3889c459bb
* vms-hdr.c: Don't include alloca.h. opcodes/ * cgen-opc.c: Include alloca-conf.h rather than alloca.h. * Makefile.am: Run "make dep-am". * Makefile.in: Regenerate.
613 lines
17 KiB
C
613 lines
17 KiB
C
/* CGEN generic opcode support.
|
||
|
||
Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2003, 2005, 2007, 2009
|
||
Free Software Foundation, Inc.
|
||
|
||
This file is part of libopcodes.
|
||
|
||
This library is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3, or (at your option)
|
||
any later version.
|
||
|
||
It is distributed in the hope that it will be useful, but WITHOUT
|
||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
||
License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License along
|
||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||
51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
|
||
|
||
#include "alloca-conf.h"
|
||
#include "sysdep.h"
|
||
#include <stdio.h>
|
||
#include "ansidecl.h"
|
||
#include "libiberty.h"
|
||
#include "safe-ctype.h"
|
||
#include "bfd.h"
|
||
#include "symcat.h"
|
||
#include "opcode/cgen.h"
|
||
|
||
static unsigned int hash_keyword_name
|
||
(const CGEN_KEYWORD *, const char *, int);
|
||
static unsigned int hash_keyword_value
|
||
(const CGEN_KEYWORD *, unsigned int);
|
||
static void build_keyword_hash_tables
|
||
(CGEN_KEYWORD *);
|
||
|
||
/* Return number of hash table entries to use for N elements. */
|
||
#define KEYWORD_HASH_SIZE(n) ((n) <= 31 ? 17 : 31)
|
||
|
||
/* Look up *NAMEP in the keyword table KT.
|
||
The result is the keyword entry or NULL if not found. */
|
||
|
||
const CGEN_KEYWORD_ENTRY *
|
||
cgen_keyword_lookup_name (CGEN_KEYWORD *kt, const char *name)
|
||
{
|
||
const CGEN_KEYWORD_ENTRY *ke;
|
||
const char *p,*n;
|
||
|
||
if (kt->name_hash_table == NULL)
|
||
build_keyword_hash_tables (kt);
|
||
|
||
ke = kt->name_hash_table[hash_keyword_name (kt, name, 0)];
|
||
|
||
/* We do case insensitive comparisons.
|
||
If that ever becomes a problem, add an attribute that denotes
|
||
"do case sensitive comparisons". */
|
||
|
||
while (ke != NULL)
|
||
{
|
||
n = name;
|
||
p = ke->name;
|
||
|
||
while (*p
|
||
&& (*p == *n
|
||
|| (ISALPHA (*p) && (TOLOWER (*p) == TOLOWER (*n)))))
|
||
++n, ++p;
|
||
|
||
if (!*p && !*n)
|
||
return ke;
|
||
|
||
ke = ke->next_name;
|
||
}
|
||
|
||
if (kt->null_entry)
|
||
return kt->null_entry;
|
||
return NULL;
|
||
}
|
||
|
||
/* Look up VALUE in the keyword table KT.
|
||
The result is the keyword entry or NULL if not found. */
|
||
|
||
const CGEN_KEYWORD_ENTRY *
|
||
cgen_keyword_lookup_value (CGEN_KEYWORD *kt, int value)
|
||
{
|
||
const CGEN_KEYWORD_ENTRY *ke;
|
||
|
||
if (kt->name_hash_table == NULL)
|
||
build_keyword_hash_tables (kt);
|
||
|
||
ke = kt->value_hash_table[hash_keyword_value (kt, value)];
|
||
|
||
while (ke != NULL)
|
||
{
|
||
if (value == ke->value)
|
||
return ke;
|
||
ke = ke->next_value;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Add an entry to a keyword table. */
|
||
|
||
void
|
||
cgen_keyword_add (CGEN_KEYWORD *kt, CGEN_KEYWORD_ENTRY *ke)
|
||
{
|
||
unsigned int hash;
|
||
size_t i;
|
||
|
||
if (kt->name_hash_table == NULL)
|
||
build_keyword_hash_tables (kt);
|
||
|
||
hash = hash_keyword_name (kt, ke->name, 0);
|
||
ke->next_name = kt->name_hash_table[hash];
|
||
kt->name_hash_table[hash] = ke;
|
||
|
||
hash = hash_keyword_value (kt, ke->value);
|
||
ke->next_value = kt->value_hash_table[hash];
|
||
kt->value_hash_table[hash] = ke;
|
||
|
||
if (ke->name[0] == 0)
|
||
kt->null_entry = ke;
|
||
|
||
for (i = 1; i < strlen (ke->name); i++)
|
||
if (! ISALNUM (ke->name[i])
|
||
&& ! strchr (kt->nonalpha_chars, ke->name[i]))
|
||
{
|
||
size_t idx = strlen (kt->nonalpha_chars);
|
||
|
||
/* If you hit this limit, please don't just
|
||
increase the size of the field, instead
|
||
look for a better algorithm. */
|
||
if (idx >= sizeof (kt->nonalpha_chars) - 1)
|
||
abort ();
|
||
kt->nonalpha_chars[idx] = ke->name[i];
|
||
kt->nonalpha_chars[idx+1] = 0;
|
||
}
|
||
}
|
||
|
||
/* FIXME: Need function to return count of keywords. */
|
||
|
||
/* Initialize a keyword table search.
|
||
SPEC is a specification of what to search for.
|
||
A value of NULL means to find every keyword.
|
||
Currently NULL is the only acceptable value [further specification
|
||
deferred].
|
||
The result is an opaque data item used to record the search status.
|
||
It is passed to each call to cgen_keyword_search_next. */
|
||
|
||
CGEN_KEYWORD_SEARCH
|
||
cgen_keyword_search_init (CGEN_KEYWORD *kt, const char *spec)
|
||
{
|
||
CGEN_KEYWORD_SEARCH search;
|
||
|
||
/* FIXME: Need to specify format of params. */
|
||
if (spec != NULL)
|
||
abort ();
|
||
|
||
if (kt->name_hash_table == NULL)
|
||
build_keyword_hash_tables (kt);
|
||
|
||
search.table = kt;
|
||
search.spec = spec;
|
||
search.current_hash = 0;
|
||
search.current_entry = NULL;
|
||
return search;
|
||
}
|
||
|
||
/* Return the next keyword specified by SEARCH.
|
||
The result is the next entry or NULL if there are no more. */
|
||
|
||
const CGEN_KEYWORD_ENTRY *
|
||
cgen_keyword_search_next (CGEN_KEYWORD_SEARCH *search)
|
||
{
|
||
/* Has search finished? */
|
||
if (search->current_hash == search->table->hash_table_size)
|
||
return NULL;
|
||
|
||
/* Search in progress? */
|
||
if (search->current_entry != NULL
|
||
/* Anything left on this hash chain? */
|
||
&& search->current_entry->next_name != NULL)
|
||
{
|
||
search->current_entry = search->current_entry->next_name;
|
||
return search->current_entry;
|
||
}
|
||
|
||
/* Move to next hash chain [unless we haven't started yet]. */
|
||
if (search->current_entry != NULL)
|
||
++search->current_hash;
|
||
|
||
while (search->current_hash < search->table->hash_table_size)
|
||
{
|
||
search->current_entry = search->table->name_hash_table[search->current_hash];
|
||
if (search->current_entry != NULL)
|
||
return search->current_entry;
|
||
++search->current_hash;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Return first entry in hash chain for NAME.
|
||
If CASE_SENSITIVE_P is non-zero, return a case sensitive hash. */
|
||
|
||
static unsigned int
|
||
hash_keyword_name (const CGEN_KEYWORD *kt,
|
||
const char *name,
|
||
int case_sensitive_p)
|
||
{
|
||
unsigned int hash;
|
||
|
||
if (case_sensitive_p)
|
||
for (hash = 0; *name; ++name)
|
||
hash = (hash * 97) + (unsigned char) *name;
|
||
else
|
||
for (hash = 0; *name; ++name)
|
||
hash = (hash * 97) + (unsigned char) TOLOWER (*name);
|
||
return hash % kt->hash_table_size;
|
||
}
|
||
|
||
/* Return first entry in hash chain for VALUE. */
|
||
|
||
static unsigned int
|
||
hash_keyword_value (const CGEN_KEYWORD *kt, unsigned int value)
|
||
{
|
||
return value % kt->hash_table_size;
|
||
}
|
||
|
||
/* Build a keyword table's hash tables.
|
||
We probably needn't build the value hash table for the assembler when
|
||
we're using the disassembler, but we keep things simple. */
|
||
|
||
static void
|
||
build_keyword_hash_tables (CGEN_KEYWORD *kt)
|
||
{
|
||
int i;
|
||
/* Use the number of compiled in entries as an estimate for the
|
||
typical sized table [not too many added at runtime]. */
|
||
unsigned int size = KEYWORD_HASH_SIZE (kt->num_init_entries);
|
||
|
||
kt->hash_table_size = size;
|
||
kt->name_hash_table = (CGEN_KEYWORD_ENTRY **)
|
||
xmalloc (size * sizeof (CGEN_KEYWORD_ENTRY *));
|
||
memset (kt->name_hash_table, 0, size * sizeof (CGEN_KEYWORD_ENTRY *));
|
||
kt->value_hash_table = (CGEN_KEYWORD_ENTRY **)
|
||
xmalloc (size * sizeof (CGEN_KEYWORD_ENTRY *));
|
||
memset (kt->value_hash_table, 0, size * sizeof (CGEN_KEYWORD_ENTRY *));
|
||
|
||
/* The table is scanned backwards as we want keywords appearing earlier to
|
||
be prefered over later ones. */
|
||
for (i = kt->num_init_entries - 1; i >= 0; --i)
|
||
cgen_keyword_add (kt, &kt->init_entries[i]);
|
||
}
|
||
|
||
/* Hardware support. */
|
||
|
||
/* Lookup a hardware element by its name.
|
||
Returns NULL if NAME is not supported by the currently selected
|
||
mach/isa. */
|
||
|
||
const CGEN_HW_ENTRY *
|
||
cgen_hw_lookup_by_name (CGEN_CPU_DESC cd, const char *name)
|
||
{
|
||
unsigned int i;
|
||
const CGEN_HW_ENTRY **hw = cd->hw_table.entries;
|
||
|
||
for (i = 0; i < cd->hw_table.num_entries; ++i)
|
||
if (hw[i] && strcmp (name, hw[i]->name) == 0)
|
||
return hw[i];
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Lookup a hardware element by its number.
|
||
Hardware elements are enumerated, however it may be possible to add some
|
||
at runtime, thus HWNUM is not an enum type but rather an int.
|
||
Returns NULL if HWNUM is not supported by the currently selected mach. */
|
||
|
||
const CGEN_HW_ENTRY *
|
||
cgen_hw_lookup_by_num (CGEN_CPU_DESC cd, unsigned int hwnum)
|
||
{
|
||
unsigned int i;
|
||
const CGEN_HW_ENTRY **hw = cd->hw_table.entries;
|
||
|
||
/* ??? This can be speeded up. */
|
||
for (i = 0; i < cd->hw_table.num_entries; ++i)
|
||
if (hw[i] && hwnum == hw[i]->type)
|
||
return hw[i];
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Operand support. */
|
||
|
||
/* Lookup an operand by its name.
|
||
Returns NULL if NAME is not supported by the currently selected
|
||
mach/isa. */
|
||
|
||
const CGEN_OPERAND *
|
||
cgen_operand_lookup_by_name (CGEN_CPU_DESC cd, const char *name)
|
||
{
|
||
unsigned int i;
|
||
const CGEN_OPERAND **op = cd->operand_table.entries;
|
||
|
||
for (i = 0; i < cd->operand_table.num_entries; ++i)
|
||
if (op[i] && strcmp (name, op[i]->name) == 0)
|
||
return op[i];
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Lookup an operand by its number.
|
||
Operands are enumerated, however it may be possible to add some
|
||
at runtime, thus OPNUM is not an enum type but rather an int.
|
||
Returns NULL if OPNUM is not supported by the currently selected
|
||
mach/isa. */
|
||
|
||
const CGEN_OPERAND *
|
||
cgen_operand_lookup_by_num (CGEN_CPU_DESC cd, int opnum)
|
||
{
|
||
return cd->operand_table.entries[opnum];
|
||
}
|
||
|
||
/* Instruction support. */
|
||
|
||
/* Return number of instructions. This includes any added at runtime. */
|
||
|
||
int
|
||
cgen_insn_count (CGEN_CPU_DESC cd)
|
||
{
|
||
int count = cd->insn_table.num_init_entries;
|
||
CGEN_INSN_LIST *rt_insns = cd->insn_table.new_entries;
|
||
|
||
for ( ; rt_insns != NULL; rt_insns = rt_insns->next)
|
||
++count;
|
||
|
||
return count;
|
||
}
|
||
|
||
/* Return number of macro-instructions.
|
||
This includes any added at runtime. */
|
||
|
||
int
|
||
cgen_macro_insn_count (CGEN_CPU_DESC cd)
|
||
{
|
||
int count = cd->macro_insn_table.num_init_entries;
|
||
CGEN_INSN_LIST *rt_insns = cd->macro_insn_table.new_entries;
|
||
|
||
for ( ; rt_insns != NULL; rt_insns = rt_insns->next)
|
||
++count;
|
||
|
||
return count;
|
||
}
|
||
|
||
/* Cover function to read and properly byteswap an insn value. */
|
||
|
||
CGEN_INSN_INT
|
||
cgen_get_insn_value (CGEN_CPU_DESC cd, unsigned char *buf, int length)
|
||
{
|
||
int big_p = (cd->insn_endian == CGEN_ENDIAN_BIG);
|
||
int insn_chunk_bitsize = cd->insn_chunk_bitsize;
|
||
CGEN_INSN_INT value = 0;
|
||
|
||
if (insn_chunk_bitsize != 0 && insn_chunk_bitsize < length)
|
||
{
|
||
/* We need to divide up the incoming value into insn_chunk_bitsize-length
|
||
segments, and endian-convert them, one at a time. */
|
||
int i;
|
||
|
||
/* Enforce divisibility. */
|
||
if ((length % insn_chunk_bitsize) != 0)
|
||
abort ();
|
||
|
||
for (i = 0; i < length; i += insn_chunk_bitsize) /* NB: i == bits */
|
||
{
|
||
int index;
|
||
bfd_vma this_value;
|
||
index = i; /* NB: not dependent on endianness; opposite of cgen_put_insn_value! */
|
||
this_value = bfd_get_bits (& buf[index / 8], insn_chunk_bitsize, big_p);
|
||
value = (value << insn_chunk_bitsize) | this_value;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
value = bfd_get_bits (buf, length, cd->insn_endian == CGEN_ENDIAN_BIG);
|
||
}
|
||
|
||
return value;
|
||
}
|
||
|
||
/* Cover function to store an insn value properly byteswapped. */
|
||
|
||
void
|
||
cgen_put_insn_value (CGEN_CPU_DESC cd,
|
||
unsigned char *buf,
|
||
int length,
|
||
CGEN_INSN_INT value)
|
||
{
|
||
int big_p = (cd->insn_endian == CGEN_ENDIAN_BIG);
|
||
int insn_chunk_bitsize = cd->insn_chunk_bitsize;
|
||
|
||
if (insn_chunk_bitsize != 0 && insn_chunk_bitsize < length)
|
||
{
|
||
/* We need to divide up the incoming value into insn_chunk_bitsize-length
|
||
segments, and endian-convert them, one at a time. */
|
||
int i;
|
||
|
||
/* Enforce divisibility. */
|
||
if ((length % insn_chunk_bitsize) != 0)
|
||
abort ();
|
||
|
||
for (i = 0; i < length; i += insn_chunk_bitsize) /* NB: i == bits */
|
||
{
|
||
int index;
|
||
index = (length - insn_chunk_bitsize - i); /* NB: not dependent on endianness! */
|
||
bfd_put_bits ((bfd_vma) value, & buf[index / 8], insn_chunk_bitsize, big_p);
|
||
value >>= insn_chunk_bitsize;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
bfd_put_bits ((bfd_vma) value, buf, length, big_p);
|
||
}
|
||
}
|
||
|
||
/* Look up instruction INSN_*_VALUE and extract its fields.
|
||
INSN_INT_VALUE is used if CGEN_INT_INSN_P.
|
||
Otherwise INSN_BYTES_VALUE is used.
|
||
INSN, if non-null, is the insn table entry.
|
||
Otherwise INSN_*_VALUE is examined to compute it.
|
||
LENGTH is the bit length of INSN_*_VALUE if known, otherwise 0.
|
||
0 is only valid if `insn == NULL && ! CGEN_INT_INSN_P'.
|
||
If INSN != NULL, LENGTH must be valid.
|
||
ALIAS_P is non-zero if alias insns are to be included in the search.
|
||
|
||
The result is a pointer to the insn table entry, or NULL if the instruction
|
||
wasn't recognized. */
|
||
|
||
/* ??? Will need to be revisited for VLIW architectures. */
|
||
|
||
const CGEN_INSN *
|
||
cgen_lookup_insn (CGEN_CPU_DESC cd,
|
||
const CGEN_INSN *insn,
|
||
CGEN_INSN_INT insn_int_value,
|
||
/* ??? CGEN_INSN_BYTES would be a nice type name to use here. */
|
||
unsigned char *insn_bytes_value,
|
||
int length,
|
||
CGEN_FIELDS *fields,
|
||
int alias_p)
|
||
{
|
||
unsigned char *buf;
|
||
CGEN_INSN_INT base_insn;
|
||
CGEN_EXTRACT_INFO ex_info;
|
||
CGEN_EXTRACT_INFO *info;
|
||
|
||
if (cd->int_insn_p)
|
||
{
|
||
info = NULL;
|
||
buf = (unsigned char *) alloca (cd->max_insn_bitsize / 8);
|
||
cgen_put_insn_value (cd, buf, length, insn_int_value);
|
||
base_insn = insn_int_value;
|
||
}
|
||
else
|
||
{
|
||
info = &ex_info;
|
||
ex_info.dis_info = NULL;
|
||
ex_info.insn_bytes = insn_bytes_value;
|
||
ex_info.valid = -1;
|
||
buf = insn_bytes_value;
|
||
base_insn = cgen_get_insn_value (cd, buf, length);
|
||
}
|
||
|
||
if (!insn)
|
||
{
|
||
const CGEN_INSN_LIST *insn_list;
|
||
|
||
/* The instructions are stored in hash lists.
|
||
Pick the first one and keep trying until we find the right one. */
|
||
|
||
insn_list = cgen_dis_lookup_insn (cd, (char *) buf, base_insn);
|
||
while (insn_list != NULL)
|
||
{
|
||
insn = insn_list->insn;
|
||
|
||
if (alias_p
|
||
/* FIXME: Ensure ALIAS attribute always has same index. */
|
||
|| ! CGEN_INSN_ATTR_VALUE (insn, CGEN_INSN_ALIAS))
|
||
{
|
||
/* Basic bit mask must be correct. */
|
||
/* ??? May wish to allow target to defer this check until the
|
||
extract handler. */
|
||
if ((base_insn & CGEN_INSN_BASE_MASK (insn))
|
||
== CGEN_INSN_BASE_VALUE (insn))
|
||
{
|
||
/* ??? 0 is passed for `pc' */
|
||
int elength = CGEN_EXTRACT_FN (cd, insn)
|
||
(cd, insn, info, base_insn, fields, (bfd_vma) 0);
|
||
if (elength > 0)
|
||
{
|
||
/* sanity check */
|
||
if (length != 0 && length != elength)
|
||
abort ();
|
||
return insn;
|
||
}
|
||
}
|
||
}
|
||
|
||
insn_list = insn_list->next;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Sanity check: can't pass an alias insn if ! alias_p. */
|
||
if (! alias_p
|
||
&& CGEN_INSN_ATTR_VALUE (insn, CGEN_INSN_ALIAS))
|
||
abort ();
|
||
/* Sanity check: length must be correct. */
|
||
if (length != CGEN_INSN_BITSIZE (insn))
|
||
abort ();
|
||
|
||
/* ??? 0 is passed for `pc' */
|
||
length = CGEN_EXTRACT_FN (cd, insn)
|
||
(cd, insn, info, base_insn, fields, (bfd_vma) 0);
|
||
/* Sanity check: must succeed.
|
||
Could relax this later if it ever proves useful. */
|
||
if (length == 0)
|
||
abort ();
|
||
return insn;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Fill in the operand instances used by INSN whose operands are FIELDS.
|
||
INDICES is a pointer to a buffer of MAX_OPERAND_INSTANCES ints to be filled
|
||
in. */
|
||
|
||
void
|
||
cgen_get_insn_operands (CGEN_CPU_DESC cd,
|
||
const CGEN_INSN *insn,
|
||
const CGEN_FIELDS *fields,
|
||
int *indices)
|
||
{
|
||
const CGEN_OPINST *opinst;
|
||
int i;
|
||
|
||
if (insn->opinst == NULL)
|
||
abort ();
|
||
for (i = 0, opinst = insn->opinst; opinst->type != CGEN_OPINST_END; ++i, ++opinst)
|
||
{
|
||
enum cgen_operand_type op_type = opinst->op_type;
|
||
if (op_type == CGEN_OPERAND_NIL)
|
||
indices[i] = opinst->index;
|
||
else
|
||
indices[i] = (*cd->get_int_operand) (cd, op_type, fields);
|
||
}
|
||
}
|
||
|
||
/* Cover function to cgen_get_insn_operands when either INSN or FIELDS
|
||
isn't known.
|
||
The INSN, INSN_*_VALUE, and LENGTH arguments are passed to
|
||
cgen_lookup_insn unchanged.
|
||
INSN_INT_VALUE is used if CGEN_INT_INSN_P.
|
||
Otherwise INSN_BYTES_VALUE is used.
|
||
|
||
The result is the insn table entry or NULL if the instruction wasn't
|
||
recognized. */
|
||
|
||
const CGEN_INSN *
|
||
cgen_lookup_get_insn_operands (CGEN_CPU_DESC cd,
|
||
const CGEN_INSN *insn,
|
||
CGEN_INSN_INT insn_int_value,
|
||
/* ??? CGEN_INSN_BYTES would be a nice type name to use here. */
|
||
unsigned char *insn_bytes_value,
|
||
int length,
|
||
int *indices,
|
||
CGEN_FIELDS *fields)
|
||
{
|
||
/* Pass non-zero for ALIAS_P only if INSN != NULL.
|
||
If INSN == NULL, we want a real insn. */
|
||
insn = cgen_lookup_insn (cd, insn, insn_int_value, insn_bytes_value,
|
||
length, fields, insn != NULL);
|
||
if (! insn)
|
||
return NULL;
|
||
|
||
cgen_get_insn_operands (cd, insn, fields, indices);
|
||
return insn;
|
||
}
|
||
|
||
/* Allow signed overflow of instruction fields. */
|
||
void
|
||
cgen_set_signed_overflow_ok (CGEN_CPU_DESC cd)
|
||
{
|
||
cd->signed_overflow_ok_p = 1;
|
||
}
|
||
|
||
/* Generate an error message if a signed field in an instruction overflows. */
|
||
void
|
||
cgen_clear_signed_overflow_ok (CGEN_CPU_DESC cd)
|
||
{
|
||
cd->signed_overflow_ok_p = 0;
|
||
}
|
||
|
||
/* Will an error message be generated if a signed field in an instruction overflows ? */
|
||
unsigned int
|
||
cgen_signed_overflow_ok_p (CGEN_CPU_DESC cd)
|
||
{
|
||
return cd->signed_overflow_ok_p;
|
||
}
|