binutils-gdb/bfd/archures.c
1995-01-12 20:29:22 +00:00

766 lines
17 KiB
C

/* BFD library support routines for architectures.
Copyright (C) 1990, 91, 92, 93, 94 Free Software Foundation, Inc.
Hacked by John Gilmore and Steve Chamberlain of Cygnus Support.
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
/*
SECTION
Architectures
BFD keeps one atom in a BFD describing the
architecture of the data attached to the BFD: a pointer to a
<<bfd_arch_info_type>>.
Pointers to structures can be requested independently of a BFD
so that an architecture's information can be interrogated
without access to an open BFD.
The architecture information is provided by each architecture package.
The set of default architectures is selected by the macro
<<SELECT_ARCHITECTURES>>. This is normally set up in the
@file{config/@var{target}.mt} file of your choice. If the name is not
defined, then all the architectures supported are included.
When BFD starts up, all the architectures are called with an
initialize method. It is up to the architecture back end to
insert as many items into the list of architectures as it wants to;
generally this would be one for each machine and one for the
default case (an item with a machine field of 0).
BFD's idea of an architecture is implemented in @file{archures.c}.
*/
/*
SUBSECTION
bfd_architecture
DESCRIPTION
This enum gives the object file's CPU architecture, in a
global sense---i.e., what processor family does it belong to?
Another field indicates which processor within
the family is in use. The machine gives a number which
distinguishes different versions of the architecture,
containing, for example, 2 and 3 for Intel i960 KA and i960 KB,
and 68020 and 68030 for Motorola 68020 and 68030.
.enum bfd_architecture
.{
. bfd_arch_unknown, {* File arch not known *}
. bfd_arch_obscure, {* Arch known, not one of these *}
. bfd_arch_m68k, {* Motorola 68xxx *}
. bfd_arch_vax, {* DEC Vax *}
. bfd_arch_i960, {* Intel 960 *}
. {* The order of the following is important.
. lower number indicates a machine type that
. only accepts a subset of the instructions
. available to machines with higher numbers.
. The exception is the "ca", which is
. incompatible with all other machines except
. "core". *}
.
.#define bfd_mach_i960_core 1
.#define bfd_mach_i960_ka_sa 2
.#define bfd_mach_i960_kb_sb 3
.#define bfd_mach_i960_mc 4
.#define bfd_mach_i960_xa 5
.#define bfd_mach_i960_ca 6
. {* start-sanitize-i960xl *}
.#define bfd_mach_i960_xl 7
. {* end-sanitize-i960xl *}
.
. bfd_arch_a29k, {* AMD 29000 *}
. bfd_arch_sparc, {* SPARC *}
. bfd_arch_mips, {* MIPS Rxxxx *}
. bfd_arch_i386, {* Intel 386 *}
. bfd_arch_we32k, {* AT&T WE32xxx *}
. bfd_arch_tahoe, {* CCI/Harris Tahoe *}
. bfd_arch_i860, {* Intel 860 *}
. bfd_arch_romp, {* IBM ROMP PC/RT *}
. bfd_arch_alliant, {* Alliant *}
. bfd_arch_convex, {* Convex *}
. bfd_arch_m88k, {* Motorola 88xxx *}
. bfd_arch_pyramid, {* Pyramid Technology *}
. bfd_arch_h8300, {* Hitachi H8/300 *}
.#define bfd_mach_h8300 1
.#define bfd_mach_h8300h 2
. bfd_arch_powerpc, {* PowerPC *}
. bfd_arch_rs6000, {* IBM RS/6000 *}
. bfd_arch_hppa, {* HP PA RISC *}
. bfd_arch_z8k, {* Zilog Z8000 *}
.#define bfd_mach_z8001 1
.#define bfd_mach_z8002 2
. bfd_arch_h8500, {* Hitachi H8/500 *}
. bfd_arch_sh, {* Hitachi SH *}
. bfd_arch_alpha, {* Dec Alpha *}
. bfd_arch_arm, {* Advanced Risc Machines ARM *}
. bfd_arch_ns32k, {* National Semiconductors ns32000 *}
. {* start-sanitize-rce *}
. bfd_arch_rce, {* Motorola RCE *}
. {* end-sanitize-rce *}
. {* start-sanitize-arc *}
. bfd_arch_arc, {* Argonaut RISC Core *}
. {* end-sanitize-arc *}
. bfd_arch_last
. };
*/
#include "bfd.h"
#include "sysdep.h"
#include "libbfd.h"
/*
SUBSECTION
bfd_arch_info
DESCRIPTION
This structure contains information on architectures for use
within BFD.
.
.typedef struct bfd_arch_info
.{
. int bits_per_word;
. int bits_per_address;
. int bits_per_byte;
. enum bfd_architecture arch;
. long mach;
. char *arch_name;
. CONST char *printable_name;
. unsigned int section_align_power;
. {* true if this is the default machine for the architecture *}
. boolean the_default;
. CONST struct bfd_arch_info * (*compatible)
. PARAMS ((CONST struct bfd_arch_info *a,
. CONST struct bfd_arch_info *b));
.
. boolean (*scan) PARAMS ((CONST struct bfd_arch_info *, CONST char *));
. {* How to disassemble an instruction, producing a printable
. representation on a specified stdio stream. This isn't
. defined for most processors at present, because of the size
. of the additional tables it would drag in, and because gdb
. wants to use a different interface. *}
. unsigned int (*disassemble) PARAMS ((bfd_vma addr, CONST char *data,
. PTR stream));
.
. struct bfd_arch_info *next;
.} bfd_arch_info_type;
*/
bfd_arch_info_type *bfd_arch_info_list;
/*
FUNCTION
bfd_printable_name
SYNOPSIS
CONST char *bfd_printable_name(bfd *abfd);
DESCRIPTION
Return a printable string representing the architecture and machine
from the pointer to the architecture info structure.
*/
CONST char *
bfd_printable_name (abfd)
bfd *abfd;
{
return abfd->arch_info->printable_name;
}
/*
FUNCTION
bfd_scan_arch
SYNOPSIS
bfd_arch_info_type *bfd_scan_arch(CONST char *string);
DESCRIPTION
Figure out if BFD supports any cpu which could be described with
the name @var{string}. Return a pointer to an <<arch_info>>
structure if a machine is found, otherwise NULL.
*/
bfd_arch_info_type *
bfd_scan_arch (string)
CONST char *string;
{
struct bfd_arch_info *ap;
/* Look through all the installed architectures */
for (ap = bfd_arch_info_list;
ap != (bfd_arch_info_type *)NULL;
ap = ap->next) {
if (ap->scan(ap, string))
return ap;
}
return (bfd_arch_info_type *)NULL;
}
/*
FUNCTION
bfd_arch_get_compatible
SYNOPSIS
CONST bfd_arch_info_type *bfd_arch_get_compatible(
CONST bfd *abfd,
CONST bfd *bbfd);
DESCRIPTION
Determine whether two BFDs'
architectures and machine types are compatible. Calculates
the lowest common denominator between the two architectures
and machine types implied by the BFDs and returns a pointer to
an <<arch_info>> structure describing the compatible machine.
*/
CONST bfd_arch_info_type *
bfd_arch_get_compatible (abfd, bbfd)
CONST bfd *abfd;
CONST bfd *bbfd;
{
return abfd->arch_info->compatible(abfd->arch_info,bbfd->arch_info);
}
/*
INTERNAL_DEFINITION
bfd_default_arch_struct
DESCRIPTION
The <<bfd_default_arch_struct>> is an item of
<<bfd_arch_info_type>> which has been initialized to a fairly
generic state. A BFD starts life by pointing to this
structure, until the correct back end has determined the real
architecture of the file.
.extern bfd_arch_info_type bfd_default_arch_struct;
*/
bfd_arch_info_type bfd_default_arch_struct =
{
32,32,8,bfd_arch_unknown,0,"unknown","unknown",2,true,
bfd_default_compatible,
bfd_default_scan,
0,
};
/*
FUNCTION
bfd_set_arch_info
SYNOPSIS
void bfd_set_arch_info(bfd *abfd, bfd_arch_info_type *arg);
DESCRIPTION
Set the architecture info of @var{abfd} to @var{arg}.
*/
void
bfd_set_arch_info (abfd, arg)
bfd *abfd;
bfd_arch_info_type *arg;
{
abfd->arch_info = arg;
}
/*
INTERNAL_FUNCTION
bfd_default_set_arch_mach
SYNOPSIS
boolean bfd_default_set_arch_mach(bfd *abfd,
enum bfd_architecture arch,
unsigned long mach);
DESCRIPTION
Set the architecture and machine type in BFD @var{abfd}
to @var{arch} and @var{mach}. Find the correct
pointer to a structure and insert it into the <<arch_info>>
pointer.
*/
boolean
bfd_default_set_arch_mach (abfd, arch, mach)
bfd *abfd;
enum bfd_architecture arch;
unsigned long mach;
{
static struct bfd_arch_info *old_ptr = &bfd_default_arch_struct;
boolean found = false;
/* run through the table to find the one we want, we keep a little
cache to speed things up */
if (old_ptr == 0 || arch != old_ptr->arch || mach != old_ptr->mach) {
bfd_arch_info_type *ptr;
old_ptr = (bfd_arch_info_type *)NULL;
for (ptr = bfd_arch_info_list;
ptr != (bfd_arch_info_type *)NULL;
ptr= ptr->next) {
if (ptr->arch == arch &&
((ptr->mach == mach) || (ptr->the_default && mach == 0))) {
old_ptr = ptr;
found = true;
break;
}
}
if (found==false) {
/*looked for it and it wasn't there, so put in the default */
old_ptr = &bfd_default_arch_struct;
bfd_set_error (bfd_error_bad_value);
}
}
else {
/* it was in the cache */
found = true;
}
abfd->arch_info = old_ptr;
return found;
}
/*
FUNCTION
bfd_get_arch
SYNOPSIS
enum bfd_architecture bfd_get_arch(bfd *abfd);
DESCRIPTION
Return the enumerated type which describes the BFD @var{abfd}'s
architecture.
*/
enum bfd_architecture
bfd_get_arch (abfd)
bfd *abfd;
{
return abfd->arch_info->arch;
}
/*
FUNCTION
bfd_get_mach
SYNOPSIS
unsigned long bfd_get_mach(bfd *abfd);
DESCRIPTION
Return the long type which describes the BFD @var{abfd}'s
machine.
*/
unsigned long
bfd_get_mach (abfd)
bfd *abfd;
{
return abfd->arch_info->mach;
}
/*
FUNCTION
bfd_arch_bits_per_byte
SYNOPSIS
unsigned int bfd_arch_bits_per_byte(bfd *abfd);
DESCRIPTION
Return the number of bits in one of the BFD @var{abfd}'s
architecture's bytes.
*/
unsigned int
bfd_arch_bits_per_byte (abfd)
bfd *abfd;
{
return abfd->arch_info->bits_per_byte;
}
/*
FUNCTION
bfd_arch_bits_per_address
SYNOPSIS
unsigned int bfd_arch_bits_per_address(bfd *abfd);
DESCRIPTION
Return the number of bits in one of the BFD @var{abfd}'s
architecture's addresses.
*/
unsigned int
bfd_arch_bits_per_address (abfd)
bfd *abfd;
{
return abfd->arch_info->bits_per_address;
}
extern void bfd_a29k_arch PARAMS ((void));
extern void bfd_alpha_arch PARAMS ((void));
/* start-sanitize-arc */
extern void bfd_arc_arch PARAMS ((void));
/* end-sanitize-arc */
extern void bfd_arm_arch PARAMS ((void));
extern void bfd_h8300_arch PARAMS ((void));
extern void bfd_h8500_arch PARAMS ((void));
extern void bfd_hppa_arch PARAMS ((void));
extern void bfd_i386_arch PARAMS ((void));
extern void bfd_i960_arch PARAMS ((void));
extern void bfd_m68k_arch PARAMS ((void));
extern void bfd_m88k_arch PARAMS ((void));
extern void bfd_mips_arch PARAMS ((void));
extern void bfd_powerpc_arch PARAMS ((void));
extern void bfd_rs6000_arch PARAMS ((void));
extern void bfd_sh_arch PARAMS ((void));
/* start-sanitize-rce */
extern void bfd_rce_arch PARAMS ((void));
/* end-sanitize-rce */
extern void bfd_sparc_arch PARAMS ((void));
extern void bfd_vax_arch PARAMS ((void));
extern void bfd_we32k_arch PARAMS ((void));
extern void bfd_z8k_arch PARAMS ((void));
extern void bfd_ns32k_arch PARAMS ((void));
static void (*const archures_init_table[]) PARAMS ((void)) =
{
#ifdef SELECT_ARCHITECTURES
SELECT_ARCHITECTURES,
#else
bfd_a29k_arch,
bfd_alpha_arch,
/* start-sanitize-arc */
bfd_arc_arch,
/* end-sanitize-arc */
bfd_arm_arch,
bfd_h8300_arch,
bfd_h8500_arch,
bfd_hppa_arch,
bfd_i386_arch,
bfd_i960_arch,
bfd_m68k_arch,
bfd_m88k_arch,
bfd_mips_arch,
bfd_powerpc_arch,
bfd_rs6000_arch,
bfd_sh_arch,
/* start-sanitize-rce */
bfd_rce_arch,
/* end-sanitize-rce */
bfd_sparc_arch,
bfd_vax_arch,
bfd_we32k_arch,
bfd_z8k_arch,
bfd_ns32k_arch,
#endif
0
};
/*
INTERNAL_FUNCTION
bfd_arch_init
SYNOPSIS
void bfd_arch_init(void);
DESCRIPTION
Initialize the architecture dispatch table by
calling all installed architecture packages and getting them
to poke around.
*/
void
bfd_arch_init ()
{
void (*const *ptable) PARAMS ((void));
for (ptable = archures_init_table; *ptable ; ptable++)
(*ptable)();
}
/*
INTERNAL_FUNCTION
bfd_arch_linkin
SYNOPSIS
void bfd_arch_linkin(bfd_arch_info_type *ptr);
DESCRIPTION
Link the architecture info structure @var{ptr} into the list.
*/
void
bfd_arch_linkin (ptr)
bfd_arch_info_type *ptr;
{
ptr->next = bfd_arch_info_list;
bfd_arch_info_list = ptr;
}
/*
INTERNAL_FUNCTION
bfd_default_compatible
SYNOPSIS
CONST bfd_arch_info_type *bfd_default_compatible
(CONST bfd_arch_info_type *a,
CONST bfd_arch_info_type *b);
DESCRIPTION
The default function for testing for compatibility.
*/
CONST bfd_arch_info_type *
bfd_default_compatible (a,b)
CONST bfd_arch_info_type *a;
CONST bfd_arch_info_type *b;
{
if(a->arch != b->arch) return NULL;
if (a->mach > b->mach) {
return a;
}
if (b->mach > a->mach) {
return b;
}
return a;
}
/*
INTERNAL_FUNCTION
bfd_default_scan
SYNOPSIS
boolean bfd_default_scan(CONST struct bfd_arch_info *info, CONST char *string);
DESCRIPTION
The default function for working out whether this is an
architecture hit and a machine hit.
*/
boolean
bfd_default_scan (info, string)
CONST struct bfd_arch_info *info;
CONST char *string;
{
CONST char *ptr_src;
CONST char *ptr_tst;
unsigned long number;
enum bfd_architecture arch;
/* First test for an exact match */
if (strcmp(string, info->printable_name) == 0) return true;
/* See how much of the supplied string matches with the
architecture, eg the string m68k:68020 would match the 68k entry
up to the :, then we get left with the machine number */
for (ptr_src = string,
ptr_tst = info->arch_name;
*ptr_src && *ptr_tst;
ptr_src++,
ptr_tst++)
{
if (*ptr_src != *ptr_tst) break;
}
/* Chewed up as much of the architecture as will match, skip any
colons */
if (*ptr_src == ':') ptr_src++;
if (*ptr_src == 0) {
/* nothing more, then only keep this one if it is the default
machine for this architecture */
return info->the_default;
}
number = 0;
while (isdigit(*ptr_src)) {
number = number * 10 + *ptr_src - '0';
ptr_src++;
}
switch (number)
{
case 300:
arch = bfd_arch_h8300;
break;
case 500:
arch = bfd_arch_h8500;
break;
case 68010:
case 68020:
case 68030:
case 68040:
case 68332:
case 68050:
case 68000:
arch = bfd_arch_m68k;
break;
case 386:
case 80386:
case 486:
case 80486:
arch = bfd_arch_i386;
break;
case 29000:
arch = bfd_arch_a29k;
break;
case 8000:
arch = bfd_arch_z8k;
break;
case 32000:
arch = bfd_arch_we32k;
break;
case 860:
case 80860:
arch = bfd_arch_i860;
break;
case 960:
case 80960:
arch = bfd_arch_i960;
break;
case 2000:
case 3000:
case 4000:
case 4400:
arch = bfd_arch_mips;
break;
case 6000:
arch = bfd_arch_rs6000;
break;
default:
return false;
}
if (arch != info->arch)
return false;
if (number != info->mach)
return false;
return true;
}
/*
FUNCTION
bfd_get_arch_info
SYNOPSIS
bfd_arch_info_type * bfd_get_arch_info(bfd *abfd);
DESCRIPTION
Return the architecture info struct in @var{abfd}.
*/
bfd_arch_info_type *
bfd_get_arch_info (abfd)
bfd *abfd;
{
return abfd->arch_info;
}
/*
FUNCTION
bfd_lookup_arch
SYNOPSIS
bfd_arch_info_type *bfd_lookup_arch
(enum bfd_architecture
arch,
long machine);
DESCRIPTION
Look for the architecure info structure which matches the
arguments @var{arch} and @var{machine}. A machine of 0 matches the
machine/architecture structure which marks itself as the
default.
*/
bfd_arch_info_type *
bfd_lookup_arch (arch, machine)
enum bfd_architecture arch;
long machine;
{
bfd_arch_info_type *ap;
bfd_check_init();
for (ap = bfd_arch_info_list;
ap != (bfd_arch_info_type *)NULL;
ap = ap->next) {
if (ap->arch == arch &&
((ap->mach == machine)
|| (ap->the_default && machine == 0))) {
return ap;
}
}
return (bfd_arch_info_type *)NULL;
}
/*
FUNCTION
bfd_printable_arch_mach
SYNOPSIS
CONST char *bfd_printable_arch_mach
(enum bfd_architecture arch, unsigned long machine);
DESCRIPTION
Return a printable string representing the architecture and
machine type.
This routine is depreciated.
*/
CONST char *
bfd_printable_arch_mach (arch, machine)
enum bfd_architecture arch;
unsigned long machine;
{
bfd_arch_info_type *ap = bfd_lookup_arch(arch, machine);
if(ap) return ap->printable_name;
return "UNKNOWN!";
}