4861 lines
138 KiB
C
4861 lines
138 KiB
C
/* Motorola 68k series support for 32-bit ELF
|
||
Copyright 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
|
||
2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
|
||
Free Software Foundation, Inc.
|
||
|
||
This file is part of BFD, the Binary File Descriptor library.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
|
||
MA 02110-1301, USA. */
|
||
|
||
#include "sysdep.h"
|
||
#include "bfd.h"
|
||
#include "bfdlink.h"
|
||
#include "libbfd.h"
|
||
#include "elf-bfd.h"
|
||
#include "elf/m68k.h"
|
||
#include "opcode/m68k.h"
|
||
|
||
static reloc_howto_type *reloc_type_lookup
|
||
PARAMS ((bfd *, bfd_reloc_code_real_type));
|
||
static void rtype_to_howto
|
||
PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
|
||
static struct bfd_hash_entry *elf_m68k_link_hash_newfunc
|
||
PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
|
||
static struct bfd_link_hash_table *elf_m68k_link_hash_table_create
|
||
PARAMS ((bfd *));
|
||
static bfd_boolean elf_m68k_check_relocs
|
||
PARAMS ((bfd *, struct bfd_link_info *, asection *,
|
||
const Elf_Internal_Rela *));
|
||
static bfd_boolean elf_m68k_adjust_dynamic_symbol
|
||
PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
|
||
static bfd_boolean elf_m68k_size_dynamic_sections
|
||
PARAMS ((bfd *, struct bfd_link_info *));
|
||
static bfd_boolean elf_m68k_discard_copies
|
||
PARAMS ((struct elf_link_hash_entry *, PTR));
|
||
static bfd_boolean elf_m68k_relocate_section
|
||
PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
|
||
Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
|
||
static bfd_boolean elf_m68k_finish_dynamic_symbol
|
||
PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
|
||
Elf_Internal_Sym *));
|
||
static bfd_boolean elf_m68k_finish_dynamic_sections
|
||
PARAMS ((bfd *, struct bfd_link_info *));
|
||
|
||
static bfd_boolean elf32_m68k_set_private_flags
|
||
PARAMS ((bfd *, flagword));
|
||
static bfd_boolean elf32_m68k_merge_private_bfd_data
|
||
PARAMS ((bfd *, bfd *));
|
||
static bfd_boolean elf32_m68k_print_private_bfd_data
|
||
PARAMS ((bfd *, PTR));
|
||
static enum elf_reloc_type_class elf32_m68k_reloc_type_class
|
||
PARAMS ((const Elf_Internal_Rela *));
|
||
|
||
static reloc_howto_type howto_table[] = {
|
||
HOWTO(R_68K_NONE, 0, 0, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_NONE", FALSE, 0, 0x00000000,FALSE),
|
||
HOWTO(R_68K_32, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_32", FALSE, 0, 0xffffffff,FALSE),
|
||
HOWTO(R_68K_16, 0, 1,16, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_16", FALSE, 0, 0x0000ffff,FALSE),
|
||
HOWTO(R_68K_8, 0, 0, 8, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_8", FALSE, 0, 0x000000ff,FALSE),
|
||
HOWTO(R_68K_PC32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PC32", FALSE, 0, 0xffffffff,TRUE),
|
||
HOWTO(R_68K_PC16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC16", FALSE, 0, 0x0000ffff,TRUE),
|
||
HOWTO(R_68K_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC8", FALSE, 0, 0x000000ff,TRUE),
|
||
HOWTO(R_68K_GOT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32", FALSE, 0, 0xffffffff,TRUE),
|
||
HOWTO(R_68K_GOT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16", FALSE, 0, 0x0000ffff,TRUE),
|
||
HOWTO(R_68K_GOT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8", FALSE, 0, 0x000000ff,TRUE),
|
||
HOWTO(R_68K_GOT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32O", FALSE, 0, 0xffffffff,FALSE),
|
||
HOWTO(R_68K_GOT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16O", FALSE, 0, 0x0000ffff,FALSE),
|
||
HOWTO(R_68K_GOT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8O", FALSE, 0, 0x000000ff,FALSE),
|
||
HOWTO(R_68K_PLT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32", FALSE, 0, 0xffffffff,TRUE),
|
||
HOWTO(R_68K_PLT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16", FALSE, 0, 0x0000ffff,TRUE),
|
||
HOWTO(R_68K_PLT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8", FALSE, 0, 0x000000ff,TRUE),
|
||
HOWTO(R_68K_PLT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32O", FALSE, 0, 0xffffffff,FALSE),
|
||
HOWTO(R_68K_PLT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16O", FALSE, 0, 0x0000ffff,FALSE),
|
||
HOWTO(R_68K_PLT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8O", FALSE, 0, 0x000000ff,FALSE),
|
||
HOWTO(R_68K_COPY, 0, 0, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_COPY", FALSE, 0, 0xffffffff,FALSE),
|
||
HOWTO(R_68K_GLOB_DAT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_GLOB_DAT", FALSE, 0, 0xffffffff,FALSE),
|
||
HOWTO(R_68K_JMP_SLOT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_JMP_SLOT", FALSE, 0, 0xffffffff,FALSE),
|
||
HOWTO(R_68K_RELATIVE, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_RELATIVE", FALSE, 0, 0xffffffff,FALSE),
|
||
/* GNU extension to record C++ vtable hierarchy. */
|
||
HOWTO (R_68K_GNU_VTINHERIT, /* type */
|
||
0, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
0, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont, /* complain_on_overflow */
|
||
NULL, /* special_function */
|
||
"R_68K_GNU_VTINHERIT", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0, /* dst_mask */
|
||
FALSE),
|
||
/* GNU extension to record C++ vtable member usage. */
|
||
HOWTO (R_68K_GNU_VTENTRY, /* type */
|
||
0, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
0, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont, /* complain_on_overflow */
|
||
_bfd_elf_rel_vtable_reloc_fn, /* special_function */
|
||
"R_68K_GNU_VTENTRY", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0, /* dst_mask */
|
||
FALSE),
|
||
|
||
/* TLS general dynamic variable reference. */
|
||
HOWTO (R_68K_TLS_GD32, /* type */
|
||
0, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
32, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_68K_TLS_GD32", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0xffffffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
HOWTO (R_68K_TLS_GD16, /* type */
|
||
0, /* rightshift */
|
||
1, /* size (0 = byte, 1 = short, 2 = long) */
|
||
16, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_signed, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_68K_TLS_GD16", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0x0000ffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
HOWTO (R_68K_TLS_GD8, /* type */
|
||
0, /* rightshift */
|
||
0, /* size (0 = byte, 1 = short, 2 = long) */
|
||
8, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_signed, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_68K_TLS_GD8", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0x000000ff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
/* TLS local dynamic variable reference. */
|
||
HOWTO (R_68K_TLS_LDM32, /* type */
|
||
0, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
32, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_68K_TLS_LDM32", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0xffffffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
HOWTO (R_68K_TLS_LDM16, /* type */
|
||
0, /* rightshift */
|
||
1, /* size (0 = byte, 1 = short, 2 = long) */
|
||
16, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_signed, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_68K_TLS_LDM16", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0x0000ffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
HOWTO (R_68K_TLS_LDM8, /* type */
|
||
0, /* rightshift */
|
||
0, /* size (0 = byte, 1 = short, 2 = long) */
|
||
8, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_signed, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_68K_TLS_LDM8", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0x000000ff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
HOWTO (R_68K_TLS_LDO32, /* type */
|
||
0, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
32, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_68K_TLS_LDO32", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0xffffffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
HOWTO (R_68K_TLS_LDO16, /* type */
|
||
0, /* rightshift */
|
||
1, /* size (0 = byte, 1 = short, 2 = long) */
|
||
16, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_signed, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_68K_TLS_LDO16", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0x0000ffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
HOWTO (R_68K_TLS_LDO8, /* type */
|
||
0, /* rightshift */
|
||
0, /* size (0 = byte, 1 = short, 2 = long) */
|
||
8, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_signed, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_68K_TLS_LDO8", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0x000000ff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
/* TLS initial execution variable reference. */
|
||
HOWTO (R_68K_TLS_IE32, /* type */
|
||
0, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
32, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_68K_TLS_IE32", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0xffffffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
HOWTO (R_68K_TLS_IE16, /* type */
|
||
0, /* rightshift */
|
||
1, /* size (0 = byte, 1 = short, 2 = long) */
|
||
16, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_signed, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_68K_TLS_IE16", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0x0000ffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
HOWTO (R_68K_TLS_IE8, /* type */
|
||
0, /* rightshift */
|
||
0, /* size (0 = byte, 1 = short, 2 = long) */
|
||
8, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_signed, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_68K_TLS_IE8", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0x000000ff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
/* TLS local execution variable reference. */
|
||
HOWTO (R_68K_TLS_LE32, /* type */
|
||
0, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
32, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_bitfield, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_68K_TLS_LE32", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0xffffffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
HOWTO (R_68K_TLS_LE16, /* type */
|
||
0, /* rightshift */
|
||
1, /* size (0 = byte, 1 = short, 2 = long) */
|
||
16, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_signed, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_68K_TLS_LE16", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0x0000ffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
HOWTO (R_68K_TLS_LE8, /* type */
|
||
0, /* rightshift */
|
||
0, /* size (0 = byte, 1 = short, 2 = long) */
|
||
8, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_signed, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_68K_TLS_LE8", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0x000000ff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
/* TLS GD/LD dynamic relocations. */
|
||
HOWTO (R_68K_TLS_DTPMOD32, /* type */
|
||
0, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
32, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_68K_TLS_DTPMOD32", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0xffffffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
HOWTO (R_68K_TLS_DTPREL32, /* type */
|
||
0, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
32, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_68K_TLS_DTPREL32", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0xffffffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
|
||
HOWTO (R_68K_TLS_TPREL32, /* type */
|
||
0, /* rightshift */
|
||
2, /* size (0 = byte, 1 = short, 2 = long) */
|
||
32, /* bitsize */
|
||
FALSE, /* pc_relative */
|
||
0, /* bitpos */
|
||
complain_overflow_dont, /* complain_on_overflow */
|
||
bfd_elf_generic_reloc, /* special_function */
|
||
"R_68K_TLS_TPREL32", /* name */
|
||
FALSE, /* partial_inplace */
|
||
0, /* src_mask */
|
||
0xffffffff, /* dst_mask */
|
||
FALSE), /* pcrel_offset */
|
||
};
|
||
|
||
static void
|
||
rtype_to_howto (bfd *abfd, arelent *cache_ptr, Elf_Internal_Rela *dst)
|
||
{
|
||
unsigned int indx = ELF32_R_TYPE (dst->r_info);
|
||
|
||
if (indx >= (unsigned int) R_68K_max)
|
||
{
|
||
(*_bfd_error_handler) (_("%B: invalid relocation type %d"),
|
||
abfd, (int) indx);
|
||
indx = R_68K_NONE;
|
||
}
|
||
cache_ptr->howto = &howto_table[indx];
|
||
}
|
||
|
||
#define elf_info_to_howto rtype_to_howto
|
||
|
||
static const struct
|
||
{
|
||
bfd_reloc_code_real_type bfd_val;
|
||
int elf_val;
|
||
}
|
||
reloc_map[] =
|
||
{
|
||
{ BFD_RELOC_NONE, R_68K_NONE },
|
||
{ BFD_RELOC_32, R_68K_32 },
|
||
{ BFD_RELOC_16, R_68K_16 },
|
||
{ BFD_RELOC_8, R_68K_8 },
|
||
{ BFD_RELOC_32_PCREL, R_68K_PC32 },
|
||
{ BFD_RELOC_16_PCREL, R_68K_PC16 },
|
||
{ BFD_RELOC_8_PCREL, R_68K_PC8 },
|
||
{ BFD_RELOC_32_GOT_PCREL, R_68K_GOT32 },
|
||
{ BFD_RELOC_16_GOT_PCREL, R_68K_GOT16 },
|
||
{ BFD_RELOC_8_GOT_PCREL, R_68K_GOT8 },
|
||
{ BFD_RELOC_32_GOTOFF, R_68K_GOT32O },
|
||
{ BFD_RELOC_16_GOTOFF, R_68K_GOT16O },
|
||
{ BFD_RELOC_8_GOTOFF, R_68K_GOT8O },
|
||
{ BFD_RELOC_32_PLT_PCREL, R_68K_PLT32 },
|
||
{ BFD_RELOC_16_PLT_PCREL, R_68K_PLT16 },
|
||
{ BFD_RELOC_8_PLT_PCREL, R_68K_PLT8 },
|
||
{ BFD_RELOC_32_PLTOFF, R_68K_PLT32O },
|
||
{ BFD_RELOC_16_PLTOFF, R_68K_PLT16O },
|
||
{ BFD_RELOC_8_PLTOFF, R_68K_PLT8O },
|
||
{ BFD_RELOC_NONE, R_68K_COPY },
|
||
{ BFD_RELOC_68K_GLOB_DAT, R_68K_GLOB_DAT },
|
||
{ BFD_RELOC_68K_JMP_SLOT, R_68K_JMP_SLOT },
|
||
{ BFD_RELOC_68K_RELATIVE, R_68K_RELATIVE },
|
||
{ BFD_RELOC_CTOR, R_68K_32 },
|
||
{ BFD_RELOC_VTABLE_INHERIT, R_68K_GNU_VTINHERIT },
|
||
{ BFD_RELOC_VTABLE_ENTRY, R_68K_GNU_VTENTRY },
|
||
{ BFD_RELOC_68K_TLS_GD32, R_68K_TLS_GD32 },
|
||
{ BFD_RELOC_68K_TLS_GD16, R_68K_TLS_GD16 },
|
||
{ BFD_RELOC_68K_TLS_GD8, R_68K_TLS_GD8 },
|
||
{ BFD_RELOC_68K_TLS_LDM32, R_68K_TLS_LDM32 },
|
||
{ BFD_RELOC_68K_TLS_LDM16, R_68K_TLS_LDM16 },
|
||
{ BFD_RELOC_68K_TLS_LDM8, R_68K_TLS_LDM8 },
|
||
{ BFD_RELOC_68K_TLS_LDO32, R_68K_TLS_LDO32 },
|
||
{ BFD_RELOC_68K_TLS_LDO16, R_68K_TLS_LDO16 },
|
||
{ BFD_RELOC_68K_TLS_LDO8, R_68K_TLS_LDO8 },
|
||
{ BFD_RELOC_68K_TLS_IE32, R_68K_TLS_IE32 },
|
||
{ BFD_RELOC_68K_TLS_IE16, R_68K_TLS_IE16 },
|
||
{ BFD_RELOC_68K_TLS_IE8, R_68K_TLS_IE8 },
|
||
{ BFD_RELOC_68K_TLS_LE32, R_68K_TLS_LE32 },
|
||
{ BFD_RELOC_68K_TLS_LE16, R_68K_TLS_LE16 },
|
||
{ BFD_RELOC_68K_TLS_LE8, R_68K_TLS_LE8 },
|
||
};
|
||
|
||
static reloc_howto_type *
|
||
reloc_type_lookup (abfd, code)
|
||
bfd *abfd ATTRIBUTE_UNUSED;
|
||
bfd_reloc_code_real_type code;
|
||
{
|
||
unsigned int i;
|
||
for (i = 0; i < sizeof (reloc_map) / sizeof (reloc_map[0]); i++)
|
||
{
|
||
if (reloc_map[i].bfd_val == code)
|
||
return &howto_table[reloc_map[i].elf_val];
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
static reloc_howto_type *
|
||
reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, const char *r_name)
|
||
{
|
||
unsigned int i;
|
||
|
||
for (i = 0; i < sizeof (howto_table) / sizeof (howto_table[0]); i++)
|
||
if (howto_table[i].name != NULL
|
||
&& strcasecmp (howto_table[i].name, r_name) == 0)
|
||
return &howto_table[i];
|
||
|
||
return NULL;
|
||
}
|
||
|
||
#define bfd_elf32_bfd_reloc_type_lookup reloc_type_lookup
|
||
#define bfd_elf32_bfd_reloc_name_lookup reloc_name_lookup
|
||
#define ELF_ARCH bfd_arch_m68k
|
||
#define ELF_TARGET_ID M68K_ELF_DATA
|
||
|
||
/* Functions for the m68k ELF linker. */
|
||
|
||
/* The name of the dynamic interpreter. This is put in the .interp
|
||
section. */
|
||
|
||
#define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
|
||
|
||
/* Describes one of the various PLT styles. */
|
||
|
||
struct elf_m68k_plt_info
|
||
{
|
||
/* The size of each PLT entry. */
|
||
bfd_vma size;
|
||
|
||
/* The template for the first PLT entry. */
|
||
const bfd_byte *plt0_entry;
|
||
|
||
/* Offsets of fields in PLT0_ENTRY that require R_68K_PC32 relocations.
|
||
The comments by each member indicate the value that the relocation
|
||
is against. */
|
||
struct {
|
||
unsigned int got4; /* .got + 4 */
|
||
unsigned int got8; /* .got + 8 */
|
||
} plt0_relocs;
|
||
|
||
/* The template for a symbol's PLT entry. */
|
||
const bfd_byte *symbol_entry;
|
||
|
||
/* Offsets of fields in SYMBOL_ENTRY that require R_68K_PC32 relocations.
|
||
The comments by each member indicate the value that the relocation
|
||
is against. */
|
||
struct {
|
||
unsigned int got; /* the symbol's .got.plt entry */
|
||
unsigned int plt; /* .plt */
|
||
} symbol_relocs;
|
||
|
||
/* The offset of the resolver stub from the start of SYMBOL_ENTRY.
|
||
The stub starts with "move.l #relocoffset,%d0". */
|
||
bfd_vma symbol_resolve_entry;
|
||
};
|
||
|
||
/* The size in bytes of an entry in the procedure linkage table. */
|
||
|
||
#define PLT_ENTRY_SIZE 20
|
||
|
||
/* The first entry in a procedure linkage table looks like this. See
|
||
the SVR4 ABI m68k supplement to see how this works. */
|
||
|
||
static const bfd_byte elf_m68k_plt0_entry[PLT_ENTRY_SIZE] =
|
||
{
|
||
0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
|
||
0, 0, 0, 2, /* + (.got + 4) - . */
|
||
0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,addr]) */
|
||
0, 0, 0, 2, /* + (.got + 8) - . */
|
||
0, 0, 0, 0 /* pad out to 20 bytes. */
|
||
};
|
||
|
||
/* Subsequent entries in a procedure linkage table look like this. */
|
||
|
||
static const bfd_byte elf_m68k_plt_entry[PLT_ENTRY_SIZE] =
|
||
{
|
||
0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,symbol@GOTPC]) */
|
||
0, 0, 0, 2, /* + (.got.plt entry) - . */
|
||
0x2f, 0x3c, /* move.l #offset,-(%sp) */
|
||
0, 0, 0, 0, /* + reloc index */
|
||
0x60, 0xff, /* bra.l .plt */
|
||
0, 0, 0, 0 /* + .plt - . */
|
||
};
|
||
|
||
static const struct elf_m68k_plt_info elf_m68k_plt_info = {
|
||
PLT_ENTRY_SIZE,
|
||
elf_m68k_plt0_entry, { 4, 12 },
|
||
elf_m68k_plt_entry, { 4, 16 }, 8
|
||
};
|
||
|
||
#define ISAB_PLT_ENTRY_SIZE 24
|
||
|
||
static const bfd_byte elf_isab_plt0_entry[ISAB_PLT_ENTRY_SIZE] =
|
||
{
|
||
0x20, 0x3c, /* move.l #offset,%d0 */
|
||
0, 0, 0, 0, /* + (.got + 4) - . */
|
||
0x2f, 0x3b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),-(%sp) */
|
||
0x20, 0x3c, /* move.l #offset,%d0 */
|
||
0, 0, 0, 0, /* + (.got + 8) - . */
|
||
0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
|
||
0x4e, 0xd0, /* jmp (%a0) */
|
||
0x4e, 0x71 /* nop */
|
||
};
|
||
|
||
/* Subsequent entries in a procedure linkage table look like this. */
|
||
|
||
static const bfd_byte elf_isab_plt_entry[ISAB_PLT_ENTRY_SIZE] =
|
||
{
|
||
0x20, 0x3c, /* move.l #offset,%d0 */
|
||
0, 0, 0, 0, /* + (.got.plt entry) - . */
|
||
0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
|
||
0x4e, 0xd0, /* jmp (%a0) */
|
||
0x2f, 0x3c, /* move.l #offset,-(%sp) */
|
||
0, 0, 0, 0, /* + reloc index */
|
||
0x60, 0xff, /* bra.l .plt */
|
||
0, 0, 0, 0 /* + .plt - . */
|
||
};
|
||
|
||
static const struct elf_m68k_plt_info elf_isab_plt_info = {
|
||
ISAB_PLT_ENTRY_SIZE,
|
||
elf_isab_plt0_entry, { 2, 12 },
|
||
elf_isab_plt_entry, { 2, 20 }, 12
|
||
};
|
||
|
||
#define ISAC_PLT_ENTRY_SIZE 24
|
||
|
||
static const bfd_byte elf_isac_plt0_entry[ISAC_PLT_ENTRY_SIZE] =
|
||
{
|
||
0x20, 0x3c, /* move.l #offset,%d0 */
|
||
0, 0, 0, 0, /* replaced with .got + 4 - . */
|
||
0x2e, 0xbb, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),(%sp) */
|
||
0x20, 0x3c, /* move.l #offset,%d0 */
|
||
0, 0, 0, 0, /* replaced with .got + 8 - . */
|
||
0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
|
||
0x4e, 0xd0, /* jmp (%a0) */
|
||
0x4e, 0x71 /* nop */
|
||
};
|
||
|
||
/* Subsequent entries in a procedure linkage table look like this. */
|
||
|
||
static const bfd_byte elf_isac_plt_entry[ISAC_PLT_ENTRY_SIZE] =
|
||
{
|
||
0x20, 0x3c, /* move.l #offset,%d0 */
|
||
0, 0, 0, 0, /* replaced with (.got entry) - . */
|
||
0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
|
||
0x4e, 0xd0, /* jmp (%a0) */
|
||
0x2f, 0x3c, /* move.l #offset,-(%sp) */
|
||
0, 0, 0, 0, /* replaced with offset into relocation table */
|
||
0x61, 0xff, /* bsr.l .plt */
|
||
0, 0, 0, 0 /* replaced with .plt - . */
|
||
};
|
||
|
||
static const struct elf_m68k_plt_info elf_isac_plt_info = {
|
||
ISAC_PLT_ENTRY_SIZE,
|
||
elf_isac_plt0_entry, { 2, 12},
|
||
elf_isac_plt_entry, { 2, 20 }, 12
|
||
};
|
||
|
||
#define CPU32_PLT_ENTRY_SIZE 24
|
||
/* Procedure linkage table entries for the cpu32 */
|
||
static const bfd_byte elf_cpu32_plt0_entry[CPU32_PLT_ENTRY_SIZE] =
|
||
{
|
||
0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
|
||
0, 0, 0, 2, /* + (.got + 4) - . */
|
||
0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */
|
||
0, 0, 0, 2, /* + (.got + 8) - . */
|
||
0x4e, 0xd1, /* jmp %a1@ */
|
||
0, 0, 0, 0, /* pad out to 24 bytes. */
|
||
0, 0
|
||
};
|
||
|
||
static const bfd_byte elf_cpu32_plt_entry[CPU32_PLT_ENTRY_SIZE] =
|
||
{
|
||
0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */
|
||
0, 0, 0, 2, /* + (.got.plt entry) - . */
|
||
0x4e, 0xd1, /* jmp %a1@ */
|
||
0x2f, 0x3c, /* move.l #offset,-(%sp) */
|
||
0, 0, 0, 0, /* + reloc index */
|
||
0x60, 0xff, /* bra.l .plt */
|
||
0, 0, 0, 0, /* + .plt - . */
|
||
0, 0
|
||
};
|
||
|
||
static const struct elf_m68k_plt_info elf_cpu32_plt_info = {
|
||
CPU32_PLT_ENTRY_SIZE,
|
||
elf_cpu32_plt0_entry, { 4, 12 },
|
||
elf_cpu32_plt_entry, { 4, 18 }, 10
|
||
};
|
||
|
||
/* The m68k linker needs to keep track of the number of relocs that it
|
||
decides to copy in check_relocs for each symbol. This is so that it
|
||
can discard PC relative relocs if it doesn't need them when linking
|
||
with -Bsymbolic. We store the information in a field extending the
|
||
regular ELF linker hash table. */
|
||
|
||
/* This structure keeps track of the number of PC relative relocs we have
|
||
copied for a given symbol. */
|
||
|
||
struct elf_m68k_pcrel_relocs_copied
|
||
{
|
||
/* Next section. */
|
||
struct elf_m68k_pcrel_relocs_copied *next;
|
||
/* A section in dynobj. */
|
||
asection *section;
|
||
/* Number of relocs copied in this section. */
|
||
bfd_size_type count;
|
||
};
|
||
|
||
/* Forward declaration. */
|
||
struct elf_m68k_got_entry;
|
||
|
||
/* m68k ELF linker hash entry. */
|
||
|
||
struct elf_m68k_link_hash_entry
|
||
{
|
||
struct elf_link_hash_entry root;
|
||
|
||
/* Number of PC relative relocs copied for this symbol. */
|
||
struct elf_m68k_pcrel_relocs_copied *pcrel_relocs_copied;
|
||
|
||
/* Key to got_entries. */
|
||
unsigned long got_entry_key;
|
||
|
||
/* List of GOT entries for this symbol. This list is build during
|
||
offset finalization and is used within elf_m68k_finish_dynamic_symbol
|
||
to traverse all GOT entries for a particular symbol.
|
||
|
||
??? We could've used root.got.glist field instead, but having
|
||
a separate field is cleaner. */
|
||
struct elf_m68k_got_entry *glist;
|
||
};
|
||
|
||
#define elf_m68k_hash_entry(ent) ((struct elf_m68k_link_hash_entry *) (ent))
|
||
|
||
/* Key part of GOT entry in hashtable. */
|
||
struct elf_m68k_got_entry_key
|
||
{
|
||
/* BFD in which this symbol was defined. NULL for global symbols. */
|
||
const bfd *bfd;
|
||
|
||
/* Symbol index. Either local symbol index or h->got_entry_key. */
|
||
unsigned long symndx;
|
||
|
||
/* Type is one of R_68K_GOT{8, 16, 32}O, R_68K_TLS_GD{8, 16, 32},
|
||
R_68K_TLS_LDM{8, 16, 32} or R_68K_TLS_IE{8, 16, 32}.
|
||
|
||
From perspective of hashtable key, only elf_m68k_got_reloc_type (type)
|
||
matters. That is, we distinguish between, say, R_68K_GOT16O
|
||
and R_68K_GOT32O when allocating offsets, but they are considered to be
|
||
the same when searching got->entries. */
|
||
enum elf_m68k_reloc_type type;
|
||
};
|
||
|
||
/* Size of the GOT offset suitable for relocation. */
|
||
enum elf_m68k_got_offset_size { R_8, R_16, R_32, R_LAST };
|
||
|
||
/* Entry of the GOT. */
|
||
struct elf_m68k_got_entry
|
||
{
|
||
/* GOT entries are put into a got->entries hashtable. This is the key. */
|
||
struct elf_m68k_got_entry_key key_;
|
||
|
||
/* GOT entry data. We need s1 before offset finalization and s2 after. */
|
||
union
|
||
{
|
||
struct
|
||
{
|
||
/* Number of times this entry is referenced. It is used to
|
||
filter out unnecessary GOT slots in elf_m68k_gc_sweep_hook. */
|
||
bfd_vma refcount;
|
||
} s1;
|
||
|
||
struct
|
||
{
|
||
/* Offset from the start of .got section. To calculate offset relative
|
||
to GOT pointer one should substract got->offset from this value. */
|
||
bfd_vma offset;
|
||
|
||
/* Pointer to the next GOT entry for this global symbol.
|
||
Symbols have at most one entry in one GOT, but might
|
||
have entries in more than one GOT.
|
||
Root of this list is h->glist.
|
||
NULL for local symbols. */
|
||
struct elf_m68k_got_entry *next;
|
||
} s2;
|
||
} u;
|
||
};
|
||
|
||
/* Return representative type for relocation R_TYPE.
|
||
This is used to avoid enumerating many relocations in comparisons,
|
||
switches etc. */
|
||
|
||
static enum elf_m68k_reloc_type
|
||
elf_m68k_reloc_got_type (enum elf_m68k_reloc_type r_type)
|
||
{
|
||
switch (r_type)
|
||
{
|
||
/* In most cases R_68K_GOTx relocations require the very same
|
||
handling as R_68K_GOT32O relocation. In cases when we need
|
||
to distinguish between the two, we use explicitly compare against
|
||
r_type. */
|
||
case R_68K_GOT32:
|
||
case R_68K_GOT16:
|
||
case R_68K_GOT8:
|
||
case R_68K_GOT32O:
|
||
case R_68K_GOT16O:
|
||
case R_68K_GOT8O:
|
||
return R_68K_GOT32O;
|
||
|
||
case R_68K_TLS_GD32:
|
||
case R_68K_TLS_GD16:
|
||
case R_68K_TLS_GD8:
|
||
return R_68K_TLS_GD32;
|
||
|
||
case R_68K_TLS_LDM32:
|
||
case R_68K_TLS_LDM16:
|
||
case R_68K_TLS_LDM8:
|
||
return R_68K_TLS_LDM32;
|
||
|
||
case R_68K_TLS_IE32:
|
||
case R_68K_TLS_IE16:
|
||
case R_68K_TLS_IE8:
|
||
return R_68K_TLS_IE32;
|
||
|
||
default:
|
||
BFD_ASSERT (FALSE);
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Return size of the GOT entry offset for relocation R_TYPE. */
|
||
|
||
static enum elf_m68k_got_offset_size
|
||
elf_m68k_reloc_got_offset_size (enum elf_m68k_reloc_type r_type)
|
||
{
|
||
switch (r_type)
|
||
{
|
||
case R_68K_GOT32: case R_68K_GOT16: case R_68K_GOT8:
|
||
case R_68K_GOT32O: case R_68K_TLS_GD32: case R_68K_TLS_LDM32:
|
||
case R_68K_TLS_IE32:
|
||
return R_32;
|
||
|
||
case R_68K_GOT16O: case R_68K_TLS_GD16: case R_68K_TLS_LDM16:
|
||
case R_68K_TLS_IE16:
|
||
return R_16;
|
||
|
||
case R_68K_GOT8O: case R_68K_TLS_GD8: case R_68K_TLS_LDM8:
|
||
case R_68K_TLS_IE8:
|
||
return R_8;
|
||
|
||
default:
|
||
BFD_ASSERT (FALSE);
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Return number of GOT entries we need to allocate in GOT for
|
||
relocation R_TYPE. */
|
||
|
||
static bfd_vma
|
||
elf_m68k_reloc_got_n_slots (enum elf_m68k_reloc_type r_type)
|
||
{
|
||
switch (elf_m68k_reloc_got_type (r_type))
|
||
{
|
||
case R_68K_GOT32O:
|
||
case R_68K_TLS_IE32:
|
||
return 1;
|
||
|
||
case R_68K_TLS_GD32:
|
||
case R_68K_TLS_LDM32:
|
||
return 2;
|
||
|
||
default:
|
||
BFD_ASSERT (FALSE);
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Return TRUE if relocation R_TYPE is a TLS one. */
|
||
|
||
static bfd_boolean
|
||
elf_m68k_reloc_tls_p (enum elf_m68k_reloc_type r_type)
|
||
{
|
||
switch (r_type)
|
||
{
|
||
case R_68K_TLS_GD32: case R_68K_TLS_GD16: case R_68K_TLS_GD8:
|
||
case R_68K_TLS_LDM32: case R_68K_TLS_LDM16: case R_68K_TLS_LDM8:
|
||
case R_68K_TLS_LDO32: case R_68K_TLS_LDO16: case R_68K_TLS_LDO8:
|
||
case R_68K_TLS_IE32: case R_68K_TLS_IE16: case R_68K_TLS_IE8:
|
||
case R_68K_TLS_LE32: case R_68K_TLS_LE16: case R_68K_TLS_LE8:
|
||
case R_68K_TLS_DTPMOD32: case R_68K_TLS_DTPREL32: case R_68K_TLS_TPREL32:
|
||
return TRUE;
|
||
|
||
default:
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
/* Data structure representing a single GOT. */
|
||
struct elf_m68k_got
|
||
{
|
||
/* Hashtable of 'struct elf_m68k_got_entry's.
|
||
Starting size of this table is the maximum number of
|
||
R_68K_GOT8O entries. */
|
||
htab_t entries;
|
||
|
||
/* Number of R_x slots in this GOT. Some (e.g., TLS) entries require
|
||
several GOT slots.
|
||
|
||
n_slots[R_8] is the count of R_8 slots in this GOT.
|
||
n_slots[R_16] is the cumulative count of R_8 and R_16 slots
|
||
in this GOT.
|
||
n_slots[R_32] is the cumulative count of R_8, R_16 and R_32 slots
|
||
in this GOT. This is the total number of slots. */
|
||
bfd_vma n_slots[R_LAST];
|
||
|
||
/* Number of local (entry->key_.h == NULL) slots in this GOT.
|
||
This is only used to properly calculate size of .rela.got section;
|
||
see elf_m68k_partition_multi_got. */
|
||
bfd_vma local_n_slots;
|
||
|
||
/* Offset of this GOT relative to beginning of .got section. */
|
||
bfd_vma offset;
|
||
};
|
||
|
||
/* BFD and its GOT. This is an entry in multi_got->bfd2got hashtable. */
|
||
struct elf_m68k_bfd2got_entry
|
||
{
|
||
/* BFD. */
|
||
const bfd *bfd;
|
||
|
||
/* Assigned GOT. Before partitioning multi-GOT each BFD has its own
|
||
GOT structure. After partitioning several BFD's might [and often do]
|
||
share a single GOT. */
|
||
struct elf_m68k_got *got;
|
||
};
|
||
|
||
/* The main data structure holding all the pieces. */
|
||
struct elf_m68k_multi_got
|
||
{
|
||
/* Hashtable mapping each BFD to its GOT. If a BFD doesn't have an entry
|
||
here, then it doesn't need a GOT (this includes the case of a BFD
|
||
having an empty GOT).
|
||
|
||
??? This hashtable can be replaced by an array indexed by bfd->id. */
|
||
htab_t bfd2got;
|
||
|
||
/* Next symndx to assign a global symbol.
|
||
h->got_entry_key is initialized from this counter. */
|
||
unsigned long global_symndx;
|
||
};
|
||
|
||
/* m68k ELF linker hash table. */
|
||
|
||
struct elf_m68k_link_hash_table
|
||
{
|
||
struct elf_link_hash_table root;
|
||
|
||
/* Small local sym cache. */
|
||
struct sym_cache sym_cache;
|
||
|
||
/* The PLT format used by this link, or NULL if the format has not
|
||
yet been chosen. */
|
||
const struct elf_m68k_plt_info *plt_info;
|
||
|
||
/* True, if GP is loaded within each function which uses it.
|
||
Set to TRUE when GOT negative offsets or multi-GOT is enabled. */
|
||
bfd_boolean local_gp_p;
|
||
|
||
/* Switch controlling use of negative offsets to double the size of GOTs. */
|
||
bfd_boolean use_neg_got_offsets_p;
|
||
|
||
/* Switch controlling generation of multiple GOTs. */
|
||
bfd_boolean allow_multigot_p;
|
||
|
||
/* Multi-GOT data structure. */
|
||
struct elf_m68k_multi_got multi_got_;
|
||
};
|
||
|
||
/* Get the m68k ELF linker hash table from a link_info structure. */
|
||
|
||
#define elf_m68k_hash_table(p) \
|
||
(elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
|
||
== M68K_ELF_DATA ? ((struct elf_m68k_link_hash_table *) ((p)->hash)) : NULL)
|
||
|
||
/* Shortcut to multi-GOT data. */
|
||
#define elf_m68k_multi_got(INFO) (&elf_m68k_hash_table (INFO)->multi_got_)
|
||
|
||
/* Create an entry in an m68k ELF linker hash table. */
|
||
|
||
static struct bfd_hash_entry *
|
||
elf_m68k_link_hash_newfunc (struct bfd_hash_entry *entry,
|
||
struct bfd_hash_table *table,
|
||
const char *string)
|
||
{
|
||
struct bfd_hash_entry *ret = entry;
|
||
|
||
/* Allocate the structure if it has not already been allocated by a
|
||
subclass. */
|
||
if (ret == NULL)
|
||
ret = bfd_hash_allocate (table,
|
||
sizeof (struct elf_m68k_link_hash_entry));
|
||
if (ret == NULL)
|
||
return ret;
|
||
|
||
/* Call the allocation method of the superclass. */
|
||
ret = _bfd_elf_link_hash_newfunc (ret, table, string);
|
||
if (ret != NULL)
|
||
{
|
||
elf_m68k_hash_entry (ret)->pcrel_relocs_copied = NULL;
|
||
elf_m68k_hash_entry (ret)->got_entry_key = 0;
|
||
elf_m68k_hash_entry (ret)->glist = NULL;
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Create an m68k ELF linker hash table. */
|
||
|
||
static struct bfd_link_hash_table *
|
||
elf_m68k_link_hash_table_create (bfd *abfd)
|
||
{
|
||
struct elf_m68k_link_hash_table *ret;
|
||
bfd_size_type amt = sizeof (struct elf_m68k_link_hash_table);
|
||
|
||
ret = (struct elf_m68k_link_hash_table *) bfd_malloc (amt);
|
||
if (ret == (struct elf_m68k_link_hash_table *) NULL)
|
||
return NULL;
|
||
|
||
if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
|
||
elf_m68k_link_hash_newfunc,
|
||
sizeof (struct elf_m68k_link_hash_entry),
|
||
M68K_ELF_DATA))
|
||
{
|
||
free (ret);
|
||
return NULL;
|
||
}
|
||
|
||
ret->sym_cache.abfd = NULL;
|
||
ret->plt_info = NULL;
|
||
ret->local_gp_p = FALSE;
|
||
ret->use_neg_got_offsets_p = FALSE;
|
||
ret->allow_multigot_p = FALSE;
|
||
ret->multi_got_.bfd2got = NULL;
|
||
ret->multi_got_.global_symndx = 1;
|
||
|
||
return &ret->root.root;
|
||
}
|
||
|
||
/* Destruct local data. */
|
||
|
||
static void
|
||
elf_m68k_link_hash_table_free (struct bfd_link_hash_table *_htab)
|
||
{
|
||
struct elf_m68k_link_hash_table *htab;
|
||
|
||
htab = (struct elf_m68k_link_hash_table *) _htab;
|
||
|
||
if (htab->multi_got_.bfd2got != NULL)
|
||
{
|
||
htab_delete (htab->multi_got_.bfd2got);
|
||
htab->multi_got_.bfd2got = NULL;
|
||
}
|
||
}
|
||
|
||
/* Set the right machine number. */
|
||
|
||
static bfd_boolean
|
||
elf32_m68k_object_p (bfd *abfd)
|
||
{
|
||
unsigned int mach = 0;
|
||
unsigned features = 0;
|
||
flagword eflags = elf_elfheader (abfd)->e_flags;
|
||
|
||
if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
|
||
features |= m68000;
|
||
else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
|
||
features |= cpu32;
|
||
else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
|
||
features |= fido_a;
|
||
else
|
||
{
|
||
switch (eflags & EF_M68K_CF_ISA_MASK)
|
||
{
|
||
case EF_M68K_CF_ISA_A_NODIV:
|
||
features |= mcfisa_a;
|
||
break;
|
||
case EF_M68K_CF_ISA_A:
|
||
features |= mcfisa_a|mcfhwdiv;
|
||
break;
|
||
case EF_M68K_CF_ISA_A_PLUS:
|
||
features |= mcfisa_a|mcfisa_aa|mcfhwdiv|mcfusp;
|
||
break;
|
||
case EF_M68K_CF_ISA_B_NOUSP:
|
||
features |= mcfisa_a|mcfisa_b|mcfhwdiv;
|
||
break;
|
||
case EF_M68K_CF_ISA_B:
|
||
features |= mcfisa_a|mcfisa_b|mcfhwdiv|mcfusp;
|
||
break;
|
||
case EF_M68K_CF_ISA_C:
|
||
features |= mcfisa_a|mcfisa_c|mcfhwdiv|mcfusp;
|
||
break;
|
||
case EF_M68K_CF_ISA_C_NODIV:
|
||
features |= mcfisa_a|mcfisa_c|mcfusp;
|
||
break;
|
||
}
|
||
switch (eflags & EF_M68K_CF_MAC_MASK)
|
||
{
|
||
case EF_M68K_CF_MAC:
|
||
features |= mcfmac;
|
||
break;
|
||
case EF_M68K_CF_EMAC:
|
||
features |= mcfemac;
|
||
break;
|
||
}
|
||
if (eflags & EF_M68K_CF_FLOAT)
|
||
features |= cfloat;
|
||
}
|
||
|
||
mach = bfd_m68k_features_to_mach (features);
|
||
bfd_default_set_arch_mach (abfd, bfd_arch_m68k, mach);
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Somewhat reverse of elf32_m68k_object_p, this sets the e_flag
|
||
field based on the machine number. */
|
||
|
||
static void
|
||
elf_m68k_final_write_processing (bfd *abfd,
|
||
bfd_boolean linker ATTRIBUTE_UNUSED)
|
||
{
|
||
int mach = bfd_get_mach (abfd);
|
||
unsigned long e_flags = elf_elfheader (abfd)->e_flags;
|
||
|
||
if (!e_flags)
|
||
{
|
||
unsigned int arch_mask;
|
||
|
||
arch_mask = bfd_m68k_mach_to_features (mach);
|
||
|
||
if (arch_mask & m68000)
|
||
e_flags = EF_M68K_M68000;
|
||
else if (arch_mask & cpu32)
|
||
e_flags = EF_M68K_CPU32;
|
||
else if (arch_mask & fido_a)
|
||
e_flags = EF_M68K_FIDO;
|
||
else
|
||
{
|
||
switch (arch_mask
|
||
& (mcfisa_a | mcfisa_aa | mcfisa_b | mcfisa_c | mcfhwdiv | mcfusp))
|
||
{
|
||
case mcfisa_a:
|
||
e_flags |= EF_M68K_CF_ISA_A_NODIV;
|
||
break;
|
||
case mcfisa_a | mcfhwdiv:
|
||
e_flags |= EF_M68K_CF_ISA_A;
|
||
break;
|
||
case mcfisa_a | mcfisa_aa | mcfhwdiv | mcfusp:
|
||
e_flags |= EF_M68K_CF_ISA_A_PLUS;
|
||
break;
|
||
case mcfisa_a | mcfisa_b | mcfhwdiv:
|
||
e_flags |= EF_M68K_CF_ISA_B_NOUSP;
|
||
break;
|
||
case mcfisa_a | mcfisa_b | mcfhwdiv | mcfusp:
|
||
e_flags |= EF_M68K_CF_ISA_B;
|
||
break;
|
||
case mcfisa_a | mcfisa_c | mcfhwdiv | mcfusp:
|
||
e_flags |= EF_M68K_CF_ISA_C;
|
||
break;
|
||
case mcfisa_a | mcfisa_c | mcfusp:
|
||
e_flags |= EF_M68K_CF_ISA_C_NODIV;
|
||
break;
|
||
}
|
||
if (arch_mask & mcfmac)
|
||
e_flags |= EF_M68K_CF_MAC;
|
||
else if (arch_mask & mcfemac)
|
||
e_flags |= EF_M68K_CF_EMAC;
|
||
if (arch_mask & cfloat)
|
||
e_flags |= EF_M68K_CF_FLOAT | EF_M68K_CFV4E;
|
||
}
|
||
elf_elfheader (abfd)->e_flags = e_flags;
|
||
}
|
||
}
|
||
|
||
/* Keep m68k-specific flags in the ELF header. */
|
||
|
||
static bfd_boolean
|
||
elf32_m68k_set_private_flags (abfd, flags)
|
||
bfd *abfd;
|
||
flagword flags;
|
||
{
|
||
elf_elfheader (abfd)->e_flags = flags;
|
||
elf_flags_init (abfd) = TRUE;
|
||
return TRUE;
|
||
}
|
||
|
||
/* Merge backend specific data from an object file to the output
|
||
object file when linking. */
|
||
static bfd_boolean
|
||
elf32_m68k_merge_private_bfd_data (ibfd, obfd)
|
||
bfd *ibfd;
|
||
bfd *obfd;
|
||
{
|
||
flagword out_flags;
|
||
flagword in_flags;
|
||
flagword out_isa;
|
||
flagword in_isa;
|
||
const bfd_arch_info_type *arch_info;
|
||
|
||
if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
|
||
|| bfd_get_flavour (obfd) != bfd_target_elf_flavour)
|
||
return FALSE;
|
||
|
||
/* Get the merged machine. This checks for incompatibility between
|
||
Coldfire & non-Coldfire flags, incompability between different
|
||
Coldfire ISAs, and incompability between different MAC types. */
|
||
arch_info = bfd_arch_get_compatible (ibfd, obfd, FALSE);
|
||
if (!arch_info)
|
||
return FALSE;
|
||
|
||
bfd_set_arch_mach (obfd, bfd_arch_m68k, arch_info->mach);
|
||
|
||
in_flags = elf_elfheader (ibfd)->e_flags;
|
||
if (!elf_flags_init (obfd))
|
||
{
|
||
elf_flags_init (obfd) = TRUE;
|
||
out_flags = in_flags;
|
||
}
|
||
else
|
||
{
|
||
out_flags = elf_elfheader (obfd)->e_flags;
|
||
unsigned int variant_mask;
|
||
|
||
if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
|
||
variant_mask = 0;
|
||
else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
|
||
variant_mask = 0;
|
||
else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
|
||
variant_mask = 0;
|
||
else
|
||
variant_mask = EF_M68K_CF_ISA_MASK;
|
||
|
||
in_isa = (in_flags & variant_mask);
|
||
out_isa = (out_flags & variant_mask);
|
||
if (in_isa > out_isa)
|
||
out_flags ^= in_isa ^ out_isa;
|
||
if (((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32
|
||
&& (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
|
||
|| ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO
|
||
&& (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32))
|
||
out_flags = EF_M68K_FIDO;
|
||
else
|
||
out_flags |= in_flags ^ in_isa;
|
||
}
|
||
elf_elfheader (obfd)->e_flags = out_flags;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Display the flags field. */
|
||
|
||
static bfd_boolean
|
||
elf32_m68k_print_private_bfd_data (bfd *abfd, void * ptr)
|
||
{
|
||
FILE *file = (FILE *) ptr;
|
||
flagword eflags = elf_elfheader (abfd)->e_flags;
|
||
|
||
BFD_ASSERT (abfd != NULL && ptr != NULL);
|
||
|
||
/* Print normal ELF private data. */
|
||
_bfd_elf_print_private_bfd_data (abfd, ptr);
|
||
|
||
/* Ignore init flag - it may not be set, despite the flags field containing valid data. */
|
||
|
||
/* xgettext:c-format */
|
||
fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
|
||
|
||
if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
|
||
fprintf (file, " [m68000]");
|
||
else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
|
||
fprintf (file, " [cpu32]");
|
||
else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
|
||
fprintf (file, " [fido]");
|
||
else
|
||
{
|
||
if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CFV4E)
|
||
fprintf (file, " [cfv4e]");
|
||
|
||
if (eflags & EF_M68K_CF_ISA_MASK)
|
||
{
|
||
char const *isa = _("unknown");
|
||
char const *mac = _("unknown");
|
||
char const *additional = "";
|
||
|
||
switch (eflags & EF_M68K_CF_ISA_MASK)
|
||
{
|
||
case EF_M68K_CF_ISA_A_NODIV:
|
||
isa = "A";
|
||
additional = " [nodiv]";
|
||
break;
|
||
case EF_M68K_CF_ISA_A:
|
||
isa = "A";
|
||
break;
|
||
case EF_M68K_CF_ISA_A_PLUS:
|
||
isa = "A+";
|
||
break;
|
||
case EF_M68K_CF_ISA_B_NOUSP:
|
||
isa = "B";
|
||
additional = " [nousp]";
|
||
break;
|
||
case EF_M68K_CF_ISA_B:
|
||
isa = "B";
|
||
break;
|
||
case EF_M68K_CF_ISA_C:
|
||
isa = "C";
|
||
break;
|
||
case EF_M68K_CF_ISA_C_NODIV:
|
||
isa = "C";
|
||
additional = " [nodiv]";
|
||
break;
|
||
}
|
||
fprintf (file, " [isa %s]%s", isa, additional);
|
||
|
||
if (eflags & EF_M68K_CF_FLOAT)
|
||
fprintf (file, " [float]");
|
||
|
||
switch (eflags & EF_M68K_CF_MAC_MASK)
|
||
{
|
||
case 0:
|
||
mac = NULL;
|
||
break;
|
||
case EF_M68K_CF_MAC:
|
||
mac = "mac";
|
||
break;
|
||
case EF_M68K_CF_EMAC:
|
||
mac = "emac";
|
||
break;
|
||
case EF_M68K_CF_EMAC_B:
|
||
mac = "emac_b";
|
||
break;
|
||
}
|
||
if (mac)
|
||
fprintf (file, " [%s]", mac);
|
||
}
|
||
}
|
||
|
||
fputc ('\n', file);
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Multi-GOT support implementation design:
|
||
|
||
Multi-GOT starts in check_relocs hook. There we scan all
|
||
relocations of a BFD and build a local GOT (struct elf_m68k_got)
|
||
for it. If a single BFD appears to require too many GOT slots with
|
||
R_68K_GOT8O or R_68K_GOT16O relocations, we fail with notification
|
||
to user.
|
||
After check_relocs has been invoked for each input BFD, we have
|
||
constructed a GOT for each input BFD.
|
||
|
||
To minimize total number of GOTs required for a particular output BFD
|
||
(as some environments support only 1 GOT per output object) we try
|
||
to merge some of the GOTs to share an offset space. Ideally [and in most
|
||
cases] we end up with a single GOT. In cases when there are too many
|
||
restricted relocations (e.g., R_68K_GOT16O relocations) we end up with
|
||
several GOTs, assuming the environment can handle them.
|
||
|
||
Partitioning is done in elf_m68k_partition_multi_got. We start with
|
||
an empty GOT and traverse bfd2got hashtable putting got_entries from
|
||
local GOTs to the new 'big' one. We do that by constructing an
|
||
intermediate GOT holding all the entries the local GOT has and the big
|
||
GOT lacks. Then we check if there is room in the big GOT to accomodate
|
||
all the entries from diff. On success we add those entries to the big
|
||
GOT; on failure we start the new 'big' GOT and retry the adding of
|
||
entries from the local GOT. Note that this retry will always succeed as
|
||
each local GOT doesn't overflow the limits. After partitioning we
|
||
end up with each bfd assigned one of the big GOTs. GOT entries in the
|
||
big GOTs are initialized with GOT offsets. Note that big GOTs are
|
||
positioned consequently in program space and represent a single huge GOT
|
||
to the outside world.
|
||
|
||
After that we get to elf_m68k_relocate_section. There we
|
||
adjust relocations of GOT pointer (_GLOBAL_OFFSET_TABLE_) and symbol
|
||
relocations to refer to appropriate [assigned to current input_bfd]
|
||
big GOT.
|
||
|
||
Notes:
|
||
|
||
GOT entry type: We have several types of GOT entries.
|
||
* R_8 type is used in entries for symbols that have at least one
|
||
R_68K_GOT8O or R_68K_TLS_*8 relocation. We can have at most 0x40
|
||
such entries in one GOT.
|
||
* R_16 type is used in entries for symbols that have at least one
|
||
R_68K_GOT16O or R_68K_TLS_*16 relocation and no R_8 relocations.
|
||
We can have at most 0x4000 such entries in one GOT.
|
||
* R_32 type is used in all other cases. We can have as many
|
||
such entries in one GOT as we'd like.
|
||
When counting relocations we have to include the count of the smaller
|
||
ranged relocations in the counts of the larger ranged ones in order
|
||
to correctly detect overflow.
|
||
|
||
Sorting the GOT: In each GOT starting offsets are assigned to
|
||
R_8 entries, which are followed by R_16 entries, and
|
||
R_32 entries go at the end. See finalize_got_offsets for details.
|
||
|
||
Negative GOT offsets: To double usable offset range of GOTs we use
|
||
negative offsets. As we assign entries with GOT offsets relative to
|
||
start of .got section, the offset values are positive. They become
|
||
negative only in relocate_section where got->offset value is
|
||
subtracted from them.
|
||
|
||
3 special GOT entries: There are 3 special GOT entries used internally
|
||
by loader. These entries happen to be placed to .got.plt section,
|
||
so we don't do anything about them in multi-GOT support.
|
||
|
||
Memory management: All data except for hashtables
|
||
multi_got->bfd2got and got->entries are allocated on
|
||
elf_hash_table (info)->dynobj bfd (for this reason we pass 'info'
|
||
to most functions), so we don't need to care to free them. At the
|
||
moment of allocation hashtables are being linked into main data
|
||
structure (multi_got), all pieces of which are reachable from
|
||
elf_m68k_multi_got (info). We deallocate them in
|
||
elf_m68k_link_hash_table_free. */
|
||
|
||
/* Initialize GOT. */
|
||
|
||
static void
|
||
elf_m68k_init_got (struct elf_m68k_got *got)
|
||
{
|
||
got->entries = NULL;
|
||
got->n_slots[R_8] = 0;
|
||
got->n_slots[R_16] = 0;
|
||
got->n_slots[R_32] = 0;
|
||
got->local_n_slots = 0;
|
||
got->offset = (bfd_vma) -1;
|
||
}
|
||
|
||
/* Destruct GOT. */
|
||
|
||
static void
|
||
elf_m68k_clear_got (struct elf_m68k_got *got)
|
||
{
|
||
if (got->entries != NULL)
|
||
{
|
||
htab_delete (got->entries);
|
||
got->entries = NULL;
|
||
}
|
||
}
|
||
|
||
/* Create and empty GOT structure. INFO is the context where memory
|
||
should be allocated. */
|
||
|
||
static struct elf_m68k_got *
|
||
elf_m68k_create_empty_got (struct bfd_link_info *info)
|
||
{
|
||
struct elf_m68k_got *got;
|
||
|
||
got = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*got));
|
||
if (got == NULL)
|
||
return NULL;
|
||
|
||
elf_m68k_init_got (got);
|
||
|
||
return got;
|
||
}
|
||
|
||
/* Initialize KEY. */
|
||
|
||
static void
|
||
elf_m68k_init_got_entry_key (struct elf_m68k_got_entry_key *key,
|
||
struct elf_link_hash_entry *h,
|
||
const bfd *abfd, unsigned long symndx,
|
||
enum elf_m68k_reloc_type reloc_type)
|
||
{
|
||
if (elf_m68k_reloc_got_type (reloc_type) == R_68K_TLS_LDM32)
|
||
/* All TLS_LDM relocations share a single GOT entry. */
|
||
{
|
||
key->bfd = NULL;
|
||
key->symndx = 0;
|
||
}
|
||
else if (h != NULL)
|
||
/* Global symbols are identified with their got_entry_key. */
|
||
{
|
||
key->bfd = NULL;
|
||
key->symndx = elf_m68k_hash_entry (h)->got_entry_key;
|
||
BFD_ASSERT (key->symndx != 0);
|
||
}
|
||
else
|
||
/* Local symbols are identified by BFD they appear in and symndx. */
|
||
{
|
||
key->bfd = abfd;
|
||
key->symndx = symndx;
|
||
}
|
||
|
||
key->type = reloc_type;
|
||
}
|
||
|
||
/* Calculate hash of got_entry.
|
||
??? Is it good? */
|
||
|
||
static hashval_t
|
||
elf_m68k_got_entry_hash (const void *_entry)
|
||
{
|
||
const struct elf_m68k_got_entry_key *key;
|
||
|
||
key = &((const struct elf_m68k_got_entry *) _entry)->key_;
|
||
|
||
return (key->symndx
|
||
+ (key->bfd != NULL ? (int) key->bfd->id : -1)
|
||
+ elf_m68k_reloc_got_type (key->type));
|
||
}
|
||
|
||
/* Check if two got entries are equal. */
|
||
|
||
static int
|
||
elf_m68k_got_entry_eq (const void *_entry1, const void *_entry2)
|
||
{
|
||
const struct elf_m68k_got_entry_key *key1;
|
||
const struct elf_m68k_got_entry_key *key2;
|
||
|
||
key1 = &((const struct elf_m68k_got_entry *) _entry1)->key_;
|
||
key2 = &((const struct elf_m68k_got_entry *) _entry2)->key_;
|
||
|
||
return (key1->bfd == key2->bfd
|
||
&& key1->symndx == key2->symndx
|
||
&& (elf_m68k_reloc_got_type (key1->type)
|
||
== elf_m68k_reloc_got_type (key2->type)));
|
||
}
|
||
|
||
/* When using negative offsets, we allocate one extra R_8, one extra R_16
|
||
and one extra R_32 slots to simplify handling of 2-slot entries during
|
||
offset allocation -- hence -1 for R_8 slots and -2 for R_16 slots. */
|
||
|
||
/* Maximal number of R_8 slots in a single GOT. */
|
||
#define ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT(INFO) \
|
||
(elf_m68k_hash_table (INFO)->use_neg_got_offsets_p \
|
||
? (0x40 - 1) \
|
||
: 0x20)
|
||
|
||
/* Maximal number of R_8 and R_16 slots in a single GOT. */
|
||
#define ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT(INFO) \
|
||
(elf_m68k_hash_table (INFO)->use_neg_got_offsets_p \
|
||
? (0x4000 - 2) \
|
||
: 0x2000)
|
||
|
||
/* SEARCH - simply search the hashtable, don't insert new entries or fail when
|
||
the entry cannot be found.
|
||
FIND_OR_CREATE - search for an existing entry, but create new if there's
|
||
no such.
|
||
MUST_FIND - search for an existing entry and assert that it exist.
|
||
MUST_CREATE - assert that there's no such entry and create new one. */
|
||
enum elf_m68k_get_entry_howto
|
||
{
|
||
SEARCH,
|
||
FIND_OR_CREATE,
|
||
MUST_FIND,
|
||
MUST_CREATE
|
||
};
|
||
|
||
/* Get or create (depending on HOWTO) entry with KEY in GOT.
|
||
INFO is context in which memory should be allocated (can be NULL if
|
||
HOWTO is SEARCH or MUST_FIND). */
|
||
|
||
static struct elf_m68k_got_entry *
|
||
elf_m68k_get_got_entry (struct elf_m68k_got *got,
|
||
const struct elf_m68k_got_entry_key *key,
|
||
enum elf_m68k_get_entry_howto howto,
|
||
struct bfd_link_info *info)
|
||
{
|
||
struct elf_m68k_got_entry entry_;
|
||
struct elf_m68k_got_entry *entry;
|
||
void **ptr;
|
||
|
||
BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND));
|
||
|
||
if (got->entries == NULL)
|
||
/* This is the first entry in ABFD. Initialize hashtable. */
|
||
{
|
||
if (howto == SEARCH)
|
||
return NULL;
|
||
|
||
got->entries = htab_try_create (ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT
|
||
(info),
|
||
elf_m68k_got_entry_hash,
|
||
elf_m68k_got_entry_eq, NULL);
|
||
if (got->entries == NULL)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
entry_.key_ = *key;
|
||
ptr = htab_find_slot (got->entries, &entry_, (howto != SEARCH
|
||
? INSERT : NO_INSERT));
|
||
if (ptr == NULL)
|
||
{
|
||
if (howto == SEARCH)
|
||
/* Entry not found. */
|
||
return NULL;
|
||
|
||
/* We're out of memory. */
|
||
bfd_set_error (bfd_error_no_memory);
|
||
return NULL;
|
||
}
|
||
|
||
if (*ptr == NULL)
|
||
/* We didn't find the entry and we're asked to create a new one. */
|
||
{
|
||
BFD_ASSERT (howto != MUST_FIND && howto != SEARCH);
|
||
|
||
entry = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry));
|
||
if (entry == NULL)
|
||
return NULL;
|
||
|
||
/* Initialize new entry. */
|
||
entry->key_ = *key;
|
||
|
||
entry->u.s1.refcount = 0;
|
||
|
||
/* Mark the entry as not initialized. */
|
||
entry->key_.type = R_68K_max;
|
||
|
||
*ptr = entry;
|
||
}
|
||
else
|
||
/* We found the entry. */
|
||
{
|
||
BFD_ASSERT (howto != MUST_CREATE);
|
||
|
||
entry = *ptr;
|
||
}
|
||
|
||
return entry;
|
||
}
|
||
|
||
/* Update GOT counters when merging entry of WAS type with entry of NEW type.
|
||
Return the value to which ENTRY's type should be set. */
|
||
|
||
static enum elf_m68k_reloc_type
|
||
elf_m68k_update_got_entry_type (struct elf_m68k_got *got,
|
||
enum elf_m68k_reloc_type was,
|
||
enum elf_m68k_reloc_type new_reloc)
|
||
{
|
||
enum elf_m68k_got_offset_size was_size;
|
||
enum elf_m68k_got_offset_size new_size;
|
||
bfd_vma n_slots;
|
||
|
||
if (was == R_68K_max)
|
||
/* The type of the entry is not initialized yet. */
|
||
{
|
||
/* Update all got->n_slots counters, including n_slots[R_32]. */
|
||
was_size = R_LAST;
|
||
|
||
was = new_reloc;
|
||
}
|
||
else
|
||
{
|
||
/* !!! We, probably, should emit an error rather then fail on assert
|
||
in such a case. */
|
||
BFD_ASSERT (elf_m68k_reloc_got_type (was)
|
||
== elf_m68k_reloc_got_type (new_reloc));
|
||
|
||
was_size = elf_m68k_reloc_got_offset_size (was);
|
||
}
|
||
|
||
new_size = elf_m68k_reloc_got_offset_size (new_reloc);
|
||
n_slots = elf_m68k_reloc_got_n_slots (new_reloc);
|
||
|
||
while (was_size > new_size)
|
||
{
|
||
--was_size;
|
||
got->n_slots[was_size] += n_slots;
|
||
}
|
||
|
||
if (new_reloc > was)
|
||
/* Relocations are ordered from bigger got offset size to lesser,
|
||
so choose the relocation type with lesser offset size. */
|
||
was = new_reloc;
|
||
|
||
return was;
|
||
}
|
||
|
||
/* Update GOT counters when removing an entry of type TYPE. */
|
||
|
||
static void
|
||
elf_m68k_remove_got_entry_type (struct elf_m68k_got *got,
|
||
enum elf_m68k_reloc_type type)
|
||
{
|
||
enum elf_m68k_got_offset_size os;
|
||
bfd_vma n_slots;
|
||
|
||
n_slots = elf_m68k_reloc_got_n_slots (type);
|
||
|
||
/* Decrese counter of slots with offset size corresponding to TYPE
|
||
and all greater offset sizes. */
|
||
for (os = elf_m68k_reloc_got_offset_size (type); os <= R_32; ++os)
|
||
{
|
||
BFD_ASSERT (got->n_slots[os] >= n_slots);
|
||
|
||
got->n_slots[os] -= n_slots;
|
||
}
|
||
}
|
||
|
||
/* Add new or update existing entry to GOT.
|
||
H, ABFD, TYPE and SYMNDX is data for the entry.
|
||
INFO is a context where memory should be allocated. */
|
||
|
||
static struct elf_m68k_got_entry *
|
||
elf_m68k_add_entry_to_got (struct elf_m68k_got *got,
|
||
struct elf_link_hash_entry *h,
|
||
const bfd *abfd,
|
||
enum elf_m68k_reloc_type reloc_type,
|
||
unsigned long symndx,
|
||
struct bfd_link_info *info)
|
||
{
|
||
struct elf_m68k_got_entry_key key_;
|
||
struct elf_m68k_got_entry *entry;
|
||
|
||
if (h != NULL && elf_m68k_hash_entry (h)->got_entry_key == 0)
|
||
elf_m68k_hash_entry (h)->got_entry_key
|
||
= elf_m68k_multi_got (info)->global_symndx++;
|
||
|
||
elf_m68k_init_got_entry_key (&key_, h, abfd, symndx, reloc_type);
|
||
|
||
entry = elf_m68k_get_got_entry (got, &key_, FIND_OR_CREATE, info);
|
||
if (entry == NULL)
|
||
return NULL;
|
||
|
||
/* Determine entry's type and update got->n_slots counters. */
|
||
entry->key_.type = elf_m68k_update_got_entry_type (got,
|
||
entry->key_.type,
|
||
reloc_type);
|
||
|
||
/* Update refcount. */
|
||
++entry->u.s1.refcount;
|
||
|
||
if (entry->u.s1.refcount == 1)
|
||
/* We see this entry for the first time. */
|
||
{
|
||
if (entry->key_.bfd != NULL)
|
||
got->local_n_slots += elf_m68k_reloc_got_n_slots (entry->key_.type);
|
||
}
|
||
|
||
BFD_ASSERT (got->n_slots[R_32] >= got->local_n_slots);
|
||
|
||
if ((got->n_slots[R_8]
|
||
> ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
|
||
|| (got->n_slots[R_16]
|
||
> ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))
|
||
/* This BFD has too many relocation. */
|
||
{
|
||
if (got->n_slots[R_8] > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
|
||
(*_bfd_error_handler) (_("%B: GOT overflow: "
|
||
"Number of relocations with 8-bit "
|
||
"offset > %d"),
|
||
abfd,
|
||
ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info));
|
||
else
|
||
(*_bfd_error_handler) (_("%B: GOT overflow: "
|
||
"Number of relocations with 8- or 16-bit "
|
||
"offset > %d"),
|
||
abfd,
|
||
ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info));
|
||
|
||
return NULL;
|
||
}
|
||
|
||
return entry;
|
||
}
|
||
|
||
/* Compute the hash value of the bfd in a bfd2got hash entry. */
|
||
|
||
static hashval_t
|
||
elf_m68k_bfd2got_entry_hash (const void *entry)
|
||
{
|
||
const struct elf_m68k_bfd2got_entry *e;
|
||
|
||
e = (const struct elf_m68k_bfd2got_entry *) entry;
|
||
|
||
return e->bfd->id;
|
||
}
|
||
|
||
/* Check whether two hash entries have the same bfd. */
|
||
|
||
static int
|
||
elf_m68k_bfd2got_entry_eq (const void *entry1, const void *entry2)
|
||
{
|
||
const struct elf_m68k_bfd2got_entry *e1;
|
||
const struct elf_m68k_bfd2got_entry *e2;
|
||
|
||
e1 = (const struct elf_m68k_bfd2got_entry *) entry1;
|
||
e2 = (const struct elf_m68k_bfd2got_entry *) entry2;
|
||
|
||
return e1->bfd == e2->bfd;
|
||
}
|
||
|
||
/* Destruct a bfd2got entry. */
|
||
|
||
static void
|
||
elf_m68k_bfd2got_entry_del (void *_entry)
|
||
{
|
||
struct elf_m68k_bfd2got_entry *entry;
|
||
|
||
entry = (struct elf_m68k_bfd2got_entry *) _entry;
|
||
|
||
BFD_ASSERT (entry->got != NULL);
|
||
elf_m68k_clear_got (entry->got);
|
||
}
|
||
|
||
/* Find existing or create new (depending on HOWTO) bfd2got entry in
|
||
MULTI_GOT. ABFD is the bfd we need a GOT for. INFO is a context where
|
||
memory should be allocated. */
|
||
|
||
static struct elf_m68k_bfd2got_entry *
|
||
elf_m68k_get_bfd2got_entry (struct elf_m68k_multi_got *multi_got,
|
||
const bfd *abfd,
|
||
enum elf_m68k_get_entry_howto howto,
|
||
struct bfd_link_info *info)
|
||
{
|
||
struct elf_m68k_bfd2got_entry entry_;
|
||
void **ptr;
|
||
struct elf_m68k_bfd2got_entry *entry;
|
||
|
||
BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND));
|
||
|
||
if (multi_got->bfd2got == NULL)
|
||
/* This is the first GOT. Initialize bfd2got. */
|
||
{
|
||
if (howto == SEARCH)
|
||
return NULL;
|
||
|
||
multi_got->bfd2got = htab_try_create (1, elf_m68k_bfd2got_entry_hash,
|
||
elf_m68k_bfd2got_entry_eq,
|
||
elf_m68k_bfd2got_entry_del);
|
||
if (multi_got->bfd2got == NULL)
|
||
{
|
||
bfd_set_error (bfd_error_no_memory);
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
entry_.bfd = abfd;
|
||
ptr = htab_find_slot (multi_got->bfd2got, &entry_, (howto != SEARCH
|
||
? INSERT : NO_INSERT));
|
||
if (ptr == NULL)
|
||
{
|
||
if (howto == SEARCH)
|
||
/* Entry not found. */
|
||
return NULL;
|
||
|
||
/* We're out of memory. */
|
||
bfd_set_error (bfd_error_no_memory);
|
||
return NULL;
|
||
}
|
||
|
||
if (*ptr == NULL)
|
||
/* Entry was not found. Create new one. */
|
||
{
|
||
BFD_ASSERT (howto != MUST_FIND && howto != SEARCH);
|
||
|
||
entry = ((struct elf_m68k_bfd2got_entry *)
|
||
bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry)));
|
||
if (entry == NULL)
|
||
return NULL;
|
||
|
||
entry->bfd = abfd;
|
||
|
||
entry->got = elf_m68k_create_empty_got (info);
|
||
if (entry->got == NULL)
|
||
return NULL;
|
||
|
||
*ptr = entry;
|
||
}
|
||
else
|
||
{
|
||
BFD_ASSERT (howto != MUST_CREATE);
|
||
|
||
/* Return existing entry. */
|
||
entry = *ptr;
|
||
}
|
||
|
||
return entry;
|
||
}
|
||
|
||
struct elf_m68k_can_merge_gots_arg
|
||
{
|
||
/* A current_got that we constructing a DIFF against. */
|
||
struct elf_m68k_got *big;
|
||
|
||
/* GOT holding entries not present or that should be changed in
|
||
BIG. */
|
||
struct elf_m68k_got *diff;
|
||
|
||
/* Context where to allocate memory. */
|
||
struct bfd_link_info *info;
|
||
|
||
/* Error flag. */
|
||
bfd_boolean error_p;
|
||
};
|
||
|
||
/* Process a single entry from the small GOT to see if it should be added
|
||
or updated in the big GOT. */
|
||
|
||
static int
|
||
elf_m68k_can_merge_gots_1 (void **_entry_ptr, void *_arg)
|
||
{
|
||
const struct elf_m68k_got_entry *entry1;
|
||
struct elf_m68k_can_merge_gots_arg *arg;
|
||
const struct elf_m68k_got_entry *entry2;
|
||
enum elf_m68k_reloc_type type;
|
||
|
||
entry1 = (const struct elf_m68k_got_entry *) *_entry_ptr;
|
||
arg = (struct elf_m68k_can_merge_gots_arg *) _arg;
|
||
|
||
entry2 = elf_m68k_get_got_entry (arg->big, &entry1->key_, SEARCH, NULL);
|
||
|
||
if (entry2 != NULL)
|
||
/* We found an existing entry. Check if we should update it. */
|
||
{
|
||
type = elf_m68k_update_got_entry_type (arg->diff,
|
||
entry2->key_.type,
|
||
entry1->key_.type);
|
||
|
||
if (type == entry2->key_.type)
|
||
/* ENTRY1 doesn't update data in ENTRY2. Skip it.
|
||
To skip creation of difference entry we use the type,
|
||
which we won't see in GOT entries for sure. */
|
||
type = R_68K_max;
|
||
}
|
||
else
|
||
/* We didn't find the entry. Add entry1 to DIFF. */
|
||
{
|
||
BFD_ASSERT (entry1->key_.type != R_68K_max);
|
||
|
||
type = elf_m68k_update_got_entry_type (arg->diff,
|
||
R_68K_max, entry1->key_.type);
|
||
|
||
if (entry1->key_.bfd != NULL)
|
||
arg->diff->local_n_slots += elf_m68k_reloc_got_n_slots (type);
|
||
}
|
||
|
||
if (type != R_68K_max)
|
||
/* Create an entry in DIFF. */
|
||
{
|
||
struct elf_m68k_got_entry *entry;
|
||
|
||
entry = elf_m68k_get_got_entry (arg->diff, &entry1->key_, MUST_CREATE,
|
||
arg->info);
|
||
if (entry == NULL)
|
||
{
|
||
arg->error_p = TRUE;
|
||
return 0;
|
||
}
|
||
|
||
entry->key_.type = type;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Return TRUE if SMALL GOT can be added to BIG GOT without overflowing it.
|
||
Construct DIFF GOT holding the entries which should be added or updated
|
||
in BIG GOT to accumulate information from SMALL.
|
||
INFO is the context where memory should be allocated. */
|
||
|
||
static bfd_boolean
|
||
elf_m68k_can_merge_gots (struct elf_m68k_got *big,
|
||
const struct elf_m68k_got *small,
|
||
struct bfd_link_info *info,
|
||
struct elf_m68k_got *diff)
|
||
{
|
||
struct elf_m68k_can_merge_gots_arg arg_;
|
||
|
||
BFD_ASSERT (small->offset == (bfd_vma) -1);
|
||
|
||
arg_.big = big;
|
||
arg_.diff = diff;
|
||
arg_.info = info;
|
||
arg_.error_p = FALSE;
|
||
htab_traverse_noresize (small->entries, elf_m68k_can_merge_gots_1, &arg_);
|
||
if (arg_.error_p)
|
||
{
|
||
diff->offset = 0;
|
||
return FALSE;
|
||
}
|
||
|
||
/* Check for overflow. */
|
||
if ((big->n_slots[R_8] + arg_.diff->n_slots[R_8]
|
||
> ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
|
||
|| (big->n_slots[R_16] + arg_.diff->n_slots[R_16]
|
||
> ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))
|
||
return FALSE;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
struct elf_m68k_merge_gots_arg
|
||
{
|
||
/* The BIG got. */
|
||
struct elf_m68k_got *big;
|
||
|
||
/* Context where memory should be allocated. */
|
||
struct bfd_link_info *info;
|
||
|
||
/* Error flag. */
|
||
bfd_boolean error_p;
|
||
};
|
||
|
||
/* Process a single entry from DIFF got. Add or update corresponding
|
||
entry in the BIG got. */
|
||
|
||
static int
|
||
elf_m68k_merge_gots_1 (void **entry_ptr, void *_arg)
|
||
{
|
||
const struct elf_m68k_got_entry *from;
|
||
struct elf_m68k_merge_gots_arg *arg;
|
||
struct elf_m68k_got_entry *to;
|
||
|
||
from = (const struct elf_m68k_got_entry *) *entry_ptr;
|
||
arg = (struct elf_m68k_merge_gots_arg *) _arg;
|
||
|
||
to = elf_m68k_get_got_entry (arg->big, &from->key_, FIND_OR_CREATE,
|
||
arg->info);
|
||
if (to == NULL)
|
||
{
|
||
arg->error_p = TRUE;
|
||
return 0;
|
||
}
|
||
|
||
BFD_ASSERT (to->u.s1.refcount == 0);
|
||
/* All we need to merge is TYPE. */
|
||
to->key_.type = from->key_.type;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Merge data from DIFF to BIG. INFO is context where memory should be
|
||
allocated. */
|
||
|
||
static bfd_boolean
|
||
elf_m68k_merge_gots (struct elf_m68k_got *big,
|
||
struct elf_m68k_got *diff,
|
||
struct bfd_link_info *info)
|
||
{
|
||
if (diff->entries != NULL)
|
||
/* DIFF is not empty. Merge it into BIG GOT. */
|
||
{
|
||
struct elf_m68k_merge_gots_arg arg_;
|
||
|
||
/* Merge entries. */
|
||
arg_.big = big;
|
||
arg_.info = info;
|
||
arg_.error_p = FALSE;
|
||
htab_traverse_noresize (diff->entries, elf_m68k_merge_gots_1, &arg_);
|
||
if (arg_.error_p)
|
||
return FALSE;
|
||
|
||
/* Merge counters. */
|
||
big->n_slots[R_8] += diff->n_slots[R_8];
|
||
big->n_slots[R_16] += diff->n_slots[R_16];
|
||
big->n_slots[R_32] += diff->n_slots[R_32];
|
||
big->local_n_slots += diff->local_n_slots;
|
||
}
|
||
else
|
||
/* DIFF is empty. */
|
||
{
|
||
BFD_ASSERT (diff->n_slots[R_8] == 0);
|
||
BFD_ASSERT (diff->n_slots[R_16] == 0);
|
||
BFD_ASSERT (diff->n_slots[R_32] == 0);
|
||
BFD_ASSERT (diff->local_n_slots == 0);
|
||
}
|
||
|
||
BFD_ASSERT (!elf_m68k_hash_table (info)->allow_multigot_p
|
||
|| ((big->n_slots[R_8]
|
||
<= ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
|
||
&& (big->n_slots[R_16]
|
||
<= ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info))));
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
struct elf_m68k_finalize_got_offsets_arg
|
||
{
|
||
/* Ranges of the offsets for GOT entries.
|
||
R_x entries receive offsets between offset1[R_x] and offset2[R_x].
|
||
R_x is R_8, R_16 and R_32. */
|
||
bfd_vma *offset1;
|
||
bfd_vma *offset2;
|
||
|
||
/* Mapping from global symndx to global symbols.
|
||
This is used to build lists of got entries for global symbols. */
|
||
struct elf_m68k_link_hash_entry **symndx2h;
|
||
|
||
bfd_vma n_ldm_entries;
|
||
};
|
||
|
||
/* Assign ENTRY an offset. Build list of GOT entries for global symbols
|
||
along the way. */
|
||
|
||
static int
|
||
elf_m68k_finalize_got_offsets_1 (void **entry_ptr, void *_arg)
|
||
{
|
||
struct elf_m68k_got_entry *entry;
|
||
struct elf_m68k_finalize_got_offsets_arg *arg;
|
||
|
||
enum elf_m68k_got_offset_size got_offset_size;
|
||
bfd_vma entry_size;
|
||
|
||
entry = (struct elf_m68k_got_entry *) *entry_ptr;
|
||
arg = (struct elf_m68k_finalize_got_offsets_arg *) _arg;
|
||
|
||
/* This should be a fresh entry created in elf_m68k_can_merge_gots. */
|
||
BFD_ASSERT (entry->u.s1.refcount == 0);
|
||
|
||
/* Get GOT offset size for the entry . */
|
||
got_offset_size = elf_m68k_reloc_got_offset_size (entry->key_.type);
|
||
|
||
/* Calculate entry size in bytes. */
|
||
entry_size = 4 * elf_m68k_reloc_got_n_slots (entry->key_.type);
|
||
|
||
/* Check if we should switch to negative range of the offsets. */
|
||
if (arg->offset1[got_offset_size] + entry_size
|
||
> arg->offset2[got_offset_size])
|
||
{
|
||
/* Verify that this is the only switch to negative range for
|
||
got_offset_size. If this assertion fails, then we've miscalculated
|
||
range for got_offset_size entries in
|
||
elf_m68k_finalize_got_offsets. */
|
||
BFD_ASSERT (arg->offset2[got_offset_size]
|
||
!= arg->offset2[-(int) got_offset_size - 1]);
|
||
|
||
/* Switch. */
|
||
arg->offset1[got_offset_size] = arg->offset1[-(int) got_offset_size - 1];
|
||
arg->offset2[got_offset_size] = arg->offset2[-(int) got_offset_size - 1];
|
||
|
||
/* Verify that now we have enough room for the entry. */
|
||
BFD_ASSERT (arg->offset1[got_offset_size] + entry_size
|
||
<= arg->offset2[got_offset_size]);
|
||
}
|
||
|
||
/* Assign offset to entry. */
|
||
entry->u.s2.offset = arg->offset1[got_offset_size];
|
||
arg->offset1[got_offset_size] += entry_size;
|
||
|
||
if (entry->key_.bfd == NULL)
|
||
/* Hook up this entry into the list of got_entries of H. */
|
||
{
|
||
struct elf_m68k_link_hash_entry *h;
|
||
|
||
h = arg->symndx2h[entry->key_.symndx];
|
||
if (h != NULL)
|
||
{
|
||
entry->u.s2.next = h->glist;
|
||
h->glist = entry;
|
||
}
|
||
else
|
||
/* This should be the entry for TLS_LDM relocation then. */
|
||
{
|
||
BFD_ASSERT ((elf_m68k_reloc_got_type (entry->key_.type)
|
||
== R_68K_TLS_LDM32)
|
||
&& entry->key_.symndx == 0);
|
||
|
||
++arg->n_ldm_entries;
|
||
}
|
||
}
|
||
else
|
||
/* This entry is for local symbol. */
|
||
entry->u.s2.next = NULL;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Assign offsets within GOT. USE_NEG_GOT_OFFSETS_P indicates if we
|
||
should use negative offsets.
|
||
Build list of GOT entries for global symbols along the way.
|
||
SYMNDX2H is mapping from global symbol indices to actual
|
||
global symbols.
|
||
Return offset at which next GOT should start. */
|
||
|
||
static void
|
||
elf_m68k_finalize_got_offsets (struct elf_m68k_got *got,
|
||
bfd_boolean use_neg_got_offsets_p,
|
||
struct elf_m68k_link_hash_entry **symndx2h,
|
||
bfd_vma *final_offset, bfd_vma *n_ldm_entries)
|
||
{
|
||
struct elf_m68k_finalize_got_offsets_arg arg_;
|
||
bfd_vma offset1_[2 * R_LAST];
|
||
bfd_vma offset2_[2 * R_LAST];
|
||
int i;
|
||
bfd_vma start_offset;
|
||
|
||
BFD_ASSERT (got->offset != (bfd_vma) -1);
|
||
|
||
/* We set entry offsets relative to the .got section (and not the
|
||
start of a particular GOT), so that we can use them in
|
||
finish_dynamic_symbol without needing to know the GOT which they come
|
||
from. */
|
||
|
||
/* Put offset1 in the middle of offset1_, same for offset2. */
|
||
arg_.offset1 = offset1_ + R_LAST;
|
||
arg_.offset2 = offset2_ + R_LAST;
|
||
|
||
start_offset = got->offset;
|
||
|
||
if (use_neg_got_offsets_p)
|
||
/* Setup both negative and positive ranges for R_8, R_16 and R_32. */
|
||
i = -(int) R_32 - 1;
|
||
else
|
||
/* Setup positives ranges for R_8, R_16 and R_32. */
|
||
i = (int) R_8;
|
||
|
||
for (; i <= (int) R_32; ++i)
|
||
{
|
||
int j;
|
||
size_t n;
|
||
|
||
/* Set beginning of the range of offsets I. */
|
||
arg_.offset1[i] = start_offset;
|
||
|
||
/* Calculate number of slots that require I offsets. */
|
||
j = (i >= 0) ? i : -i - 1;
|
||
n = (j >= 1) ? got->n_slots[j - 1] : 0;
|
||
n = got->n_slots[j] - n;
|
||
|
||
if (use_neg_got_offsets_p && n != 0)
|
||
{
|
||
if (i < 0)
|
||
/* We first fill the positive side of the range, so we might
|
||
end up with one empty slot at that side when we can't fit
|
||
whole 2-slot entry. Account for that at negative side of
|
||
the interval with one additional entry. */
|
||
n = n / 2 + 1;
|
||
else
|
||
/* When the number of slots is odd, make positive side of the
|
||
range one entry bigger. */
|
||
n = (n + 1) / 2;
|
||
}
|
||
|
||
/* N is the number of slots that require I offsets.
|
||
Calculate length of the range for I offsets. */
|
||
n = 4 * n;
|
||
|
||
/* Set end of the range. */
|
||
arg_.offset2[i] = start_offset + n;
|
||
|
||
start_offset = arg_.offset2[i];
|
||
}
|
||
|
||
if (!use_neg_got_offsets_p)
|
||
/* Make sure that if we try to switch to negative offsets in
|
||
elf_m68k_finalize_got_offsets_1, the assert therein will catch
|
||
the bug. */
|
||
for (i = R_8; i <= R_32; ++i)
|
||
arg_.offset2[-i - 1] = arg_.offset2[i];
|
||
|
||
/* Setup got->offset. offset1[R_8] is either in the middle or at the
|
||
beginning of GOT depending on use_neg_got_offsets_p. */
|
||
got->offset = arg_.offset1[R_8];
|
||
|
||
arg_.symndx2h = symndx2h;
|
||
arg_.n_ldm_entries = 0;
|
||
|
||
/* Assign offsets. */
|
||
htab_traverse (got->entries, elf_m68k_finalize_got_offsets_1, &arg_);
|
||
|
||
/* Check offset ranges we have actually assigned. */
|
||
for (i = (int) R_8; i <= (int) R_32; ++i)
|
||
BFD_ASSERT (arg_.offset2[i] - arg_.offset1[i] <= 4);
|
||
|
||
*final_offset = start_offset;
|
||
*n_ldm_entries = arg_.n_ldm_entries;
|
||
}
|
||
|
||
struct elf_m68k_partition_multi_got_arg
|
||
{
|
||
/* The GOT we are adding entries to. Aka big got. */
|
||
struct elf_m68k_got *current_got;
|
||
|
||
/* Offset to assign the next CURRENT_GOT. */
|
||
bfd_vma offset;
|
||
|
||
/* Context where memory should be allocated. */
|
||
struct bfd_link_info *info;
|
||
|
||
/* Total number of slots in the .got section.
|
||
This is used to calculate size of the .got and .rela.got sections. */
|
||
bfd_vma n_slots;
|
||
|
||
/* Difference in numbers of allocated slots in the .got section
|
||
and necessary relocations in the .rela.got section.
|
||
This is used to calculate size of the .rela.got section. */
|
||
bfd_vma slots_relas_diff;
|
||
|
||
/* Error flag. */
|
||
bfd_boolean error_p;
|
||
|
||
/* Mapping from global symndx to global symbols.
|
||
This is used to build lists of got entries for global symbols. */
|
||
struct elf_m68k_link_hash_entry **symndx2h;
|
||
};
|
||
|
||
static void
|
||
elf_m68k_partition_multi_got_2 (struct elf_m68k_partition_multi_got_arg *arg)
|
||
{
|
||
bfd_vma n_ldm_entries;
|
||
|
||
elf_m68k_finalize_got_offsets (arg->current_got,
|
||
(elf_m68k_hash_table (arg->info)
|
||
->use_neg_got_offsets_p),
|
||
arg->symndx2h,
|
||
&arg->offset, &n_ldm_entries);
|
||
|
||
arg->n_slots += arg->current_got->n_slots[R_32];
|
||
|
||
if (!arg->info->shared)
|
||
/* If we are generating a shared object, we need to
|
||
output a R_68K_RELATIVE reloc so that the dynamic
|
||
linker can adjust this GOT entry. Overwise we
|
||
don't need space in .rela.got for local symbols. */
|
||
arg->slots_relas_diff += arg->current_got->local_n_slots;
|
||
|
||
/* @LDM relocations require a 2-slot GOT entry, but only
|
||
one relocation. Account for that. */
|
||
arg->slots_relas_diff += n_ldm_entries;
|
||
|
||
BFD_ASSERT (arg->slots_relas_diff <= arg->n_slots);
|
||
}
|
||
|
||
|
||
/* Process a single BFD2GOT entry and either merge GOT to CURRENT_GOT
|
||
or start a new CURRENT_GOT. */
|
||
|
||
static int
|
||
elf_m68k_partition_multi_got_1 (void **_entry, void *_arg)
|
||
{
|
||
struct elf_m68k_bfd2got_entry *entry;
|
||
struct elf_m68k_partition_multi_got_arg *arg;
|
||
struct elf_m68k_got *got;
|
||
struct elf_m68k_got diff_;
|
||
struct elf_m68k_got *diff;
|
||
|
||
entry = (struct elf_m68k_bfd2got_entry *) *_entry;
|
||
arg = (struct elf_m68k_partition_multi_got_arg *) _arg;
|
||
|
||
got = entry->got;
|
||
BFD_ASSERT (got != NULL);
|
||
BFD_ASSERT (got->offset == (bfd_vma) -1);
|
||
|
||
diff = NULL;
|
||
|
||
if (arg->current_got != NULL)
|
||
/* Construct diff. */
|
||
{
|
||
diff = &diff_;
|
||
elf_m68k_init_got (diff);
|
||
|
||
if (!elf_m68k_can_merge_gots (arg->current_got, got, arg->info, diff))
|
||
{
|
||
if (diff->offset == 0)
|
||
/* Offset set to 0 in the diff_ indicates an error. */
|
||
{
|
||
arg->error_p = TRUE;
|
||
goto final_return;
|
||
}
|
||
|
||
if (elf_m68k_hash_table (arg->info)->allow_multigot_p)
|
||
{
|
||
elf_m68k_clear_got (diff);
|
||
/* Schedule to finish up current_got and start new one. */
|
||
diff = NULL;
|
||
}
|
||
/* else
|
||
Merge GOTs no matter what. If big GOT overflows,
|
||
we'll fail in relocate_section due to truncated relocations.
|
||
|
||
??? May be fail earlier? E.g., in can_merge_gots. */
|
||
}
|
||
}
|
||
else
|
||
/* Diff of got against empty current_got is got itself. */
|
||
{
|
||
/* Create empty current_got to put subsequent GOTs to. */
|
||
arg->current_got = elf_m68k_create_empty_got (arg->info);
|
||
if (arg->current_got == NULL)
|
||
{
|
||
arg->error_p = TRUE;
|
||
goto final_return;
|
||
}
|
||
|
||
arg->current_got->offset = arg->offset;
|
||
|
||
diff = got;
|
||
}
|
||
|
||
if (diff != NULL)
|
||
{
|
||
if (!elf_m68k_merge_gots (arg->current_got, diff, arg->info))
|
||
{
|
||
arg->error_p = TRUE;
|
||
goto final_return;
|
||
}
|
||
|
||
/* Now we can free GOT. */
|
||
elf_m68k_clear_got (got);
|
||
|
||
entry->got = arg->current_got;
|
||
}
|
||
else
|
||
{
|
||
/* Finish up current_got. */
|
||
elf_m68k_partition_multi_got_2 (arg);
|
||
|
||
/* Schedule to start a new current_got. */
|
||
arg->current_got = NULL;
|
||
|
||
/* Retry. */
|
||
if (!elf_m68k_partition_multi_got_1 (_entry, _arg))
|
||
{
|
||
BFD_ASSERT (arg->error_p);
|
||
goto final_return;
|
||
}
|
||
}
|
||
|
||
final_return:
|
||
if (diff != NULL)
|
||
elf_m68k_clear_got (diff);
|
||
|
||
return arg->error_p == FALSE ? 1 : 0;
|
||
}
|
||
|
||
/* Helper function to build symndx2h mapping. */
|
||
|
||
static bfd_boolean
|
||
elf_m68k_init_symndx2h_1 (struct elf_link_hash_entry *_h,
|
||
void *_arg)
|
||
{
|
||
struct elf_m68k_link_hash_entry *h;
|
||
|
||
h = elf_m68k_hash_entry (_h);
|
||
|
||
if (h->got_entry_key != 0)
|
||
/* H has at least one entry in the GOT. */
|
||
{
|
||
struct elf_m68k_partition_multi_got_arg *arg;
|
||
|
||
arg = (struct elf_m68k_partition_multi_got_arg *) _arg;
|
||
|
||
BFD_ASSERT (arg->symndx2h[h->got_entry_key] == NULL);
|
||
arg->symndx2h[h->got_entry_key] = h;
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Merge GOTs of some BFDs, assign offsets to GOT entries and build
|
||
lists of GOT entries for global symbols.
|
||
Calculate sizes of .got and .rela.got sections. */
|
||
|
||
static bfd_boolean
|
||
elf_m68k_partition_multi_got (struct bfd_link_info *info)
|
||
{
|
||
struct elf_m68k_multi_got *multi_got;
|
||
struct elf_m68k_partition_multi_got_arg arg_;
|
||
|
||
multi_got = elf_m68k_multi_got (info);
|
||
|
||
arg_.current_got = NULL;
|
||
arg_.offset = 0;
|
||
arg_.info = info;
|
||
arg_.n_slots = 0;
|
||
arg_.slots_relas_diff = 0;
|
||
arg_.error_p = FALSE;
|
||
|
||
if (multi_got->bfd2got != NULL)
|
||
{
|
||
/* Initialize symndx2h mapping. */
|
||
{
|
||
arg_.symndx2h = bfd_zmalloc (multi_got->global_symndx
|
||
* sizeof (*arg_.symndx2h));
|
||
if (arg_.symndx2h == NULL)
|
||
return FALSE;
|
||
|
||
elf_link_hash_traverse (elf_hash_table (info),
|
||
elf_m68k_init_symndx2h_1, &arg_);
|
||
}
|
||
|
||
/* Partition. */
|
||
htab_traverse (multi_got->bfd2got, elf_m68k_partition_multi_got_1,
|
||
&arg_);
|
||
if (arg_.error_p)
|
||
{
|
||
free (arg_.symndx2h);
|
||
arg_.symndx2h = NULL;
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
/* Finish up last current_got. */
|
||
elf_m68k_partition_multi_got_2 (&arg_);
|
||
|
||
free (arg_.symndx2h);
|
||
}
|
||
|
||
if (elf_hash_table (info)->dynobj != NULL)
|
||
/* Set sizes of .got and .rela.got sections. */
|
||
{
|
||
asection *s;
|
||
|
||
s = bfd_get_section_by_name (elf_hash_table (info)->dynobj, ".got");
|
||
if (s != NULL)
|
||
s->size = arg_.offset;
|
||
else
|
||
BFD_ASSERT (arg_.offset == 0);
|
||
|
||
BFD_ASSERT (arg_.slots_relas_diff <= arg_.n_slots);
|
||
arg_.n_slots -= arg_.slots_relas_diff;
|
||
|
||
s = bfd_get_section_by_name (elf_hash_table (info)->dynobj, ".rela.got");
|
||
if (s != NULL)
|
||
s->size = arg_.n_slots * sizeof (Elf32_External_Rela);
|
||
else
|
||
BFD_ASSERT (arg_.n_slots == 0);
|
||
}
|
||
else
|
||
BFD_ASSERT (multi_got->bfd2got == NULL);
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Specialized version of elf_m68k_get_got_entry that returns pointer
|
||
to hashtable slot, thus allowing removal of entry via
|
||
elf_m68k_remove_got_entry. */
|
||
|
||
static struct elf_m68k_got_entry **
|
||
elf_m68k_find_got_entry_ptr (struct elf_m68k_got *got,
|
||
struct elf_m68k_got_entry_key *key)
|
||
{
|
||
void **ptr;
|
||
struct elf_m68k_got_entry entry_;
|
||
struct elf_m68k_got_entry **entry_ptr;
|
||
|
||
entry_.key_ = *key;
|
||
ptr = htab_find_slot (got->entries, &entry_, NO_INSERT);
|
||
BFD_ASSERT (ptr != NULL);
|
||
|
||
entry_ptr = (struct elf_m68k_got_entry **) ptr;
|
||
|
||
return entry_ptr;
|
||
}
|
||
|
||
/* Remove entry pointed to by ENTRY_PTR from GOT. */
|
||
|
||
static void
|
||
elf_m68k_remove_got_entry (struct elf_m68k_got *got,
|
||
struct elf_m68k_got_entry **entry_ptr)
|
||
{
|
||
struct elf_m68k_got_entry *entry;
|
||
|
||
entry = *entry_ptr;
|
||
|
||
/* Check that offsets have not been finalized yet. */
|
||
BFD_ASSERT (got->offset == (bfd_vma) -1);
|
||
/* Check that this entry is indeed unused. */
|
||
BFD_ASSERT (entry->u.s1.refcount == 0);
|
||
|
||
elf_m68k_remove_got_entry_type (got, entry->key_.type);
|
||
|
||
if (entry->key_.bfd != NULL)
|
||
got->local_n_slots -= elf_m68k_reloc_got_n_slots (entry->key_.type);
|
||
|
||
BFD_ASSERT (got->n_slots[R_32] >= got->local_n_slots);
|
||
|
||
htab_clear_slot (got->entries, (void **) entry_ptr);
|
||
}
|
||
|
||
/* Copy any information related to dynamic linking from a pre-existing
|
||
symbol to a newly created symbol. Also called to copy flags and
|
||
other back-end info to a weakdef, in which case the symbol is not
|
||
newly created and plt/got refcounts and dynamic indices should not
|
||
be copied. */
|
||
|
||
static void
|
||
elf_m68k_copy_indirect_symbol (struct bfd_link_info *info,
|
||
struct elf_link_hash_entry *_dir,
|
||
struct elf_link_hash_entry *_ind)
|
||
{
|
||
struct elf_m68k_link_hash_entry *dir;
|
||
struct elf_m68k_link_hash_entry *ind;
|
||
|
||
_bfd_elf_link_hash_copy_indirect (info, _dir, _ind);
|
||
|
||
if (_ind->root.type != bfd_link_hash_indirect)
|
||
return;
|
||
|
||
dir = elf_m68k_hash_entry (_dir);
|
||
ind = elf_m68k_hash_entry (_ind);
|
||
|
||
/* Any absolute non-dynamic relocations against an indirect or weak
|
||
definition will be against the target symbol. */
|
||
_dir->non_got_ref |= _ind->non_got_ref;
|
||
|
||
/* We might have a direct symbol already having entries in the GOTs.
|
||
Update its key only in case indirect symbol has GOT entries and
|
||
assert that both indirect and direct symbols don't have GOT entries
|
||
at the same time. */
|
||
if (ind->got_entry_key != 0)
|
||
{
|
||
BFD_ASSERT (dir->got_entry_key == 0);
|
||
/* Assert that GOTs aren't partioned yet. */
|
||
BFD_ASSERT (ind->glist == NULL);
|
||
|
||
dir->got_entry_key = ind->got_entry_key;
|
||
ind->got_entry_key = 0;
|
||
}
|
||
}
|
||
|
||
/* Look through the relocs for a section during the first phase, and
|
||
allocate space in the global offset table or procedure linkage
|
||
table. */
|
||
|
||
static bfd_boolean
|
||
elf_m68k_check_relocs (abfd, info, sec, relocs)
|
||
bfd *abfd;
|
||
struct bfd_link_info *info;
|
||
asection *sec;
|
||
const Elf_Internal_Rela *relocs;
|
||
{
|
||
bfd *dynobj;
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
struct elf_link_hash_entry **sym_hashes;
|
||
const Elf_Internal_Rela *rel;
|
||
const Elf_Internal_Rela *rel_end;
|
||
asection *sgot;
|
||
asection *srelgot;
|
||
asection *sreloc;
|
||
struct elf_m68k_got *got;
|
||
|
||
if (info->relocatable)
|
||
return TRUE;
|
||
|
||
dynobj = elf_hash_table (info)->dynobj;
|
||
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
sym_hashes = elf_sym_hashes (abfd);
|
||
|
||
sgot = NULL;
|
||
srelgot = NULL;
|
||
sreloc = NULL;
|
||
|
||
got = NULL;
|
||
|
||
rel_end = relocs + sec->reloc_count;
|
||
for (rel = relocs; rel < rel_end; rel++)
|
||
{
|
||
unsigned long r_symndx;
|
||
struct elf_link_hash_entry *h;
|
||
|
||
r_symndx = ELF32_R_SYM (rel->r_info);
|
||
|
||
if (r_symndx < symtab_hdr->sh_info)
|
||
h = NULL;
|
||
else
|
||
{
|
||
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
||
while (h->root.type == bfd_link_hash_indirect
|
||
|| h->root.type == bfd_link_hash_warning)
|
||
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
||
}
|
||
|
||
switch (ELF32_R_TYPE (rel->r_info))
|
||
{
|
||
case R_68K_GOT8:
|
||
case R_68K_GOT16:
|
||
case R_68K_GOT32:
|
||
if (h != NULL
|
||
&& strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
|
||
break;
|
||
/* Fall through. */
|
||
|
||
/* Relative GOT relocations. */
|
||
case R_68K_GOT8O:
|
||
case R_68K_GOT16O:
|
||
case R_68K_GOT32O:
|
||
/* Fall through. */
|
||
|
||
/* TLS relocations. */
|
||
case R_68K_TLS_GD8:
|
||
case R_68K_TLS_GD16:
|
||
case R_68K_TLS_GD32:
|
||
case R_68K_TLS_LDM8:
|
||
case R_68K_TLS_LDM16:
|
||
case R_68K_TLS_LDM32:
|
||
case R_68K_TLS_IE8:
|
||
case R_68K_TLS_IE16:
|
||
case R_68K_TLS_IE32:
|
||
|
||
case R_68K_TLS_TPREL32:
|
||
case R_68K_TLS_DTPREL32:
|
||
|
||
if (ELF32_R_TYPE (rel->r_info) == R_68K_TLS_TPREL32
|
||
&& info->shared)
|
||
/* Do the special chorus for libraries with static TLS. */
|
||
info->flags |= DF_STATIC_TLS;
|
||
|
||
/* This symbol requires a global offset table entry. */
|
||
|
||
if (dynobj == NULL)
|
||
{
|
||
/* Create the .got section. */
|
||
elf_hash_table (info)->dynobj = dynobj = abfd;
|
||
if (!_bfd_elf_create_got_section (dynobj, info))
|
||
return FALSE;
|
||
}
|
||
|
||
if (sgot == NULL)
|
||
{
|
||
sgot = bfd_get_section_by_name (dynobj, ".got");
|
||
BFD_ASSERT (sgot != NULL);
|
||
}
|
||
|
||
if (srelgot == NULL
|
||
&& (h != NULL || info->shared))
|
||
{
|
||
srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
|
||
if (srelgot == NULL)
|
||
{
|
||
srelgot = bfd_make_section_with_flags (dynobj,
|
||
".rela.got",
|
||
(SEC_ALLOC
|
||
| SEC_LOAD
|
||
| SEC_HAS_CONTENTS
|
||
| SEC_IN_MEMORY
|
||
| SEC_LINKER_CREATED
|
||
| SEC_READONLY));
|
||
if (srelgot == NULL
|
||
|| !bfd_set_section_alignment (dynobj, srelgot, 2))
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
if (got == NULL)
|
||
{
|
||
struct elf_m68k_bfd2got_entry *bfd2got_entry;
|
||
|
||
bfd2got_entry
|
||
= elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
|
||
abfd, FIND_OR_CREATE, info);
|
||
if (bfd2got_entry == NULL)
|
||
return FALSE;
|
||
|
||
got = bfd2got_entry->got;
|
||
BFD_ASSERT (got != NULL);
|
||
}
|
||
|
||
{
|
||
struct elf_m68k_got_entry *got_entry;
|
||
|
||
/* Add entry to got. */
|
||
got_entry = elf_m68k_add_entry_to_got (got, h, abfd,
|
||
ELF32_R_TYPE (rel->r_info),
|
||
r_symndx, info);
|
||
if (got_entry == NULL)
|
||
return FALSE;
|
||
|
||
if (got_entry->u.s1.refcount == 1)
|
||
{
|
||
/* Make sure this symbol is output as a dynamic symbol. */
|
||
if (h != NULL
|
||
&& h->dynindx == -1
|
||
&& !h->forced_local)
|
||
{
|
||
if (!bfd_elf_link_record_dynamic_symbol (info, h))
|
||
return FALSE;
|
||
}
|
||
}
|
||
}
|
||
|
||
break;
|
||
|
||
case R_68K_PLT8:
|
||
case R_68K_PLT16:
|
||
case R_68K_PLT32:
|
||
/* This symbol requires a procedure linkage table entry. We
|
||
actually build the entry in adjust_dynamic_symbol,
|
||
because this might be a case of linking PIC code which is
|
||
never referenced by a dynamic object, in which case we
|
||
don't need to generate a procedure linkage table entry
|
||
after all. */
|
||
|
||
/* If this is a local symbol, we resolve it directly without
|
||
creating a procedure linkage table entry. */
|
||
if (h == NULL)
|
||
continue;
|
||
|
||
h->needs_plt = 1;
|
||
h->plt.refcount++;
|
||
break;
|
||
|
||
case R_68K_PLT8O:
|
||
case R_68K_PLT16O:
|
||
case R_68K_PLT32O:
|
||
/* This symbol requires a procedure linkage table entry. */
|
||
|
||
if (h == NULL)
|
||
{
|
||
/* It does not make sense to have this relocation for a
|
||
local symbol. FIXME: does it? How to handle it if
|
||
it does make sense? */
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
}
|
||
|
||
/* Make sure this symbol is output as a dynamic symbol. */
|
||
if (h->dynindx == -1
|
||
&& !h->forced_local)
|
||
{
|
||
if (!bfd_elf_link_record_dynamic_symbol (info, h))
|
||
return FALSE;
|
||
}
|
||
|
||
h->needs_plt = 1;
|
||
h->plt.refcount++;
|
||
break;
|
||
|
||
case R_68K_PC8:
|
||
case R_68K_PC16:
|
||
case R_68K_PC32:
|
||
/* If we are creating a shared library and this is not a local
|
||
symbol, we need to copy the reloc into the shared library.
|
||
However when linking with -Bsymbolic and this is a global
|
||
symbol which is defined in an object we are including in the
|
||
link (i.e., DEF_REGULAR is set), then we can resolve the
|
||
reloc directly. At this point we have not seen all the input
|
||
files, so it is possible that DEF_REGULAR is not set now but
|
||
will be set later (it is never cleared). We account for that
|
||
possibility below by storing information in the
|
||
pcrel_relocs_copied field of the hash table entry. */
|
||
if (!(info->shared
|
||
&& (sec->flags & SEC_ALLOC) != 0
|
||
&& h != NULL
|
||
&& (!info->symbolic
|
||
|| h->root.type == bfd_link_hash_defweak
|
||
|| !h->def_regular)))
|
||
{
|
||
if (h != NULL)
|
||
{
|
||
/* Make sure a plt entry is created for this symbol if
|
||
it turns out to be a function defined by a dynamic
|
||
object. */
|
||
h->plt.refcount++;
|
||
}
|
||
break;
|
||
}
|
||
/* Fall through. */
|
||
case R_68K_8:
|
||
case R_68K_16:
|
||
case R_68K_32:
|
||
/* We don't need to handle relocs into sections not going into
|
||
the "real" output. */
|
||
if ((sec->flags & SEC_ALLOC) == 0)
|
||
break;
|
||
|
||
if (h != NULL)
|
||
{
|
||
/* Make sure a plt entry is created for this symbol if it
|
||
turns out to be a function defined by a dynamic object. */
|
||
h->plt.refcount++;
|
||
|
||
if (!info->shared)
|
||
/* This symbol needs a non-GOT reference. */
|
||
h->non_got_ref = 1;
|
||
}
|
||
|
||
/* If we are creating a shared library, we need to copy the
|
||
reloc into the shared library. */
|
||
if (info->shared)
|
||
{
|
||
/* When creating a shared object, we must copy these
|
||
reloc types into the output file. We create a reloc
|
||
section in dynobj and make room for this reloc. */
|
||
if (sreloc == NULL)
|
||
{
|
||
sreloc = _bfd_elf_make_dynamic_reloc_section
|
||
(sec, dynobj, 2, abfd, /*rela?*/ TRUE);
|
||
|
||
if (sreloc == NULL)
|
||
return FALSE;
|
||
}
|
||
|
||
if (sec->flags & SEC_READONLY
|
||
/* Don't set DF_TEXTREL yet for PC relative
|
||
relocations, they might be discarded later. */
|
||
&& !(ELF32_R_TYPE (rel->r_info) == R_68K_PC8
|
||
|| ELF32_R_TYPE (rel->r_info) == R_68K_PC16
|
||
|| ELF32_R_TYPE (rel->r_info) == R_68K_PC32))
|
||
info->flags |= DF_TEXTREL;
|
||
|
||
sreloc->size += sizeof (Elf32_External_Rela);
|
||
|
||
/* We count the number of PC relative relocations we have
|
||
entered for this symbol, so that we can discard them
|
||
again if, in the -Bsymbolic case, the symbol is later
|
||
defined by a regular object, or, in the normal shared
|
||
case, the symbol is forced to be local. Note that this
|
||
function is only called if we are using an m68kelf linker
|
||
hash table, which means that h is really a pointer to an
|
||
elf_m68k_link_hash_entry. */
|
||
if (ELF32_R_TYPE (rel->r_info) == R_68K_PC8
|
||
|| ELF32_R_TYPE (rel->r_info) == R_68K_PC16
|
||
|| ELF32_R_TYPE (rel->r_info) == R_68K_PC32)
|
||
{
|
||
struct elf_m68k_pcrel_relocs_copied *p;
|
||
struct elf_m68k_pcrel_relocs_copied **head;
|
||
|
||
if (h != NULL)
|
||
{
|
||
struct elf_m68k_link_hash_entry *eh
|
||
= elf_m68k_hash_entry (h);
|
||
head = &eh->pcrel_relocs_copied;
|
||
}
|
||
else
|
||
{
|
||
asection *s;
|
||
void *vpp;
|
||
Elf_Internal_Sym *isym;
|
||
|
||
isym = bfd_sym_from_r_symndx (&elf_m68k_hash_table (info)->sym_cache,
|
||
abfd, r_symndx);
|
||
if (isym == NULL)
|
||
return FALSE;
|
||
|
||
s = bfd_section_from_elf_index (abfd, isym->st_shndx);
|
||
if (s == NULL)
|
||
s = sec;
|
||
|
||
vpp = &elf_section_data (s)->local_dynrel;
|
||
head = (struct elf_m68k_pcrel_relocs_copied **) vpp;
|
||
}
|
||
|
||
for (p = *head; p != NULL; p = p->next)
|
||
if (p->section == sreloc)
|
||
break;
|
||
|
||
if (p == NULL)
|
||
{
|
||
p = ((struct elf_m68k_pcrel_relocs_copied *)
|
||
bfd_alloc (dynobj, (bfd_size_type) sizeof *p));
|
||
if (p == NULL)
|
||
return FALSE;
|
||
p->next = *head;
|
||
*head = p;
|
||
p->section = sreloc;
|
||
p->count = 0;
|
||
}
|
||
|
||
++p->count;
|
||
}
|
||
}
|
||
|
||
break;
|
||
|
||
/* This relocation describes the C++ object vtable hierarchy.
|
||
Reconstruct it for later use during GC. */
|
||
case R_68K_GNU_VTINHERIT:
|
||
if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
|
||
return FALSE;
|
||
break;
|
||
|
||
/* This relocation describes which C++ vtable entries are actually
|
||
used. Record for later use during GC. */
|
||
case R_68K_GNU_VTENTRY:
|
||
BFD_ASSERT (h != NULL);
|
||
if (h != NULL
|
||
&& !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
|
||
return FALSE;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Return the section that should be marked against GC for a given
|
||
relocation. */
|
||
|
||
static asection *
|
||
elf_m68k_gc_mark_hook (asection *sec,
|
||
struct bfd_link_info *info,
|
||
Elf_Internal_Rela *rel,
|
||
struct elf_link_hash_entry *h,
|
||
Elf_Internal_Sym *sym)
|
||
{
|
||
if (h != NULL)
|
||
switch (ELF32_R_TYPE (rel->r_info))
|
||
{
|
||
case R_68K_GNU_VTINHERIT:
|
||
case R_68K_GNU_VTENTRY:
|
||
return NULL;
|
||
}
|
||
|
||
return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
|
||
}
|
||
|
||
/* Update the got entry reference counts for the section being removed. */
|
||
|
||
static bfd_boolean
|
||
elf_m68k_gc_sweep_hook (bfd *abfd,
|
||
struct bfd_link_info *info,
|
||
asection *sec,
|
||
const Elf_Internal_Rela *relocs)
|
||
{
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
struct elf_link_hash_entry **sym_hashes;
|
||
const Elf_Internal_Rela *rel, *relend;
|
||
bfd *dynobj;
|
||
struct elf_m68k_got *got;
|
||
|
||
if (info->relocatable)
|
||
return TRUE;
|
||
|
||
dynobj = elf_hash_table (info)->dynobj;
|
||
if (dynobj == NULL)
|
||
return TRUE;
|
||
|
||
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
sym_hashes = elf_sym_hashes (abfd);
|
||
got = NULL;
|
||
|
||
relend = relocs + sec->reloc_count;
|
||
for (rel = relocs; rel < relend; rel++)
|
||
{
|
||
unsigned long r_symndx;
|
||
struct elf_link_hash_entry *h = NULL;
|
||
|
||
r_symndx = ELF32_R_SYM (rel->r_info);
|
||
if (r_symndx >= symtab_hdr->sh_info)
|
||
{
|
||
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
||
while (h->root.type == bfd_link_hash_indirect
|
||
|| h->root.type == bfd_link_hash_warning)
|
||
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
||
}
|
||
|
||
switch (ELF32_R_TYPE (rel->r_info))
|
||
{
|
||
case R_68K_GOT8:
|
||
case R_68K_GOT16:
|
||
case R_68K_GOT32:
|
||
if (h != NULL
|
||
&& strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
|
||
break;
|
||
|
||
/* FALLTHRU */
|
||
case R_68K_GOT8O:
|
||
case R_68K_GOT16O:
|
||
case R_68K_GOT32O:
|
||
/* Fall through. */
|
||
|
||
/* TLS relocations. */
|
||
case R_68K_TLS_GD8:
|
||
case R_68K_TLS_GD16:
|
||
case R_68K_TLS_GD32:
|
||
case R_68K_TLS_LDM8:
|
||
case R_68K_TLS_LDM16:
|
||
case R_68K_TLS_LDM32:
|
||
case R_68K_TLS_IE8:
|
||
case R_68K_TLS_IE16:
|
||
case R_68K_TLS_IE32:
|
||
|
||
case R_68K_TLS_TPREL32:
|
||
case R_68K_TLS_DTPREL32:
|
||
|
||
if (got == NULL)
|
||
{
|
||
got = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
|
||
abfd, MUST_FIND, NULL)->got;
|
||
BFD_ASSERT (got != NULL);
|
||
}
|
||
|
||
{
|
||
struct elf_m68k_got_entry_key key_;
|
||
struct elf_m68k_got_entry **got_entry_ptr;
|
||
struct elf_m68k_got_entry *got_entry;
|
||
|
||
elf_m68k_init_got_entry_key (&key_, h, abfd, r_symndx,
|
||
ELF32_R_TYPE (rel->r_info));
|
||
got_entry_ptr = elf_m68k_find_got_entry_ptr (got, &key_);
|
||
|
||
got_entry = *got_entry_ptr;
|
||
|
||
if (got_entry->u.s1.refcount > 0)
|
||
{
|
||
--got_entry->u.s1.refcount;
|
||
|
||
if (got_entry->u.s1.refcount == 0)
|
||
/* We don't need the .got entry any more. */
|
||
elf_m68k_remove_got_entry (got, got_entry_ptr);
|
||
}
|
||
}
|
||
break;
|
||
|
||
case R_68K_PLT8:
|
||
case R_68K_PLT16:
|
||
case R_68K_PLT32:
|
||
case R_68K_PLT8O:
|
||
case R_68K_PLT16O:
|
||
case R_68K_PLT32O:
|
||
case R_68K_PC8:
|
||
case R_68K_PC16:
|
||
case R_68K_PC32:
|
||
case R_68K_8:
|
||
case R_68K_16:
|
||
case R_68K_32:
|
||
if (h != NULL)
|
||
{
|
||
if (h->plt.refcount > 0)
|
||
--h->plt.refcount;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Return the type of PLT associated with OUTPUT_BFD. */
|
||
|
||
static const struct elf_m68k_plt_info *
|
||
elf_m68k_get_plt_info (bfd *output_bfd)
|
||
{
|
||
unsigned int features;
|
||
|
||
features = bfd_m68k_mach_to_features (bfd_get_mach (output_bfd));
|
||
if (features & cpu32)
|
||
return &elf_cpu32_plt_info;
|
||
if (features & mcfisa_b)
|
||
return &elf_isab_plt_info;
|
||
if (features & mcfisa_c)
|
||
return &elf_isac_plt_info;
|
||
return &elf_m68k_plt_info;
|
||
}
|
||
|
||
/* This function is called after all the input files have been read,
|
||
and the input sections have been assigned to output sections.
|
||
It's a convenient place to determine the PLT style. */
|
||
|
||
static bfd_boolean
|
||
elf_m68k_always_size_sections (bfd *output_bfd, struct bfd_link_info *info)
|
||
{
|
||
/* Bind input BFDs to GOTs and calculate sizes of .got and .rela.got
|
||
sections. */
|
||
if (!elf_m68k_partition_multi_got (info))
|
||
return FALSE;
|
||
|
||
elf_m68k_hash_table (info)->plt_info = elf_m68k_get_plt_info (output_bfd);
|
||
return TRUE;
|
||
}
|
||
|
||
/* Adjust a symbol defined by a dynamic object and referenced by a
|
||
regular object. The current definition is in some section of the
|
||
dynamic object, but we're not including those sections. We have to
|
||
change the definition to something the rest of the link can
|
||
understand. */
|
||
|
||
static bfd_boolean
|
||
elf_m68k_adjust_dynamic_symbol (info, h)
|
||
struct bfd_link_info *info;
|
||
struct elf_link_hash_entry *h;
|
||
{
|
||
struct elf_m68k_link_hash_table *htab;
|
||
bfd *dynobj;
|
||
asection *s;
|
||
|
||
htab = elf_m68k_hash_table (info);
|
||
dynobj = elf_hash_table (info)->dynobj;
|
||
|
||
/* Make sure we know what is going on here. */
|
||
BFD_ASSERT (dynobj != NULL
|
||
&& (h->needs_plt
|
||
|| h->u.weakdef != NULL
|
||
|| (h->def_dynamic
|
||
&& h->ref_regular
|
||
&& !h->def_regular)));
|
||
|
||
/* If this is a function, put it in the procedure linkage table. We
|
||
will fill in the contents of the procedure linkage table later,
|
||
when we know the address of the .got section. */
|
||
if (h->type == STT_FUNC
|
||
|| h->needs_plt)
|
||
{
|
||
if ((h->plt.refcount <= 0
|
||
|| SYMBOL_CALLS_LOCAL (info, h)
|
||
|| (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
|
||
&& h->root.type == bfd_link_hash_undefweak))
|
||
/* We must always create the plt entry if it was referenced
|
||
by a PLTxxO relocation. In this case we already recorded
|
||
it as a dynamic symbol. */
|
||
&& h->dynindx == -1)
|
||
{
|
||
/* This case can occur if we saw a PLTxx reloc in an input
|
||
file, but the symbol was never referred to by a dynamic
|
||
object, or if all references were garbage collected. In
|
||
such a case, we don't actually need to build a procedure
|
||
linkage table, and we can just do a PCxx reloc instead. */
|
||
h->plt.offset = (bfd_vma) -1;
|
||
h->needs_plt = 0;
|
||
return TRUE;
|
||
}
|
||
|
||
/* Make sure this symbol is output as a dynamic symbol. */
|
||
if (h->dynindx == -1
|
||
&& !h->forced_local)
|
||
{
|
||
if (! bfd_elf_link_record_dynamic_symbol (info, h))
|
||
return FALSE;
|
||
}
|
||
|
||
s = bfd_get_section_by_name (dynobj, ".plt");
|
||
BFD_ASSERT (s != NULL);
|
||
|
||
/* If this is the first .plt entry, make room for the special
|
||
first entry. */
|
||
if (s->size == 0)
|
||
s->size = htab->plt_info->size;
|
||
|
||
/* If this symbol is not defined in a regular file, and we are
|
||
not generating a shared library, then set the symbol to this
|
||
location in the .plt. This is required to make function
|
||
pointers compare as equal between the normal executable and
|
||
the shared library. */
|
||
if (!info->shared
|
||
&& !h->def_regular)
|
||
{
|
||
h->root.u.def.section = s;
|
||
h->root.u.def.value = s->size;
|
||
}
|
||
|
||
h->plt.offset = s->size;
|
||
|
||
/* Make room for this entry. */
|
||
s->size += htab->plt_info->size;
|
||
|
||
/* We also need to make an entry in the .got.plt section, which
|
||
will be placed in the .got section by the linker script. */
|
||
s = bfd_get_section_by_name (dynobj, ".got.plt");
|
||
BFD_ASSERT (s != NULL);
|
||
s->size += 4;
|
||
|
||
/* We also need to make an entry in the .rela.plt section. */
|
||
s = bfd_get_section_by_name (dynobj, ".rela.plt");
|
||
BFD_ASSERT (s != NULL);
|
||
s->size += sizeof (Elf32_External_Rela);
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Reinitialize the plt offset now that it is not used as a reference
|
||
count any more. */
|
||
h->plt.offset = (bfd_vma) -1;
|
||
|
||
/* If this is a weak symbol, and there is a real definition, the
|
||
processor independent code will have arranged for us to see the
|
||
real definition first, and we can just use the same value. */
|
||
if (h->u.weakdef != NULL)
|
||
{
|
||
BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
|
||
|| h->u.weakdef->root.type == bfd_link_hash_defweak);
|
||
h->root.u.def.section = h->u.weakdef->root.u.def.section;
|
||
h->root.u.def.value = h->u.weakdef->root.u.def.value;
|
||
return TRUE;
|
||
}
|
||
|
||
/* This is a reference to a symbol defined by a dynamic object which
|
||
is not a function. */
|
||
|
||
/* If we are creating a shared library, we must presume that the
|
||
only references to the symbol are via the global offset table.
|
||
For such cases we need not do anything here; the relocations will
|
||
be handled correctly by relocate_section. */
|
||
if (info->shared)
|
||
return TRUE;
|
||
|
||
/* If there are no references to this symbol that do not use the
|
||
GOT, we don't need to generate a copy reloc. */
|
||
if (!h->non_got_ref)
|
||
return TRUE;
|
||
|
||
/* We must allocate the symbol in our .dynbss section, which will
|
||
become part of the .bss section of the executable. There will be
|
||
an entry for this symbol in the .dynsym section. The dynamic
|
||
object will contain position independent code, so all references
|
||
from the dynamic object to this symbol will go through the global
|
||
offset table. The dynamic linker will use the .dynsym entry to
|
||
determine the address it must put in the global offset table, so
|
||
both the dynamic object and the regular object will refer to the
|
||
same memory location for the variable. */
|
||
|
||
s = bfd_get_section_by_name (dynobj, ".dynbss");
|
||
BFD_ASSERT (s != NULL);
|
||
|
||
/* We must generate a R_68K_COPY reloc to tell the dynamic linker to
|
||
copy the initial value out of the dynamic object and into the
|
||
runtime process image. We need to remember the offset into the
|
||
.rela.bss section we are going to use. */
|
||
if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
|
||
{
|
||
asection *srel;
|
||
|
||
srel = bfd_get_section_by_name (dynobj, ".rela.bss");
|
||
BFD_ASSERT (srel != NULL);
|
||
srel->size += sizeof (Elf32_External_Rela);
|
||
h->needs_copy = 1;
|
||
}
|
||
|
||
return _bfd_elf_adjust_dynamic_copy (h, s);
|
||
}
|
||
|
||
/* Set the sizes of the dynamic sections. */
|
||
|
||
static bfd_boolean
|
||
elf_m68k_size_dynamic_sections (output_bfd, info)
|
||
bfd *output_bfd ATTRIBUTE_UNUSED;
|
||
struct bfd_link_info *info;
|
||
{
|
||
bfd *dynobj;
|
||
asection *s;
|
||
bfd_boolean plt;
|
||
bfd_boolean relocs;
|
||
|
||
dynobj = elf_hash_table (info)->dynobj;
|
||
BFD_ASSERT (dynobj != NULL);
|
||
|
||
if (elf_hash_table (info)->dynamic_sections_created)
|
||
{
|
||
/* Set the contents of the .interp section to the interpreter. */
|
||
if (info->executable)
|
||
{
|
||
s = bfd_get_section_by_name (dynobj, ".interp");
|
||
BFD_ASSERT (s != NULL);
|
||
s->size = sizeof ELF_DYNAMIC_INTERPRETER;
|
||
s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* We may have created entries in the .rela.got section.
|
||
However, if we are not creating the dynamic sections, we will
|
||
not actually use these entries. Reset the size of .rela.got,
|
||
which will cause it to get stripped from the output file
|
||
below. */
|
||
s = bfd_get_section_by_name (dynobj, ".rela.got");
|
||
if (s != NULL)
|
||
s->size = 0;
|
||
}
|
||
|
||
/* If this is a -Bsymbolic shared link, then we need to discard all
|
||
PC relative relocs against symbols defined in a regular object.
|
||
For the normal shared case we discard the PC relative relocs
|
||
against symbols that have become local due to visibility changes.
|
||
We allocated space for them in the check_relocs routine, but we
|
||
will not fill them in in the relocate_section routine. */
|
||
if (info->shared)
|
||
elf_link_hash_traverse (elf_hash_table (info),
|
||
elf_m68k_discard_copies,
|
||
(PTR) info);
|
||
|
||
/* The check_relocs and adjust_dynamic_symbol entry points have
|
||
determined the sizes of the various dynamic sections. Allocate
|
||
memory for them. */
|
||
plt = FALSE;
|
||
relocs = FALSE;
|
||
for (s = dynobj->sections; s != NULL; s = s->next)
|
||
{
|
||
const char *name;
|
||
|
||
if ((s->flags & SEC_LINKER_CREATED) == 0)
|
||
continue;
|
||
|
||
/* It's OK to base decisions on the section name, because none
|
||
of the dynobj section names depend upon the input files. */
|
||
name = bfd_get_section_name (dynobj, s);
|
||
|
||
if (strcmp (name, ".plt") == 0)
|
||
{
|
||
/* Remember whether there is a PLT. */
|
||
plt = s->size != 0;
|
||
}
|
||
else if (CONST_STRNEQ (name, ".rela"))
|
||
{
|
||
if (s->size != 0)
|
||
{
|
||
relocs = TRUE;
|
||
|
||
/* We use the reloc_count field as a counter if we need
|
||
to copy relocs into the output file. */
|
||
s->reloc_count = 0;
|
||
}
|
||
}
|
||
else if (! CONST_STRNEQ (name, ".got")
|
||
&& strcmp (name, ".dynbss") != 0)
|
||
{
|
||
/* It's not one of our sections, so don't allocate space. */
|
||
continue;
|
||
}
|
||
|
||
if (s->size == 0)
|
||
{
|
||
/* If we don't need this section, strip it from the
|
||
output file. This is mostly to handle .rela.bss and
|
||
.rela.plt. We must create both sections in
|
||
create_dynamic_sections, because they must be created
|
||
before the linker maps input sections to output
|
||
sections. The linker does that before
|
||
adjust_dynamic_symbol is called, and it is that
|
||
function which decides whether anything needs to go
|
||
into these sections. */
|
||
s->flags |= SEC_EXCLUDE;
|
||
continue;
|
||
}
|
||
|
||
if ((s->flags & SEC_HAS_CONTENTS) == 0)
|
||
continue;
|
||
|
||
/* Allocate memory for the section contents. */
|
||
/* FIXME: This should be a call to bfd_alloc not bfd_zalloc.
|
||
Unused entries should be reclaimed before the section's contents
|
||
are written out, but at the moment this does not happen. Thus in
|
||
order to prevent writing out garbage, we initialise the section's
|
||
contents to zero. */
|
||
s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
|
||
if (s->contents == NULL)
|
||
return FALSE;
|
||
}
|
||
|
||
if (elf_hash_table (info)->dynamic_sections_created)
|
||
{
|
||
/* Add some entries to the .dynamic section. We fill in the
|
||
values later, in elf_m68k_finish_dynamic_sections, but we
|
||
must add the entries now so that we get the correct size for
|
||
the .dynamic section. The DT_DEBUG entry is filled in by the
|
||
dynamic linker and used by the debugger. */
|
||
#define add_dynamic_entry(TAG, VAL) \
|
||
_bfd_elf_add_dynamic_entry (info, TAG, VAL)
|
||
|
||
if (!info->shared)
|
||
{
|
||
if (!add_dynamic_entry (DT_DEBUG, 0))
|
||
return FALSE;
|
||
}
|
||
|
||
if (plt)
|
||
{
|
||
if (!add_dynamic_entry (DT_PLTGOT, 0)
|
||
|| !add_dynamic_entry (DT_PLTRELSZ, 0)
|
||
|| !add_dynamic_entry (DT_PLTREL, DT_RELA)
|
||
|| !add_dynamic_entry (DT_JMPREL, 0))
|
||
return FALSE;
|
||
}
|
||
|
||
if (relocs)
|
||
{
|
||
if (!add_dynamic_entry (DT_RELA, 0)
|
||
|| !add_dynamic_entry (DT_RELASZ, 0)
|
||
|| !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
|
||
return FALSE;
|
||
}
|
||
|
||
if ((info->flags & DF_TEXTREL) != 0)
|
||
{
|
||
if (!add_dynamic_entry (DT_TEXTREL, 0))
|
||
return FALSE;
|
||
}
|
||
}
|
||
#undef add_dynamic_entry
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* This function is called via elf_link_hash_traverse if we are
|
||
creating a shared object. In the -Bsymbolic case it discards the
|
||
space allocated to copy PC relative relocs against symbols which
|
||
are defined in regular objects. For the normal shared case, it
|
||
discards space for pc-relative relocs that have become local due to
|
||
symbol visibility changes. We allocated space for them in the
|
||
check_relocs routine, but we won't fill them in in the
|
||
relocate_section routine.
|
||
|
||
We also check whether any of the remaining relocations apply
|
||
against a readonly section, and set the DF_TEXTREL flag in this
|
||
case. */
|
||
|
||
static bfd_boolean
|
||
elf_m68k_discard_copies (h, inf)
|
||
struct elf_link_hash_entry *h;
|
||
PTR inf;
|
||
{
|
||
struct bfd_link_info *info = (struct bfd_link_info *) inf;
|
||
struct elf_m68k_pcrel_relocs_copied *s;
|
||
|
||
if (!SYMBOL_CALLS_LOCAL (info, h))
|
||
{
|
||
if ((info->flags & DF_TEXTREL) == 0)
|
||
{
|
||
/* Look for relocations against read-only sections. */
|
||
for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
|
||
s != NULL;
|
||
s = s->next)
|
||
if ((s->section->flags & SEC_READONLY) != 0)
|
||
{
|
||
info->flags |= DF_TEXTREL;
|
||
break;
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
|
||
s != NULL;
|
||
s = s->next)
|
||
s->section->size -= s->count * sizeof (Elf32_External_Rela);
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
/* Install relocation RELA. */
|
||
|
||
static void
|
||
elf_m68k_install_rela (bfd *output_bfd,
|
||
asection *srela,
|
||
Elf_Internal_Rela *rela)
|
||
{
|
||
bfd_byte *loc;
|
||
|
||
loc = srela->contents;
|
||
loc += srela->reloc_count++ * sizeof (Elf32_External_Rela);
|
||
bfd_elf32_swap_reloca_out (output_bfd, rela, loc);
|
||
}
|
||
|
||
/* Find the base offsets for thread-local storage in this object,
|
||
for GD/LD and IE/LE respectively. */
|
||
|
||
#define DTP_OFFSET 0x8000
|
||
#define TP_OFFSET 0x7000
|
||
|
||
static bfd_vma
|
||
dtpoff_base (struct bfd_link_info *info)
|
||
{
|
||
/* If tls_sec is NULL, we should have signalled an error already. */
|
||
if (elf_hash_table (info)->tls_sec == NULL)
|
||
return 0;
|
||
return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
|
||
}
|
||
|
||
static bfd_vma
|
||
tpoff_base (struct bfd_link_info *info)
|
||
{
|
||
/* If tls_sec is NULL, we should have signalled an error already. */
|
||
if (elf_hash_table (info)->tls_sec == NULL)
|
||
return 0;
|
||
return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
|
||
}
|
||
|
||
/* Output necessary relocation to handle a symbol during static link.
|
||
This function is called from elf_m68k_relocate_section. */
|
||
|
||
static void
|
||
elf_m68k_init_got_entry_static (struct bfd_link_info *info,
|
||
bfd *output_bfd,
|
||
enum elf_m68k_reloc_type r_type,
|
||
asection *sgot,
|
||
bfd_vma got_entry_offset,
|
||
bfd_vma relocation)
|
||
{
|
||
switch (elf_m68k_reloc_got_type (r_type))
|
||
{
|
||
case R_68K_GOT32O:
|
||
bfd_put_32 (output_bfd, relocation, sgot->contents + got_entry_offset);
|
||
break;
|
||
|
||
case R_68K_TLS_GD32:
|
||
/* We know the offset within the module,
|
||
put it into the second GOT slot. */
|
||
bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
|
||
sgot->contents + got_entry_offset + 4);
|
||
/* FALLTHRU */
|
||
|
||
case R_68K_TLS_LDM32:
|
||
/* Mark it as belonging to module 1, the executable. */
|
||
bfd_put_32 (output_bfd, 1, sgot->contents + got_entry_offset);
|
||
break;
|
||
|
||
case R_68K_TLS_IE32:
|
||
bfd_put_32 (output_bfd, relocation - tpoff_base (info),
|
||
sgot->contents + got_entry_offset);
|
||
break;
|
||
|
||
default:
|
||
BFD_ASSERT (FALSE);
|
||
}
|
||
}
|
||
|
||
/* Output necessary relocation to handle a local symbol
|
||
during dynamic link.
|
||
This function is called either from elf_m68k_relocate_section
|
||
or from elf_m68k_finish_dynamic_symbol. */
|
||
|
||
static void
|
||
elf_m68k_init_got_entry_local_shared (struct bfd_link_info *info,
|
||
bfd *output_bfd,
|
||
enum elf_m68k_reloc_type r_type,
|
||
asection *sgot,
|
||
bfd_vma got_entry_offset,
|
||
bfd_vma relocation,
|
||
asection *srela)
|
||
{
|
||
Elf_Internal_Rela outrel;
|
||
|
||
switch (elf_m68k_reloc_got_type (r_type))
|
||
{
|
||
case R_68K_GOT32O:
|
||
/* Emit RELATIVE relocation to initialize GOT slot
|
||
at run-time. */
|
||
outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
|
||
outrel.r_addend = relocation;
|
||
break;
|
||
|
||
case R_68K_TLS_GD32:
|
||
/* We know the offset within the module,
|
||
put it into the second GOT slot. */
|
||
bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
|
||
sgot->contents + got_entry_offset + 4);
|
||
/* FALLTHRU */
|
||
|
||
case R_68K_TLS_LDM32:
|
||
/* We don't know the module number,
|
||
create a relocation for it. */
|
||
outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_DTPMOD32);
|
||
outrel.r_addend = 0;
|
||
break;
|
||
|
||
case R_68K_TLS_IE32:
|
||
/* Emit TPREL relocation to initialize GOT slot
|
||
at run-time. */
|
||
outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_TPREL32);
|
||
outrel.r_addend = relocation - elf_hash_table (info)->tls_sec->vma;
|
||
break;
|
||
|
||
default:
|
||
BFD_ASSERT (FALSE);
|
||
}
|
||
|
||
/* Offset of the GOT entry. */
|
||
outrel.r_offset = (sgot->output_section->vma
|
||
+ sgot->output_offset
|
||
+ got_entry_offset);
|
||
|
||
/* Install one of the above relocations. */
|
||
elf_m68k_install_rela (output_bfd, srela, &outrel);
|
||
|
||
bfd_put_32 (output_bfd, outrel.r_addend, sgot->contents + got_entry_offset);
|
||
}
|
||
|
||
/* Relocate an M68K ELF section. */
|
||
|
||
static bfd_boolean
|
||
elf_m68k_relocate_section (output_bfd, info, input_bfd, input_section,
|
||
contents, relocs, local_syms, local_sections)
|
||
bfd *output_bfd;
|
||
struct bfd_link_info *info;
|
||
bfd *input_bfd;
|
||
asection *input_section;
|
||
bfd_byte *contents;
|
||
Elf_Internal_Rela *relocs;
|
||
Elf_Internal_Sym *local_syms;
|
||
asection **local_sections;
|
||
{
|
||
bfd *dynobj;
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
struct elf_link_hash_entry **sym_hashes;
|
||
asection *sgot;
|
||
asection *splt;
|
||
asection *sreloc;
|
||
asection *srela;
|
||
struct elf_m68k_got *got;
|
||
Elf_Internal_Rela *rel;
|
||
Elf_Internal_Rela *relend;
|
||
|
||
dynobj = elf_hash_table (info)->dynobj;
|
||
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
||
sym_hashes = elf_sym_hashes (input_bfd);
|
||
|
||
sgot = NULL;
|
||
splt = NULL;
|
||
sreloc = NULL;
|
||
srela = NULL;
|
||
|
||
got = NULL;
|
||
|
||
rel = relocs;
|
||
relend = relocs + input_section->reloc_count;
|
||
for (; rel < relend; rel++)
|
||
{
|
||
int r_type;
|
||
reloc_howto_type *howto;
|
||
unsigned long r_symndx;
|
||
struct elf_link_hash_entry *h;
|
||
Elf_Internal_Sym *sym;
|
||
asection *sec;
|
||
bfd_vma relocation;
|
||
bfd_boolean unresolved_reloc;
|
||
bfd_reloc_status_type r;
|
||
|
||
r_type = ELF32_R_TYPE (rel->r_info);
|
||
if (r_type < 0 || r_type >= (int) R_68K_max)
|
||
{
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
}
|
||
howto = howto_table + r_type;
|
||
|
||
r_symndx = ELF32_R_SYM (rel->r_info);
|
||
|
||
h = NULL;
|
||
sym = NULL;
|
||
sec = NULL;
|
||
unresolved_reloc = FALSE;
|
||
|
||
if (r_symndx < symtab_hdr->sh_info)
|
||
{
|
||
sym = local_syms + r_symndx;
|
||
sec = local_sections[r_symndx];
|
||
relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
|
||
}
|
||
else
|
||
{
|
||
bfd_boolean warned;
|
||
|
||
RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
|
||
r_symndx, symtab_hdr, sym_hashes,
|
||
h, sec, relocation,
|
||
unresolved_reloc, warned);
|
||
}
|
||
|
||
if (sec != NULL && elf_discarded_section (sec))
|
||
RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
|
||
rel, relend, howto, contents);
|
||
|
||
if (info->relocatable)
|
||
continue;
|
||
|
||
switch (r_type)
|
||
{
|
||
case R_68K_GOT8:
|
||
case R_68K_GOT16:
|
||
case R_68K_GOT32:
|
||
/* Relocation is to the address of the entry for this symbol
|
||
in the global offset table. */
|
||
if (h != NULL
|
||
&& strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
|
||
{
|
||
if (elf_m68k_hash_table (info)->local_gp_p)
|
||
{
|
||
bfd_vma sgot_output_offset;
|
||
bfd_vma got_offset;
|
||
|
||
if (sgot == NULL)
|
||
{
|
||
sgot = bfd_get_section_by_name (dynobj, ".got");
|
||
|
||
if (sgot != NULL)
|
||
sgot_output_offset = sgot->output_offset;
|
||
else
|
||
/* In this case we have a reference to
|
||
_GLOBAL_OFFSET_TABLE_, but the GOT itself is
|
||
empty.
|
||
??? Issue a warning? */
|
||
sgot_output_offset = 0;
|
||
}
|
||
else
|
||
sgot_output_offset = sgot->output_offset;
|
||
|
||
if (got == NULL)
|
||
{
|
||
struct elf_m68k_bfd2got_entry *bfd2got_entry;
|
||
|
||
bfd2got_entry
|
||
= elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
|
||
input_bfd, SEARCH, NULL);
|
||
|
||
if (bfd2got_entry != NULL)
|
||
{
|
||
got = bfd2got_entry->got;
|
||
BFD_ASSERT (got != NULL);
|
||
|
||
got_offset = got->offset;
|
||
}
|
||
else
|
||
/* In this case we have a reference to
|
||
_GLOBAL_OFFSET_TABLE_, but no other references
|
||
accessing any GOT entries.
|
||
??? Issue a warning? */
|
||
got_offset = 0;
|
||
}
|
||
else
|
||
got_offset = got->offset;
|
||
|
||
/* Adjust GOT pointer to point to the GOT
|
||
assigned to input_bfd. */
|
||
rel->r_addend += sgot_output_offset + got_offset;
|
||
}
|
||
else
|
||
BFD_ASSERT (got == NULL || got->offset == 0);
|
||
|
||
break;
|
||
}
|
||
/* Fall through. */
|
||
case R_68K_GOT8O:
|
||
case R_68K_GOT16O:
|
||
case R_68K_GOT32O:
|
||
|
||
case R_68K_TLS_LDM32:
|
||
case R_68K_TLS_LDM16:
|
||
case R_68K_TLS_LDM8:
|
||
|
||
case R_68K_TLS_GD8:
|
||
case R_68K_TLS_GD16:
|
||
case R_68K_TLS_GD32:
|
||
|
||
case R_68K_TLS_IE8:
|
||
case R_68K_TLS_IE16:
|
||
case R_68K_TLS_IE32:
|
||
|
||
/* Relocation is the offset of the entry for this symbol in
|
||
the global offset table. */
|
||
|
||
{
|
||
struct elf_m68k_got_entry_key key_;
|
||
bfd_vma *off_ptr;
|
||
bfd_vma off;
|
||
|
||
if (sgot == NULL)
|
||
{
|
||
sgot = bfd_get_section_by_name (dynobj, ".got");
|
||
BFD_ASSERT (sgot != NULL);
|
||
}
|
||
|
||
if (got == NULL)
|
||
{
|
||
got = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
|
||
input_bfd, MUST_FIND,
|
||
NULL)->got;
|
||
BFD_ASSERT (got != NULL);
|
||
}
|
||
|
||
/* Get GOT offset for this symbol. */
|
||
elf_m68k_init_got_entry_key (&key_, h, input_bfd, r_symndx,
|
||
r_type);
|
||
off_ptr = &elf_m68k_get_got_entry (got, &key_, MUST_FIND,
|
||
NULL)->u.s2.offset;
|
||
off = *off_ptr;
|
||
|
||
/* The offset must always be a multiple of 4. We use
|
||
the least significant bit to record whether we have
|
||
already generated the necessary reloc. */
|
||
if ((off & 1) != 0)
|
||
off &= ~1;
|
||
else
|
||
{
|
||
if (h != NULL
|
||
/* @TLSLDM relocations are bounded to the module, in
|
||
which the symbol is defined -- not to the symbol
|
||
itself. */
|
||
&& elf_m68k_reloc_got_type (r_type) != R_68K_TLS_LDM32)
|
||
{
|
||
bfd_boolean dyn;
|
||
|
||
dyn = elf_hash_table (info)->dynamic_sections_created;
|
||
if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
|
||
|| (info->shared
|
||
&& SYMBOL_REFERENCES_LOCAL (info, h))
|
||
|| (ELF_ST_VISIBILITY (h->other)
|
||
&& h->root.type == bfd_link_hash_undefweak))
|
||
{
|
||
/* This is actually a static link, or it is a
|
||
-Bsymbolic link and the symbol is defined
|
||
locally, or the symbol was forced to be local
|
||
because of a version file. We must initialize
|
||
this entry in the global offset table. Since
|
||
the offset must always be a multiple of 4, we
|
||
use the least significant bit to record whether
|
||
we have initialized it already.
|
||
|
||
When doing a dynamic link, we create a .rela.got
|
||
relocation entry to initialize the value. This
|
||
is done in the finish_dynamic_symbol routine. */
|
||
|
||
elf_m68k_init_got_entry_static (info,
|
||
output_bfd,
|
||
r_type,
|
||
sgot,
|
||
off,
|
||
relocation);
|
||
|
||
*off_ptr |= 1;
|
||
}
|
||
else
|
||
unresolved_reloc = FALSE;
|
||
}
|
||
else if (info->shared) /* && h == NULL */
|
||
/* Process local symbol during dynamic link. */
|
||
{
|
||
if (srela == NULL)
|
||
{
|
||
srela = bfd_get_section_by_name (dynobj, ".rela.got");
|
||
BFD_ASSERT (srela != NULL);
|
||
}
|
||
|
||
elf_m68k_init_got_entry_local_shared (info,
|
||
output_bfd,
|
||
r_type,
|
||
sgot,
|
||
off,
|
||
relocation,
|
||
srela);
|
||
|
||
*off_ptr |= 1;
|
||
}
|
||
else /* h == NULL && !info->shared */
|
||
{
|
||
elf_m68k_init_got_entry_static (info,
|
||
output_bfd,
|
||
r_type,
|
||
sgot,
|
||
off,
|
||
relocation);
|
||
|
||
*off_ptr |= 1;
|
||
}
|
||
}
|
||
|
||
/* We don't use elf_m68k_reloc_got_type in the condition below
|
||
because this is the only place where difference between
|
||
R_68K_GOTx and R_68K_GOTxO relocations matters. */
|
||
if (r_type == R_68K_GOT32O
|
||
|| r_type == R_68K_GOT16O
|
||
|| r_type == R_68K_GOT8O
|
||
|| elf_m68k_reloc_got_type (r_type) == R_68K_TLS_GD32
|
||
|| elf_m68k_reloc_got_type (r_type) == R_68K_TLS_LDM32
|
||
|| elf_m68k_reloc_got_type (r_type) == R_68K_TLS_IE32)
|
||
{
|
||
/* GOT pointer is adjusted to point to the start/middle
|
||
of local GOT. Adjust the offset accordingly. */
|
||
BFD_ASSERT (elf_m68k_hash_table (info)->use_neg_got_offsets_p
|
||
|| off >= got->offset);
|
||
|
||
if (elf_m68k_hash_table (info)->local_gp_p)
|
||
relocation = off - got->offset;
|
||
else
|
||
{
|
||
BFD_ASSERT (got->offset == 0);
|
||
relocation = sgot->output_offset + off;
|
||
}
|
||
|
||
/* This relocation does not use the addend. */
|
||
rel->r_addend = 0;
|
||
}
|
||
else
|
||
relocation = (sgot->output_section->vma + sgot->output_offset
|
||
+ off);
|
||
}
|
||
break;
|
||
|
||
case R_68K_TLS_LDO32:
|
||
case R_68K_TLS_LDO16:
|
||
case R_68K_TLS_LDO8:
|
||
relocation -= dtpoff_base (info);
|
||
break;
|
||
|
||
case R_68K_TLS_LE32:
|
||
case R_68K_TLS_LE16:
|
||
case R_68K_TLS_LE8:
|
||
if (info->shared)
|
||
{
|
||
(*_bfd_error_handler)
|
||
(_("%B(%A+0x%lx): R_68K_TLS_LE32 relocation not permitted "
|
||
"in shared object"),
|
||
input_bfd, input_section, (long) rel->r_offset, howto->name);
|
||
|
||
return FALSE;
|
||
}
|
||
else
|
||
relocation -= tpoff_base (info);
|
||
|
||
break;
|
||
|
||
case R_68K_PLT8:
|
||
case R_68K_PLT16:
|
||
case R_68K_PLT32:
|
||
/* Relocation is to the entry for this symbol in the
|
||
procedure linkage table. */
|
||
|
||
/* Resolve a PLTxx reloc against a local symbol directly,
|
||
without using the procedure linkage table. */
|
||
if (h == NULL)
|
||
break;
|
||
|
||
if (h->plt.offset == (bfd_vma) -1
|
||
|| !elf_hash_table (info)->dynamic_sections_created)
|
||
{
|
||
/* We didn't make a PLT entry for this symbol. This
|
||
happens when statically linking PIC code, or when
|
||
using -Bsymbolic. */
|
||
break;
|
||
}
|
||
|
||
if (splt == NULL)
|
||
{
|
||
splt = bfd_get_section_by_name (dynobj, ".plt");
|
||
BFD_ASSERT (splt != NULL);
|
||
}
|
||
|
||
relocation = (splt->output_section->vma
|
||
+ splt->output_offset
|
||
+ h->plt.offset);
|
||
unresolved_reloc = FALSE;
|
||
break;
|
||
|
||
case R_68K_PLT8O:
|
||
case R_68K_PLT16O:
|
||
case R_68K_PLT32O:
|
||
/* Relocation is the offset of the entry for this symbol in
|
||
the procedure linkage table. */
|
||
BFD_ASSERT (h != NULL && h->plt.offset != (bfd_vma) -1);
|
||
|
||
if (splt == NULL)
|
||
{
|
||
splt = bfd_get_section_by_name (dynobj, ".plt");
|
||
BFD_ASSERT (splt != NULL);
|
||
}
|
||
|
||
relocation = h->plt.offset;
|
||
unresolved_reloc = FALSE;
|
||
|
||
/* This relocation does not use the addend. */
|
||
rel->r_addend = 0;
|
||
|
||
break;
|
||
|
||
case R_68K_8:
|
||
case R_68K_16:
|
||
case R_68K_32:
|
||
case R_68K_PC8:
|
||
case R_68K_PC16:
|
||
case R_68K_PC32:
|
||
if (info->shared
|
||
&& r_symndx != STN_UNDEF
|
||
&& (input_section->flags & SEC_ALLOC) != 0
|
||
&& (h == NULL
|
||
|| ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
|
||
|| h->root.type != bfd_link_hash_undefweak)
|
||
&& ((r_type != R_68K_PC8
|
||
&& r_type != R_68K_PC16
|
||
&& r_type != R_68K_PC32)
|
||
|| !SYMBOL_CALLS_LOCAL (info, h)))
|
||
{
|
||
Elf_Internal_Rela outrel;
|
||
bfd_byte *loc;
|
||
bfd_boolean skip, relocate;
|
||
|
||
/* When generating a shared object, these relocations
|
||
are copied into the output file to be resolved at run
|
||
time. */
|
||
|
||
skip = FALSE;
|
||
relocate = FALSE;
|
||
|
||
outrel.r_offset =
|
||
_bfd_elf_section_offset (output_bfd, info, input_section,
|
||
rel->r_offset);
|
||
if (outrel.r_offset == (bfd_vma) -1)
|
||
skip = TRUE;
|
||
else if (outrel.r_offset == (bfd_vma) -2)
|
||
skip = TRUE, relocate = TRUE;
|
||
outrel.r_offset += (input_section->output_section->vma
|
||
+ input_section->output_offset);
|
||
|
||
if (skip)
|
||
memset (&outrel, 0, sizeof outrel);
|
||
else if (h != NULL
|
||
&& h->dynindx != -1
|
||
&& (r_type == R_68K_PC8
|
||
|| r_type == R_68K_PC16
|
||
|| r_type == R_68K_PC32
|
||
|| !info->shared
|
||
|| !info->symbolic
|
||
|| !h->def_regular))
|
||
{
|
||
outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
|
||
outrel.r_addend = rel->r_addend;
|
||
}
|
||
else
|
||
{
|
||
/* This symbol is local, or marked to become local. */
|
||
outrel.r_addend = relocation + rel->r_addend;
|
||
|
||
if (r_type == R_68K_32)
|
||
{
|
||
relocate = TRUE;
|
||
outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
|
||
}
|
||
else
|
||
{
|
||
long indx;
|
||
|
||
if (bfd_is_abs_section (sec))
|
||
indx = 0;
|
||
else if (sec == NULL || sec->owner == NULL)
|
||
{
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
}
|
||
else
|
||
{
|
||
asection *osec;
|
||
|
||
/* We are turning this relocation into one
|
||
against a section symbol. It would be
|
||
proper to subtract the symbol's value,
|
||
osec->vma, from the emitted reloc addend,
|
||
but ld.so expects buggy relocs. */
|
||
osec = sec->output_section;
|
||
indx = elf_section_data (osec)->dynindx;
|
||
if (indx == 0)
|
||
{
|
||
struct elf_link_hash_table *htab;
|
||
htab = elf_hash_table (info);
|
||
osec = htab->text_index_section;
|
||
indx = elf_section_data (osec)->dynindx;
|
||
}
|
||
BFD_ASSERT (indx != 0);
|
||
}
|
||
|
||
outrel.r_info = ELF32_R_INFO (indx, r_type);
|
||
}
|
||
}
|
||
|
||
sreloc = elf_section_data (input_section)->sreloc;
|
||
if (sreloc == NULL)
|
||
abort ();
|
||
|
||
loc = sreloc->contents;
|
||
loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
|
||
bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
|
||
|
||
/* This reloc will be computed at runtime, so there's no
|
||
need to do anything now, except for R_68K_32
|
||
relocations that have been turned into
|
||
R_68K_RELATIVE. */
|
||
if (!relocate)
|
||
continue;
|
||
}
|
||
|
||
break;
|
||
|
||
case R_68K_GNU_VTINHERIT:
|
||
case R_68K_GNU_VTENTRY:
|
||
/* These are no-ops in the end. */
|
||
continue;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* Dynamic relocs are not propagated for SEC_DEBUGGING sections
|
||
because such sections are not SEC_ALLOC and thus ld.so will
|
||
not process them. */
|
||
if (unresolved_reloc
|
||
&& !((input_section->flags & SEC_DEBUGGING) != 0
|
||
&& h->def_dynamic)
|
||
&& _bfd_elf_section_offset (output_bfd, info, input_section,
|
||
rel->r_offset) != (bfd_vma) -1)
|
||
{
|
||
(*_bfd_error_handler)
|
||
(_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
|
||
input_bfd,
|
||
input_section,
|
||
(long) rel->r_offset,
|
||
howto->name,
|
||
h->root.root.string);
|
||
return FALSE;
|
||
}
|
||
|
||
if (r_symndx != STN_UNDEF
|
||
&& r_type != R_68K_NONE
|
||
&& (h == NULL
|
||
|| h->root.type == bfd_link_hash_defined
|
||
|| h->root.type == bfd_link_hash_defweak))
|
||
{
|
||
char sym_type;
|
||
|
||
sym_type = (sym != NULL) ? ELF32_ST_TYPE (sym->st_info) : h->type;
|
||
|
||
if (elf_m68k_reloc_tls_p (r_type) != (sym_type == STT_TLS))
|
||
{
|
||
const char *name;
|
||
|
||
if (h != NULL)
|
||
name = h->root.root.string;
|
||
else
|
||
{
|
||
name = (bfd_elf_string_from_elf_section
|
||
(input_bfd, symtab_hdr->sh_link, sym->st_name));
|
||
if (name == NULL || *name == '\0')
|
||
name = bfd_section_name (input_bfd, sec);
|
||
}
|
||
|
||
(*_bfd_error_handler)
|
||
((sym_type == STT_TLS
|
||
? _("%B(%A+0x%lx): %s used with TLS symbol %s")
|
||
: _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
|
||
input_bfd,
|
||
input_section,
|
||
(long) rel->r_offset,
|
||
howto->name,
|
||
name);
|
||
}
|
||
}
|
||
|
||
r = _bfd_final_link_relocate (howto, input_bfd, input_section,
|
||
contents, rel->r_offset,
|
||
relocation, rel->r_addend);
|
||
|
||
if (r != bfd_reloc_ok)
|
||
{
|
||
const char *name;
|
||
|
||
if (h != NULL)
|
||
name = h->root.root.string;
|
||
else
|
||
{
|
||
name = bfd_elf_string_from_elf_section (input_bfd,
|
||
symtab_hdr->sh_link,
|
||
sym->st_name);
|
||
if (name == NULL)
|
||
return FALSE;
|
||
if (*name == '\0')
|
||
name = bfd_section_name (input_bfd, sec);
|
||
}
|
||
|
||
if (r == bfd_reloc_overflow)
|
||
{
|
||
if (!(info->callbacks->reloc_overflow
|
||
(info, (h ? &h->root : NULL), name, howto->name,
|
||
(bfd_vma) 0, input_bfd, input_section,
|
||
rel->r_offset)))
|
||
return FALSE;
|
||
}
|
||
else
|
||
{
|
||
(*_bfd_error_handler)
|
||
(_("%B(%A+0x%lx): reloc against `%s': error %d"),
|
||
input_bfd, input_section,
|
||
(long) rel->r_offset, name, (int) r);
|
||
return FALSE;
|
||
}
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Install an M_68K_PC32 relocation against VALUE at offset OFFSET
|
||
into section SEC. */
|
||
|
||
static void
|
||
elf_m68k_install_pc32 (asection *sec, bfd_vma offset, bfd_vma value)
|
||
{
|
||
/* Make VALUE PC-relative. */
|
||
value -= sec->output_section->vma + offset;
|
||
|
||
/* Apply any in-place addend. */
|
||
value += bfd_get_32 (sec->owner, sec->contents + offset);
|
||
|
||
bfd_put_32 (sec->owner, value, sec->contents + offset);
|
||
}
|
||
|
||
/* Finish up dynamic symbol handling. We set the contents of various
|
||
dynamic sections here. */
|
||
|
||
static bfd_boolean
|
||
elf_m68k_finish_dynamic_symbol (output_bfd, info, h, sym)
|
||
bfd *output_bfd;
|
||
struct bfd_link_info *info;
|
||
struct elf_link_hash_entry *h;
|
||
Elf_Internal_Sym *sym;
|
||
{
|
||
bfd *dynobj;
|
||
|
||
dynobj = elf_hash_table (info)->dynobj;
|
||
|
||
if (h->plt.offset != (bfd_vma) -1)
|
||
{
|
||
const struct elf_m68k_plt_info *plt_info;
|
||
asection *splt;
|
||
asection *sgot;
|
||
asection *srela;
|
||
bfd_vma plt_index;
|
||
bfd_vma got_offset;
|
||
Elf_Internal_Rela rela;
|
||
bfd_byte *loc;
|
||
|
||
/* This symbol has an entry in the procedure linkage table. Set
|
||
it up. */
|
||
|
||
BFD_ASSERT (h->dynindx != -1);
|
||
|
||
plt_info = elf_m68k_hash_table (info)->plt_info;
|
||
splt = bfd_get_section_by_name (dynobj, ".plt");
|
||
sgot = bfd_get_section_by_name (dynobj, ".got.plt");
|
||
srela = bfd_get_section_by_name (dynobj, ".rela.plt");
|
||
BFD_ASSERT (splt != NULL && sgot != NULL && srela != NULL);
|
||
|
||
/* Get the index in the procedure linkage table which
|
||
corresponds to this symbol. This is the index of this symbol
|
||
in all the symbols for which we are making plt entries. The
|
||
first entry in the procedure linkage table is reserved. */
|
||
plt_index = (h->plt.offset / plt_info->size) - 1;
|
||
|
||
/* Get the offset into the .got table of the entry that
|
||
corresponds to this function. Each .got entry is 4 bytes.
|
||
The first three are reserved. */
|
||
got_offset = (plt_index + 3) * 4;
|
||
|
||
memcpy (splt->contents + h->plt.offset,
|
||
plt_info->symbol_entry,
|
||
plt_info->size);
|
||
|
||
elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.got,
|
||
(sgot->output_section->vma
|
||
+ sgot->output_offset
|
||
+ got_offset));
|
||
|
||
bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rela),
|
||
splt->contents
|
||
+ h->plt.offset
|
||
+ plt_info->symbol_resolve_entry + 2);
|
||
|
||
elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.plt,
|
||
splt->output_section->vma);
|
||
|
||
/* Fill in the entry in the global offset table. */
|
||
bfd_put_32 (output_bfd,
|
||
(splt->output_section->vma
|
||
+ splt->output_offset
|
||
+ h->plt.offset
|
||
+ plt_info->symbol_resolve_entry),
|
||
sgot->contents + got_offset);
|
||
|
||
/* Fill in the entry in the .rela.plt section. */
|
||
rela.r_offset = (sgot->output_section->vma
|
||
+ sgot->output_offset
|
||
+ got_offset);
|
||
rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_JMP_SLOT);
|
||
rela.r_addend = 0;
|
||
loc = srela->contents + plt_index * sizeof (Elf32_External_Rela);
|
||
bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
|
||
|
||
if (!h->def_regular)
|
||
{
|
||
/* Mark the symbol as undefined, rather than as defined in
|
||
the .plt section. Leave the value alone. */
|
||
sym->st_shndx = SHN_UNDEF;
|
||
}
|
||
}
|
||
|
||
if (elf_m68k_hash_entry (h)->glist != NULL)
|
||
{
|
||
asection *sgot;
|
||
asection *srela;
|
||
struct elf_m68k_got_entry *got_entry;
|
||
|
||
/* This symbol has an entry in the global offset table. Set it
|
||
up. */
|
||
|
||
sgot = bfd_get_section_by_name (dynobj, ".got");
|
||
srela = bfd_get_section_by_name (dynobj, ".rela.got");
|
||
BFD_ASSERT (sgot != NULL && srela != NULL);
|
||
|
||
got_entry = elf_m68k_hash_entry (h)->glist;
|
||
|
||
while (got_entry != NULL)
|
||
{
|
||
enum elf_m68k_reloc_type r_type;
|
||
bfd_vma got_entry_offset;
|
||
|
||
r_type = got_entry->key_.type;
|
||
got_entry_offset = got_entry->u.s2.offset &~ (bfd_vma) 1;
|
||
|
||
/* If this is a -Bsymbolic link, and the symbol is defined
|
||
locally, we just want to emit a RELATIVE reloc. Likewise if
|
||
the symbol was forced to be local because of a version file.
|
||
The entry in the global offset table already have been
|
||
initialized in the relocate_section function. */
|
||
if (info->shared
|
||
&& SYMBOL_REFERENCES_LOCAL (info, h))
|
||
{
|
||
bfd_vma relocation;
|
||
|
||
relocation = bfd_get_signed_32 (output_bfd,
|
||
(sgot->contents
|
||
+ got_entry_offset));
|
||
|
||
/* Undo TP bias. */
|
||
switch (elf_m68k_reloc_got_type (r_type))
|
||
{
|
||
case R_68K_GOT32O:
|
||
case R_68K_TLS_LDM32:
|
||
break;
|
||
|
||
case R_68K_TLS_GD32:
|
||
/* The value for this relocation is actually put in
|
||
the second GOT slot. */
|
||
relocation = bfd_get_signed_32 (output_bfd,
|
||
(sgot->contents
|
||
+ got_entry_offset + 4));
|
||
relocation += dtpoff_base (info);
|
||
break;
|
||
|
||
case R_68K_TLS_IE32:
|
||
relocation += tpoff_base (info);
|
||
break;
|
||
|
||
default:
|
||
BFD_ASSERT (FALSE);
|
||
}
|
||
|
||
elf_m68k_init_got_entry_local_shared (info,
|
||
output_bfd,
|
||
r_type,
|
||
sgot,
|
||
got_entry_offset,
|
||
relocation,
|
||
srela);
|
||
}
|
||
else
|
||
{
|
||
Elf_Internal_Rela rela;
|
||
|
||
/* Put zeros to GOT slots that will be initialized
|
||
at run-time. */
|
||
{
|
||
bfd_vma n_slots;
|
||
|
||
n_slots = elf_m68k_reloc_got_n_slots (got_entry->key_.type);
|
||
while (n_slots--)
|
||
bfd_put_32 (output_bfd, (bfd_vma) 0,
|
||
(sgot->contents + got_entry_offset
|
||
+ 4 * n_slots));
|
||
}
|
||
|
||
rela.r_addend = 0;
|
||
rela.r_offset = (sgot->output_section->vma
|
||
+ sgot->output_offset
|
||
+ got_entry_offset);
|
||
|
||
switch (elf_m68k_reloc_got_type (r_type))
|
||
{
|
||
case R_68K_GOT32O:
|
||
rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_GLOB_DAT);
|
||
elf_m68k_install_rela (output_bfd, srela, &rela);
|
||
break;
|
||
|
||
case R_68K_TLS_GD32:
|
||
rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPMOD32);
|
||
elf_m68k_install_rela (output_bfd, srela, &rela);
|
||
|
||
rela.r_offset += 4;
|
||
rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPREL32);
|
||
elf_m68k_install_rela (output_bfd, srela, &rela);
|
||
break;
|
||
|
||
case R_68K_TLS_IE32:
|
||
rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_TPREL32);
|
||
elf_m68k_install_rela (output_bfd, srela, &rela);
|
||
break;
|
||
|
||
default:
|
||
BFD_ASSERT (FALSE);
|
||
break;
|
||
}
|
||
}
|
||
|
||
got_entry = got_entry->u.s2.next;
|
||
}
|
||
}
|
||
|
||
if (h->needs_copy)
|
||
{
|
||
asection *s;
|
||
Elf_Internal_Rela rela;
|
||
bfd_byte *loc;
|
||
|
||
/* This symbol needs a copy reloc. Set it up. */
|
||
|
||
BFD_ASSERT (h->dynindx != -1
|
||
&& (h->root.type == bfd_link_hash_defined
|
||
|| h->root.type == bfd_link_hash_defweak));
|
||
|
||
s = bfd_get_section_by_name (h->root.u.def.section->owner,
|
||
".rela.bss");
|
||
BFD_ASSERT (s != NULL);
|
||
|
||
rela.r_offset = (h->root.u.def.value
|
||
+ h->root.u.def.section->output_section->vma
|
||
+ h->root.u.def.section->output_offset);
|
||
rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_COPY);
|
||
rela.r_addend = 0;
|
||
loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
|
||
bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
|
||
}
|
||
|
||
/* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
|
||
if (strcmp (h->root.root.string, "_DYNAMIC") == 0
|
||
|| h == elf_hash_table (info)->hgot)
|
||
sym->st_shndx = SHN_ABS;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Finish up the dynamic sections. */
|
||
|
||
static bfd_boolean
|
||
elf_m68k_finish_dynamic_sections (output_bfd, info)
|
||
bfd *output_bfd;
|
||
struct bfd_link_info *info;
|
||
{
|
||
bfd *dynobj;
|
||
asection *sgot;
|
||
asection *sdyn;
|
||
|
||
dynobj = elf_hash_table (info)->dynobj;
|
||
|
||
sgot = bfd_get_section_by_name (dynobj, ".got.plt");
|
||
BFD_ASSERT (sgot != NULL);
|
||
sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
|
||
|
||
if (elf_hash_table (info)->dynamic_sections_created)
|
||
{
|
||
asection *splt;
|
||
Elf32_External_Dyn *dyncon, *dynconend;
|
||
|
||
splt = bfd_get_section_by_name (dynobj, ".plt");
|
||
BFD_ASSERT (splt != NULL && sdyn != NULL);
|
||
|
||
dyncon = (Elf32_External_Dyn *) sdyn->contents;
|
||
dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
|
||
for (; dyncon < dynconend; dyncon++)
|
||
{
|
||
Elf_Internal_Dyn dyn;
|
||
const char *name;
|
||
asection *s;
|
||
|
||
bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
|
||
|
||
switch (dyn.d_tag)
|
||
{
|
||
default:
|
||
break;
|
||
|
||
case DT_PLTGOT:
|
||
name = ".got";
|
||
goto get_vma;
|
||
case DT_JMPREL:
|
||
name = ".rela.plt";
|
||
get_vma:
|
||
s = bfd_get_section_by_name (output_bfd, name);
|
||
BFD_ASSERT (s != NULL);
|
||
dyn.d_un.d_ptr = s->vma;
|
||
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
|
||
break;
|
||
|
||
case DT_PLTRELSZ:
|
||
s = bfd_get_section_by_name (output_bfd, ".rela.plt");
|
||
BFD_ASSERT (s != NULL);
|
||
dyn.d_un.d_val = s->size;
|
||
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
|
||
break;
|
||
|
||
case DT_RELASZ:
|
||
/* The procedure linkage table relocs (DT_JMPREL) should
|
||
not be included in the overall relocs (DT_RELA).
|
||
Therefore, we override the DT_RELASZ entry here to
|
||
make it not include the JMPREL relocs. Since the
|
||
linker script arranges for .rela.plt to follow all
|
||
other relocation sections, we don't have to worry
|
||
about changing the DT_RELA entry. */
|
||
s = bfd_get_section_by_name (output_bfd, ".rela.plt");
|
||
if (s != NULL)
|
||
dyn.d_un.d_val -= s->size;
|
||
bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Fill in the first entry in the procedure linkage table. */
|
||
if (splt->size > 0)
|
||
{
|
||
const struct elf_m68k_plt_info *plt_info;
|
||
|
||
plt_info = elf_m68k_hash_table (info)->plt_info;
|
||
memcpy (splt->contents, plt_info->plt0_entry, plt_info->size);
|
||
|
||
elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got4,
|
||
(sgot->output_section->vma
|
||
+ sgot->output_offset
|
||
+ 4));
|
||
|
||
elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got8,
|
||
(sgot->output_section->vma
|
||
+ sgot->output_offset
|
||
+ 8));
|
||
|
||
elf_section_data (splt->output_section)->this_hdr.sh_entsize
|
||
= plt_info->size;
|
||
}
|
||
}
|
||
|
||
/* Fill in the first three entries in the global offset table. */
|
||
if (sgot->size > 0)
|
||
{
|
||
if (sdyn == NULL)
|
||
bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
|
||
else
|
||
bfd_put_32 (output_bfd,
|
||
sdyn->output_section->vma + sdyn->output_offset,
|
||
sgot->contents);
|
||
bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
|
||
bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
|
||
}
|
||
|
||
elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Given a .data section and a .emreloc in-memory section, store
|
||
relocation information into the .emreloc section which can be
|
||
used at runtime to relocate the section. This is called by the
|
||
linker when the --embedded-relocs switch is used. This is called
|
||
after the add_symbols entry point has been called for all the
|
||
objects, and before the final_link entry point is called. */
|
||
|
||
bfd_boolean
|
||
bfd_m68k_elf32_create_embedded_relocs (abfd, info, datasec, relsec, errmsg)
|
||
bfd *abfd;
|
||
struct bfd_link_info *info;
|
||
asection *datasec;
|
||
asection *relsec;
|
||
char **errmsg;
|
||
{
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
Elf_Internal_Sym *isymbuf = NULL;
|
||
Elf_Internal_Rela *internal_relocs = NULL;
|
||
Elf_Internal_Rela *irel, *irelend;
|
||
bfd_byte *p;
|
||
bfd_size_type amt;
|
||
|
||
BFD_ASSERT (! info->relocatable);
|
||
|
||
*errmsg = NULL;
|
||
|
||
if (datasec->reloc_count == 0)
|
||
return TRUE;
|
||
|
||
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
|
||
/* Get a copy of the native relocations. */
|
||
internal_relocs = (_bfd_elf_link_read_relocs
|
||
(abfd, datasec, (PTR) NULL, (Elf_Internal_Rela *) NULL,
|
||
info->keep_memory));
|
||
if (internal_relocs == NULL)
|
||
goto error_return;
|
||
|
||
amt = (bfd_size_type) datasec->reloc_count * 12;
|
||
relsec->contents = (bfd_byte *) bfd_alloc (abfd, amt);
|
||
if (relsec->contents == NULL)
|
||
goto error_return;
|
||
|
||
p = relsec->contents;
|
||
|
||
irelend = internal_relocs + datasec->reloc_count;
|
||
for (irel = internal_relocs; irel < irelend; irel++, p += 12)
|
||
{
|
||
asection *targetsec;
|
||
|
||
/* We are going to write a four byte longword into the runtime
|
||
reloc section. The longword will be the address in the data
|
||
section which must be relocated. It is followed by the name
|
||
of the target section NUL-padded or truncated to 8
|
||
characters. */
|
||
|
||
/* We can only relocate absolute longword relocs at run time. */
|
||
if (ELF32_R_TYPE (irel->r_info) != (int) R_68K_32)
|
||
{
|
||
*errmsg = _("unsupported reloc type");
|
||
bfd_set_error (bfd_error_bad_value);
|
||
goto error_return;
|
||
}
|
||
|
||
/* Get the target section referred to by the reloc. */
|
||
if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
|
||
{
|
||
/* A local symbol. */
|
||
Elf_Internal_Sym *isym;
|
||
|
||
/* Read this BFD's local symbols if we haven't done so already. */
|
||
if (isymbuf == NULL)
|
||
{
|
||
isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
|
||
if (isymbuf == NULL)
|
||
isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
|
||
symtab_hdr->sh_info, 0,
|
||
NULL, NULL, NULL);
|
||
if (isymbuf == NULL)
|
||
goto error_return;
|
||
}
|
||
|
||
isym = isymbuf + ELF32_R_SYM (irel->r_info);
|
||
targetsec = bfd_section_from_elf_index (abfd, isym->st_shndx);
|
||
}
|
||
else
|
||
{
|
||
unsigned long indx;
|
||
struct elf_link_hash_entry *h;
|
||
|
||
/* An external symbol. */
|
||
indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
|
||
h = elf_sym_hashes (abfd)[indx];
|
||
BFD_ASSERT (h != NULL);
|
||
if (h->root.type == bfd_link_hash_defined
|
||
|| h->root.type == bfd_link_hash_defweak)
|
||
targetsec = h->root.u.def.section;
|
||
else
|
||
targetsec = NULL;
|
||
}
|
||
|
||
bfd_put_32 (abfd, irel->r_offset + datasec->output_offset, p);
|
||
memset (p + 4, 0, 8);
|
||
if (targetsec != NULL)
|
||
strncpy ((char *) p + 4, targetsec->output_section->name, 8);
|
||
}
|
||
|
||
if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf)
|
||
free (isymbuf);
|
||
if (internal_relocs != NULL
|
||
&& elf_section_data (datasec)->relocs != internal_relocs)
|
||
free (internal_relocs);
|
||
return TRUE;
|
||
|
||
error_return:
|
||
if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf)
|
||
free (isymbuf);
|
||
if (internal_relocs != NULL
|
||
&& elf_section_data (datasec)->relocs != internal_relocs)
|
||
free (internal_relocs);
|
||
return FALSE;
|
||
}
|
||
|
||
/* Set target options. */
|
||
|
||
void
|
||
bfd_elf_m68k_set_target_options (struct bfd_link_info *info, int got_handling)
|
||
{
|
||
struct elf_m68k_link_hash_table *htab;
|
||
bfd_boolean use_neg_got_offsets_p;
|
||
bfd_boolean allow_multigot_p;
|
||
bfd_boolean local_gp_p;
|
||
|
||
switch (got_handling)
|
||
{
|
||
case 0:
|
||
/* --got=single. */
|
||
local_gp_p = FALSE;
|
||
use_neg_got_offsets_p = FALSE;
|
||
allow_multigot_p = FALSE;
|
||
break;
|
||
|
||
case 1:
|
||
/* --got=negative. */
|
||
local_gp_p = TRUE;
|
||
use_neg_got_offsets_p = TRUE;
|
||
allow_multigot_p = FALSE;
|
||
break;
|
||
|
||
case 2:
|
||
/* --got=multigot. */
|
||
local_gp_p = TRUE;
|
||
use_neg_got_offsets_p = TRUE;
|
||
allow_multigot_p = TRUE;
|
||
break;
|
||
|
||
default:
|
||
BFD_ASSERT (FALSE);
|
||
return;
|
||
}
|
||
|
||
htab = elf_m68k_hash_table (info);
|
||
if (htab != NULL)
|
||
{
|
||
htab->local_gp_p = local_gp_p;
|
||
htab->use_neg_got_offsets_p = use_neg_got_offsets_p;
|
||
htab->allow_multigot_p = allow_multigot_p;
|
||
}
|
||
}
|
||
|
||
static enum elf_reloc_type_class
|
||
elf32_m68k_reloc_type_class (rela)
|
||
const Elf_Internal_Rela *rela;
|
||
{
|
||
switch ((int) ELF32_R_TYPE (rela->r_info))
|
||
{
|
||
case R_68K_RELATIVE:
|
||
return reloc_class_relative;
|
||
case R_68K_JMP_SLOT:
|
||
return reloc_class_plt;
|
||
case R_68K_COPY:
|
||
return reloc_class_copy;
|
||
default:
|
||
return reloc_class_normal;
|
||
}
|
||
}
|
||
|
||
/* Return address for Ith PLT stub in section PLT, for relocation REL
|
||
or (bfd_vma) -1 if it should not be included. */
|
||
|
||
static bfd_vma
|
||
elf_m68k_plt_sym_val (bfd_vma i, const asection *plt,
|
||
const arelent *rel ATTRIBUTE_UNUSED)
|
||
{
|
||
return plt->vma + (i + 1) * elf_m68k_get_plt_info (plt->owner)->size;
|
||
}
|
||
|
||
#define TARGET_BIG_SYM bfd_elf32_m68k_vec
|
||
#define TARGET_BIG_NAME "elf32-m68k"
|
||
#define ELF_MACHINE_CODE EM_68K
|
||
#define ELF_MAXPAGESIZE 0x2000
|
||
#define elf_backend_create_dynamic_sections \
|
||
_bfd_elf_create_dynamic_sections
|
||
#define bfd_elf32_bfd_link_hash_table_create \
|
||
elf_m68k_link_hash_table_create
|
||
/* ??? Should it be this macro or bfd_elfNN_bfd_link_hash_table_create? */
|
||
#define bfd_elf32_bfd_link_hash_table_free \
|
||
elf_m68k_link_hash_table_free
|
||
#define bfd_elf32_bfd_final_link bfd_elf_final_link
|
||
|
||
#define elf_backend_check_relocs elf_m68k_check_relocs
|
||
#define elf_backend_always_size_sections \
|
||
elf_m68k_always_size_sections
|
||
#define elf_backend_adjust_dynamic_symbol \
|
||
elf_m68k_adjust_dynamic_symbol
|
||
#define elf_backend_size_dynamic_sections \
|
||
elf_m68k_size_dynamic_sections
|
||
#define elf_backend_final_write_processing elf_m68k_final_write_processing
|
||
#define elf_backend_init_index_section _bfd_elf_init_1_index_section
|
||
#define elf_backend_relocate_section elf_m68k_relocate_section
|
||
#define elf_backend_finish_dynamic_symbol \
|
||
elf_m68k_finish_dynamic_symbol
|
||
#define elf_backend_finish_dynamic_sections \
|
||
elf_m68k_finish_dynamic_sections
|
||
#define elf_backend_gc_mark_hook elf_m68k_gc_mark_hook
|
||
#define elf_backend_gc_sweep_hook elf_m68k_gc_sweep_hook
|
||
#define elf_backend_copy_indirect_symbol elf_m68k_copy_indirect_symbol
|
||
#define bfd_elf32_bfd_merge_private_bfd_data \
|
||
elf32_m68k_merge_private_bfd_data
|
||
#define bfd_elf32_bfd_set_private_flags \
|
||
elf32_m68k_set_private_flags
|
||
#define bfd_elf32_bfd_print_private_bfd_data \
|
||
elf32_m68k_print_private_bfd_data
|
||
#define elf_backend_reloc_type_class elf32_m68k_reloc_type_class
|
||
#define elf_backend_plt_sym_val elf_m68k_plt_sym_val
|
||
#define elf_backend_object_p elf32_m68k_object_p
|
||
|
||
#define elf_backend_can_gc_sections 1
|
||
#define elf_backend_can_refcount 1
|
||
#define elf_backend_want_got_plt 1
|
||
#define elf_backend_plt_readonly 1
|
||
#define elf_backend_want_plt_sym 0
|
||
#define elf_backend_got_header_size 12
|
||
#define elf_backend_rela_normal 1
|
||
|
||
#include "elf32-target.h"
|