binutils-gdb/gas/config/tc-v850.c
Kazu Hirata b6ff326eba * config/tc-alpha.c: Fix comment typos.
* config/tc-cris.c: Likewise.
	* config/tc-hppa.c: Likewise.
	* config/tc-i370.c: Likewise.
	* config/tc-mips.c: Likewise.
	* config/tc-mn10200.c: Likewise.
	* config/tc-mn10300.c: Likewise.
	* config/tc-sh.c: Likewise.
	* config/tc-tahoe.c: Likewise.
	* config/tc-v850.c: Likewise.
2001-10-11 23:56:33 +00:00

2528 lines
60 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* tc-v850.c -- Assembler code for the NEC V850
Copyright 1996, 1997, 1998, 1999, 2000, 2001
Free Software Foundation, Inc.
This file is part of GAS, the GNU Assembler.
GAS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GAS; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include <stdio.h>
#include "as.h"
#include "safe-ctype.h"
#include "subsegs.h"
#include "opcode/v850.h"
#include "dwarf2dbg.h"
#define AREA_ZDA 0
#define AREA_SDA 1
#define AREA_TDA 2
/* Sign-extend a 16-bit number. */
#define SEXT16(x) ((((x) & 0xffff) ^ (~0x7fff)) + 0x8000)
/* Temporarily holds the reloc in a cons expression. */
static bfd_reloc_code_real_type hold_cons_reloc = BFD_RELOC_UNUSED;
/* Set to TRUE if we want to be pedantic about signed overflows. */
static boolean warn_signed_overflows = FALSE;
static boolean warn_unsigned_overflows = FALSE;
/* Indicates the target BFD machine number. */
static int machine = -1;
/* Indicates the target processor(s) for the assemble. */
static int processor_mask = -1;
/* Structure to hold information about predefined registers. */
struct reg_name {
const char *name;
int value;
};
/* Generic assembler global variables which must be defined by all
targets. */
/* Characters which always start a comment. */
const char comment_chars[] = "#";
/* Characters which start a comment at the beginning of a line. */
const char line_comment_chars[] = ";#";
/* Characters which may be used to separate multiple commands on a
single line. */
const char line_separator_chars[] = ";";
/* Characters which are used to indicate an exponent in a floating
point number. */
const char EXP_CHARS[] = "eE";
/* Characters which mean that a number is a floating point constant,
as in 0d1.0. */
const char FLT_CHARS[] = "dD";
const relax_typeS md_relax_table[] = {
/* Conditional branches. */
{0xff, -0x100, 2, 1},
{0x1fffff, -0x200000, 6, 0},
/* Unconditional branches. */
{0xff, -0x100, 2, 3},
{0x1fffff, -0x200000, 4, 0},
};
static segT sdata_section = NULL;
static segT tdata_section = NULL;
static segT zdata_section = NULL;
static segT sbss_section = NULL;
static segT tbss_section = NULL;
static segT zbss_section = NULL;
static segT rosdata_section = NULL;
static segT rozdata_section = NULL;
static segT scommon_section = NULL;
static segT tcommon_section = NULL;
static segT zcommon_section = NULL;
static segT call_table_data_section = NULL;
static segT call_table_text_section = NULL;
/* Fixups. */
#define MAX_INSN_FIXUPS (5)
struct v850_fixup {
expressionS exp;
int opindex;
bfd_reloc_code_real_type reloc;
};
struct v850_fixup fixups[MAX_INSN_FIXUPS];
static int fc;
void
v850_sdata (int ignore ATTRIBUTE_UNUSED)
{
obj_elf_section_change_hook ();
subseg_set (sdata_section, (subsegT) get_absolute_expression ());
demand_empty_rest_of_line ();
}
void
v850_tdata (int ignore ATTRIBUTE_UNUSED)
{
obj_elf_section_change_hook ();
subseg_set (tdata_section, (subsegT) get_absolute_expression ());
demand_empty_rest_of_line ();
}
void
v850_zdata (int ignore ATTRIBUTE_UNUSED)
{
obj_elf_section_change_hook ();
subseg_set (zdata_section, (subsegT) get_absolute_expression ());
demand_empty_rest_of_line ();
}
void
v850_sbss (int ignore ATTRIBUTE_UNUSED)
{
obj_elf_section_change_hook ();
subseg_set (sbss_section, (subsegT) get_absolute_expression ());
demand_empty_rest_of_line ();
}
void
v850_tbss (int ignore ATTRIBUTE_UNUSED)
{
obj_elf_section_change_hook ();
subseg_set (tbss_section, (subsegT) get_absolute_expression ());
demand_empty_rest_of_line ();
}
void
v850_zbss (int ignore ATTRIBUTE_UNUSED)
{
obj_elf_section_change_hook ();
subseg_set (zbss_section, (subsegT) get_absolute_expression ());
demand_empty_rest_of_line ();
}
void
v850_rosdata (int ignore ATTRIBUTE_UNUSED)
{
obj_elf_section_change_hook ();
subseg_set (rosdata_section, (subsegT) get_absolute_expression ());
demand_empty_rest_of_line ();
}
void
v850_rozdata (int ignore ATTRIBUTE_UNUSED)
{
obj_elf_section_change_hook ();
subseg_set (rozdata_section, (subsegT) get_absolute_expression ());
demand_empty_rest_of_line ();
}
void
v850_call_table_data (int ignore ATTRIBUTE_UNUSED)
{
obj_elf_section_change_hook ();
subseg_set (call_table_data_section, (subsegT) get_absolute_expression ());
demand_empty_rest_of_line ();
}
void
v850_call_table_text (int ignore ATTRIBUTE_UNUSED)
{
obj_elf_section_change_hook ();
subseg_set (call_table_text_section, (subsegT) get_absolute_expression ());
demand_empty_rest_of_line ();
}
void
v850_bss (int ignore ATTRIBUTE_UNUSED)
{
register int temp = get_absolute_expression ();
obj_elf_section_change_hook ();
subseg_set (bss_section, (subsegT) temp);
demand_empty_rest_of_line ();
}
void
v850_offset (int ignore ATTRIBUTE_UNUSED)
{
int temp = get_absolute_expression ();
temp -= frag_now_fix ();
if (temp > 0)
(void) frag_more (temp);
demand_empty_rest_of_line ();
}
/* Copied from obj_elf_common() in gas/config/obj-elf.c. */
static void
v850_comm (area)
int area;
{
char *name;
char c;
char *p;
int temp;
unsigned int size;
symbolS *symbolP;
int have_align;
name = input_line_pointer;
c = get_symbol_end ();
/* Just after name is now '\0'. */
p = input_line_pointer;
*p = c;
SKIP_WHITESPACE ();
if (*input_line_pointer != ',')
{
as_bad (_("Expected comma after symbol-name"));
ignore_rest_of_line ();
return;
}
/* Skip ','. */
input_line_pointer++;
if ((temp = get_absolute_expression ()) < 0)
{
/* xgettext:c-format */
as_bad (_(".COMMon length (%d.) < 0! Ignored."), temp);
ignore_rest_of_line ();
return;
}
size = temp;
*p = 0;
symbolP = symbol_find_or_make (name);
*p = c;
if (S_IS_DEFINED (symbolP) && ! S_IS_COMMON (symbolP))
{
as_bad (_("Ignoring attempt to re-define symbol"));
ignore_rest_of_line ();
return;
}
if (S_GET_VALUE (symbolP) != 0)
{
if (S_GET_VALUE (symbolP) != size)
{
/* xgettext:c-format */
as_warn (_("Length of .comm \"%s\" is already %ld. Not changed to %d."),
S_GET_NAME (symbolP), (long) S_GET_VALUE (symbolP), size);
}
}
know (symbol_get_frag (symbolP) == &zero_address_frag);
if (*input_line_pointer != ',')
have_align = 0;
else
{
have_align = 1;
input_line_pointer++;
SKIP_WHITESPACE ();
}
if (! have_align || *input_line_pointer != '"')
{
if (! have_align)
temp = 0;
else
{
temp = get_absolute_expression ();
if (temp < 0)
{
temp = 0;
as_warn (_("Common alignment negative; 0 assumed"));
}
}
if (symbol_get_obj (symbolP)->local)
{
segT old_sec;
int old_subsec;
char *pfrag;
int align;
flagword applicable;
old_sec = now_seg;
old_subsec = now_subseg;
applicable = bfd_applicable_section_flags (stdoutput);
applicable &= SEC_ALLOC;
switch (area)
{
case AREA_SDA:
if (sbss_section == NULL)
{
sbss_section = subseg_new (".sbss", 0);
bfd_set_section_flags (stdoutput, sbss_section, applicable);
seg_info (sbss_section)->bss = 1;
}
break;
case AREA_ZDA:
if (zbss_section == NULL)
{
zbss_section = subseg_new (".zbss", 0);
bfd_set_section_flags (stdoutput, sbss_section, applicable);
seg_info (zbss_section)->bss = 1;
}
break;
case AREA_TDA:
if (tbss_section == NULL)
{
tbss_section = subseg_new (".tbss", 0);
bfd_set_section_flags (stdoutput, tbss_section, applicable);
seg_info (tbss_section)->bss = 1;
}
break;
}
if (temp)
{
/* Convert to a power of 2 alignment. */
for (align = 0; (temp & 1) == 0; temp >>= 1, ++align)
;
if (temp != 1)
{
as_bad (_("Common alignment not a power of 2"));
ignore_rest_of_line ();
return;
}
}
else
align = 0;
switch (area)
{
case AREA_SDA:
record_alignment (sbss_section, align);
obj_elf_section_change_hook ();
subseg_set (sbss_section, 0);
break;
case AREA_ZDA:
record_alignment (zbss_section, align);
obj_elf_section_change_hook ();
subseg_set (zbss_section, 0);
break;
case AREA_TDA:
record_alignment (tbss_section, align);
obj_elf_section_change_hook ();
subseg_set (tbss_section, 0);
break;
default:
abort ();
}
if (align)
frag_align (align, 0, 0);
switch (area)
{
case AREA_SDA:
if (S_GET_SEGMENT (symbolP) == sbss_section)
symbol_get_frag (symbolP)->fr_symbol = 0;
break;
case AREA_ZDA:
if (S_GET_SEGMENT (symbolP) == zbss_section)
symbol_get_frag (symbolP)->fr_symbol = 0;
break;
case AREA_TDA:
if (S_GET_SEGMENT (symbolP) == tbss_section)
symbol_get_frag (symbolP)->fr_symbol = 0;
break;
default:
abort ();
}
symbol_set_frag (symbolP, frag_now);
pfrag = frag_var (rs_org, 1, 1, (relax_substateT) 0, symbolP,
(offsetT) size, (char *) 0);
*pfrag = 0;
S_SET_SIZE (symbolP, size);
switch (area)
{
case AREA_SDA:
S_SET_SEGMENT (symbolP, sbss_section);
break;
case AREA_ZDA:
S_SET_SEGMENT (symbolP, zbss_section);
break;
case AREA_TDA:
S_SET_SEGMENT (symbolP, tbss_section);
break;
default:
abort ();
}
S_CLEAR_EXTERNAL (symbolP);
obj_elf_section_change_hook ();
subseg_set (old_sec, old_subsec);
}
else
{
allocate_common:
S_SET_VALUE (symbolP, (valueT) size);
S_SET_ALIGN (symbolP, temp);
S_SET_EXTERNAL (symbolP);
switch (area)
{
case AREA_SDA:
if (scommon_section == NULL)
{
flagword applicable =
bfd_applicable_section_flags (stdoutput);
scommon_section = subseg_new (".scommon", 0);
bfd_set_section_flags (stdoutput, scommon_section,
(applicable
& (SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA
| SEC_HAS_CONTENTS)) | SEC_IS_COMMON);
}
S_SET_SEGMENT (symbolP, scommon_section);
break;
case AREA_ZDA:
if (zcommon_section == NULL)
{
flagword applicable =
bfd_applicable_section_flags (stdoutput);
zcommon_section = subseg_new (".zcommon", 0);
bfd_set_section_flags (stdoutput, zcommon_section,
(applicable
& (SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA
| SEC_HAS_CONTENTS)) | SEC_IS_COMMON);
}
S_SET_SEGMENT (symbolP, zcommon_section);
break;
case AREA_TDA:
if (tcommon_section == NULL)
{
flagword applicable =
bfd_applicable_section_flags (stdoutput);
tcommon_section = subseg_new (".tcommon", 0);
bfd_set_section_flags (stdoutput, tcommon_section,
((applicable
& (SEC_ALLOC | SEC_LOAD
| SEC_RELOC | SEC_DATA
| SEC_HAS_CONTENTS))
| SEC_IS_COMMON));
}
S_SET_SEGMENT (symbolP, tcommon_section);
break;
default:
abort ();
}
}
}
else
{
input_line_pointer++;
/* @@ Some use the dot, some don't. Can we get some consistency?? */
if (*input_line_pointer == '.')
input_line_pointer++;
/* @@ Some say data, some say bss. */
if (strncmp (input_line_pointer, "bss\"", 4)
&& strncmp (input_line_pointer, "data\"", 5))
{
while (*--input_line_pointer != '"')
;
input_line_pointer--;
goto bad_common_segment;
}
while (*input_line_pointer++ != '"')
;
goto allocate_common;
}
symbol_get_bfdsym (symbolP)->flags |= BSF_OBJECT;
demand_empty_rest_of_line ();
return;
{
bad_common_segment:
p = input_line_pointer;
while (*p && *p != '\n')
p++;
c = *p;
*p = '\0';
as_bad (_("bad .common segment %s"), input_line_pointer + 1);
*p = c;
input_line_pointer = p;
ignore_rest_of_line ();
return;
}
}
void
set_machine (int number)
{
machine = number;
bfd_set_arch_mach (stdoutput, TARGET_ARCH, machine);
switch (machine)
{
case 0: processor_mask = PROCESSOR_V850; break;
case bfd_mach_v850e: processor_mask = PROCESSOR_V850E; break;
case bfd_mach_v850ea: processor_mask = PROCESSOR_V850EA; break;
}
}
/* The target specific pseudo-ops which we support. */
const pseudo_typeS md_pseudo_table[] = {
{"sdata", v850_sdata, 0},
{"tdata", v850_tdata, 0},
{"zdata", v850_zdata, 0},
{"sbss", v850_sbss, 0},
{"tbss", v850_tbss, 0},
{"zbss", v850_zbss, 0},
{"rosdata", v850_rosdata, 0},
{"rozdata", v850_rozdata, 0},
{"bss", v850_bss, 0},
{"offset", v850_offset, 0},
{"word", cons, 4},
{"zcomm", v850_comm, AREA_ZDA},
{"scomm", v850_comm, AREA_SDA},
{"tcomm", v850_comm, AREA_TDA},
{"v850", set_machine, 0},
{"call_table_data", v850_call_table_data, 0},
{"call_table_text", v850_call_table_text, 0},
{"v850e", set_machine, bfd_mach_v850e},
{"v850ea", set_machine, bfd_mach_v850ea},
{"file", dwarf2_directive_file, 0},
{"loc", dwarf2_directive_loc, 0},
{ NULL, NULL, 0}
};
/* Opcode hash table. */
static struct hash_control *v850_hash;
/* This table is sorted. Suitable for searching by a binary search. */
static const struct reg_name pre_defined_registers[] = {
{ "ep", 30 }, /* ep - element ptr */
{ "gp", 4 }, /* gp - global ptr */
{ "hp", 2 }, /* hp - handler stack ptr */
{ "lp", 31 }, /* lp - link ptr */
{ "r0", 0 },
{ "r1", 1 },
{ "r10", 10 },
{ "r11", 11 },
{ "r12", 12 },
{ "r13", 13 },
{ "r14", 14 },
{ "r15", 15 },
{ "r16", 16 },
{ "r17", 17 },
{ "r18", 18 },
{ "r19", 19 },
{ "r2", 2 },
{ "r20", 20 },
{ "r21", 21 },
{ "r22", 22 },
{ "r23", 23 },
{ "r24", 24 },
{ "r25", 25 },
{ "r26", 26 },
{ "r27", 27 },
{ "r28", 28 },
{ "r29", 29 },
{ "r3", 3 },
{ "r30", 30 },
{ "r31", 31 },
{ "r4", 4 },
{ "r5", 5 },
{ "r6", 6 },
{ "r7", 7 },
{ "r8", 8 },
{ "r9", 9 },
{ "sp", 3 }, /* sp - stack ptr */
{ "tp", 5 }, /* tp - text ptr */
{ "zero", 0 },
};
#define REG_NAME_CNT \
(sizeof (pre_defined_registers) / sizeof (struct reg_name))
static const struct reg_name system_registers[] = {
{ "ctbp", 20 },
{ "ctpc", 16 },
{ "ctpsw", 17 },
{ "dbpc", 18 },
{ "dbpsw", 19 },
{ "ecr", 4 },
{ "eipc", 0 },
{ "eipsw", 1 },
{ "fepc", 2 },
{ "fepsw", 3 },
{ "psw", 5 },
};
#define SYSREG_NAME_CNT \
(sizeof (system_registers) / sizeof (struct reg_name))
static const struct reg_name system_list_registers[] = {
{"PS", 5 },
{"SR", 0 + 1}
};
#define SYSREGLIST_NAME_CNT \
(sizeof (system_list_registers) / sizeof (struct reg_name))
static const struct reg_name cc_names[] = {
{ "c", 0x1 },
{ "e", 0x2 },
{ "ge", 0xe },
{ "gt", 0xf },
{ "h", 0xb },
{ "l", 0x1 },
{ "le", 0x7 },
{ "lt", 0x6 },
{ "n", 0x4 },
{ "nc", 0x9 },
{ "ne", 0xa },
{ "nh", 0x3 },
{ "nl", 0x9 },
{ "ns", 0xc },
{ "nv", 0x8 },
{ "nz", 0xa },
{ "p", 0xc },
{ "s", 0x4 },
{ "sa", 0xd },
{ "t", 0x5 },
{ "v", 0x0 },
{ "z", 0x2 },
};
#define CC_NAME_CNT \
(sizeof (cc_names) / sizeof (struct reg_name))
/* Do a binary search of the given register table to see if NAME is a
valid regiter name. Return the register number from the array on
success, or -1 on failure. */
static int
reg_name_search (regs, regcount, name, accept_numbers)
const struct reg_name *regs;
int regcount;
const char *name;
boolean accept_numbers;
{
int middle, low, high;
int cmp;
symbolS *symbolP;
/* If the register name is a symbol, then evaluate it. */
if ((symbolP = symbol_find (name)) != NULL)
{
/* If the symbol is an alias for another name then use that.
If the symbol is an alias for a number, then return the number. */
if (symbol_equated_p (symbolP))
{
name
= S_GET_NAME (symbol_get_value_expression (symbolP)->X_add_symbol);
}
else if (accept_numbers)
{
int reg = S_GET_VALUE (symbolP);
if (reg >= 0 && reg <= 31)
return reg;
}
/* Otherwise drop through and try parsing name normally. */
}
low = 0;
high = regcount - 1;
do
{
middle = (low + high) / 2;
cmp = strcasecmp (name, regs[middle].name);
if (cmp < 0)
high = middle - 1;
else if (cmp > 0)
low = middle + 1;
else
return regs[middle].value;
}
while (low <= high);
return -1;
}
/* Summary of register_name().
*
* in: Input_line_pointer points to 1st char of operand.
*
* out: An expressionS.
* The operand may have been a register: in this case, X_op == O_register,
* X_add_number is set to the register number, and truth is returned.
* Input_line_pointer->(next non-blank) char after operand, or is in
* its original state. */
static boolean
register_name (expressionP)
expressionS *expressionP;
{
int reg_number;
char *name;
char *start;
char c;
/* Find the spelling of the operand. */
start = name = input_line_pointer;
c = get_symbol_end ();
reg_number = reg_name_search (pre_defined_registers, REG_NAME_CNT,
name, FALSE);
/* Put back the delimiting char. */
*input_line_pointer = c;
/* Look to see if it's in the register table. */
if (reg_number >= 0)
{
expressionP->X_op = O_register;
expressionP->X_add_number = reg_number;
/* Make the rest nice. */
expressionP->X_add_symbol = NULL;
expressionP->X_op_symbol = NULL;
return true;
}
else
{
/* Reset the line as if we had not done anything. */
input_line_pointer = start;
return false;
}
}
/* Summary of system_register_name().
*
* in: INPUT_LINE_POINTER points to 1st char of operand.
* EXPRESSIONP points to an expression structure to be filled in.
* ACCEPT_NUMBERS is true iff numerical register names may be used.
* ACCEPT_LIST_NAMES is true iff the special names PS and SR may be
* accepted.
*
* out: An expressionS structure in expressionP.
* The operand may have been a register: in this case, X_op == O_register,
* X_add_number is set to the register number, and truth is returned.
* Input_line_pointer->(next non-blank) char after operand, or is in
* its original state. */
static boolean
system_register_name (expressionP, accept_numbers, accept_list_names)
expressionS *expressionP;
boolean accept_numbers;
boolean accept_list_names;
{
int reg_number;
char *name;
char *start;
char c;
/* Find the spelling of the operand. */
start = name = input_line_pointer;
c = get_symbol_end ();
reg_number = reg_name_search (system_registers, SYSREG_NAME_CNT, name,
accept_numbers);
/* Put back the delimiting char. */
*input_line_pointer = c;
if (reg_number < 0
&& accept_numbers)
{
/* Reset input_line pointer. */
input_line_pointer = start;
if (ISDIGIT (*input_line_pointer))
{
reg_number = strtol (input_line_pointer, &input_line_pointer, 10);
/* Make sure that the register number is allowable. */
if (reg_number < 0
|| (reg_number > 5 && reg_number < 16)
|| reg_number > 20)
{
reg_number = -1;
}
}
else if (accept_list_names)
{
c = get_symbol_end ();
reg_number = reg_name_search (system_list_registers,
SYSREGLIST_NAME_CNT, name, FALSE);
/* Put back the delimiting char. */
*input_line_pointer = c;
}
}
/* Look to see if it's in the register table. */
if (reg_number >= 0)
{
expressionP->X_op = O_register;
expressionP->X_add_number = reg_number;
/* Make the rest nice. */
expressionP->X_add_symbol = NULL;
expressionP->X_op_symbol = NULL;
return true;
}
else
{
/* Reset the line as if we had not done anything. */
input_line_pointer = start;
return false;
}
}
/* Summary of cc_name().
*
* in: INPUT_LINE_POINTER points to 1st char of operand.
*
* out: An expressionS.
* The operand may have been a register: in this case, X_op == O_register,
* X_add_number is set to the register number, and truth is returned.
* Input_line_pointer->(next non-blank) char after operand, or is in
* its original state. */
static boolean
cc_name (expressionP)
expressionS *expressionP;
{
int reg_number;
char *name;
char *start;
char c;
/* Find the spelling of the operand. */
start = name = input_line_pointer;
c = get_symbol_end ();
reg_number = reg_name_search (cc_names, CC_NAME_CNT, name, FALSE);
/* Put back the delimiting char. */
*input_line_pointer = c;
/* Look to see if it's in the register table. */
if (reg_number >= 0)
{
expressionP->X_op = O_constant;
expressionP->X_add_number = reg_number;
/* Make the rest nice. */
expressionP->X_add_symbol = NULL;
expressionP->X_op_symbol = NULL;
return true;
}
else
{
/* Reset the line as if we had not done anything. */
input_line_pointer = start;
return false;
}
}
static void
skip_white_space (void)
{
while (*input_line_pointer == ' '
|| *input_line_pointer == '\t')
++input_line_pointer;
}
/* Summary of parse_register_list ().
*
* in: INPUT_LINE_POINTER points to 1st char of a list of registers.
* INSN is the partially constructed instruction.
* OPERAND is the operand being inserted.
*
* out: NULL if the parse completed successfully, otherwise a
* pointer to an error message is returned. If the parse
* completes the correct bit fields in the instruction
* will be filled in.
*
* Parses register lists with the syntax:
*
* { rX }
* { rX, rY }
* { rX - rY }
* { rX - rY, rZ }
* etc
*
* and also parses constant epxressions whoes bits indicate the
* registers in the lists. The LSB in the expression refers to
* the lowest numbered permissable register in the register list,
* and so on upwards. System registers are considered to be very
* high numbers. */
static char *
parse_register_list (insn, operand)
unsigned long *insn;
const struct v850_operand *operand;
{
static int type1_regs[32] = {
30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 31, 29, 28, 23, 22, 21, 20, 27, 26, 25, 24
};
static int type2_regs[32] = {
19, 18, 17, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 30, 31, 29, 28, 23, 22, 21, 20, 27, 26, 25, 24
};
static int type3_regs[32] = {
3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 14, 15, 13, 12, 7, 6, 5, 4, 11, 10, 9, 8
};
int *regs;
expressionS exp;
/* Select a register array to parse. */
switch (operand->shift)
{
case 0xffe00001: regs = type1_regs; break;
case 0xfff8000f: regs = type2_regs; break;
case 0xfff8001f: regs = type3_regs; break;
default:
as_bad (_("unknown operand shift: %x\n"), operand->shift);
return _("internal failure in parse_register_list");
}
skip_white_space ();
/* If the expression starts with a curly brace it is a register list.
Otherwise it is a constant expression, whoes bits indicate which
registers are to be included in the list. */
if (*input_line_pointer != '{')
{
int reg;
int i;
expression (&exp);
if (exp.X_op != O_constant)
return _("constant expression or register list expected");
if (regs == type1_regs)
{
if (exp.X_add_number & 0xFFFFF000)
return _("high bits set in register list expression");
for (reg = 20; reg < 32; reg++)
if (exp.X_add_number & (1 << (reg - 20)))
{
for (i = 0; i < 32; i++)
if (regs[i] == reg)
*insn |= (1 << i);
}
}
else if (regs == type2_regs)
{
if (exp.X_add_number & 0xFFFE0000)
return _("high bits set in register list expression");
for (reg = 1; reg < 16; reg++)
if (exp.X_add_number & (1 << (reg - 1)))
{
for (i = 0; i < 32; i++)
if (regs[i] == reg)
*insn |= (1 << i);
}
if (exp.X_add_number & (1 << 15))
*insn |= (1 << 3);
if (exp.X_add_number & (1 << 16))
*insn |= (1 << 19);
}
else /* regs == type3_regs */
{
if (exp.X_add_number & 0xFFFE0000)
return _("high bits set in register list expression");
for (reg = 16; reg < 32; reg++)
if (exp.X_add_number & (1 << (reg - 16)))
{
for (i = 0; i < 32; i++)
if (regs[i] == reg)
*insn |= (1 << i);
}
if (exp.X_add_number & (1 << 16))
*insn |= (1 << 19);
}
return NULL;
}
input_line_pointer++;
/* Parse the register list until a terminator (closing curly brace or
new-line) is found. */
for (;;)
{
if (register_name (&exp))
{
int i;
/* Locate the given register in the list, and if it is there,
insert the corresponding bit into the instruction. */
for (i = 0; i < 32; i++)
{
if (regs[i] == exp.X_add_number)
{
*insn |= (1 << i);
break;
}
}
if (i == 32)
{
return _("illegal register included in list");
}
}
else if (system_register_name (&exp, true, true))
{
if (regs == type1_regs)
{
return _("system registers cannot be included in list");
}
else if (exp.X_add_number == 5)
{
if (regs == type2_regs)
return _("PSW cannot be included in list");
else
*insn |= 0x8;
}
else if (exp.X_add_number < 4)
*insn |= 0x80000;
else
return _("High value system registers cannot be included in list");
}
else if (*input_line_pointer == '}')
{
input_line_pointer++;
break;
}
else if (*input_line_pointer == ',')
{
input_line_pointer++;
continue;
}
else if (*input_line_pointer == '-')
{
/* We have encountered a range of registers: rX - rY. */
int j;
expressionS exp2;
/* Skip the dash. */
++input_line_pointer;
/* Get the second register in the range. */
if (! register_name (&exp2))
{
return _("second register should follow dash in register list");
exp2.X_add_number = exp.X_add_number;
}
/* Add the rest of the registers in the range. */
for (j = exp.X_add_number + 1; j <= exp2.X_add_number; j++)
{
int i;
/* Locate the given register in the list, and if it is there,
insert the corresponding bit into the instruction. */
for (i = 0; i < 32; i++)
{
if (regs[i] == j)
{
*insn |= (1 << i);
break;
}
}
if (i == 32)
return _("illegal register included in list");
}
}
else
{
break;
}
skip_white_space ();
}
return NULL;
}
CONST char *md_shortopts = "m:";
struct option md_longopts[] = {
{NULL, no_argument, NULL, 0}
};
size_t md_longopts_size = sizeof (md_longopts);
void
md_show_usage (stream)
FILE *stream;
{
fprintf (stream, _(" V850 options:\n"));
fprintf (stream, _(" -mwarn-signed-overflow Warn if signed immediate values overflow\n"));
fprintf (stream, _(" -mwarn-unsigned-overflow Warn if unsigned immediate values overflow\n"));
fprintf (stream, _(" -mv850 The code is targeted at the v850\n"));
fprintf (stream, _(" -mv850e The code is targeted at the v850e\n"));
fprintf (stream, _(" -mv850ea The code is targeted at the v850ea\n"));
fprintf (stream, _(" -mv850any The code is generic, despite any processor specific instructions\n"));
}
int
md_parse_option (c, arg)
int c;
char *arg;
{
if (c != 'm')
{
if (c != 'a')
/* xgettext:c-format */
fprintf (stderr, _("unknown command line option: -%c%s\n"), c, arg);
return 0;
}
if (strcmp (arg, "warn-signed-overflow") == 0)
{
warn_signed_overflows = TRUE;
}
else if (strcmp (arg, "warn-unsigned-overflow") == 0)
{
warn_unsigned_overflows = TRUE;
}
else if (strcmp (arg, "v850") == 0)
{
machine = 0;
processor_mask = PROCESSOR_V850;
}
else if (strcmp (arg, "v850e") == 0)
{
machine = bfd_mach_v850e;
processor_mask = PROCESSOR_V850E;
}
else if (strcmp (arg, "v850ea") == 0)
{
machine = bfd_mach_v850ea;
processor_mask = PROCESSOR_V850EA;
}
else if (strcmp (arg, "v850any") == 0)
{
/* Tell the world that this is for any v850 chip. */
machine = 0;
/* But support instructions for the extended versions. */
processor_mask = PROCESSOR_V850EA;
}
else
{
/* xgettext:c-format */
fprintf (stderr, _("unknown command line option: -%c%s\n"), c, arg);
return 0;
}
return 1;
}
symbolS *
md_undefined_symbol (name)
char *name ATTRIBUTE_UNUSED;
{
return 0;
}
char *
md_atof (type, litp, sizep)
int type;
char *litp;
int *sizep;
{
int prec;
LITTLENUM_TYPE words[4];
char *t;
int i;
switch (type)
{
case 'f':
prec = 2;
break;
case 'd':
prec = 4;
break;
default:
*sizep = 0;
return _("bad call to md_atof");
}
t = atof_ieee (input_line_pointer, type, words);
if (t)
input_line_pointer = t;
*sizep = prec * 2;
for (i = prec - 1; i >= 0; i--)
{
md_number_to_chars (litp, (valueT) words[i], 2);
litp += 2;
}
return NULL;
}
/* Very gross. */
void
md_convert_frag (abfd, sec, fragP)
bfd *abfd ATTRIBUTE_UNUSED;
asection *sec;
fragS *fragP;
{
subseg_change (sec, 0);
/* In range conditional or unconditional branch. */
if (fragP->fr_subtype == 0 || fragP->fr_subtype == 2)
{
fix_new (fragP, fragP->fr_fix, 2, fragP->fr_symbol,
fragP->fr_offset, 1, BFD_RELOC_UNUSED + (int)fragP->fr_opcode);
fragP->fr_fix += 2;
}
/* Out of range conditional branch. Emit a branch around a jump. */
else if (fragP->fr_subtype == 1)
{
unsigned char *buffer =
(unsigned char *) (fragP->fr_fix + fragP->fr_literal);
/* Reverse the condition of the first branch. */
buffer[0] ^= 0x08;
/* Mask off all the displacement bits. */
buffer[0] &= 0x8f;
buffer[1] &= 0x07;
/* Now set the displacement bits so that we branch
around the unconditional branch. */
buffer[0] |= 0x30;
/* Now create the unconditional branch + fixup to the final
target. */
md_number_to_chars (buffer + 2, 0x00000780, 4);
fix_new (fragP, fragP->fr_fix + 2, 4, fragP->fr_symbol,
fragP->fr_offset, 1, BFD_RELOC_UNUSED +
(int) fragP->fr_opcode + 1);
fragP->fr_fix += 6;
}
/* Out of range unconditional branch. Emit a jump. */
else if (fragP->fr_subtype == 3)
{
md_number_to_chars (fragP->fr_fix + fragP->fr_literal, 0x00000780, 4);
fix_new (fragP, fragP->fr_fix, 4, fragP->fr_symbol,
fragP->fr_offset, 1, BFD_RELOC_UNUSED +
(int) fragP->fr_opcode + 1);
fragP->fr_fix += 4;
}
else
abort ();
}
valueT
md_section_align (seg, addr)
asection *seg;
valueT addr;
{
int align = bfd_get_section_alignment (stdoutput, seg);
return ((addr + (1 << align) - 1) & (-1 << align));
}
void
md_begin ()
{
char *prev_name = "";
register const struct v850_opcode *op;
flagword applicable;
if (strncmp (TARGET_CPU, "v850ea", 6) == 0)
{
if (machine == -1)
machine = bfd_mach_v850ea;
if (processor_mask == -1)
processor_mask = PROCESSOR_V850EA;
}
else if (strncmp (TARGET_CPU, "v850e", 5) == 0)
{
if (machine == -1)
machine = bfd_mach_v850e;
if (processor_mask == -1)
processor_mask = PROCESSOR_V850E;
}
else if (strncmp (TARGET_CPU, "v850", 4) == 0)
{
if (machine == -1)
machine = 0;
if (processor_mask == -1)
processor_mask = PROCESSOR_V850;
}
else
/* xgettext:c-format */
as_bad (_("Unable to determine default target processor from string: %s"),
TARGET_CPU);
v850_hash = hash_new ();
/* Insert unique names into hash table. The V850 instruction set
has many identical opcode names that have different opcodes based
on the operands. This hash table then provides a quick index to
the first opcode with a particular name in the opcode table. */
op = v850_opcodes;
while (op->name)
{
if (strcmp (prev_name, op->name))
{
prev_name = (char *) op->name;
hash_insert (v850_hash, op->name, (char *) op);
}
op++;
}
bfd_set_arch_mach (stdoutput, TARGET_ARCH, machine);
applicable = bfd_applicable_section_flags (stdoutput);
call_table_data_section = subseg_new (".call_table_data", 0);
bfd_set_section_flags (stdoutput, call_table_data_section,
applicable & (SEC_ALLOC | SEC_LOAD | SEC_RELOC
| SEC_DATA | SEC_HAS_CONTENTS));
call_table_text_section = subseg_new (".call_table_text", 0);
bfd_set_section_flags (stdoutput, call_table_text_section,
applicable & (SEC_ALLOC | SEC_LOAD | SEC_READONLY
| SEC_CODE));
/* Restore text section as the current default. */
subseg_set (text_section, 0);
}
static bfd_reloc_code_real_type
handle_ctoff (const struct v850_operand *operand)
{
if (operand == NULL)
return BFD_RELOC_V850_CALLT_16_16_OFFSET;
if (operand->bits != 6
|| operand->shift != 0)
{
as_bad (_("ctoff() relocation used on an instruction which does not support it"));
return BFD_RELOC_64; /* Used to indicate an error condition. */
}
return BFD_RELOC_V850_CALLT_6_7_OFFSET;
}
static bfd_reloc_code_real_type
handle_sdaoff (const struct v850_operand *operand)
{
if (operand == NULL)
return BFD_RELOC_V850_SDA_16_16_OFFSET;
if (operand->bits == 15 && operand->shift == 17)
return BFD_RELOC_V850_SDA_15_16_OFFSET;
if (operand->bits == -1)
return BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET;
if (operand->bits != 16
|| operand->shift != 16)
{
as_bad (_("sdaoff() relocation used on an instruction which does not support it"));
return BFD_RELOC_64; /* Used to indicate an error condition. */
}
return BFD_RELOC_V850_SDA_16_16_OFFSET;
}
static bfd_reloc_code_real_type
handle_zdaoff (const struct v850_operand *operand)
{
if (operand == NULL)
return BFD_RELOC_V850_ZDA_16_16_OFFSET;
if (operand->bits == 15 && operand->shift == 17)
return BFD_RELOC_V850_ZDA_15_16_OFFSET;
if (operand->bits == -1)
return BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET;
if (operand->bits != 16
|| operand->shift != 16)
{
as_bad (_("zdaoff() relocation used on an instruction which does not support it"));
/* Used to indicate an error condition. */
return BFD_RELOC_64;
}
return BFD_RELOC_V850_ZDA_16_16_OFFSET;
}
static bfd_reloc_code_real_type
handle_tdaoff (const struct v850_operand *operand)
{
if (operand == NULL)
/* Data item, not an instruction. */
return BFD_RELOC_V850_TDA_7_7_OFFSET;
if (operand->bits == 6 && operand->shift == 1)
/* sld.w/sst.w, operand: D8_6 */
return BFD_RELOC_V850_TDA_6_8_OFFSET;
if (operand->bits == 4 && operand->insert != NULL)
/* sld.hu, operand: D5-4 */
return BFD_RELOC_V850_TDA_4_5_OFFSET;
if (operand->bits == 4 && operand->insert == NULL)
/* sld.bu, operand: D4 */
return BFD_RELOC_V850_TDA_4_4_OFFSET;
if (operand->bits == 16 && operand->shift == 16)
/* set1 & chums, operands: D16 */
return BFD_RELOC_V850_TDA_16_16_OFFSET;
if (operand->bits != 7)
{
as_bad (_("tdaoff() relocation used on an instruction which does not support it"));
/* Used to indicate an error condition. */
return BFD_RELOC_64;
}
return operand->insert != NULL
? BFD_RELOC_V850_TDA_7_8_OFFSET /* sld.h/sst.h, operand: D8_7 */
: BFD_RELOC_V850_TDA_7_7_OFFSET; /* sld.b/sst.b, opreand: D7 */
}
/* Warning: The code in this function relies upon the definitions
in the v850_operands[] array (defined in opcodes/v850-opc.c)
matching the hard coded values contained herein. */
static bfd_reloc_code_real_type
v850_reloc_prefix (const struct v850_operand *operand)
{
boolean paren_skipped = false;
/* Skip leading opening parenthesis. */
if (*input_line_pointer == '(')
{
++input_line_pointer;
paren_skipped = true;
}
#define CHECK_(name, reloc) \
if (strncmp (input_line_pointer, name##"(", strlen (name) + 1) == 0) \
{ \
input_line_pointer += strlen (name); \
return reloc; \
}
CHECK_ ("hi0", BFD_RELOC_HI16 );
CHECK_ ("hi", BFD_RELOC_HI16_S );
CHECK_ ("lo", BFD_RELOC_LO16 );
CHECK_ ("sdaoff", handle_sdaoff (operand));
CHECK_ ("zdaoff", handle_zdaoff (operand));
CHECK_ ("tdaoff", handle_tdaoff (operand));
CHECK_ ("hilo", BFD_RELOC_32 );
CHECK_ ("ctoff", handle_ctoff (operand) );
/* Restore skipped parenthesis. */
if (paren_skipped)
--input_line_pointer;
return BFD_RELOC_UNUSED;
}
/* Insert an operand value into an instruction. */
static unsigned long
v850_insert_operand (insn, operand, val, file, line, str)
unsigned long insn;
const struct v850_operand *operand;
offsetT val;
char *file;
unsigned int line;
char *str;
{
if (operand->insert)
{
const char *message = NULL;
insn = operand->insert (insn, val, &message);
if (message != NULL)
{
if ((operand->flags & V850_OPERAND_SIGNED)
&& ! warn_signed_overflows
&& strstr (message, "out of range") != NULL)
{
/* Skip warning... */
}
else if ((operand->flags & V850_OPERAND_SIGNED) == 0
&& ! warn_unsigned_overflows
&& strstr (message, "out of range") != NULL)
{
/* Skip warning... */
}
else if (str)
{
if (file == (char *) NULL)
as_warn ("%s: %s", str, message);
else
as_warn_where (file, line, "%s: %s", str, message);
}
else
{
if (file == (char *) NULL)
as_warn (message);
else
as_warn_where (file, line, message);
}
}
}
else
{
if (operand->bits != 32)
{
long min, max;
if ((operand->flags & V850_OPERAND_SIGNED) != 0)
{
if (! warn_signed_overflows)
max = (1 << operand->bits) - 1;
else
max = (1 << (operand->bits - 1)) - 1;
min = -(1 << (operand->bits - 1));
}
else
{
max = (1 << operand->bits) - 1;
if (! warn_unsigned_overflows)
min = -(1 << (operand->bits - 1));
else
min = 0;
}
if (val < (offsetT) min || val > (offsetT) max)
{
/* xgettext:c-format */
const char *err =
_("operand out of range (%s not between %ld and %ld)");
char buf[100];
/* Restore min and mix to expected values for decimal ranges. */
if ((operand->flags & V850_OPERAND_SIGNED)
&& ! warn_signed_overflows)
max = (1 << (operand->bits - 1)) - 1;
if (! (operand->flags & V850_OPERAND_SIGNED)
&& ! warn_unsigned_overflows)
min = 0;
if (str)
{
sprintf (buf, "%s: ", str);
sprint_value (buf + strlen (buf), val);
}
else
sprint_value (buf, val);
if (file == (char *) NULL)
as_warn (err, buf, min, max);
else
as_warn_where (file, line, err, buf, min, max);
}
}
insn |= (((long) val & ((1 << operand->bits) - 1)) << operand->shift);
}
return insn;
}
static char copy_of_instruction[128];
void
md_assemble (str)
char *str;
{
char *s;
char *start_of_operands;
struct v850_opcode *opcode;
struct v850_opcode *next_opcode;
const unsigned char *opindex_ptr;
int next_opindex;
int relaxable = 0;
unsigned long insn;
unsigned long insn_size;
char *f;
int i;
int match;
boolean extra_data_after_insn = false;
unsigned extra_data_len = 0;
unsigned long extra_data = 0;
char *saved_input_line_pointer;
strncpy (copy_of_instruction, str, sizeof (copy_of_instruction) - 1);
/* Get the opcode. */
for (s = str; *s != '\0' && ! ISSPACE (*s); s++)
continue;
if (*s != '\0')
*s++ = '\0';
/* Find the first opcode with the proper name. */
opcode = (struct v850_opcode *) hash_find (v850_hash, str);
if (opcode == NULL)
{
/* xgettext:c-format */
as_bad (_("Unrecognized opcode: `%s'"), str);
ignore_rest_of_line ();
return;
}
str = s;
while (ISSPACE (*str))
++str;
start_of_operands = str;
saved_input_line_pointer = input_line_pointer;
for (;;)
{
const char *errmsg = NULL;
match = 0;
if ((opcode->processors & processor_mask) == 0)
{
errmsg = _("Target processor does not support this instruction.");
goto error;
}
relaxable = 0;
fc = 0;
next_opindex = 0;
insn = opcode->opcode;
extra_data_after_insn = false;
input_line_pointer = str = start_of_operands;
for (opindex_ptr = opcode->operands; *opindex_ptr != 0; opindex_ptr++)
{
const struct v850_operand *operand;
char *hold;
expressionS ex;
bfd_reloc_code_real_type reloc;
if (next_opindex == 0)
{
operand = &v850_operands[*opindex_ptr];
}
else
{
operand = &v850_operands[next_opindex];
next_opindex = 0;
}
errmsg = NULL;
while (*str == ' ' || *str == ',' || *str == '[' || *str == ']')
++str;
if (operand->flags & V850_OPERAND_RELAX)
relaxable = 1;
/* Gather the operand. */
hold = input_line_pointer;
input_line_pointer = str;
/* lo(), hi(), hi0(), etc... */
if ((reloc = v850_reloc_prefix (operand)) != BFD_RELOC_UNUSED)
{
/* This is a fake reloc, used to indicate an error condition. */
if (reloc == BFD_RELOC_64)
{
match = 1;
goto error;
}
expression (&ex);
if (ex.X_op == O_constant)
{
switch (reloc)
{
case BFD_RELOC_V850_ZDA_16_16_OFFSET:
/* To cope with "not1 7, zdaoff(0xfffff006)[r0]"
and the like. */
/* Fall through. */
case BFD_RELOC_LO16:
{
/* Truncate, then sign extend the value. */
ex.X_add_number = SEXT16 (ex.X_add_number);
break;
}
case BFD_RELOC_HI16:
{
/* Truncate, then sign extend the value. */
ex.X_add_number = SEXT16 (ex.X_add_number >> 16);
break;
}
case BFD_RELOC_HI16_S:
{
/* Truncate, then sign extend the value. */
int temp = (ex.X_add_number >> 16) & 0xffff;
temp += (ex.X_add_number >> 15) & 1;
ex.X_add_number = SEXT16 (temp);
break;
}
case BFD_RELOC_32:
if ((operand->flags & V850E_IMMEDIATE32) == 0)
{
errmsg = _("immediate operand is too large");
goto error;
}
extra_data_after_insn = true;
extra_data_len = 4;
extra_data = ex.X_add_number;
ex.X_add_number = 0;
break;
default:
fprintf (stderr, "reloc: %d\n", reloc);
as_bad (_("AAARG -> unhandled constant reloc"));
break;
}
if (fc > MAX_INSN_FIXUPS)
as_fatal (_("too many fixups"));
fixups[fc].exp = ex;
fixups[fc].opindex = *opindex_ptr;
fixups[fc].reloc = reloc;
fc++;
}
else
{
if (reloc == BFD_RELOC_32)
{
if ((operand->flags & V850E_IMMEDIATE32) == 0)
{
errmsg = _("immediate operand is too large");
goto error;
}
extra_data_after_insn = true;
extra_data_len = 4;
extra_data = ex.X_add_number;
}
if (fc > MAX_INSN_FIXUPS)
as_fatal (_("too many fixups"));
fixups[fc].exp = ex;
fixups[fc].opindex = *opindex_ptr;
fixups[fc].reloc = reloc;
fc++;
}
}
else
{
errmsg = NULL;
if ((operand->flags & V850_OPERAND_REG) != 0)
{
if (!register_name (&ex))
{
errmsg = _("invalid register name");
}
else if ((operand->flags & V850_NOT_R0)
&& ex.X_add_number == 0)
{
errmsg = _("register r0 cannot be used here");
/* Force an error message to be generated by
skipping over any following potential matches
for this opcode. */
opcode += 3;
}
}
else if ((operand->flags & V850_OPERAND_SRG) != 0)
{
if (!system_register_name (&ex, true, false))
{
errmsg = _("invalid system register name");
}
}
else if ((operand->flags & V850_OPERAND_EP) != 0)
{
char *start = input_line_pointer;
char c = get_symbol_end ();
if (strcmp (start, "ep") != 0 && strcmp (start, "r30") != 0)
{
/* Put things back the way we found them. */
*input_line_pointer = c;
input_line_pointer = start;
errmsg = _("expected EP register");
goto error;
}
*input_line_pointer = c;
str = input_line_pointer;
input_line_pointer = hold;
while (*str == ' ' || *str == ','
|| *str == '[' || *str == ']')
++str;
continue;
}
else if ((operand->flags & V850_OPERAND_CC) != 0)
{
if (!cc_name (&ex))
{
errmsg = _("invalid condition code name");
}
}
else if (operand->flags & V850E_PUSH_POP)
{
errmsg = parse_register_list (&insn, operand);
/* The parse_register_list() function has already done
everything, so fake a dummy expression. */
ex.X_op = O_constant;
ex.X_add_number = 0;
}
else if (operand->flags & V850E_IMMEDIATE16)
{
expression (&ex);
if (ex.X_op != O_constant)
errmsg = _("constant expression expected");
else if (ex.X_add_number & 0xffff0000)
{
if (ex.X_add_number & 0xffff)
errmsg = _("constant too big to fit into instruction");
else if ((insn & 0x001fffc0) == 0x00130780)
ex.X_add_number >>= 16;
else
errmsg = _("constant too big to fit into instruction");
}
extra_data_after_insn = true;
extra_data_len = 2;
extra_data = ex.X_add_number;
ex.X_add_number = 0;
}
else if (operand->flags & V850E_IMMEDIATE32)
{
expression (&ex);
if (ex.X_op != O_constant)
errmsg = _("constant expression expected");
extra_data_after_insn = true;
extra_data_len = 4;
extra_data = ex.X_add_number;
ex.X_add_number = 0;
}
else if (register_name (&ex)
&& (operand->flags & V850_OPERAND_REG) == 0)
{
char c;
int exists = 0;
/* It is possible that an alias has been defined that
matches a register name. For example the code may
include a ".set ZERO, 0" directive, which matches
the register name "zero". Attempt to reparse the
field as an expression, and only complain if we
cannot generate a constant. */
input_line_pointer = str;
c = get_symbol_end ();
if (symbol_find (str) != NULL)
exists = 1;
*input_line_pointer = c;
input_line_pointer = str;
expression (&ex);
if (ex.X_op != O_constant)
{
/* If this register is actually occuring too early on
the parsing of the instruction, (because another
field is missing) then report this. */
if (opindex_ptr[1] != 0
&& (v850_operands[opindex_ptr[1]].flags
& V850_OPERAND_REG))
errmsg = _("syntax error: value is missing before the register name");
else
errmsg = _("syntax error: register not expected");
/* If we created a symbol in the process of this
test then delete it now, so that it will not
be output with the real symbols... */
if (exists == 0
&& ex.X_op == O_symbol)
symbol_remove (ex.X_add_symbol,
&symbol_rootP, &symbol_lastP);
}
}
else if (system_register_name (&ex, false, false)
&& (operand->flags & V850_OPERAND_SRG) == 0)
{
errmsg = _("syntax error: system register not expected");
}
else if (cc_name (&ex)
&& (operand->flags & V850_OPERAND_CC) == 0)
{
errmsg = _("syntax error: condition code not expected");
}
else
{
expression (&ex);
/* Special case:
If we are assembling a MOV instruction (or a CALLT.... :-)
and the immediate value does not fit into the bits
available then create a fake error so that the next MOV
instruction will be selected. This one has a 32 bit
immediate field. */
if (((insn & 0x07e0) == 0x0200)
&& ex.X_op == O_constant
&& (ex.X_add_number < (-(1 << (operand->bits - 1)))
|| ex.X_add_number > ((1 << operand->bits) - 1)))
errmsg = _("immediate operand is too large");
}
if (errmsg)
goto error;
#if 0
fprintf (stderr,
" insn: %x, operand %d, op: %d, add_number: %d\n",
insn, opindex_ptr - opcode->operands,
ex.X_op, ex.X_add_number);
#endif
switch (ex.X_op)
{
case O_illegal:
errmsg = _("illegal operand");
goto error;
case O_absent:
errmsg = _("missing operand");
goto error;
case O_register:
if ((operand->flags
& (V850_OPERAND_REG | V850_OPERAND_SRG)) == 0)
{
errmsg = _("invalid operand");
goto error;
}
insn = v850_insert_operand (insn, operand, ex.X_add_number,
(char *) NULL, 0,
copy_of_instruction);
break;
case O_constant:
insn = v850_insert_operand (insn, operand, ex.X_add_number,
(char *) NULL, 0,
copy_of_instruction);
break;
default:
/* We need to generate a fixup for this expression. */
if (fc >= MAX_INSN_FIXUPS)
as_fatal (_("too many fixups"));
fixups[fc].exp = ex;
fixups[fc].opindex = *opindex_ptr;
fixups[fc].reloc = BFD_RELOC_UNUSED;
++fc;
break;
}
}
str = input_line_pointer;
input_line_pointer = hold;
while (*str == ' ' || *str == ',' || *str == '[' || *str == ']'
|| *str == ')')
++str;
}
match = 1;
error:
if (match == 0)
{
next_opcode = opcode + 1;
if (next_opcode->name != NULL
&& strcmp (next_opcode->name, opcode->name) == 0)
{
opcode = next_opcode;
/* Skip versions that are not supported by the target
processor. */
if ((opcode->processors & processor_mask) == 0)
goto error;
continue;
}
as_bad ("%s: %s", copy_of_instruction, errmsg);
if (*input_line_pointer == ']')
++input_line_pointer;
ignore_rest_of_line ();
input_line_pointer = saved_input_line_pointer;
return;
}
break;
}
while (ISSPACE (*str))
++str;
if (*str != '\0')
/* xgettext:c-format */
as_bad (_("junk at end of line: `%s'"), str);
input_line_pointer = str;
/* Tie dwarf2 debug info to the address at the start of the insn.
We can't do this after the insn has been output as the current
frag may have been closed off. eg. by frag_var. */
dwarf2_emit_insn (0);
/* Write out the instruction. */
if (relaxable && fc > 0)
{
insn_size = 2;
fc = 0;
if (!strcmp (opcode->name, "br"))
{
f = frag_var (rs_machine_dependent, 4, 2, 2,
fixups[0].exp.X_add_symbol,
fixups[0].exp.X_add_number,
(char *) fixups[0].opindex);
md_number_to_chars (f, insn, insn_size);
md_number_to_chars (f + 2, 0, 2);
}
else
{
f = frag_var (rs_machine_dependent, 6, 4, 0,
fixups[0].exp.X_add_symbol,
fixups[0].exp.X_add_number,
(char *) fixups[0].opindex);
md_number_to_chars (f, insn, insn_size);
md_number_to_chars (f + 2, 0, 4);
}
}
else
{
/* Four byte insns have an opcode with the two high bits on. */
if ((insn & 0x0600) == 0x0600)
insn_size = 4;
else
insn_size = 2;
/* Special case: 32 bit MOV. */
if ((insn & 0xffe0) == 0x0620)
insn_size = 2;
f = frag_more (insn_size);
md_number_to_chars (f, insn, insn_size);
if (extra_data_after_insn)
{
f = frag_more (extra_data_len);
md_number_to_chars (f, extra_data, extra_data_len);
extra_data_after_insn = false;
}
}
/* Create any fixups. At this point we do not use a
bfd_reloc_code_real_type, but instead just use the
BFD_RELOC_UNUSED plus the operand index. This lets us easily
handle fixups for any operand type, although that is admittedly
not a very exciting feature. We pick a BFD reloc type in
md_apply_fix. */
for (i = 0; i < fc; i++)
{
const struct v850_operand *operand;
bfd_reloc_code_real_type reloc;
operand = &v850_operands[fixups[i].opindex];
reloc = fixups[i].reloc;
if (reloc != BFD_RELOC_UNUSED)
{
reloc_howto_type *reloc_howto =
bfd_reloc_type_lookup (stdoutput, reloc);
int size;
int address;
fixS *fixP;
if (!reloc_howto)
abort ();
size = bfd_get_reloc_size (reloc_howto);
/* XXX This will abort on an R_V850_8 reloc -
is this reloc actually used? */
if (size != 2 && size != 4)
abort ();
address = (f - frag_now->fr_literal) + insn_size - size;
if (reloc == BFD_RELOC_32)
address += 2;
fixP = fix_new_exp (frag_now, address, size,
&fixups[i].exp,
reloc_howto->pc_relative,
reloc);
switch (reloc)
{
case BFD_RELOC_LO16:
case BFD_RELOC_HI16:
case BFD_RELOC_HI16_S:
fixP->fx_no_overflow = 1;
break;
default:
break;
}
}
else
{
fix_new_exp (frag_now,
f - frag_now->fr_literal, 4,
& fixups[i].exp,
1 /* FIXME: V850_OPERAND_RELATIVE ??? */,
(bfd_reloc_code_real_type) (fixups[i].opindex
+ (int) BFD_RELOC_UNUSED));
}
}
input_line_pointer = saved_input_line_pointer;
}
/* If while processing a fixup, a reloc really needs to be created
then it is done here. */
arelent *
tc_gen_reloc (seg, fixp)
asection *seg ATTRIBUTE_UNUSED;
fixS *fixp;
{
arelent *reloc;
reloc = (arelent *) xmalloc (sizeof (arelent));
reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
*reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
if (reloc->howto == (reloc_howto_type *) NULL)
{
as_bad_where (fixp->fx_file, fixp->fx_line,
/* xgettext:c-format */
_("reloc %d not supported by object file format"),
(int) fixp->fx_r_type);
xfree (reloc);
return NULL;
}
if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY
|| fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT)
reloc->addend = fixp->fx_offset;
else
reloc->addend = fixp->fx_addnumber;
return reloc;
}
/* Return current size of variable part of frag. */
int
md_estimate_size_before_relax (fragp, seg)
fragS *fragp;
asection *seg ATTRIBUTE_UNUSED;
{
if (fragp->fr_subtype >= sizeof (md_relax_table) / sizeof (md_relax_table[0]))
abort ();
return md_relax_table[fragp->fr_subtype].rlx_length;
}
long
v850_pcrel_from_section (fixp, section)
fixS *fixp;
segT section;
{
/* If the symbol is undefined, or in a section other than our own,
or it is weak (in which case it may well be in another section,
then let the linker figure it out. */
if (fixp->fx_addsy != (symbolS *) NULL
&& (! S_IS_DEFINED (fixp->fx_addsy)
|| S_IS_WEAK (fixp->fx_addsy)
|| (S_GET_SEGMENT (fixp->fx_addsy) != section)))
return 0;
return fixp->fx_frag->fr_address + fixp->fx_where;
}
int
md_apply_fix3 (fixp, valuep, seg)
fixS *fixp;
valueT *valuep;
segT seg ATTRIBUTE_UNUSED;
{
valueT value;
char *where;
if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
|| fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
{
fixp->fx_done = 0;
return 1;
}
if (fixp->fx_addsy == (symbolS *) NULL)
{
value = *valuep;
fixp->fx_done = 1;
}
else if (fixp->fx_pcrel)
value = *valuep;
else
{
value = fixp->fx_offset;
if (fixp->fx_subsy != (symbolS *) NULL)
{
if (S_GET_SEGMENT (fixp->fx_subsy) == absolute_section)
value -= S_GET_VALUE (fixp->fx_subsy);
else
{
/* We don't actually support subtracting a symbol. */
as_bad_where (fixp->fx_file, fixp->fx_line,
_("expression too complex"));
}
}
}
if ((int) fixp->fx_r_type >= (int) BFD_RELOC_UNUSED)
{
int opindex;
const struct v850_operand *operand;
unsigned long insn;
opindex = (int) fixp->fx_r_type - (int) BFD_RELOC_UNUSED;
operand = &v850_operands[opindex];
/* Fetch the instruction, insert the fully resolved operand
value, and stuff the instruction back again.
Note the instruction has been stored in little endian
format! */
where = fixp->fx_frag->fr_literal + fixp->fx_where;
insn = bfd_getl32 ((unsigned char *) where);
insn = v850_insert_operand (insn, operand, (offsetT) value,
fixp->fx_file, fixp->fx_line, NULL);
bfd_putl32 ((bfd_vma) insn, (unsigned char *) where);
if (fixp->fx_done)
{
/* Nothing else to do here. */
return 1;
}
/* Determine a BFD reloc value based on the operand information.
We are only prepared to turn a few of the operands into relocs. */
if (operand->bits == 22)
fixp->fx_r_type = BFD_RELOC_V850_22_PCREL;
else if (operand->bits == 9)
fixp->fx_r_type = BFD_RELOC_V850_9_PCREL;
else
{
#if 0
fprintf (stderr, "bits: %d, insn: %x\n", operand->bits, insn);
#endif
as_bad_where (fixp->fx_file, fixp->fx_line,
_("unresolved expression that must be resolved"));
fixp->fx_done = 1;
return 1;
}
}
else if (fixp->fx_done)
{
/* We still have to insert the value into memory! */
where = fixp->fx_frag->fr_literal + fixp->fx_where;
if (fixp->fx_size == 1)
*where = value & 0xff;
else if (fixp->fx_size == 2)
bfd_putl16 (value & 0xffff, (unsigned char *) where);
else if (fixp->fx_size == 4)
bfd_putl32 (value, (unsigned char *) where);
}
fixp->fx_addnumber = value;
return 1;
}
/* Parse a cons expression. We have to handle hi(), lo(), etc
on the v850. */
void
parse_cons_expression_v850 (exp)
expressionS *exp;
{
/* See if there's a reloc prefix like hi() we have to handle. */
hold_cons_reloc = v850_reloc_prefix (NULL);
/* Do normal expression parsing. */
expression (exp);
}
/* Create a fixup for a cons expression. If parse_cons_expression_v850
found a reloc prefix, then we use that reloc, else we choose an
appropriate one based on the size of the expression. */
void
cons_fix_new_v850 (frag, where, size, exp)
fragS *frag;
int where;
int size;
expressionS *exp;
{
if (hold_cons_reloc == BFD_RELOC_UNUSED)
{
if (size == 4)
hold_cons_reloc = BFD_RELOC_32;
if (size == 2)
hold_cons_reloc = BFD_RELOC_16;
if (size == 1)
hold_cons_reloc = BFD_RELOC_8;
}
if (exp != NULL)
fix_new_exp (frag, where, size, exp, 0, hold_cons_reloc);
else
fix_new (frag, where, size, NULL, 0, 0, hold_cons_reloc);
hold_cons_reloc = BFD_RELOC_UNUSED;
}
boolean
v850_fix_adjustable (fixP)
fixS *fixP;
{
if (fixP->fx_addsy == NULL)
return 1;
/* Prevent all adjustments to global symbols. */
if (S_IS_EXTERN (fixP->fx_addsy))
return 0;
/* Similarly for weak symbols. */
if (S_IS_WEAK (fixP->fx_addsy))
return 0;
/* Don't adjust function names. */
if (S_IS_FUNCTION (fixP->fx_addsy))
return 0;
/* We need the symbol name for the VTABLE entries. */
if (fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
|| fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
return 0;
return 1;
}
int
v850_force_relocation (fixP)
struct fix *fixP;
{
if (fixP->fx_addsy && S_IS_WEAK (fixP->fx_addsy))
return 1;
if (fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
|| fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
return 1;
return 0;
}