binutils-gdb/gdb/nbsd-nat.c

542 lines
14 KiB
C

/* Native-dependent code for NetBSD.
Copyright (C) 2006-2020 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "nbsd-nat.h"
#include "gdbthread.h"
#include "nbsd-tdep.h"
#include "inferior.h"
#include "gdbarch.h"
#include <sys/types.h>
#include <sys/ptrace.h>
#include <sys/sysctl.h>
/* Return the name of a file that can be opened to get the symbols for
the child process identified by PID. */
char *
nbsd_nat_target::pid_to_exec_file (int pid)
{
static char buf[PATH_MAX];
size_t buflen;
int mib[4] = {CTL_KERN, KERN_PROC_ARGS, pid, KERN_PROC_PATHNAME};
buflen = sizeof (buf);
if (sysctl (mib, ARRAY_SIZE (mib), buf, &buflen, NULL, 0))
return NULL;
return buf;
}
/* Return the current directory for the process identified by PID. */
static std::string
nbsd_pid_to_cwd (int pid)
{
char buf[PATH_MAX];
size_t buflen;
int mib[4] = {CTL_KERN, KERN_PROC_ARGS, pid, KERN_PROC_CWD};
buflen = sizeof (buf);
if (sysctl (mib, ARRAY_SIZE (mib), buf, &buflen, NULL, 0))
return "";
return buf;
}
/* Return the kinfo_proc2 structure for the process identified by PID. */
static bool
nbsd_pid_to_kinfo_proc2 (pid_t pid, struct kinfo_proc2 *kp)
{
gdb_assert (kp != nullptr);
size_t size = sizeof (*kp);
int mib[6] = {CTL_KERN, KERN_PROC2, KERN_PROC_PID, pid,
static_cast<int> (size), 1};
return !sysctl (mib, ARRAY_SIZE (mib), kp, &size, NULL, 0);
}
/* Return the command line for the process identified by PID. */
static gdb::unique_xmalloc_ptr<char[]>
nbsd_pid_to_cmdline (int pid)
{
int mib[4] = {CTL_KERN, KERN_PROC_ARGS, pid, KERN_PROC_ARGV};
size_t size = 0;
if (sysctl (mib, ARRAY_SIZE (mib), NULL, &size, NULL, 0) == -1 || size == 0)
return nullptr;
gdb::unique_xmalloc_ptr<char[]> args (XNEWVAR (char, size));
if (sysctl (mib, ARRAY_SIZE (mib), args.get (), &size, NULL, 0) == -1
|| size == 0)
return nullptr;
/* Arguments are returned as a flattened string with NUL separators.
Join the arguments with spaces to form a single string. */
for (size_t i = 0; i < size - 1; i++)
if (args[i] == '\0')
args[i] = ' ';
args[size - 1] = '\0';
return args;
}
/* Generic thread (LWP) lister within a specified process. The callback
parameters is a C++ function that is called for each detected thread. */
static bool
nbsd_thread_lister (const pid_t pid,
gdb::function_view<bool (const struct kinfo_lwp *)>
callback)
{
int mib[5] = {CTL_KERN, KERN_LWP, pid, sizeof (struct kinfo_lwp), 0};
size_t size;
if (sysctl (mib, ARRAY_SIZE (mib), NULL, &size, NULL, 0) == -1 || size == 0)
perror_with_name (("sysctl"));
mib[4] = size / sizeof (size_t);
gdb::unique_xmalloc_ptr<struct kinfo_lwp[]> kl
((struct kinfo_lwp *) xcalloc (size, 1));
if (sysctl (mib, ARRAY_SIZE (mib), kl.get (), &size, NULL, 0) == -1
|| size == 0)
perror_with_name (("sysctl"));
for (size_t i = 0; i < size / sizeof (struct kinfo_lwp); i++)
{
struct kinfo_lwp *l = &kl[i];
/* Return true if the specified thread is alive. */
auto lwp_alive
= [] (struct kinfo_lwp *lwp)
{
switch (lwp->l_stat)
{
case LSSLEEP:
case LSRUN:
case LSONPROC:
case LSSTOP:
case LSSUSPENDED:
return true;
default:
return false;
}
};
/* Ignore embryonic or demised threads. */
if (!lwp_alive (l))
continue;
if (callback (l))
return true;
}
return false;
}
/* Return true if PTID is still active in the inferior. */
bool
nbsd_nat_target::thread_alive (ptid_t ptid)
{
pid_t pid = ptid.pid ();
int lwp = ptid.lwp ();
auto fn
= [&lwp] (const struct kinfo_lwp *kl)
{
return kl->l_lid == lwp;
};
return nbsd_thread_lister (pid, fn);
}
/* Return the name assigned to a thread by an application. Returns
the string in a static buffer. */
const char *
nbsd_nat_target::thread_name (struct thread_info *thr)
{
ptid_t ptid = thr->ptid;
pid_t pid = ptid.pid ();
int lwp = ptid.lwp ();
static char buf[KI_LNAMELEN] = {};
auto fn
= [&lwp] (const struct kinfo_lwp *kl)
{
if (kl->l_lid == lwp)
{
xsnprintf (buf, sizeof buf, "%s", kl->l_name);
return true;
}
return false;
};
if (nbsd_thread_lister (pid, fn))
return buf;
else
return NULL;
}
/* Implement the "post_attach" target_ops method. */
static void
nbsd_add_threads (nbsd_nat_target *target, pid_t pid)
{
auto fn
= [&target, &pid] (const struct kinfo_lwp *kl)
{
ptid_t ptid = ptid_t (pid, kl->l_lid, 0);
if (!in_thread_list (target, ptid))
{
if (inferior_ptid.lwp () == 0)
thread_change_ptid (target, inferior_ptid, ptid);
else
add_thread (target, ptid);
}
return false;
};
nbsd_thread_lister (pid, fn);
}
/* Implement the "post_attach" target_ops method. */
void
nbsd_nat_target::post_attach (int pid)
{
nbsd_add_threads (this, pid);
}
/* Implement the "update_thread_list" target_ops method. */
void
nbsd_nat_target::update_thread_list ()
{
prune_threads ();
nbsd_add_threads (this, inferior_ptid.pid ());
}
/* Convert PTID to a string. */
std::string
nbsd_nat_target::pid_to_str (ptid_t ptid)
{
int lwp = ptid.lwp ();
if (lwp != 0)
{
pid_t pid = ptid.pid ();
return string_printf ("LWP %d of process %d", lwp, pid);
}
return normal_pid_to_str (ptid);
}
/* Retrieve all the memory regions in the specified process. */
static gdb::unique_xmalloc_ptr<struct kinfo_vmentry[]>
nbsd_kinfo_get_vmmap (pid_t pid, size_t *size)
{
int mib[5] = {CTL_VM, VM_PROC, VM_PROC_MAP, pid,
sizeof (struct kinfo_vmentry)};
size_t length = 0;
if (sysctl (mib, ARRAY_SIZE (mib), NULL, &length, NULL, 0))
{
*size = 0;
return NULL;
}
/* Prereserve more space. The length argument is volatile and can change
between the sysctl(3) calls as this function can be called against a
running process. */
length = length * 5 / 3;
gdb::unique_xmalloc_ptr<struct kinfo_vmentry[]> kiv
(XNEWVAR (kinfo_vmentry, length));
if (sysctl (mib, ARRAY_SIZE (mib), kiv.get (), &length, NULL, 0))
{
*size = 0;
return NULL;
}
*size = length / sizeof (struct kinfo_vmentry);
return kiv;
}
/* Iterate over all the memory regions in the current inferior,
calling FUNC for each memory region. OBFD is passed as the last
argument to FUNC. */
int
nbsd_nat_target::find_memory_regions (find_memory_region_ftype func,
void *data)
{
pid_t pid = inferior_ptid.pid ();
size_t nitems;
gdb::unique_xmalloc_ptr<struct kinfo_vmentry[]> vmentl
= nbsd_kinfo_get_vmmap (pid, &nitems);
if (vmentl == NULL)
perror_with_name (_("Couldn't fetch VM map entries."));
for (size_t i = 0; i < nitems; i++)
{
struct kinfo_vmentry *kve = &vmentl[i];
/* Skip unreadable segments and those where MAP_NOCORE has been set. */
if (!(kve->kve_protection & KVME_PROT_READ)
|| kve->kve_flags & KVME_FLAG_NOCOREDUMP)
continue;
/* Skip segments with an invalid type. */
switch (kve->kve_type)
{
case KVME_TYPE_VNODE:
case KVME_TYPE_ANON:
case KVME_TYPE_SUBMAP:
case KVME_TYPE_OBJECT:
break;
default:
continue;
}
size_t size = kve->kve_end - kve->kve_start;
if (info_verbose)
{
fprintf_filtered (gdb_stdout,
"Save segment, %ld bytes at %s (%c%c%c)\n",
(long) size,
paddress (target_gdbarch (), kve->kve_start),
kve->kve_protection & KVME_PROT_READ ? 'r' : '-',
kve->kve_protection & KVME_PROT_WRITE ? 'w' : '-',
kve->kve_protection & KVME_PROT_EXEC ? 'x' : '-');
}
/* Invoke the callback function to create the corefile segment.
Pass MODIFIED as true, we do not know the real modification state. */
func (kve->kve_start, size, kve->kve_protection & KVME_PROT_READ,
kve->kve_protection & KVME_PROT_WRITE,
kve->kve_protection & KVME_PROT_EXEC, 1, data);
}
return 0;
}
/* Implement the "info_proc" target_ops method. */
bool
nbsd_nat_target::info_proc (const char *args, enum info_proc_what what)
{
pid_t pid;
bool do_cmdline = false;
bool do_cwd = false;
bool do_exe = false;
bool do_mappings = false;
bool do_status = false;
switch (what)
{
case IP_MINIMAL:
do_cmdline = true;
do_cwd = true;
do_exe = true;
break;
case IP_STAT:
case IP_STATUS:
do_status = true;
break;
case IP_MAPPINGS:
do_mappings = true;
break;
case IP_CMDLINE:
do_cmdline = true;
break;
case IP_EXE:
do_exe = true;
break;
case IP_CWD:
do_cwd = true;
break;
case IP_ALL:
do_cmdline = true;
do_cwd = true;
do_exe = true;
do_mappings = true;
do_status = true;
break;
default:
error (_("Not supported on this target."));
}
gdb_argv built_argv (args);
if (built_argv.count () == 0)
{
pid = inferior_ptid.pid ();
if (pid == 0)
error (_("No current process: you must name one."));
}
else if (built_argv.count () == 1 && isdigit (built_argv[0][0]))
pid = strtol (built_argv[0], NULL, 10);
else
error (_("Invalid arguments."));
printf_filtered (_("process %d\n"), pid);
if (do_cmdline)
{
gdb::unique_xmalloc_ptr<char[]> cmdline = nbsd_pid_to_cmdline (pid);
if (cmdline != nullptr)
printf_filtered ("cmdline = '%s'\n", cmdline.get ());
else
warning (_("unable to fetch command line"));
}
if (do_cwd)
{
std::string cwd = nbsd_pid_to_cwd (pid);
if (cwd != "")
printf_filtered ("cwd = '%s'\n", cwd.c_str ());
else
warning (_("unable to fetch current working directory"));
}
if (do_exe)
{
const char *exe = pid_to_exec_file (pid);
if (exe != nullptr)
printf_filtered ("exe = '%s'\n", exe);
else
warning (_("unable to fetch executable path name"));
}
if (do_mappings)
{
size_t nvment;
gdb::unique_xmalloc_ptr<struct kinfo_vmentry[]> vmentl
= nbsd_kinfo_get_vmmap (pid, &nvment);
if (vmentl != nullptr)
{
int addr_bit = TARGET_CHAR_BIT * sizeof (void *);
nbsd_info_proc_mappings_header (addr_bit);
struct kinfo_vmentry *kve = vmentl.get ();
for (int i = 0; i < nvment; i++, kve++)
nbsd_info_proc_mappings_entry (addr_bit, kve->kve_start,
kve->kve_end, kve->kve_offset,
kve->kve_flags, kve->kve_protection,
kve->kve_path);
}
else
warning (_("unable to fetch virtual memory map"));
}
if (do_status)
{
struct kinfo_proc2 kp;
if (!nbsd_pid_to_kinfo_proc2 (pid, &kp))
warning (_("Failed to fetch process information"));
else
{
auto process_status
= [] (int8_t stat)
{
switch (stat)
{
case SIDL:
return "IDL";
case SACTIVE:
return "ACTIVE";
case SDYING:
return "DYING";
case SSTOP:
return "STOP";
case SZOMB:
return "ZOMB";
case SDEAD:
return "DEAD";
default:
return "? (unknown)";
}
};
printf_filtered ("Name: %s\n", kp.p_comm);
printf_filtered ("State: %s\n", process_status(kp.p_realstat));
printf_filtered ("Parent process: %" PRId32 "\n", kp.p_ppid);
printf_filtered ("Process group: %" PRId32 "\n", kp.p__pgid);
printf_filtered ("Session id: %" PRId32 "\n", kp.p_sid);
printf_filtered ("TTY: %" PRId32 "\n", kp.p_tdev);
printf_filtered ("TTY owner process group: %" PRId32 "\n", kp.p_tpgid);
printf_filtered ("User IDs (real, effective, saved): "
"%" PRIu32 " %" PRIu32 " %" PRIu32 "\n",
kp.p_ruid, kp.p_uid, kp.p_svuid);
printf_filtered ("Group IDs (real, effective, saved): "
"%" PRIu32 " %" PRIu32 " %" PRIu32 "\n",
kp.p_rgid, kp.p_gid, kp.p_svgid);
printf_filtered ("Groups:");
for (int i = 0; i < kp.p_ngroups; i++)
printf_filtered (" %" PRIu32, kp.p_groups[i]);
printf_filtered ("\n");
printf_filtered ("Minor faults (no memory page): %" PRIu64 "\n",
kp.p_uru_minflt);
printf_filtered ("Major faults (memory page faults): %" PRIu64 "\n",
kp.p_uru_majflt);
printf_filtered ("utime: %" PRIu32 ".%06" PRIu32 "\n",
kp.p_uutime_sec, kp.p_uutime_usec);
printf_filtered ("stime: %" PRIu32 ".%06" PRIu32 "\n",
kp.p_ustime_sec, kp.p_ustime_usec);
printf_filtered ("utime+stime, children: %" PRIu32 ".%06" PRIu32 "\n",
kp.p_uctime_sec, kp.p_uctime_usec);
printf_filtered ("'nice' value: %" PRIu8 "\n", kp.p_nice);
printf_filtered ("Start time: %" PRIu32 ".%06" PRIu32 "\n",
kp.p_ustart_sec, kp.p_ustart_usec);
int pgtok = getpagesize () / 1024;
printf_filtered ("Data size: %" PRIuMAX " kB\n",
(uintmax_t) kp.p_vm_dsize * pgtok);
printf_filtered ("Stack size: %" PRIuMAX " kB\n",
(uintmax_t) kp.p_vm_ssize * pgtok);
printf_filtered ("Text size: %" PRIuMAX " kB\n",
(uintmax_t) kp.p_vm_tsize * pgtok);
printf_filtered ("Resident set size: %" PRIuMAX " kB\n",
(uintmax_t) kp.p_vm_rssize * pgtok);
printf_filtered ("Maximum RSS: %" PRIu64 " kB\n", kp.p_uru_maxrss);
printf_filtered ("Pending Signals:");
for (size_t i = 0; i < ARRAY_SIZE (kp.p_siglist.__bits); i++)
printf_filtered (" %08" PRIx32, kp.p_siglist.__bits[i]);
printf_filtered ("\n");
printf_filtered ("Ignored Signals:");
for (size_t i = 0; i < ARRAY_SIZE (kp.p_sigignore.__bits); i++)
printf_filtered (" %08" PRIx32, kp.p_sigignore.__bits[i]);
printf_filtered ("\n");
printf_filtered ("Caught Signals:");
for (size_t i = 0; i < ARRAY_SIZE (kp.p_sigcatch.__bits); i++)
printf_filtered (" %08" PRIx32, kp.p_sigcatch.__bits[i]);
printf_filtered ("\n");
}
}
return true;
}