||
if (end)
|
||
{
|
||
if (c && c != end)
|
||
{
|
||
if (bits != NULL)
|
||
*bits = -1;
|
||
return;
|
||
}
|
||
}
|
||
else
|
||
--p;
|
||
|
||
*pp = p;
|
||
if (overflow)
|
||
{
|
||
if (nbits == 0)
|
||
{
|
||
/* Large decimal constants are an error (because it is hard to
|
||
count how many bits are in them). */
|
||
if (bits != NULL)
|
||
*bits = -1;
|
||
return;
|
||
}
|
||
|
||
/* -0x7f is the same as 0x80. So deal with it by adding one to
|
||
the number of bits. */
|
||
if (sign == -1)
|
||
++nbits;
|
||
if (bits)
|
||
*bits = nbits;
|
||
}
|
||
else
|
||
{
|
||
if (valu)
|
||
*valu = n * sign;
|
||
if (bits)
|
||
*bits = 0;
|
||
}
|
||
}
|
||
|
||
#define MAX_OF_C_TYPE(t) ((1 << (sizeof (t)*8 - 1)) - 1)
|
||
#define MIN_OF_C_TYPE(t) (-(1 << (sizeof (t)*8 - 1)))
|
||
|
||
static struct type *
|
||
read_range_type (pp, typenums, objfile)
|
||
char **pp;
|
||
int typenums[2];
|
||
struct objfile *objfile;
|
||
{
|
||
int rangenums[2];
|
||
long n2, n3;
|
||
int n2bits, n3bits;
|
||
int self_subrange;
|
||
struct type *result_type;
|
||
|
||
/* First comes a type we are a subrange of.
|
||
In C it is usually 0, 1 or the type being defined. */
|
||
read_type_number (pp, rangenums);
|
||
self_subrange = (rangenums[0] == typenums[0] &&
|
||
rangenums[1] == typenums[1]);
|
||
|
||
/* A semicolon should now follow; skip it. */
|
||
if (**pp == ';')
|
||
(*pp)++;
|
||
|
||
/* The remaining two operands are usually lower and upper bounds
|
||
of the range. But in some special cases they mean something else. */
|
||
read_huge_number (pp, ';', &n2, &n2bits);
|
||
read_huge_number (pp, ';', &n3, &n3bits);
|
||
|
||
if (n2bits == -1 || n3bits == -1)
|
||
return error_type (pp);
|
||
|
||
/* If limits are huge, must be large integral type. */
|
||
if (n2bits != 0 || n3bits != 0)
|
||
{
|
||
char got_signed = 0;
|
||
char got_unsigned = 0;
|
||
/* Number of bits in the type. */
|
||
int nbits;
|
||
|
||
/* Range from 0 to <large number> is an unsigned large integral type. */
|
||
if ((n2bits == 0 && n2 == 0) && n3bits != 0)
|
||
{
|
||
got_unsigned = 1;
|
||
nbits = n3bits;
|
||
}
|
||
/* Range from <large number> to <large number>-1 is a large signed
|
||
integral type. */
|
||
else if (n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
|
||
{
|
||
got_signed = 1;
|
||
nbits = n2bits;
|
||
}
|
||
|
||
/* Check for "long long". */
|
||
if (got_signed && nbits == TARGET_LONG_LONG_BIT)
|
||
return (lookup_fundamental_type (objfile, FT_LONG_LONG));
|
||
if (got_unsigned && nbits == TARGET_LONG_LONG_BIT)
|
||
return (lookup_fundamental_type (objfile, FT_UNSIGNED_LONG_LONG));
|
||
|
||
if (got_signed || got_unsigned)
|
||
{
|
||
result_type = (struct type *)
|
||
obstack_alloc (&objfile -> type_obstack,
|
||
sizeof (struct type));
|
||
bzero (result_type, sizeof (struct type));
|
||
TYPE_OBJFILE (result_type) = objfile;
|
||
TYPE_LENGTH (result_type) = nbits / TARGET_CHAR_BIT;
|
||
TYPE_CODE (result_type) = TYPE_CODE_INT;
|
||
if (got_unsigned)
|
||
TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
|
||
return result_type;
|
||
}
|
||
else
|
||
return error_type (pp);
|
||
}
|
||
|
||
/* A type defined as a subrange of itself, with bounds both 0, is void. */
|
||
if (self_subrange && n2 == 0 && n3 == 0)
|
||
return (lookup_fundamental_type (objfile, FT_VOID));
|
||
|
||
/* If n3 is zero and n2 is not, we want a floating type,
|
||
and n2 is the width in bytes.
|
||
|
||
Fortran programs appear to use this for complex types also,
|
||
and they give no way to distinguish between double and single-complex!
|
||
We don't have complex types, so we would lose on all fortran files!
|
||
So return type `double' for all of those. It won't work right
|
||
for the complex values, but at least it makes the file loadable.
|
||
|
||
FIXME, we may be able to distinguish these by their names. FIXME. */
|
||
|
||
if (n3 == 0 && n2 > 0)
|
||
{
|
||
if (n2 == sizeof (float))
|
||
return (lookup_fundamental_type (objfile, FT_FLOAT));
|
||
return (lookup_fundamental_type (objfile, FT_DBL_PREC_FLOAT));
|
||
}
|
||
|
||
/* If the upper bound is -1, it must really be an unsigned int. */
|
||
|
||
else if (n2 == 0 && n3 == -1)
|
||
{
|
||
/* FIXME -- the only way to distinguish `unsigned int' from `unsigned
|
||
long' is to look at its name! */
|
||
if (
|
||
long_kludge_name && ((long_kludge_name[0] == 'u' /* unsigned */ &&
|
||
long_kludge_name[9] == 'l' /* long */)
|
||
|| (long_kludge_name[0] == 'l' /* long unsigned */)))
|
||
return (lookup_fundamental_type (objfile, FT_UNSIGNED_LONG));
|
||
else
|
||
return (lookup_fundamental_type (objfile, FT_UNSIGNED_INTEGER));
|
||
}
|
||
|
||
/* Special case: char is defined (Who knows why) as a subrange of
|
||
itself with range 0-127. */
|
||
else if (self_subrange && n2 == 0 && n3 == 127)
|
||
return (lookup_fundamental_type (objfile, FT_CHAR));
|
||
|
||
/* Assumptions made here: Subrange of self is equivalent to subrange
|
||
of int. FIXME: Host and target type-sizes assumed the same. */
|
||
/* FIXME: This is the *only* place in GDB that depends on comparing
|
||
some type to a builtin type with ==. Fix it! */
|
||
else if (n2 == 0
|
||
&& (self_subrange ||
|
||
*dbx_lookup_type (rangenums) == lookup_fundamental_type (objfile, FT_INTEGER)))
|
||
{
|
||
/* an unsigned type */
|
||
#ifdef LONG_LONG
|
||
if (n3 == - sizeof (long long))
|
||
return (lookup_fundamental_type (objfile, FT_UNSIGNED_LONG_LONG));
|
||
#endif
|
||
/* FIXME -- the only way to distinguish `unsigned int' from `unsigned
|
||
long' is to look at its name! */
|
||
if (n3 == (unsigned long)~0L &&
|
||
long_kludge_name && ((long_kludge_name[0] == 'u' /* unsigned */ &&
|
||
long_kludge_name[9] == 'l' /* long */)
|
||
|| (long_kludge_name[0] == 'l' /* long unsigned */)))
|
||
return (lookup_fundamental_type (objfile, FT_UNSIGNED_LONG));
|
||
if (n3 == (unsigned int)~0L)
|
||
return (lookup_fundamental_type (objfile, FT_UNSIGNED_INTEGER));
|
||
if (n3 == (unsigned short)~0L)
|
||
return (lookup_fundamental_type (objfile, FT_UNSIGNED_SHORT));
|
||
if (n3 == (unsigned char)~0L)
|
||
return (lookup_fundamental_type (objfile, FT_UNSIGNED_CHAR));
|
||
}
|
||
#ifdef LONG_LONG
|
||
else if (n3 == 0 && n2 == -sizeof (long long))
|
||
return (lookup_fundamental_type (objfile, FT_LONG_LONG));
|
||
#endif
|
||
else if (n2 == -n3 -1)
|
||
{
|
||
/* a signed type */
|
||
/* FIXME -- the only way to distinguish `int' from `long' is to look
|
||
at its name! */
|
||
if ((n3 == (1 << (8 * sizeof (long) - 1)) - 1) &&
|
||
long_kludge_name && long_kludge_name[0] == 'l' /* long */)
|
||
return (lookup_fundamental_type (objfile, FT_LONG));
|
||
if (n3 == (1 << (8 * sizeof (int) - 1)) - 1)
|
||
return (lookup_fundamental_type (objfile, FT_INTEGER));
|
||
if (n3 == (1 << (8 * sizeof (short) - 1)) - 1)
|
||
return (lookup_fundamental_type (objfile, FT_SHORT));
|
||
if (n3 == (1 << (8 * sizeof (char) - 1)) - 1)
|
||
return (lookup_fundamental_type (objfile, FT_CHAR));
|
||
}
|
||
|
||
/* We have a real range type on our hands. Allocate space and
|
||
return a real pointer. */
|
||
|
||
/* At this point I don't have the faintest idea how to deal with
|
||
a self_subrange type; I'm going to assume that this is used
|
||
as an idiom, and that all of them are special cases. So . . . */
|
||
if (self_subrange)
|
||
return error_type (pp);
|
||
|
||
result_type = (struct type *)
|
||
obstack_alloc (&objfile -> type_obstack, sizeof (struct type));
|
||
bzero (result_type, sizeof (struct type));
|
||
TYPE_OBJFILE (result_type) = objfile;
|
||
|
||
TYPE_CODE (result_type) = TYPE_CODE_RANGE;
|
||
|
||
TYPE_TARGET_TYPE (result_type) = *dbx_lookup_type(rangenums);
|
||
if (TYPE_TARGET_TYPE (result_type) == 0) {
|
||
complain (&range_type_base_complaint, (char *) rangenums[1]);
|
||
TYPE_TARGET_TYPE (result_type) = lookup_fundamental_type (objfile, FT_INTEGER);
|
||
}
|
||
|
||
TYPE_NFIELDS (result_type) = 2;
|
||
TYPE_FIELDS (result_type) =
|
||
(struct field *) obstack_alloc (&objfile -> type_obstack,
|
||
2 * sizeof (struct field));
|
||
bzero (TYPE_FIELDS (result_type), 2 * sizeof (struct field));
|
||
TYPE_FIELD_BITPOS (result_type, 0) = n2;
|
||
TYPE_FIELD_BITPOS (result_type, 1) = n3;
|
||
|
||
TYPE_LENGTH (result_type) = TYPE_LENGTH (TYPE_TARGET_TYPE (result_type));
|
||
|
||
return result_type;
|
||
}
|
||
|
||
/* Read a number from the string pointed to by *PP.
|
||
The value of *PP is advanced over the number.
|
||
If END is nonzero, the character that ends the
|
||
number must match END, or an error happens;
|
||
and that character is skipped if it does match.
|
||
If END is zero, *PP is left pointing to that character. */
|
||
|
||
long
|
||
read_number (pp, end)
|
||
char **pp;
|
||
int end;
|
||
{
|
||
register char *p = *pp;
|
||
register long n = 0;
|
||
register int c;
|
||
int sign = 1;
|
||
|
||
/* Handle an optional leading minus sign. */
|
||
|
||
if (*p == '-')
|
||
{
|
||
sign = -1;
|
||
p++;
|
||
}
|
||
|
||
/* Read the digits, as far as they go. */
|
||
|
||
while ((c = *p++) >= '0' && c <= '9')
|
||
{
|
||
n *= 10;
|
||
n += c - '0';
|
||
}
|
||
if (end)
|
||
{
|
||
if (c && c != end)
|
||
error ("Invalid symbol data: invalid character \\%03o at symbol pos %d.", c, symnum);
|
||
}
|
||
else
|
||
--p;
|
||
|
||
*pp = p;
|
||
return n * sign;
|
||
}
|
||
|
||
/* Read in an argument list. This is a list of types, separated by commas
|
||
and terminated with END. Return the list of types read in, or (struct type
|
||
**)-1 if there is an error. */
|
||
static struct type **
|
||
read_args (pp, end, objfile)
|
||
char **pp;
|
||
int end;
|
||
struct objfile *objfile;
|
||
{
|
||
/* FIXME! Remove this arbitrary limit! */
|
||
struct type *types[1024], **rval; /* allow for fns of 1023 parameters */
|
||
int n = 0;
|
||
|
||
while (**pp != end)
|
||
{
|
||
if (**pp != ',')
|
||
/* Invalid argument list: no ','. */
|
||
return (struct type **)-1;
|
||
*pp += 1;
|
||
|
||
/* Check for and handle cretinous dbx symbol name continuation! */
|
||
if (**pp == '\\')
|
||
*pp = next_symbol_text ();
|
||
|
||
types[n++] = read_type (pp, objfile);
|
||
}
|
||
*pp += 1; /* get past `end' (the ':' character) */
|
||
|
||
if (n == 1)
|
||
{
|
||
rval = (struct type **) xmalloc (2 * sizeof (struct type *));
|
||
}
|
||
else if (TYPE_CODE (types[n-1]) != TYPE_CODE_VOID)
|
||
{
|
||
rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
|
||
bzero (rval + n, sizeof (struct type *));
|
||
}
|
||
else
|
||
{
|
||
rval = (struct type **) xmalloc (n * sizeof (struct type *));
|
||
}
|
||
memcpy (rval, types, n * sizeof (struct type *));
|
||
return rval;
|
||
}
|
||
|
||
/* Add a common block's start address to the offset of each symbol
|
||
declared to be in it (by being between a BCOMM/ECOMM pair that uses
|
||
the common block name). */
|
||
|
||
static void
|
||
fix_common_block (sym, valu)
|
||
struct symbol *sym;
|
||
int valu;
|
||
{
|
||
struct pending *next = (struct pending *) SYMBOL_NAMESPACE (sym);
|
||
for ( ; next; next = next->next)
|
||
{
|
||
register int j;
|
||
for (j = next->nsyms - 1; j >= 0; j--)
|
||
SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
|
||
}
|
||
}
|
||
|
||
/* Initializer for this module */
|
||
void
|
||
_initialize_buildsym ()
|
||
{
|
||
undef_types_allocated = 20;
|
||
undef_types_length = 0;
|
||
undef_types = (struct type **) xmalloc (undef_types_allocated *
|
||
sizeof (struct type *));
|
||
}
|