0d09fec6a5
for ip2k port.
1693 lines
50 KiB
C
1693 lines
50 KiB
C
/* Ubicom IP2xxx specific support for 32-bit ELF
|
|
Copyright 2000, 2001, 2002 Free Software Foundation, Inc.
|
|
|
|
This file is part of BFD, the Binary File Descriptor library.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
|
|
|
#include "bfd.h"
|
|
#include "sysdep.h"
|
|
#include "libbfd.h"
|
|
#include "elf-bfd.h"
|
|
#include "elf/ip2k.h"
|
|
|
|
/* Struct used to pass miscellaneous paramaters which
|
|
helps to avoid overly long parameter lists. */
|
|
struct misc
|
|
{
|
|
Elf_Internal_Shdr * symtab_hdr;
|
|
Elf_Internal_Rela * irelbase;
|
|
bfd_byte * contents;
|
|
Elf_Internal_Sym * isymbuf;
|
|
};
|
|
|
|
/* Prototypes. */
|
|
static reloc_howto_type * ip2k_reloc_type_lookup PARAMS ((bfd *, bfd_reloc_code_real_type));
|
|
static void ip2k_info_to_howto_rela PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
|
|
static asection * ip2k_elf_gc_mark_hook PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *, struct elf_link_hash_entry *, Elf_Internal_Sym *));
|
|
static boolean ip2k_elf_gc_sweep_hook PARAMS ((bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *));
|
|
static bfd_vma symbol_value PARAMS ((bfd *, Elf_Internal_Shdr *, Elf32_Internal_Sym *, Elf_Internal_Rela *));
|
|
static void adjust_all_relocations PARAMS ((bfd *, asection *, bfd_vma, bfd_vma, int, int));
|
|
static boolean ip2k_elf_relax_delete_bytes PARAMS ((bfd *, asection *, bfd_vma, int));
|
|
static boolean ip2k_elf_relax_add_bytes PARAMS ((bfd *, asection *, bfd_vma, const bfd_byte *, int, int));
|
|
static boolean add_page_insn PARAMS ((bfd *, asection *, Elf_Internal_Rela *, struct misc *));
|
|
static boolean ip2k_elf_relax_section PARAMS ((bfd *, asection *, struct bfd_link_info *, boolean *));
|
|
static boolean relax_switch_dispatch_tables_pass1 PARAMS ((bfd *, asection *, bfd_vma, struct misc *));
|
|
static boolean unrelax_dispatch_table_entries PARAMS ((bfd *, asection *, bfd_vma, bfd_vma, boolean *, struct misc *));
|
|
static boolean unrelax_switch_dispatch_tables_passN PARAMS ((bfd *, asection *, bfd_vma, boolean *, struct misc *));
|
|
static boolean is_switch_128_dispatch_table_p PARAMS ((bfd *, bfd_vma, boolean, struct misc *));
|
|
static boolean is_switch_256_dispatch_table_p PARAMS ((bfd *, bfd_vma, boolean, struct misc *));
|
|
static boolean ip2k_elf_relax_section_pass1 PARAMS ((bfd *, asection *, boolean *, struct misc *));
|
|
static boolean ip2k_elf_relax_section_passN PARAMS ((bfd *, asection *, boolean *, boolean *, struct misc *));
|
|
static bfd_reloc_status_type ip2k_final_link_relocate PARAMS ((reloc_howto_type *, bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, bfd_vma));
|
|
static boolean ip2k_elf_relocate_section PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
|
|
|
|
#define IS_OPCODE(CODE0,CODE1,OPCODE) \
|
|
((CODE0) == (OPCODE)[0] && (CODE1) == (OPCODE)[1])
|
|
|
|
#define PAGE_INSN_0 0x00
|
|
#define PAGE_INSN_1 0x10
|
|
|
|
static const bfd_byte page_opcode[] =
|
|
{
|
|
PAGE_INSN_0, PAGE_INSN_1
|
|
};
|
|
|
|
#define IS_PAGE_OPCODE(CODE0,CODE1) \
|
|
IS_OPCODE (CODE0, CODE1, page_opcode)
|
|
|
|
#define JMP_INSN_0 0xE0
|
|
#define JMP_INSN_1 0x00
|
|
|
|
static const bfd_byte jmp_opcode[] =
|
|
{
|
|
JMP_INSN_0, JMP_INSN_1
|
|
};
|
|
|
|
#define IS_JMP_OPCODE(CODE0,CODE1) \
|
|
IS_OPCODE (CODE0, CODE1, jmp_opcode)
|
|
|
|
#define CALL_INSN_0 0xC0
|
|
#define CALL_INSN_1 0x00
|
|
|
|
static const bfd_byte call_opcode[] =
|
|
{
|
|
CALL_INSN_0, CALL_INSN_1
|
|
};
|
|
|
|
#define IS_CALL_OPCODE(CODE0,CODE1) \
|
|
IS_OPCODE (CODE0, CODE1, call_opcode)
|
|
|
|
#define ADD_PCL_W_INSN_0 0x1E
|
|
#define ADD_PCL_W_INSN_1 0x09
|
|
|
|
static const bfd_byte add_pcl_w_opcode[] =
|
|
{
|
|
ADD_PCL_W_INSN_0, ADD_PCL_W_INSN_1
|
|
};
|
|
|
|
#define IS_ADD_PCL_W_OPCODE(CODE0,CODE1) \
|
|
IS_OPCODE (CODE0, CODE1, add_pcl_w_opcode)
|
|
|
|
#define ADD_W_WREG_INSN_0 0x1C
|
|
#define ADD_W_WREG_INSN_1 0x0A
|
|
|
|
static const bfd_byte add_w_wreg_opcode[] =
|
|
{
|
|
ADD_W_WREG_INSN_0, ADD_W_WREG_INSN_1
|
|
};
|
|
|
|
#define IS_ADD_W_WREG_OPCODE(CODE0,CODE1) \
|
|
IS_OPCODE (CODE0, CODE1, add_w_wreg_opcode)
|
|
|
|
#define SNC_INSN_0 0xA0
|
|
#define SNC_INSN_1 0x0B
|
|
|
|
static const bfd_byte snc_opcode[] =
|
|
{
|
|
SNC_INSN_0, SNC_INSN_1
|
|
};
|
|
|
|
#define IS_SNC_OPCODE(CODE0,CODE1) \
|
|
IS_OPCODE (CODE0, CODE1, snc_opcode)
|
|
|
|
#define INC_1_SP_INSN_0 0x2B
|
|
#define INC_1_SP_INSN_1 0x81
|
|
|
|
static const bfd_byte inc_1_sp_opcode[] =
|
|
{
|
|
INC_1_SP_INSN_0, INC_1_SP_INSN_1
|
|
};
|
|
|
|
#define IS_INC_1_SP_OPCODE(CODE0,CODE1) \
|
|
IS_OPCODE (CODE0, CODE1, inc_1_sp_opcode)
|
|
|
|
#define ADD_2_SP_W_INSN_0 0x1F
|
|
#define ADD_2_SP_W_INSN_1 0x82
|
|
|
|
static const bfd_byte add_2_sp_w_opcode[] =
|
|
{
|
|
ADD_2_SP_W_INSN_0, ADD_2_SP_W_INSN_1
|
|
};
|
|
|
|
#define IS_ADD_2_SP_W_OPCODE(CODE0,CODE1) \
|
|
IS_OPCODE (CODE0, CODE1, add_2_sp_w_opcode)
|
|
|
|
/* Relocation tables. */
|
|
static reloc_howto_type ip2k_elf_howto_table [] =
|
|
{
|
|
#define IP2K_HOWTO(t,rs,s,bs,pr,bp,name,sm,dm) \
|
|
HOWTO(t, /* type */ \
|
|
rs, /* rightshift */ \
|
|
s, /* size (0 = byte, 1 = short, 2 = long) */ \
|
|
bs, /* bitsize */ \
|
|
pr, /* pc_relative */ \
|
|
bp, /* bitpos */ \
|
|
complain_overflow_dont,/* complain_on_overflow */ \
|
|
bfd_elf_generic_reloc,/* special_function */ \
|
|
name, /* name */ \
|
|
false, /* partial_inplace */ \
|
|
sm, /* src_mask */ \
|
|
dm, /* dst_mask */ \
|
|
pr) /* pcrel_offset */
|
|
|
|
/* This reloc does nothing. */
|
|
IP2K_HOWTO (R_IP2K_NONE, 0,2,32, false, 0, "R_IP2K_NONE", 0, 0),
|
|
/* A 16 bit absolute relocation. */
|
|
IP2K_HOWTO (R_IP2K_16, 0,1,16, false, 0, "R_IP2K_16", 0, 0xffff),
|
|
/* A 32 bit absolute relocation. */
|
|
IP2K_HOWTO (R_IP2K_32, 0,2,32, false, 0, "R_IP2K_32", 0, 0xffffffff),
|
|
/* A 8-bit data relocation for the FR9 field. Ninth bit is computed specially. */
|
|
IP2K_HOWTO (R_IP2K_FR9, 0,1,9, false, 0, "R_IP2K_FR9", 0, 0x00ff),
|
|
/* A 4-bit data relocation. */
|
|
IP2K_HOWTO (R_IP2K_BANK, 8,1,4, false, 0, "R_IP2K_BANK", 0, 0x000f),
|
|
/* A 13-bit insn relocation - word address => right-shift 1 bit extra. */
|
|
IP2K_HOWTO (R_IP2K_ADDR16CJP, 1,1,13, false, 0, "R_IP2K_ADDR16CJP", 0, 0x1fff),
|
|
/* A 3-bit insn relocation - word address => right-shift 1 bit extra. */
|
|
IP2K_HOWTO (R_IP2K_PAGE3, 14,1,3, false, 0, "R_IP2K_PAGE3", 0, 0x0007),
|
|
/* Two 8-bit data relocations. */
|
|
IP2K_HOWTO (R_IP2K_LO8DATA, 0,1,8, false, 0, "R_IP2K_LO8DATA", 0, 0x00ff),
|
|
IP2K_HOWTO (R_IP2K_HI8DATA, 8,1,8, false, 0, "R_IP2K_HI8DATA", 0, 0x00ff),
|
|
/* Two 8-bit insn relocations. word address => right-shift 1 bit extra. */
|
|
IP2K_HOWTO (R_IP2K_LO8INSN, 1,1,8, false, 0, "R_IP2K_LO8INSN", 0, 0x00ff),
|
|
IP2K_HOWTO (R_IP2K_HI8INSN, 9,1,8, false, 0, "R_IP2K_HI8INSN", 0, 0x00ff),
|
|
|
|
/* Special 1 bit relocation for SKIP instructions. */
|
|
IP2K_HOWTO (R_IP2K_PC_SKIP, 1,1,1, false, 12, "R_IP2K_PC_SKIP", 0xfffe, 0x1000),
|
|
/* 16 bit word address. */
|
|
IP2K_HOWTO (R_IP2K_TEXT, 1,1,16, false, 0, "R_IP2K_TEXT", 0, 0xffff),
|
|
/* A 7-bit offset relocation for the FR9 field. Eigth and ninth bit comes from insn. */
|
|
IP2K_HOWTO (R_IP2K_FR_OFFSET, 0,1,9, false, 0, "R_IP2K_FR_OFFSET", 0x180, 0x007f),
|
|
/* Bits 23:16 of an address. */
|
|
IP2K_HOWTO (R_IP2K_EX8DATA, 16,1,8, false, 0, "R_IP2K_EX8DATA", 0, 0x00ff),
|
|
};
|
|
|
|
|
|
/* Map BFD reloc types to IP2K ELF reloc types. */
|
|
static reloc_howto_type *
|
|
ip2k_reloc_type_lookup (abfd, code)
|
|
bfd * abfd ATTRIBUTE_UNUSED;
|
|
bfd_reloc_code_real_type code;
|
|
{
|
|
/* Note that the ip2k_elf_howto_table is indxed by the R_
|
|
constants. Thus, the order that the howto records appear in the
|
|
table *must* match the order of the relocation types defined in
|
|
include/elf/ip2k.h. */
|
|
|
|
switch (code)
|
|
{
|
|
case BFD_RELOC_NONE:
|
|
return &ip2k_elf_howto_table[ (int) R_IP2K_NONE];
|
|
case BFD_RELOC_16:
|
|
return &ip2k_elf_howto_table[ (int) R_IP2K_16];
|
|
case BFD_RELOC_32:
|
|
return &ip2k_elf_howto_table[ (int) R_IP2K_32];
|
|
case BFD_RELOC_IP2K_FR9:
|
|
return &ip2k_elf_howto_table[ (int) R_IP2K_FR9];
|
|
case BFD_RELOC_IP2K_BANK:
|
|
return &ip2k_elf_howto_table[ (int) R_IP2K_BANK];
|
|
case BFD_RELOC_IP2K_ADDR16CJP:
|
|
return &ip2k_elf_howto_table[ (int) R_IP2K_ADDR16CJP];
|
|
case BFD_RELOC_IP2K_PAGE3:
|
|
return &ip2k_elf_howto_table[ (int) R_IP2K_PAGE3];
|
|
case BFD_RELOC_IP2K_LO8DATA:
|
|
return &ip2k_elf_howto_table[ (int) R_IP2K_LO8DATA];
|
|
case BFD_RELOC_IP2K_HI8DATA:
|
|
return &ip2k_elf_howto_table[ (int) R_IP2K_HI8DATA];
|
|
case BFD_RELOC_IP2K_LO8INSN:
|
|
return &ip2k_elf_howto_table[ (int) R_IP2K_LO8INSN];
|
|
case BFD_RELOC_IP2K_HI8INSN:
|
|
return &ip2k_elf_howto_table[ (int) R_IP2K_HI8INSN];
|
|
case BFD_RELOC_IP2K_PC_SKIP:
|
|
return &ip2k_elf_howto_table[ (int) R_IP2K_PC_SKIP];
|
|
case BFD_RELOC_IP2K_TEXT:
|
|
return &ip2k_elf_howto_table[ (int) R_IP2K_TEXT];
|
|
case BFD_RELOC_IP2K_FR_OFFSET:
|
|
return &ip2k_elf_howto_table[ (int) R_IP2K_FR_OFFSET];
|
|
case BFD_RELOC_IP2K_EX8DATA:
|
|
return &ip2k_elf_howto_table[ (int) R_IP2K_EX8DATA];
|
|
default:
|
|
/* Pacify gcc -Wall. */
|
|
return NULL;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
#define PAGENO(ABSADDR) ((ABSADDR) & 0x1C000)
|
|
#define BASEADDR(SEC) ((SEC)->output_section->vma + (SEC)->output_offset)
|
|
|
|
#define UNDEFINED_SYMBOL (~(bfd_vma)0)
|
|
|
|
/* Return the value of the symbol associated with the relocation IREL. */
|
|
|
|
static bfd_vma
|
|
symbol_value (abfd, symtab_hdr, isymbuf, irel)
|
|
bfd *abfd;
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
Elf32_Internal_Sym *isymbuf;
|
|
Elf_Internal_Rela *irel;
|
|
{
|
|
if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
|
|
{
|
|
Elf_Internal_Sym *isym;
|
|
asection *sym_sec;
|
|
|
|
isym = isymbuf + ELF32_R_SYM (irel->r_info);
|
|
if (isym->st_shndx == SHN_UNDEF)
|
|
sym_sec = bfd_und_section_ptr;
|
|
else if (isym->st_shndx == SHN_ABS)
|
|
sym_sec = bfd_abs_section_ptr;
|
|
else if (isym->st_shndx == SHN_COMMON)
|
|
sym_sec = bfd_com_section_ptr;
|
|
else
|
|
sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
|
|
|
|
return isym->st_value + BASEADDR (sym_sec);
|
|
}
|
|
else
|
|
{
|
|
unsigned long indx;
|
|
struct elf_link_hash_entry *h;
|
|
|
|
indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
|
|
h = elf_sym_hashes (abfd)[indx];
|
|
BFD_ASSERT (h != NULL);
|
|
|
|
if (h->root.type != bfd_link_hash_defined
|
|
&& h->root.type != bfd_link_hash_defweak)
|
|
return UNDEFINED_SYMBOL;
|
|
|
|
return (h->root.u.def.value + BASEADDR (h->root.u.def.section));
|
|
}
|
|
}
|
|
|
|
/* Determine if the instruction sequence matches that for
|
|
the prologue of a switch dispatch table with fewer than
|
|
128 entries.
|
|
|
|
sc
|
|
page $nnn0
|
|
jmp $nnn0
|
|
add w,wreg
|
|
add pcl,w
|
|
addr=>
|
|
page $nnn1
|
|
jmp $nnn1
|
|
page $nnn2
|
|
jmp $nnn2
|
|
...
|
|
page $nnnN
|
|
jmp $nnnN
|
|
|
|
After relaxation.
|
|
sc
|
|
page $nnn0
|
|
jmp $nnn0
|
|
add pcl,w
|
|
addr=>
|
|
jmp $nnn1
|
|
jmp $nnn2
|
|
...
|
|
jmp $nnnN */
|
|
|
|
static boolean
|
|
is_switch_128_dispatch_table_p (abfd, addr, relaxed, misc)
|
|
bfd *abfd ATTRIBUTE_UNUSED;
|
|
bfd_vma addr;
|
|
boolean relaxed;
|
|
struct misc *misc;
|
|
{
|
|
bfd_byte code0, code1;
|
|
|
|
if (addr < (3 * 2))
|
|
return false;
|
|
|
|
code0 = bfd_get_8 (abfd, misc->contents + addr - 2);
|
|
code1 = bfd_get_8 (abfd, misc->contents + addr - 1);
|
|
|
|
/* Is it ADD PCL,W */
|
|
if (! IS_ADD_PCL_W_OPCODE (code0, code1))
|
|
return false;
|
|
|
|
code0 = bfd_get_8 (abfd, misc->contents + addr - 4);
|
|
code1 = bfd_get_8 (abfd, misc->contents + addr - 3);
|
|
|
|
if (relaxed)
|
|
/* Is it ADD W,WREG */
|
|
return ! IS_ADD_W_WREG_OPCODE (code0, code1);
|
|
|
|
else
|
|
{
|
|
/* Is it ADD W,WREG */
|
|
if (! IS_ADD_W_WREG_OPCODE (code0, code1))
|
|
return false;
|
|
|
|
code0 = bfd_get_8 (abfd, misc->contents + addr - 6);
|
|
code1 = bfd_get_8 (abfd, misc->contents + addr - 5);
|
|
|
|
/* Is it JMP $nnnn */
|
|
if (! IS_JMP_OPCODE (code0, code1))
|
|
return false;
|
|
}
|
|
|
|
/* It looks like we've found the prologue for
|
|
a 1-127 entry switch dispatch table. */
|
|
return true;
|
|
}
|
|
|
|
/* Determine if the instruction sequence matches that for
|
|
the prologue switch dispatch table with fewer than
|
|
256 entries but more than 127.
|
|
|
|
Before relaxation.
|
|
push %lo8insn(label) ; Push address of table
|
|
push %hi8insn(label)
|
|
add w,wreg ; index*2 => offset
|
|
snc ; CARRY SET?
|
|
inc 1(sp) ; Propagate MSB into table address
|
|
add 2(sp),w ; Add low bits of offset to table address
|
|
snc ; and handle any carry-out
|
|
inc 1(sp)
|
|
addr=>
|
|
page __indjmp ; Do an indirect jump to that location
|
|
jmp __indjmp
|
|
label: ; case dispatch table starts here
|
|
page $nnn1
|
|
jmp $nnn1
|
|
page $nnn2
|
|
jmp $nnn2
|
|
...
|
|
page $nnnN
|
|
jmp $nnnN
|
|
|
|
After relaxation.
|
|
push %lo8insn(label) ; Push address of table
|
|
push %hi8insn(label)
|
|
add 2(sp),w ; Add low bits of offset to table address
|
|
snc ; and handle any carry-out
|
|
inc 1(sp)
|
|
addr=>
|
|
page __indjmp ; Do an indirect jump to that location
|
|
jmp __indjmp
|
|
label: ; case dispatch table starts here
|
|
jmp $nnn1
|
|
jmp $nnn2
|
|
...
|
|
jmp $nnnN */
|
|
|
|
static boolean
|
|
is_switch_256_dispatch_table_p (abfd, addr, relaxed, misc)
|
|
bfd *abfd ATTRIBUTE_UNUSED;
|
|
bfd_vma addr;
|
|
boolean relaxed;
|
|
struct misc *misc;
|
|
{
|
|
bfd_byte code0, code1;
|
|
|
|
if (addr < (8 * 2))
|
|
return false;
|
|
|
|
code0 = bfd_get_8 (abfd, misc->contents + addr - 2);
|
|
code1 = bfd_get_8 (abfd, misc->contents + addr - 1);
|
|
|
|
/* Is it INC 1(SP). */
|
|
if (! IS_INC_1_SP_OPCODE (code0, code1))
|
|
return false;
|
|
|
|
code0 = bfd_get_8 (abfd, misc->contents + addr - 4);
|
|
code1 = bfd_get_8 (abfd, misc->contents + addr - 3);
|
|
|
|
/* Is it SNC. */
|
|
if (! IS_SNC_OPCODE (code0, code1))
|
|
return false;
|
|
|
|
code0 = bfd_get_8 (abfd, misc->contents + addr - 6);
|
|
code1 = bfd_get_8 (abfd, misc->contents + addr - 5);
|
|
|
|
/* Is it ADD 2(SP),W. */
|
|
if (! IS_ADD_2_SP_W_OPCODE (code0, code1))
|
|
return false;
|
|
|
|
code0 = bfd_get_8 (abfd, misc->contents + addr - 8);
|
|
code1 = bfd_get_8 (abfd, misc->contents + addr - 7);
|
|
|
|
if (relaxed)
|
|
/* Is it INC 1(SP). */
|
|
return ! IS_INC_1_SP_OPCODE (code0, code1);
|
|
|
|
else
|
|
{
|
|
/* Is it INC 1(SP). */
|
|
if (! IS_INC_1_SP_OPCODE (code0, code1))
|
|
return false;
|
|
|
|
code0 = bfd_get_8 (abfd, misc->contents + addr - 10);
|
|
code1 = bfd_get_8 (abfd, misc->contents + addr - 9);
|
|
|
|
/* Is it SNC. */
|
|
if (! IS_SNC_OPCODE (code0, code1))
|
|
return false;
|
|
|
|
code0 = bfd_get_8 (abfd, misc->contents + addr - 12);
|
|
code1 = bfd_get_8 (abfd, misc->contents + addr - 11);
|
|
|
|
/* Is it ADD W,WREG. */
|
|
if (! IS_ADD_W_WREG_OPCODE (code0, code1))
|
|
return false;
|
|
}
|
|
|
|
/* It looks like we've found the prologue for
|
|
a 128-255 entry switch dispatch table. */
|
|
return true;
|
|
}
|
|
|
|
static boolean
|
|
relax_switch_dispatch_tables_pass1 (abfd, sec, addr, misc)
|
|
bfd *abfd;
|
|
asection *sec;
|
|
bfd_vma addr;
|
|
struct misc *misc;
|
|
{
|
|
if (addr + 3 < sec->_cooked_size)
|
|
{
|
|
bfd_byte code0 = bfd_get_8 (abfd, misc->contents + addr + 2);
|
|
bfd_byte code1 = bfd_get_8 (abfd, misc->contents + addr + 3);
|
|
|
|
if (IS_JMP_OPCODE (code0, code1)
|
|
&& is_switch_128_dispatch_table_p (abfd, addr, false, misc))
|
|
{
|
|
/* Delete ADD W,WREG from prologue. */
|
|
ip2k_elf_relax_delete_bytes (abfd, sec, addr - (2 * 2), (1 * 2));
|
|
return true;
|
|
}
|
|
|
|
if (IS_JMP_OPCODE (code0, code1)
|
|
&& is_switch_256_dispatch_table_p (abfd, addr, false, misc))
|
|
{
|
|
/* Delete ADD W,WREG; SNC ; INC 1(SP) from prologue. */
|
|
ip2k_elf_relax_delete_bytes (abfd, sec, addr - 6 * 2, 3 * 2);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static boolean
|
|
unrelax_dispatch_table_entries (abfd, sec, first, last, changed, misc)
|
|
bfd *abfd;
|
|
asection *sec;
|
|
bfd_vma first;
|
|
bfd_vma last;
|
|
boolean *changed;
|
|
struct misc *misc;
|
|
{
|
|
bfd_vma addr = first;
|
|
|
|
while (addr < last)
|
|
{
|
|
bfd_byte code0 = bfd_get_8 (abfd, misc->contents + addr);
|
|
bfd_byte code1 = bfd_get_8 (abfd, misc->contents + addr + 1);
|
|
|
|
/* We are only expecting to find PAGE or JMP insns
|
|
in the dispatch table. If we find anything else
|
|
something has gone wrong failed the relaxation
|
|
which will cause the link to be aborted. */
|
|
|
|
if (IS_PAGE_OPCODE (code0, code1))
|
|
/* Skip the PAGE and JMP insns. */
|
|
addr += 4;
|
|
else if (IS_JMP_OPCODE (code0, code1))
|
|
{
|
|
Elf_Internal_Rela * irelend = misc->irelbase
|
|
+ sec->reloc_count;
|
|
Elf_Internal_Rela * irel;
|
|
|
|
/* Find the relocation entry. */
|
|
for (irel = misc->irelbase; irel < irelend; irel++)
|
|
{
|
|
if (irel->r_offset == addr
|
|
&& ELF32_R_TYPE (irel->r_info) == R_IP2K_ADDR16CJP)
|
|
{
|
|
if (! add_page_insn (abfd, sec, irel, misc))
|
|
/* Something has gone wrong. */
|
|
return false;
|
|
|
|
*changed = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* If we fell off the end something has gone wrong. */
|
|
if (irel >= irelend)
|
|
/* Something has gone wrong. */
|
|
return false;
|
|
|
|
/* Skip the PAGE and JMP isns. */
|
|
addr += 4;
|
|
/* Acount for the new PAGE insn. */
|
|
last += 2;
|
|
}
|
|
else
|
|
/* Something has gone wrong. */
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static boolean
|
|
unrelax_switch_dispatch_tables_passN (abfd, sec, addr, changed, misc)
|
|
bfd *abfd;
|
|
asection *sec;
|
|
bfd_vma addr;
|
|
boolean *changed;
|
|
struct misc *misc;
|
|
{
|
|
if (2 <= addr && (addr + 3) < sec->_cooked_size)
|
|
{
|
|
bfd_byte code0 = bfd_get_8 (abfd, misc->contents + addr - 2);
|
|
bfd_byte code1 = bfd_get_8 (abfd, misc->contents + addr - 1);
|
|
|
|
if (IS_PAGE_OPCODE (code0, code1))
|
|
{
|
|
addr -= 2;
|
|
code0 = bfd_get_8 (abfd, misc->contents + addr + 2);
|
|
code1 = bfd_get_8 (abfd, misc->contents + addr + 3);
|
|
}
|
|
else
|
|
{
|
|
code0 = bfd_get_8 (abfd, misc->contents + addr);
|
|
code1 = bfd_get_8 (abfd, misc->contents + addr + 1);
|
|
}
|
|
|
|
if (IS_JMP_OPCODE (code0, code1)
|
|
&& is_switch_128_dispatch_table_p (abfd, addr, true, misc))
|
|
{
|
|
bfd_vma first = addr;
|
|
bfd_vma last = first;
|
|
boolean relaxed = true;
|
|
|
|
/* On the final pass we must check if *all* entries in the
|
|
dispatch table are relaxed. If *any* are not relaxed
|
|
then we must unrelax *all* the entries in the dispach
|
|
table and also unrelax the dispatch table prologue. */
|
|
|
|
/* Find the last entry in the dispach table. */
|
|
while (last < sec->_cooked_size)
|
|
{
|
|
code0 = bfd_get_8 (abfd, misc->contents + last);
|
|
code1 = bfd_get_8 (abfd, misc->contents + last + 1);
|
|
|
|
if (IS_PAGE_OPCODE (code0, code1))
|
|
relaxed = false;
|
|
else if (! IS_JMP_OPCODE (code0, code1))
|
|
break;
|
|
|
|
last += 2;
|
|
}
|
|
|
|
/* We should have found the end of the dispatch table
|
|
before reaching the end of the section. If we've have
|
|
reached the end then fail the relaxation which will
|
|
cause the link to be aborted. */
|
|
if (last >= sec->_cooked_size)
|
|
/* Something has gone wrong. */
|
|
return false;
|
|
|
|
/* If we found an unrelaxed entry then
|
|
unlrelax all the switch table entries. */
|
|
if (! relaxed )
|
|
{
|
|
if (! unrelax_dispatch_table_entries (abfd, sec, first,
|
|
last, changed, misc))
|
|
/* Something has gone wrong. */
|
|
return false;
|
|
|
|
if (! is_switch_128_dispatch_table_p (abfd, addr, true, misc))
|
|
/* Something has gone wrong. */
|
|
return false;
|
|
|
|
/* Unrelax the prologue. */
|
|
|
|
/* Insert an ADD W,WREG insnstruction. */
|
|
if (! ip2k_elf_relax_add_bytes (abfd, sec,
|
|
addr - 2,
|
|
add_w_wreg_opcode,
|
|
sizeof (add_w_wreg_opcode),
|
|
0))
|
|
/* Something has gone wrong. */
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
if (IS_JMP_OPCODE (code0, code1)
|
|
&& is_switch_256_dispatch_table_p (abfd, addr, true, misc))
|
|
{
|
|
bfd_vma first = addr;
|
|
bfd_vma last;
|
|
boolean relaxed = true;
|
|
|
|
/* On the final pass we must check if *all* entries in the
|
|
dispatch table are relaxed. If *any* are not relaxed
|
|
then we must unrelax *all* the entries in the dispach
|
|
table and also unrelax the dispatch table prologue. */
|
|
|
|
/* Note the 1st PAGE/JMP instructions are part of the
|
|
prologue and can safely be relaxed. */
|
|
|
|
code0 = bfd_get_8 (abfd, misc->contents + first);
|
|
code1 = bfd_get_8 (abfd, misc->contents + first + 1);
|
|
|
|
if (IS_PAGE_OPCODE (code0, code1))
|
|
{
|
|
first += 2;
|
|
code0 = bfd_get_8 (abfd, misc->contents + first);
|
|
code1 = bfd_get_8 (abfd, misc->contents + first + 1);
|
|
}
|
|
|
|
if (! IS_JMP_OPCODE (code0, code1))
|
|
/* Something has gone wrong. */
|
|
return false;
|
|
|
|
first += 2;
|
|
last = first;
|
|
|
|
/* Find the last entry in the dispach table. */
|
|
while (last < sec->_cooked_size)
|
|
{
|
|
code0 = bfd_get_8 (abfd, misc->contents + last);
|
|
code1 = bfd_get_8 (abfd, misc->contents + last + 1);
|
|
|
|
if (IS_PAGE_OPCODE (code0, code1))
|
|
relaxed = false;
|
|
else if (! IS_JMP_OPCODE (code0, code1))
|
|
break;
|
|
|
|
last += 2;
|
|
}
|
|
|
|
/* We should have found the end of the dispatch table
|
|
before reaching the end of the section. If we have
|
|
reached the end of the section then fail the
|
|
relaxation. */
|
|
if (last >= sec->_cooked_size)
|
|
return false;
|
|
|
|
/* If we found an unrelaxed entry then
|
|
unrelax all the switch table entries. */
|
|
if (! relaxed)
|
|
{
|
|
if (! unrelax_dispatch_table_entries (abfd, sec, first,
|
|
last, changed, misc))
|
|
return false;
|
|
|
|
if (! is_switch_256_dispatch_table_p (abfd, addr, true, misc))
|
|
return false;
|
|
|
|
/* Unrelax the prologue. */
|
|
|
|
/* Insert an INC 1(SP) insnstruction. */
|
|
if (! ip2k_elf_relax_add_bytes (abfd, sec,
|
|
addr - 6,
|
|
inc_1_sp_opcode,
|
|
sizeof (inc_1_sp_opcode),
|
|
0))
|
|
return false;
|
|
|
|
/* Insert an SNC insnstruction. */
|
|
if (! ip2k_elf_relax_add_bytes (abfd, sec,
|
|
addr - 6,
|
|
snc_opcode,
|
|
sizeof (snc_opcode),
|
|
0))
|
|
return false;
|
|
|
|
/* Insert an ADD W,WREG insnstruction. */
|
|
if (! ip2k_elf_relax_add_bytes (abfd, sec,
|
|
addr - 6,
|
|
add_w_wreg_opcode,
|
|
sizeof (add_w_wreg_opcode),
|
|
0))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* This function handles relaxing for the ip2k. */
|
|
|
|
static boolean
|
|
ip2k_elf_relax_section (abfd, sec, link_info, again)
|
|
bfd *abfd;
|
|
asection *sec;
|
|
struct bfd_link_info *link_info;
|
|
boolean *again;
|
|
{
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
Elf_Internal_Rela *internal_relocs;
|
|
bfd_byte *contents = NULL;
|
|
Elf_Internal_Sym *isymbuf = NULL;
|
|
static asection * first_section = NULL;
|
|
static asection * last_section = NULL;
|
|
static boolean changed = false;
|
|
static boolean final_pass = false;
|
|
static unsigned int pass = 0;
|
|
struct misc misc;
|
|
asection *stab;
|
|
|
|
/* Assume nothing changes. */
|
|
*again = false;
|
|
|
|
if (first_section == NULL)
|
|
first_section = sec;
|
|
|
|
if (first_section == sec)
|
|
{
|
|
changed = false;
|
|
pass++;
|
|
}
|
|
|
|
/* If we make too many passes then it's a sign that
|
|
something is wrong and we fail the relaxation.
|
|
Note if everything is working correctly then the
|
|
relaxation should converge reasonably quickly. */
|
|
if (pass == 4096)
|
|
return false;
|
|
|
|
/* We don't have to do anything for a relocatable link,
|
|
if this section does not have relocs, or if this is
|
|
not a code section. */
|
|
if (link_info->relocateable
|
|
|| (sec->flags & SEC_RELOC) == 0
|
|
|| sec->reloc_count == 0
|
|
|| (sec->flags & SEC_CODE) == 0)
|
|
return true;
|
|
|
|
if (pass == 1)
|
|
last_section = sec;
|
|
|
|
/* If this is the first time we have been called
|
|
for this section, initialise the cooked size. */
|
|
if (sec->_cooked_size == 0)
|
|
sec->_cooked_size = sec->_raw_size;
|
|
|
|
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
|
|
|
internal_relocs = _bfd_elf32_link_read_relocs (abfd, sec, NULL,
|
|
(Elf_Internal_Rela *)NULL,
|
|
link_info->keep_memory);
|
|
if (internal_relocs == NULL)
|
|
goto error_return;
|
|
|
|
/* Make sure the stac.rela stuff gets read in. */
|
|
stab = bfd_get_section_by_name (abfd, ".stab");
|
|
|
|
if (stab)
|
|
{
|
|
/* So stab does exits. */
|
|
Elf_Internal_Rela * irelbase;
|
|
|
|
irelbase = _bfd_elf32_link_read_relocs (abfd, stab, NULL,
|
|
(Elf_Internal_Rela *)NULL,
|
|
link_info->keep_memory);
|
|
}
|
|
|
|
/* Get section contents cached copy if it exists. */
|
|
if (contents == NULL)
|
|
{
|
|
/* Get cached copy if it exists. */
|
|
if (elf_section_data (sec)->this_hdr.contents != NULL)
|
|
contents = elf_section_data (sec)->this_hdr.contents;
|
|
else
|
|
{
|
|
/* Go get them off disk. */
|
|
contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
|
|
if (contents == NULL)
|
|
goto error_return;
|
|
|
|
if (! bfd_get_section_contents (abfd, sec, contents,
|
|
(file_ptr) 0, sec->_raw_size))
|
|
goto error_return;
|
|
}
|
|
}
|
|
|
|
/* Read this BFD's symbols cached copy if it exists. */
|
|
if (isymbuf == NULL && symtab_hdr->sh_info != 0)
|
|
{
|
|
isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
|
|
if (isymbuf == NULL)
|
|
isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
|
|
symtab_hdr->sh_info, 0,
|
|
NULL, NULL, NULL);
|
|
if (isymbuf == NULL)
|
|
goto error_return;
|
|
}
|
|
|
|
misc.symtab_hdr = symtab_hdr;
|
|
misc.isymbuf = isymbuf;
|
|
misc.irelbase = internal_relocs;
|
|
misc.contents = contents;
|
|
|
|
/* This is where all the relaxation actually get done. */
|
|
|
|
if (pass == 1)
|
|
{
|
|
/* On the first pass we remove *all* page instructions and
|
|
relax the prolog for switch dispatch tables. This gets
|
|
us to the starting point for subsequent passes where
|
|
we add page instructions back in as needed. */
|
|
|
|
if (! ip2k_elf_relax_section_pass1 (abfd, sec, again, &misc))
|
|
goto error_return;
|
|
|
|
changed |= *again;
|
|
}
|
|
else
|
|
{
|
|
/* Add page instructions back in as needed but we ignore
|
|
the issue with sections (functions) crossing a page
|
|
boundary until we have converged to an approximate
|
|
solution (i.e. nothing has changed on this relaxation
|
|
pass) and we then know roughly where the page boundaries
|
|
will end up.
|
|
|
|
After we have have converged to an approximate solution
|
|
we set the final pass flag and continue relaxing. On these
|
|
final passes if a section (function) cross page boundary
|
|
we will add *all* the page instructions back into such
|
|
sections.
|
|
|
|
After adding *all* page instructions back into a section
|
|
which crosses a page bounbdary we reset the final pass flag
|
|
so the we will again interate until we find a new approximate
|
|
solution which is closer to the final solution. */
|
|
|
|
if (! ip2k_elf_relax_section_passN (abfd, sec, again, &final_pass,
|
|
&misc))
|
|
goto error_return;
|
|
|
|
changed |= *again;
|
|
|
|
/* If nothing has changed on this relaxation
|
|
pass restart the final relaxaton pass. */
|
|
if (! changed && last_section == sec)
|
|
{
|
|
/* If this was the final pass and we didn't reset
|
|
the final pass flag then we are done, otherwise
|
|
do another final pass. */
|
|
if (! final_pass)
|
|
{
|
|
final_pass = true;
|
|
*again = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Perform some house keeping after relaxing the section. */
|
|
|
|
if (isymbuf != NULL
|
|
&& symtab_hdr->contents != (unsigned char *) isymbuf)
|
|
{
|
|
if (! link_info->keep_memory)
|
|
free (isymbuf);
|
|
else
|
|
symtab_hdr->contents = (unsigned char *) isymbuf;
|
|
}
|
|
|
|
if (contents != NULL
|
|
&& elf_section_data (sec)->this_hdr.contents != contents)
|
|
{
|
|
if (! link_info->keep_memory)
|
|
free (contents);
|
|
else
|
|
{
|
|
/* Cache the section contents for elf_link_input_bfd. */
|
|
elf_section_data (sec)->this_hdr.contents = contents;
|
|
}
|
|
}
|
|
|
|
if (internal_relocs != NULL
|
|
&& elf_section_data (sec)->relocs != internal_relocs)
|
|
free (internal_relocs);
|
|
|
|
return true;
|
|
|
|
error_return:
|
|
if (isymbuf != NULL
|
|
&& symtab_hdr->contents != (unsigned char *) isymbuf)
|
|
free (isymbuf);
|
|
if (contents != NULL
|
|
&& elf_section_data (sec)->this_hdr.contents != contents)
|
|
free (contents);
|
|
if (internal_relocs != NULL
|
|
&& elf_section_data (sec)->relocs != internal_relocs)
|
|
free (internal_relocs);
|
|
return false;
|
|
}
|
|
|
|
/* This function handles relaxation during the first pass. */
|
|
|
|
static boolean
|
|
ip2k_elf_relax_section_pass1 (abfd, sec, again, misc)
|
|
bfd *abfd;
|
|
asection *sec;
|
|
boolean *again;
|
|
struct misc * misc;
|
|
{
|
|
Elf_Internal_Rela *irelend = misc->irelbase + sec->reloc_count;
|
|
Elf_Internal_Rela *irel;
|
|
|
|
/* Walk thru the section looking for relaxation opertunities. */
|
|
for (irel = misc->irelbase; irel < irelend; irel++)
|
|
{
|
|
if (ELF32_R_TYPE (irel->r_info) == (int) R_IP2K_PAGE3)
|
|
{
|
|
bfd_byte code0 = bfd_get_8 (abfd,
|
|
misc->contents + irel->r_offset);
|
|
bfd_byte code1 = bfd_get_8 (abfd,
|
|
misc->contents + irel->r_offset + 1);
|
|
|
|
/* Verify that this is the PAGE opcode. */
|
|
if (IS_PAGE_OPCODE (code0, code1))
|
|
{
|
|
/* Note that we've changed the relocs, section contents, etc. */
|
|
elf_section_data (sec)->relocs = misc->irelbase;
|
|
elf_section_data (sec)->this_hdr.contents = misc->contents;
|
|
misc->symtab_hdr->contents = (bfd_byte *) misc->isymbuf;
|
|
|
|
/* Handle switch dispatch tables/prologues. */
|
|
if (! relax_switch_dispatch_tables_pass1 (abfd, sec,
|
|
irel->r_offset, misc))
|
|
return false;
|
|
|
|
/* Fix the relocation's type. */
|
|
irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
|
|
R_IP2K_NONE);
|
|
|
|
/* Delete the PAGE insn. */
|
|
if (! ip2k_elf_relax_delete_bytes (abfd, sec,
|
|
irel->r_offset,
|
|
sizeof (page_opcode)))
|
|
return false;
|
|
|
|
/* That will change things, so, we should relax again.
|
|
Note that this is not required, and it may be slow. */
|
|
*again = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* This function handles relaxation for 2nd and subsequent passes. */
|
|
|
|
static boolean
|
|
ip2k_elf_relax_section_passN (abfd, sec, again, final_pass, misc)
|
|
bfd *abfd;
|
|
asection *sec;
|
|
boolean *again;
|
|
boolean *final_pass;
|
|
struct misc * misc;
|
|
{
|
|
Elf_Internal_Rela *irelend = misc->irelbase + sec->reloc_count;
|
|
Elf_Internal_Rela *irel;
|
|
boolean add_all;
|
|
|
|
/* If we are on the final relaxation pass and the section crosses
|
|
then set a flag to indicate that *all* page instructions need
|
|
to be added back into this section. */
|
|
if (*final_pass)
|
|
{
|
|
add_all = (PAGENO (BASEADDR (sec))
|
|
!= PAGENO (BASEADDR (sec) + sec->_cooked_size));
|
|
|
|
/* If this section crosses a page boundary set the crossed
|
|
page boundary flag. */
|
|
if (add_all)
|
|
sec->userdata = sec;
|
|
else
|
|
{
|
|
/* If the section had previously crossed a page boundary
|
|
but on this pass does not then reset crossed page
|
|
boundary flag and rerun the 1st relaxation pass on
|
|
this section. */
|
|
if (sec->userdata)
|
|
{
|
|
sec->userdata = NULL;
|
|
if (! ip2k_elf_relax_section_pass1 (abfd, sec, again, misc))
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
add_all = false;
|
|
|
|
/* Walk thru the section looking for call/jmp
|
|
instructions which need a page instruction. */
|
|
for (irel = misc->irelbase; irel < irelend; irel++)
|
|
{
|
|
if (ELF32_R_TYPE (irel->r_info) == (int) R_IP2K_ADDR16CJP)
|
|
{
|
|
/* Get the value of the symbol referred to by the reloc. */
|
|
bfd_vma symval = symbol_value (abfd, misc->symtab_hdr, misc->isymbuf,
|
|
irel);
|
|
bfd_byte code0, code1;
|
|
|
|
if (symval == UNDEFINED_SYMBOL)
|
|
{
|
|
/* This appears to be a reference to an undefined
|
|
symbol. Just ignore it--it will be caught by the
|
|
regular reloc processing. */
|
|
continue;
|
|
}
|
|
|
|
/* For simplicity of coding, we are going to modify the section
|
|
contents, the section relocs, and the BFD symbol table. We
|
|
must tell the rest of the code not to free up this
|
|
information. It would be possible to instead create a table
|
|
of changes which have to be made, as is done in coff-mips.c;
|
|
that would be more work, but would require less memory when
|
|
the linker is run. */
|
|
|
|
/* Get the opcode. */
|
|
code0 = bfd_get_8 (abfd, misc->contents + irel->r_offset);
|
|
code1 = bfd_get_8 (abfd, misc->contents + irel->r_offset + 1);
|
|
|
|
if (IS_JMP_OPCODE (code0, code1) || IS_CALL_OPCODE (code0, code1))
|
|
{
|
|
if (*final_pass)
|
|
{
|
|
if (! unrelax_switch_dispatch_tables_passN (abfd, sec,
|
|
irel->r_offset,
|
|
again, misc))
|
|
return false;
|
|
|
|
if (*again)
|
|
add_all = false;
|
|
}
|
|
|
|
code0 = bfd_get_8 (abfd, misc->contents + irel->r_offset - 2);
|
|
code1 = bfd_get_8 (abfd, misc->contents + irel->r_offset - 1);
|
|
|
|
if (! IS_PAGE_OPCODE (code0, code1))
|
|
{
|
|
bfd_vma value = symval + irel->r_addend;
|
|
bfd_vma addr = BASEADDR (sec) + irel->r_offset;
|
|
|
|
if (add_all || PAGENO (addr) != PAGENO (value))
|
|
{
|
|
if (! add_page_insn (abfd, sec, irel, misc))
|
|
return false;
|
|
|
|
/* That will have changed things, so, we must relax again. */
|
|
*again = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If anything changed reset the final pass flag. */
|
|
if (*again)
|
|
*final_pass = false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Parts of a Stabs entry. */
|
|
|
|
#define STRDXOFF (0)
|
|
#define TYPEOFF (4)
|
|
#define OTHEROFF (5)
|
|
#define DESCOFF (6)
|
|
#define VALOFF (8)
|
|
#define STABSIZE (12)
|
|
|
|
/* Adjust all the relocations entries after adding or inserting instructions. */
|
|
|
|
static void
|
|
adjust_all_relocations (abfd, sec, addr, endaddr, count, noadj)
|
|
bfd *abfd;
|
|
asection *sec;
|
|
bfd_vma addr;
|
|
bfd_vma endaddr;
|
|
int count;
|
|
int noadj;
|
|
{
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
Elf_Internal_Sym *isymbuf, *isym, *isymend;
|
|
unsigned int shndx;
|
|
bfd_byte *contents;
|
|
Elf_Internal_Rela *irel, *irelend, *irelbase;
|
|
struct elf_link_hash_entry **sym_hashes;
|
|
struct elf_link_hash_entry **end_hashes;
|
|
unsigned int symcount;
|
|
|
|
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
|
isymbuf = (Elf32_Internal_Sym *) symtab_hdr->contents;
|
|
|
|
shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
|
|
|
|
contents = elf_section_data (sec)->this_hdr.contents;
|
|
|
|
irelbase = elf_section_data (sec)->relocs;
|
|
irelend = irelbase + sec->reloc_count;
|
|
|
|
for (irel = irelbase; irel < irelend; irel++)
|
|
{
|
|
if (ELF32_R_TYPE (irel->r_info) != R_IP2K_NONE)
|
|
{
|
|
/* Get the value of the symbol referred to by the reloc. */
|
|
if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
|
|
{
|
|
asection *sym_sec;
|
|
|
|
/* A local symbol. */
|
|
isym = isymbuf + ELF32_R_SYM (irel->r_info);
|
|
sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
|
|
|
|
if (isym->st_shndx == shndx)
|
|
{
|
|
bfd_vma baseaddr = BASEADDR (sec);
|
|
bfd_vma symval = BASEADDR (sym_sec) + isym->st_value
|
|
+ irel->r_addend;
|
|
|
|
if ((baseaddr + addr + noadj) <= symval
|
|
&& symval < (baseaddr + endaddr))
|
|
irel->r_addend += count;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Do this only for PC space relocations. */
|
|
if (addr <= irel->r_offset && irel->r_offset < endaddr)
|
|
irel->r_offset += count;
|
|
}
|
|
|
|
/* When adding an instruction back it is sometimes necessary to move any
|
|
global or local symbol that was referencing the first instruction of
|
|
the moved block to refer to the first instruction of the inserted block.
|
|
|
|
For example adding a PAGE instruction before a CALL or JMP requires
|
|
that any label on the CALL or JMP is moved to the PAGE insn. */
|
|
addr += noadj;
|
|
|
|
/* Adjust the local symbols defined in this section. */
|
|
isymend = isymbuf + symtab_hdr->sh_info;
|
|
for (isym = isymbuf; isym < isymend; isym++)
|
|
{
|
|
if (isym->st_shndx == shndx
|
|
&& addr <= isym->st_value
|
|
&& isym->st_value < endaddr)
|
|
isym->st_value += count;
|
|
}
|
|
|
|
/* Now adjust the global symbols defined in this section. */
|
|
symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
|
|
- symtab_hdr->sh_info);
|
|
sym_hashes = elf_sym_hashes (abfd);
|
|
end_hashes = sym_hashes + symcount;
|
|
for (; sym_hashes < end_hashes; sym_hashes++)
|
|
{
|
|
struct elf_link_hash_entry *sym_hash = *sym_hashes;
|
|
if ((sym_hash->root.type == bfd_link_hash_defined
|
|
|| sym_hash->root.type == bfd_link_hash_defweak)
|
|
&& sym_hash->root.u.def.section == sec)
|
|
{
|
|
if (addr <= sym_hash->root.u.def.value
|
|
&& sym_hash->root.u.def.value < endaddr)
|
|
{
|
|
sym_hash->root.u.def.value += count;
|
|
}
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static boolean
|
|
add_page_insn (abfd, sec, irel, misc)
|
|
bfd *abfd;
|
|
asection *sec;
|
|
Elf_Internal_Rela *irel;
|
|
struct misc *misc;
|
|
{
|
|
/* Note that we've changed the relocs, section contents, etc. */
|
|
elf_section_data (sec)->relocs = misc->irelbase;
|
|
elf_section_data (sec)->this_hdr.contents = misc->contents;
|
|
misc->symtab_hdr->contents = (bfd_byte *) misc->isymbuf;
|
|
|
|
/* Add the PAGE insn. */
|
|
if (! ip2k_elf_relax_add_bytes (abfd, sec, irel->r_offset,
|
|
page_opcode,
|
|
sizeof (page_opcode),
|
|
sizeof (page_opcode)))
|
|
return false;
|
|
else
|
|
{
|
|
Elf32_Internal_Rela * jrel = irel - 1;
|
|
|
|
/* Add relocation for PAGE insn added. */
|
|
if (ELF32_R_TYPE (jrel->r_info) != R_IP2K_NONE)
|
|
{
|
|
bfd_byte code0, code1;
|
|
char *msg = NULL;
|
|
|
|
/* Get the opcode. */
|
|
code0 = bfd_get_8 (abfd, misc->contents + irel->r_offset);
|
|
code1 = bfd_get_8 (abfd, misc->contents + irel->r_offset + 1);
|
|
|
|
if (IS_JMP_OPCODE (code0, code1))
|
|
msg = "\tJMP instruction missing a preceeding PAGE instruction in %s\n\n";
|
|
|
|
else if (IS_CALL_OPCODE (code0, code1))
|
|
msg = "\tCALL instruction missing a preceeding PAGE instruction in %s\n\n";
|
|
|
|
if (msg)
|
|
{
|
|
fprintf (stderr, "\n\t *** LINKER RELAXATION failure ***\n");
|
|
fprintf (stderr, msg, sec->owner->filename);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
jrel->r_addend = irel->r_addend;
|
|
jrel->r_offset = irel->r_offset - sizeof (page_opcode);
|
|
jrel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
|
|
R_IP2K_PAGE3);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Insert bytes into a section while relaxing. */
|
|
|
|
static boolean
|
|
ip2k_elf_relax_add_bytes (abfd, sec, addr, bytes, count, noadj)
|
|
bfd *abfd;
|
|
asection *sec;
|
|
bfd_vma addr;
|
|
const bfd_byte *bytes;
|
|
int count;
|
|
int noadj;
|
|
{
|
|
bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
|
|
bfd_vma endaddr = sec->_cooked_size;
|
|
|
|
/* Make room to insert the bytes. */
|
|
memmove (contents + addr + count, contents + addr, endaddr - addr);
|
|
|
|
/* Insert the bytes into the section. */
|
|
memcpy (contents + addr, bytes, count);
|
|
|
|
sec->_cooked_size += count;
|
|
|
|
adjust_all_relocations (abfd, sec, addr, endaddr, count, noadj);
|
|
return true;
|
|
}
|
|
|
|
/* Delete some bytes from a section while relaxing. */
|
|
|
|
static boolean
|
|
ip2k_elf_relax_delete_bytes (abfd, sec, addr, count)
|
|
bfd *abfd;
|
|
asection *sec;
|
|
bfd_vma addr;
|
|
int count;
|
|
{
|
|
bfd_byte *contents = elf_section_data (sec)->this_hdr.contents;
|
|
bfd_vma endaddr = sec->_cooked_size;
|
|
|
|
/* Actually delete the bytes. */
|
|
memmove (contents + addr, contents + addr + count,
|
|
endaddr - addr - count);
|
|
|
|
sec->_cooked_size -= count;
|
|
|
|
adjust_all_relocations (abfd, sec, addr + count, endaddr, -count, 0);
|
|
return true;
|
|
}
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
|
|
/* XXX: The following code is the result of a cut&paste. This unfortunate
|
|
practice is very widespread in the various target back-end files. */
|
|
|
|
/* Set the howto pointer for a IP2K ELF reloc. */
|
|
|
|
static void
|
|
ip2k_info_to_howto_rela (abfd, cache_ptr, dst)
|
|
bfd * abfd ATTRIBUTE_UNUSED;
|
|
arelent * cache_ptr;
|
|
Elf32_Internal_Rela * dst;
|
|
{
|
|
unsigned int r_type;
|
|
|
|
r_type = ELF32_R_TYPE (dst->r_info);
|
|
switch (r_type)
|
|
{
|
|
default:
|
|
cache_ptr->howto = & ip2k_elf_howto_table [r_type];
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Perform a single relocation.
|
|
By default we use the standard BFD routines. */
|
|
|
|
static bfd_reloc_status_type
|
|
ip2k_final_link_relocate (howto, input_bfd, input_section, contents, rel,
|
|
relocation)
|
|
reloc_howto_type * howto;
|
|
bfd * input_bfd;
|
|
asection * input_section;
|
|
bfd_byte * contents;
|
|
Elf_Internal_Rela * rel;
|
|
bfd_vma relocation;
|
|
{
|
|
bfd_reloc_status_type r = bfd_reloc_ok;
|
|
|
|
switch (howto->type)
|
|
{
|
|
/* Handle data space relocations. */
|
|
case R_IP2K_FR9:
|
|
case R_IP2K_BANK:
|
|
if ((relocation & IP2K_DATA_MASK) == IP2K_DATA_VALUE)
|
|
relocation &= ~IP2K_DATA_MASK;
|
|
else
|
|
r = bfd_reloc_notsupported;
|
|
break;
|
|
|
|
case R_IP2K_LO8DATA:
|
|
case R_IP2K_HI8DATA:
|
|
case R_IP2K_EX8DATA:
|
|
break;
|
|
|
|
/* Handle insn space relocations. */
|
|
case R_IP2K_ADDR16CJP:
|
|
case R_IP2K_PAGE3:
|
|
case R_IP2K_LO8INSN:
|
|
case R_IP2K_HI8INSN:
|
|
case R_IP2K_PC_SKIP:
|
|
if ((relocation & IP2K_INSN_MASK) == IP2K_INSN_VALUE)
|
|
relocation &= ~IP2K_INSN_MASK;
|
|
else
|
|
r = bfd_reloc_notsupported;
|
|
break;
|
|
|
|
case R_IP2K_16:
|
|
/* If this is a relocation involving a TEXT
|
|
symbol, reduce it to a word address. */
|
|
if ((relocation & IP2K_INSN_MASK) == IP2K_INSN_VALUE)
|
|
howto = &ip2k_elf_howto_table[ (int) R_IP2K_TEXT];
|
|
break;
|
|
|
|
/* Pass others through. */
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* Only install relocation if above tests did not disqualify it. */
|
|
if (r == bfd_reloc_ok)
|
|
r = _bfd_final_link_relocate (howto, input_bfd, input_section,
|
|
contents, rel->r_offset,
|
|
relocation, rel->r_addend);
|
|
|
|
return r;
|
|
}
|
|
|
|
/* Relocate a IP2K ELF section.
|
|
|
|
The RELOCATE_SECTION function is called by the new ELF backend linker
|
|
to handle the relocations for a section.
|
|
|
|
The relocs are always passed as Rela structures; if the section
|
|
actually uses Rel structures, the r_addend field will always be
|
|
zero.
|
|
|
|
This function is responsible for adjusting the section contents as
|
|
necessary, and (if using Rela relocs and generating a relocateable
|
|
output file) adjusting the reloc addend as necessary.
|
|
|
|
This function does not have to worry about setting the reloc
|
|
address or the reloc symbol index.
|
|
|
|
LOCAL_SYMS is a pointer to the swapped in local symbols.
|
|
|
|
LOCAL_SECTIONS is an array giving the section in the input file
|
|
corresponding to the st_shndx field of each local symbol.
|
|
|
|
The global hash table entry for the global symbols can be found
|
|
via elf_sym_hashes (input_bfd).
|
|
|
|
When generating relocateable output, this function must handle
|
|
STB_LOCAL/STT_SECTION symbols specially. The output symbol is
|
|
going to be the section symbol corresponding to the output
|
|
section, which means that the addend must be adjusted
|
|
accordingly. */
|
|
|
|
static boolean
|
|
ip2k_elf_relocate_section (output_bfd, info, input_bfd, input_section,
|
|
contents, relocs, local_syms, local_sections)
|
|
bfd * output_bfd ATTRIBUTE_UNUSED;
|
|
struct bfd_link_info * info;
|
|
bfd * input_bfd;
|
|
asection * input_section;
|
|
bfd_byte * contents;
|
|
Elf_Internal_Rela * relocs;
|
|
Elf_Internal_Sym * local_syms;
|
|
asection ** local_sections;
|
|
{
|
|
Elf_Internal_Shdr * symtab_hdr;
|
|
struct elf_link_hash_entry ** sym_hashes;
|
|
Elf_Internal_Rela * rel;
|
|
Elf_Internal_Rela * relend;
|
|
|
|
if (info->relocateable)
|
|
return true;
|
|
|
|
symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
|
|
sym_hashes = elf_sym_hashes (input_bfd);
|
|
relend = relocs + input_section->reloc_count;
|
|
|
|
for (rel = relocs; rel < relend; rel ++)
|
|
{
|
|
reloc_howto_type * howto;
|
|
unsigned long r_symndx;
|
|
Elf_Internal_Sym * sym;
|
|
asection * sec;
|
|
struct elf_link_hash_entry * h;
|
|
bfd_vma relocation;
|
|
bfd_reloc_status_type r;
|
|
const char * name = NULL;
|
|
int r_type;
|
|
|
|
/* This is a final link. */
|
|
r_type = ELF32_R_TYPE (rel->r_info);
|
|
r_symndx = ELF32_R_SYM (rel->r_info);
|
|
howto = ip2k_elf_howto_table + ELF32_R_TYPE (rel->r_info);
|
|
h = NULL;
|
|
sym = NULL;
|
|
sec = NULL;
|
|
|
|
if (r_symndx < symtab_hdr->sh_info)
|
|
{
|
|
sym = local_syms + r_symndx;
|
|
sec = local_sections [r_symndx];
|
|
relocation = BASEADDR (sec) + sym->st_value;
|
|
|
|
name = bfd_elf_string_from_elf_section
|
|
(input_bfd, symtab_hdr->sh_link, sym->st_name);
|
|
name = (name == NULL) ? bfd_section_name (input_bfd, sec) : name;
|
|
}
|
|
else
|
|
{
|
|
h = sym_hashes [r_symndx - symtab_hdr->sh_info];
|
|
|
|
while (h->root.type == bfd_link_hash_indirect
|
|
|| h->root.type == bfd_link_hash_warning)
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
|
|
|
name = h->root.root.string;
|
|
|
|
if (h->root.type == bfd_link_hash_defined
|
|
|| h->root.type == bfd_link_hash_defweak)
|
|
{
|
|
sec = h->root.u.def.section;
|
|
relocation = h->root.u.def.value + BASEADDR (sec);
|
|
}
|
|
else if (h->root.type == bfd_link_hash_undefweak)
|
|
{
|
|
relocation = 0;
|
|
}
|
|
else
|
|
{
|
|
if (! ((*info->callbacks->undefined_symbol)
|
|
(info, h->root.root.string, input_bfd,
|
|
input_section, rel->r_offset,
|
|
(! info->shared || info->no_undefined))))
|
|
return false;
|
|
relocation = 0;
|
|
}
|
|
}
|
|
|
|
/* Finally, the sole IP2K-specific part. */
|
|
r = ip2k_final_link_relocate (howto, input_bfd, input_section,
|
|
contents, rel, relocation);
|
|
|
|
if (r != bfd_reloc_ok)
|
|
{
|
|
const char * msg = (const char *) NULL;
|
|
|
|
switch (r)
|
|
{
|
|
case bfd_reloc_overflow:
|
|
r = info->callbacks->reloc_overflow
|
|
(info, name, howto->name, (bfd_vma) 0,
|
|
input_bfd, input_section, rel->r_offset);
|
|
break;
|
|
|
|
case bfd_reloc_undefined:
|
|
r = info->callbacks->undefined_symbol
|
|
(info, name, input_bfd, input_section, rel->r_offset, true);
|
|
break;
|
|
|
|
case bfd_reloc_outofrange:
|
|
msg = _("internal error: out of range error");
|
|
break;
|
|
|
|
/* This is how ip2k_final_link_relocate tells us of a non-kosher
|
|
reference between insn & data address spaces. */
|
|
case bfd_reloc_notsupported:
|
|
if (sym != NULL) /* Only if it's not an unresolved symbol. */
|
|
msg = _("unsupported relocation between data/insn address spaces");
|
|
break;
|
|
|
|
case bfd_reloc_dangerous:
|
|
msg = _("internal error: dangerous relocation");
|
|
break;
|
|
|
|
default:
|
|
msg = _("internal error: unknown error");
|
|
break;
|
|
}
|
|
|
|
if (msg)
|
|
r = info->callbacks->warning
|
|
(info, msg, name, input_bfd, input_section, rel->r_offset);
|
|
|
|
if (! r)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static asection *
|
|
ip2k_elf_gc_mark_hook (sec, info, rel, h, sym)
|
|
asection *sec;
|
|
struct bfd_link_info *info ATTRIBUTE_UNUSED;
|
|
Elf_Internal_Rela *rel;
|
|
struct elf_link_hash_entry *h;
|
|
Elf_Internal_Sym *sym;
|
|
{
|
|
if (h != NULL)
|
|
{
|
|
switch (ELF32_R_TYPE (rel->r_info))
|
|
{
|
|
#if 0
|
|
case R_IP2K_GNU_VTINHERIT:
|
|
case R_IP2K_GNU_VTENTRY:
|
|
break;
|
|
#endif
|
|
|
|
default:
|
|
switch (h->root.type)
|
|
{
|
|
case bfd_link_hash_defined:
|
|
case bfd_link_hash_defweak:
|
|
return h->root.u.def.section;
|
|
|
|
case bfd_link_hash_common:
|
|
return h->root.u.c.p->section;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (!(elf_bad_symtab (sec->owner)
|
|
&& ELF_ST_BIND (sym->st_info) != STB_LOCAL)
|
|
&& ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
|
|
&& sym->st_shndx != SHN_COMMON))
|
|
{
|
|
return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static boolean
|
|
ip2k_elf_gc_sweep_hook (abfd, info, sec, relocs)
|
|
bfd *abfd ATTRIBUTE_UNUSED;
|
|
struct bfd_link_info *info ATTRIBUTE_UNUSED;
|
|
asection *sec ATTRIBUTE_UNUSED;
|
|
const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
|
|
{
|
|
/* we don't use got and plt entries for ip2k */
|
|
return true;
|
|
}
|
|
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
|
|
|
|
#define TARGET_BIG_SYM bfd_elf32_ip2k_vec
|
|
#define TARGET_BIG_NAME "elf32-ip2k"
|
|
|
|
#define ELF_ARCH bfd_arch_ip2k
|
|
#define ELF_MACHINE_CODE EM_IP2K
|
|
#define ELF_MACHINE_ALT1 EM_IP2K_OLD
|
|
#define ELF_MAXPAGESIZE 1 /* No pages on the IP2K */
|
|
|
|
#define elf_info_to_howto_rel NULL
|
|
#define elf_info_to_howto ip2k_info_to_howto_rela
|
|
|
|
#define elf_backend_can_gc_sections 1
|
|
#define elf_backend_rela_normal 1
|
|
#define elf_backend_gc_mark_hook ip2k_elf_gc_mark_hook
|
|
#define elf_backend_gc_sweep_hook ip2k_elf_gc_sweep_hook
|
|
|
|
#define elf_backend_relocate_section ip2k_elf_relocate_section
|
|
|
|
#define elf_symbol_leading_char '_'
|
|
#define bfd_elf32_bfd_reloc_type_lookup ip2k_reloc_type_lookup
|
|
#define bfd_elf32_bfd_relax_section ip2k_elf_relax_section
|
|
|
|
|
|
#include "elf32-target.h"
|